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Quantum geometric maps, which relate SU(2) spin networks and Lorentz covariant projected spin
networks, are an important ingredient of spin foam models (and tensorial group. field theories) for
4-dimensional quantum gravity. We give a general definition of such/maps,that encompasses all
current spin foam models, and we investigate their properties at such general level. We then spe-
cialize the definition to see how the precise implementation of simplicity constraints affects features
of the quantum geometric maps in specific models.

I. INTRODUCTION

Spin foam models [IH4] are combinatorial and algebraic formulations of the dynamics of quantum spacetime, in a
covariant path integral-like language, defined by the assignment’ of a quantum amplitude to 2-complexes labeled by
representations of a Lie group. While the spin foam formalism has wider applicability, their interest for quantum
gravity stems from two main features, common to all models studiediin this context. The first is that spin foam models
for quantum gravity are dual to lattice gravity path integrals,[5], with the gravitational degrees of freedom discretized
on the lattice (usually a simplicial complex) dual to the spin feam 2-complex (by Poincaré duality). The second is
that boundary data of spin foam amplitudes, forrappropriate models, define spin networks, i.e. the same fundamental
structures of the quantum geometry of canonicallLoop Quantum Gravity (LQG) [6HS]. Spin foam models are also the
Feynman amplitudes of (tensorial) group field theories [9HI1], a generalization to higher dimensions of matrix models
for 2-dimensional quantum gravity, which also provide completion of the spin foam formalism embedding it into a
sum over complexes (and discrete topologies).

The basic strategy for defining interesting spin foam models for 4-dimensional quantum gravity has been to work
in a simplicial setting. A simplicial complex plays the role of discrete counterpart of the spacetime manifold and
its Poincaré dual 2-skeleton provides.theicombinatorial structure over which the spin foam model is defined. The
assignment of algebraic data (andhe choiee of their corresponding quantum amplitude) to such complex is, in turn,
dictated by a description of the simplicial geometry (starting from that of their building blocks, i.e. tetrahedra for
spatial slices and boundaries, and 4-simplices for the 4-dimensional simplicial complex) in terms of a phase space given
by the cotangent bundle of & group mamifold. There are two different, but classically equivalent, characterizations
of a single tetrahedron in the simplicial geometry [12], 13]. The first is to assign a vector bJIc € R*! (whose norm is
proportional to area of the face)ito each face f of the tetrahedron 7 and impose constraint z; - b’ = 0 for a timelike
vector x, such that the tetrahedron lies in a spacelike hypersurface. To ensure that four vectors form a tetrahedron,
the closure constraint Y. fer bfc is'imposed. This characterization, due to the constraints, allows us to associate a

vector by with the/Lie algebra su(2). Thus space su(z)X4 provides a space of a single tetrahedron which can also be
seen as a cotangent busidle (I*SU(2))**. The conjugate variables in SU(2)** represents the parallel transport of a
discrete connection from the center of the tetrahedron to the center of its boundary faces. In this picture, the dual
graph of this fetrahedron becomes a spin network with a 4-valent vertex. One can construct, by properly defining the
inner product and imposing the constraint, the Hilbert space L?(SU(2)*%) for the single quantum tetrahedron. The
second characterization is to employ a bivector B}/ € A’R*" = s(2,¢) which is close ;. B’ and constrained by

simplicity constraints x; - (xB)! = 0 for a tetrahedron. This second characterization suggests the Hilbert space for the

single quantum tetrahedron is L2(SL(2,C)**,H") where H* is a set of timelike vector =, (with 2 > 0) under the
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simplicity constraint at the quantum level. Two quantum descriptions of a tetrahedron and full simplicial geometry
can be related via a map that we call here ‘quantum geometric map’.

The second construction as a continuum counterpart in the observation that the topological BF ‘action, yields the
Palatini first order gravity action under simplicity constraints [I4]. Thus one can define a pathsintegral of'the BF
action on a discrete manifold and impose the simplicity constraint at the quantum level [I5/16]. The resulting
regularized (by the means of the discretization) path integral of the action provides the partition function of the
quantum gravity model and the amplitude for a simplicial complex, which can then be réeast, equivalently, in the spin
foam language [5]. A different choice of quantum simplicity constraint (for the same classicalisimplicityrconstraint),
configuration space, and gauge group produces different spin foam models having different amplitudes, while most of
spin foam models for 4-dimensional gravity carry the Lorentz group SL(2,C) (or Spin(4) for the Riemannian theory)
as a gauge group.

Such spin foam models are often referred to as a covariant counterpart of Loop Quantum Gravity, in the sense
that they are expected to provide a way to describe the dynamics of spin network states which has proven difficult to
control by a quantum Hamiltonian constraint in the canonical framework. However, describing the LQG dynamics
using the spin foam formalism requires relating two different quantum states of two theoties as the LQG Hilbert space
is formed by the SU(2) spin networks and the boundary Hilbert space for the spin foam model is spanned naturally
by the projected spin networks [I7, [I§], which in fact arise straightforwardly from the covariant, constrained BF
description of classical and quantum geometry.

The type of quantum variables characterizing them, in particular, the.irreducible representation assigned on each
edge, and of course the underlying simplicial geometric descriptiong,suggest that the SU(2) spin network can be
embedded into the Lorentz-based projected spin networks, and vice versa,that the covariant projected spin network
can be projected down to the SU(2) spin network [19]. In fact, one could expeet to be able to translate back and forth
between these two descriptions of the quantum geometry of these models. The ‘quantum geometric maps’ mentioned
before take part of this translation between two descriptionﬁﬂ

These quantum geometric maps, therefore, allow to formulate(spin foam models and their boundary states in two
alternative manners. One, in terms of explicitly covariant data taken from the SL(2,C) or Spin(4) group, and the
other in terms of their rotation 3-dimensional rotatiomsubgrouprenly, with the 4-dimensional covariance properties
of the models (and the states) encoded in the dynamieal amplitudes. This choice is available when spin foam models
are seen from a lattice gauge theory perspective [23]. The same choice is obviously available also in the group field
theory context [24] 25], which provides a complete definition of the same spin foam models by embedding them in a
field theory context, generalizing matrix and tensor models [26H28], and allowing both a precise definition of the sum
over spin foam complexes and more direct access tomon-perturbative dynamics and collective physics of spin network
degrees of freedom [29431]. The models defined following the same quantization strategies of classical structures
(in particular, the simplicity constraints)sbut using these two types of data are not equivalent, in general. The
corresponding Hilbert space of states is.different, and so is, in general, the quantum dynamics. The precise relation
between models differing only by this choice of boundary states, and a precise characterization of their similarities
and differences, however, depends on_the detailed properties of the map relating the two formulations. That is, it
depends on the ‘quantum geometric map}one has employed. The general structure and properties of such maps are
the object of our analysiaﬂ

A specific type of quantum geometric map/has been constructed by M. Dupuis and E. Livine, through the convolution
of character functions, and including ansundetermined factor (which is not irrelevant for the properties of the map)
n [19], and adapted to the EPRLE-FK imposition of the simplicity constraints. The analysis of the properties of this
map has raised questionsoncerning the incompatibility between the two reasonable requirements of isometry and of
the embedding map from SU(2) spin networks to covariant ones being the inverse (suitably intended) of a projection
map, that would be the most intuitive way of understanding how SU(2) spin networks arise from covariant ones.
In particular, one would likertoinderstand if this incompatibility is a generic feature of quantum geometric maps,
whether it depends on other properties having been assumed for the same maps, or whether it follows from the choice
of quantum imposition of the simplicity constraints (and thus may not arise in other spin foam models, based on
different imposition strategies and characterized by different encoding of the same constraints as restrictions on the
group-theoretic data).

In this article, we give first of all a general definition of the quantum geometric maps, that encompasses all spin

foam models in this ‘constrained BF’ class (i.e. all imposition strategies for the simplicity constraints). Next, we

1 Of course, xelating canonical LQG and spin foam amplitudes requires much more than a matching of kinematical states. For more
results on this'issue, see [11} 20H22].

Weremark that the embedding/projection maps we study in this paper remain confined at the kinematical level with respect to the
quantum dynamics defined by spin foam amplitudes and, in the canonical context, by the Hamiltonian constraint, even though they
ingorporate the simplicity constraints. These constraints impose the proper geometricity of the quantum data entering states and
amplitudes, as we have discussed above, but no dynamical content, per se. The imposition of the quantum dynamics requires, instead,
the actual evaluation of spin foam amplitudes, and thus of the quantum correlations between their boundary states (or of the canonical
constraints).
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investigate some properties of the embedding and projection maps at such general level, as well as the compatibility
between different properties. Finally, we specialize the definition to see how the precise implementation of simplicity
constraints affects features of the quantum geometric maps, and what happens in specific spin foam models.

II. HILBERT SPACES AND GAUGE SYMMETRIES

As we already discussed, embedding and projection maps are mappings between the SU(2) eylindrical fumctions and
projected cylindrical functions, associated to graphs (which can be taken to be embedded in a topological manifold
(in canonical LQG) or defining a simplicial complex (in usual spin foam models and in group field theory). These are
two different, but presumably geometrically equivalent (once also the dynamics is implemented) representations of a
3-geometry in the spin foam, loop quantum gravity and tensorial group field theory formalisms.

The full Hilbert space in which they are included differ in the mentioned approaches, in the way states associated
to different graphs are related [32], but as long as restricts consideration only'to therHilbert space associated to a
given graph, the Hilbert spaces in these formalisms coincide. Since we are only concﬁ“ned, here, with the relation
between SU(2) and covariant states, we restrict our attention to what happensifor given fixed graph.

In this section, we construct the Hilbert spaces of different types of cylindrical funetions defined on the directed
graph I' with E edges and V vertices.

First consider the SU(2) cylindrical functions. The Hilbert space % UQ) of the cylindrical functions ¢ on E copies
of SU(2) is

KV = {¢: 5U(2)" —€| |l¢]* <0} (1)
where the L? norm is induced by the inner product 3
@ hsve gyl TdETGs.) 2)
SU (2)

with the Haar measure dg, on the group manifold SU(2). Here ¢(g.) = ¢(g1, .-, 9E)-

The group action on the state on the graph.I' is defined as the multiplication of the group elements associated to
the edges by a distinct group element associated.to every,vertices of the graph, the multiplications being from the left
or from the right depending on whether the vertexiis a source or a target for the given edge. The SU(2) cylindrical
function is said to be SU(2) invariant if it is invariantunder this gauge transformation:

¢<ge) = ¢(hs(e)geht_(i))a th € SU(Q) (3)

where s(e) is the source vertex for the edge e incidents and t(e) is the vertex where the same edge e terminates. The
SU(2) gauge invariant functions form the ‘kinematical Hilbert space’, that we label IC,fgL(Q). A special case of the
above is when the underlying graph has (out-going) open edges, i.e. edges which end on uni-valent vertices, where
we assume no action of the gauge group; for example, assuming a graph withh all £ edges being open, the gauge

invariance reads

®(ge) = d(hsy91, - ho(ey9E), Yhy € SU(2) (4)
In the opposite situation with all edges being in-coming, one would have instead
P(ge) = ¢(91h;(})5 ---ngh;(};,))a Vh, € SU(2) (5)

This gauge invariantyproperty corresponds to the Gauss constraint of LQG. Upon Peter-Weyl decomposition, these
cylindrical funetions expand in the standard spin network basis, each spin network state being characterized by an
assignment of an irreducible representation of SU(2) on each edge with angular momentum projection index at each
end of the edge; contracted by invariant tensors (intertwiners) associated to the vertices of the graph.

Now lét us consider the covariant counterpart of the SU(2) cylindrical functions, on both Riemannian and Lorentzian
signatures, i.e. the ones that serve as a starting point for defining quantum gravity states in four dimensions, via
the constrained BF strategy. A basis for the relevant covariant states is formed by so-called projected spin networks
[I7]. A projected spin network is a directed graph with a (time-like, in the Lorentzian case) unit vector x, on each
vertex, an irreducible representation of G (Spin(4) for the Riemannian theory and SL(2, C) for the Lorentzian theory)
and two irreducible representations of the stabilizer group SU,, (2) on each edge (one for each vertex connected by
the @dge) and an SU, (2) intertwiner on each vertex, resulting from the same invariance we described for standard
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spin networks, now with respect to the x,-dependent SU(2) subgroup of the group G. The corresponding cylindrical
function is a function on F copies of G and V' copies of the homogeneous space () where

(6)

Q= Spin(4)/SU(2) = S3 for the Riemannian case
~ | SL(2,C)/SU(2) = H* for the Lorentzian case.

Here S3 = {x € R* | ||z||?> = 1} is a 3-sphere and HT = {z € R®! | 2 > 0 and ||z||> =1} is a hyperboldid [17, [19].
We now discuss the two resulting Hilbert spaces in some more detail, separating the Riemannian and the Lorentzian
cases.

A. Riemannian theory

The space of the cylindrical functions we consider is the Hilbert space 574
. . < ke
ISP = {4 Spin(4)F x (%)Y — C | ||7//||?;pin(4)< oo} (7)

where the norm ||-||gpin(4) is induced by the inner product

WD = [ el [ G g w) Q

with the Haar measure dG, on the group manifold Spin(4) and the Lebesgue measure dz, on the homogeneous space
Spin(4)/SU(2) = S3.

Just like the SU(2) case, we can require an additional symmetry,condition to be satisfied by the cylindrical functions
of interest. The relevant cylindrical functions are Spin(4) invariant if g

V(Ge, y) = V(Hy(e)Ge t(e),H & x,),VH, € Spin(4). (9)

While the group action on the group elements labelling the.edges is defined similarly in the Riemannian and Lorentzian
cases, the group action on the normal vector x, should be adapted to the case at hand. In the Riemannian case, the
action is

H> v, =htw,(h™)™* (10)
where H = (hT,h™), h* € SU(2) using the isomorphism Spin(4) = SU(2) x SU(2) and the =, € S° is seen as an
SU(2) group element under the identification [33]

20 +ix® 2?4 ixt
Ty = (370,{,61,:[}2,1'3) ~ (1,2 + ’L’El 1.(] _ ZI’S . (11)
The Spin(4) action so defined is a4-dimensional rotation of the unit 4-vector x,. Some rotations do not change the

vector and form the stabilizer group, whichds the SU(2),, group previously mentioned. The Spin(4) invariance so
defined induces another symmetry under the action of the stabilizer group of xz,:

WG, 20) =U(hy)G ht_(e),acv),th € SU,,(2) C Spin(4). (12)

A Spin(4) invariant fungtion can also be obtained, of course, by acting with a projector Pj,, on any cylindrical
function ¢ € KSPin(4)

(Pin1;¢) (Qe, va) = /S ( )[dHe]Ew(Hs(e)gth(ey Hr> va). (13)
pin(4

The cylindrical funetions Wlth Spm( ) invariance form a kinematical Hilbert space ICSP 1) which is equipped with

the same innér product as Note that this inner product on the kinematical Hllbert space carries a redundant
integral due o the Spin(4) mvarlance

P = [Janl? [ Gz )EGur) (1)

— [l [ G EOH o (9GH (B D Hoo (G Hih (). 1)
58 Spin(4)

= [l [ GGG
S8 Spin(4)
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where H,(z,) > 1 = x, and the invariant properties of the Haar measure are used. The expression provides
the inner product for the gauge-fixed function ¢(G,) := ¥(G.,z, = 1) for the Spin(4) invariant fanctions. Note
that the gauge-fixed functions loose the full Spin(4) invariance and have only induced SU,, (2) invariance. The z,
integrals result in a factor equal to the volume of the homogeneous space, which we take to be/mormalized to one.
The ‘projected’nature of the canonical basis of cylindrical functions, which would be otherwise simply a generalization
of standard spin networks from SU(2) to Spin(4), arise when the Spin(4) representation associated to each edge is
further decomposed into a canonical basis of representation functions for the SU(2),, subgroup at each<énd point of
the edge, incident to the vertex to which the vector x,, is associated [17].

So far, these covariant cylindrical functions have no gravitational or geometric characterizations, In fact, they can
be seen as quantum states for a topological BF theory discretized on the graph I'. Spin foam models for 4-dimensional
gravity are constructed, as discussed, from such discrete BF theory and imposing thesimplicity constraints, which in
both continuum and discrete classical formulations turn the topological theory into/the geometrie (first order) gravity
theory, at the quantum level. The quantum implementation of such constraints is ‘asubtle matter (and a main focus
of attention of the spin foam community over the last years) and different ways©f imposing the simplicity constraints
yield different models. =

In general terms, the imposition of the simplicity constraints is a mapping 'S

QW . ICSpin(4) N ]CSpin(AL) (15)

Y Y.
which in practice, affects the expansion of the resulting cylindricalfunctions, in/terms of irreducible representations
of the group Spin(4) and, once this is performed, in terms of the representations of the stabilizer groups SU(2),, .
We characterize this modified expansion in representations in terms of a coefficient w (closely related to the so-called
fusion coefficients), which thus encodes the precise implementation of the simplicity constraints. To see more explicitly
the results of the imposition of the simplicity constraints in' the represeéltation space, one first needs to decompose

the cylindrical functions into the representation functions. For the cylindrical functions ¢ in the kinematical Hilbert
spaces, this looks as follows:

E
P(Gewy) = Y Wl v, [T 2~ (Ge) (16)

Je,Me,Ne

by the Peter-Weyl decomposition [34]. D7 is the representation function of the irreducible representation J of Spin(4).
The 9" are the modes of the cylindrical function. Then, upon the imposition of the simplicity constraints the same
expansion is modified as

ww(Gevxv) = Z [w(xv)]ﬁem H (D]‘\]/;SNG (GE)OJ(JE7je7’}/)) (17)
e=1

Je,Mc,Ne,je

where the coefficient w constrains the fulhier expansion of the representation J into irreducible representations of the
subgroup SU(2),,. Here j is the irreducible representations of SU(2) and the parameter v is the Immirzi parameter
[B5H3T]. As, said, the coefficient w restricts the decomposition:

it
n = (18)

lit—3-1

where J = (T, ;7). We refer to [5] for more details.

B. Lorentzian theory

In the Lorentzian case, the definition of the relevant Hilbert spaces is entirely analogous, but of course extra care
should be taken,due to the non-compactness of the Lorentz group.
The rélevant space of the cylindrical functions is the Hilbert space KSL(2C)

KO = {4 SL(2,0)% x (H)Y — C | [Wll3120)< o0} (19)
where the norm |[|-||gz(2,c) is induced by the inner product
Wodsiee = [ a0 [ [dGITH Gz Gen). (20)
H SL(2,C)
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with the Haar measure dG, on the group manifold SL(2,C) and the Lebesgue measure dz,, on the homogeneous space
SL(2,C)/SU(2) @ H™T.
The cylindrical function is SL(2,C) invariant if

Y(Gey ) = Y(Hge)Ge Ht(e Hrvz,),VH, € SL(2,C). (21)
where the group action on the vertex vectors is
Hez, = Haz,H' (22)

where the vector x, can again be seen as an SU(2) group element under the identification [33]

0 3 .2 _ o1
o +x -
Ty = (.’1307331,33‘2,333) ~ <x2 + il 20 — {E3> . (23)
~
Just like in the Riemannian case, this SL(2,C) action is a (3,1)-dimensional Lorentz rotation of the timelike 4-vector
whose stabilizer group is again an SU,,, (2) group. The SL(2,C) invarianceshus induces another symmetry under the
action of the stabilizer group of z,:

D(Ge,0) = Y(ho(e)Gehygys 0), Vhy € SURN2) C SI(2,C). (24)
Also in this Lorentzian case, an SL(2,C) invariant function can pe obtained by acting with a ‘projector’Pj,, on a
generic cylindrical function 1 € KSH(2C)
(Pznv'(/}) (gev xv) = / [dHe]E¢(Hs(e)geH§:)7 H > -751)) . (25)
SL(2,C)

However, this is a formal definition only, since this ‘projector operator’'would produce immediately a divergence when
acting more than once, due to the non-compact domainvef integration. A (rather straightforward) regularization
procedure will therefore be needed whenever this construction. is used. The Lorentz invariant cylindrical functions
form a (kinematical) Hilbert space ICSL(2 © swhich equips\the same inner product as . We note again that the
inner product carries a divergent 1ntegral due torthe SL(2,C) invariance

W, D) s0 = /H e /S N 01 721G ) (26)

= [ [ O (r0) Gl ) Dy (20) G (). 1)
HH 55(2,0)

- / ded” [P Naé 175G DG, 1)
H+ $1.(2,6)

where H,(z,) > 1 = z,, duéto the non-edmpactness of H . However, this divergence is not physical and the inner
product can be regularized by simply dropping the integral that corresponds to the volume of the homogeneous space
H*. The resulting expression'provides(the inner product for the gauge-fixed function ¢(G.) := 9¥(Ge, x, = 1) for the
SL(2,C) invariant functions. Obviously, this gauge-fixed function loses the full SL(2,C) invariance, only the induced
SU,, (2) invariance remains.

Imposing the simpli€ity constraint in the Lorentzian theory is not much different from in the Riemannian theory.
The constraint is imposed by.a mapping S¥

Sv . ICSL(2’C) N ]CSL(2,(C) (27)
Y — Y~

Upon the Plancherel decomposition [19], the cylindrical function is represented as

E
WGum)= T / H( lper ac)dpe ) 0es), () T] D50, (Ge) (28)
=1

Qe Jesles
Me,Ne

where @ € N/2 and p € R. Here D(*%) is the representation function for the irreducible (unitary) representation (p, a)
of SL(2,C) of the principal series and u(p,a) = (p* + a?) is the Plancherel measure. The coefficient ("% are the
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modes of the cylindrical function. Then the simplicity constraint imposition results in a modification of this expansion
as

E E

(Goa) = Y [ TT (uoeaan)oifss), o) TT (D5, Gl ). S 29
ae,jesle ke, e=1 e=1

The j, k, and [ label elements in the canonical basis for the irreducible representations,of SU(2)w=This way of

expressing the restriction uses the fact that the representation space of SL(2,C) can be expressed as thexdirect sum

of the representation spaces of SU(2):

He = P H. (30)

j€a+N

We refer to the spin foam literature (e.g. [38]) for more details.

III. EMBEDDING AND PROJECTION MAPS

Being equipped with the different Hilbert spaces we are interested in, we c¢am, now define the embedding and
projection maps relating the two, and thus relating the SU(2) cylindrieal functions and the covariant (projected)
cylindrical functions. The maps can be defined at different levels dependingron the symmetries being imposed. In
particular, we will focus our attention on the properties of the maps, especially, injectivity, isometry, and, indeed,
implementation of the SU(2) and SL(2,C) (or Spin(4)) symmetries.

Let us spend a few words to clarify the importance of these'properties. The injectivity guarantees that different
SU(2) spin network states correspond to different covariant boundary gtates on the spin foam. If the embedding
map is not injective, then a non-trivial SU(2) spin network state could be mapped to the zero state, producing thus
a highly degenerate spin foam amplitude. In othersdwords, it would/simply be impossible to capture the spin foam
dynamics in terms of its effect on SU(2) spin networks, and thusmno canonical LQG interpretation could possibly be
given to itlﬂ The isometry property amounts to the requirement that the map between SU(2) and covariant quantum
states preserves the inner products, including of course preserving their norm. This is a stronger requirement than
injectivity and would ensure that matrix elementsrof kinematical observables are preserved in the two formulations,
and that, so to speak, no information about the quantum spin foam dynamics gets lost when passing from one to the
other. Finally, the states in the kinematical Hilbertispaces have symmetries so the maps between the state spaces
could be required to preserve those symmetries, to ensure their correct implementation in the spin foam dynamics
regardless of the formulation being chosen for its boundary data.

The embedding and projection maps can be defined between the Hilbert spaces without gauge symmetries or at
the gauge invariant level.

First, let us consider the maps betwee%?ilbert spaces without gauge symmetries.

The embedding map K’ is a map from K3U@) to KC:
K': KSV®) 5 k& (31)
¢ —
The most general form of the embedding map can be written with the help of the integral kernel K'(G;, g, %, ):
¢(Ge;xv) = / [dge]EK/(Gevgeaxv)Qs(ge) (32)
SU(2)

where ¢(g.) = ¢(g1 .., gg) and the same applies to K'(Ge, ge, T») and (G, ).
The projection map £’ is & mapifrom K to K5V ().

P K% — SV (33)
Yo

3 Under the assumption that the spin foam amplitudes impose the projection of the kinematical states onto solutions of the spacetime
diffeomorphism constraints, which natural from the canonical perspective on spin foam models, we expect such amplitudes to be already
highly degeneraté. They are indeed expected to map kinematical states in the same diffeo-equivalence class on the same physical state.
Even in this ease, though, the degeneracy resulting from lack of injectivity of the map would result in an additional and independent
degeneracy, whose overlap with the physical one corresponding to the imposition of diffeomorphism invariance is entirely unclear. If the
overlap is not complete, one would have distinct physical diffeo-invariant states which are nevertheless treated as equivalent by the spin
foam amplitudes, due to the degeneracy of their map to/from SU(2) states.
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Just as the embedding map, the most general form of the projection map can be written in terms of the integral
kernel P'(Ge, ge, x4):

o(ge) = /Q (de,)” /G (dGP P (Ge, go 2 (G ). (34)

One can also define the embedding and projection maps between Hilbert spaces thatyincorporate the/mentioned
gauge symmetries. The corresponding embedding map is

K eU® ke (35)
¢ —
and the integral kernel is defined by
WGz = [ (dg)PKGuge)olad (36)
SU(2)
Moreover, a different embedding map incorporating also the simplicity c¢onstraints can be defined as
G A gy g <y (37)
¢ —
This embedding map is nothing but K“ = S“ o K. The integral kernel is defined by
(G = [ 0 ARG )60, (3)
SU(2) ~
Similarly, the projection map is defined as
P KRS e 0@ (39)
b 0.
Its integral kernel is defined by
o005 [ ] NGIT PG e 0G0 (40)
Having the definitions, let us now consider the properties of the embedding map and the projection map.
S »A¢ Riemannian theory
1. Injectivity
The injectivity of the embedding,map K’ would amount to
if K'(¢) =0 then ¢ = 0. (41)

The correspondent statement,applies to the embedding maps K and K¢. In practice, in order to analyse it and to
verify whether it is satisfied by specific constructions, it is useful to write the condition in terms of the expression of
the integral kernels in erms of group representations.

The integralkernel of K'{is decomposed as

E -
K'(Gigien) = Y K @ N, T (Plhn, (G Dl (92 42)

Ji,Mi, Ny, i=1

Jiy i, Mg

under the Reter-Weyl decomposition. This gives the ‘spin’representation of the integral kernel K’ as:

. E E E
(K@) vmn, = TL(@n) [ T]darc(Ggio) [ (PR (@020, () (13)

i=1 pin(4) j=1 i=1
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using the orthogonality relations of the matrix elements of the representations [34]
4 [ gD O = b ()

SU(2)
dJ/ dG DN (G)Dpo(G) = 8 8 ping. (45)
Spin(4)
Having the spin representation of the integral kernel at hand, one can write the injectivity éondition in terms of it: if
v
> ] | LD H d— n, = 0YJ;, M;, N;, implies ¢% »= 0 V1, p;, q; (46)
JiyMi,m

then K’ is injective.
Similarly, the integral kernel of K is decomposed as

~
E & W
K*(Gigien) = > K@) nomm, L] (DG Dl 9)). (47)
JiyMi,N;, i=1
JiyMi,m;
And its spin representation is
E E
K @) e, = 11 (4045, /S 40P K (G, R [T (D n, (G)Dg (9 i) (48)
i=1 pin(4 )

The injectivity condition of K“, in terms of such spin representation, i then that: if
> B @) N, H d— T =0 VJ;, Mi, Ny, implies ¢4, = 0 Vi, pi, q; (49)
» Ji
iy,

then K* is injective.

2 Asometry

The isometry of the embedding map &’ is thé,condition that
@7 ¢~5>SU(2) = <K’(¢)7K/(¢~5)>spm(4). (50)

If K’ is isometric then its integral kefnelsssatisfies

E
[ a6 g ) RG] = [ Bsva (0 ). (51)
S3 Spin(4) e=1

In fact, the isometry of any map defined in a normed vector space implies the injectivity of the same map (the proof
is recalled in section . The converse is not true in general, therefore any non-injective map is non-isometric.
The isometry condition (50))-ean be written in terms of the spin representation as

E

E
1 1Ji Lik; ik
D / [z, H g (K @ N, (K @i, = (@ Omapi O ™). (52)
1;,M;,N; 25° i=1 i=1
Moving themto the more interesting quantum geometric context, the embedding map K is isometric if

(6, 0)su(2) = (K“(9), K“(9))c- (53)

If the mapris isometric then its integral kernel satisfies

E
/ da,,]” / [dG)P K (Ge, gey 20) K (Ge, hey ) = [ [ Ssv 2 (9eh ). (54)
Q Spin(4) e—1
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The spin representation of is

E E
S [ tdmY TT - i K @ i, = L1 (2708000575 (55)

: i=1

It is immediate to verify that the isometry condition for the embedding map K, corresponding to the non-geometric,
topological case, is obtained as a special case when all w are set to be the identity.

8. Miscellaneous

We now state a number of other properties of the embedding and projection maps that turn out to be useful in the
following analysis, and are also of more general interest.

When the restriction of the image of embedding map K from Spin(4) t6 SUp(2)%yields the mapped function,
U((giy9:), 1) = K(6)(g:) = ¢(gi), the integral kernel of the embedding map satisfies

K((ge>ge hea ]1 H(SSU (2) ge ) (56)

The spin representation of the condition above is

E . . . E
i, Li H Ji Ji Ji ], J; Ji - H d 6] l 5
T mens (Cm'."mi_pi V. pqmi qini |+ (57)

ot i=1 i=1
If the embedding map K’ maps SU(2) invariant funetion to SUg, (2) invariant function defined on a closed graph
then the integral kernel satisfies

Kl(hs(e)Geh;(iyh&xv) N K/<Gea hih ht(e)v‘rv) (58)

s(e)
Of course the SU,, (2) invariance does not ensure the Spin(4) invariance.

This symmetry ‘translation’is equivalent to the invariance of the integral kernel under simultaneous left diagonal
SUyz,.,(2)(C Spin(4)) action and right diagenal SU,, ., (2)(C Spin(4)) action on Spin(4) and SU(2) action on SU(2)

Tt(e)
itself. The left invariance can be implemeénted by a projector
PE (K ) (Gengeyi,) :/S ( )dhK'((hge, o(e )hxg(e)ge) hg, ). (59)
U2

The right invariance can be imposed Similarly.

These invariances imply, i turn, thatsthe group representation of the integral kernel is a convolution of Spin(4)
and SU(2) characters. In the'spin representation, each invariance intertwines Spin(4) and SU(2) representations
providing in such a way that the expression can be given in terms of rotated Clebsch-Gordon coefficients

) -
T A H (C20 @a@)C T (o) (60)
where the rotated CG'is defined by
A2 eI e = [ 19D @D 9 D) (61)
U2

This shows that the symmetry requirement fully determines the integral kernel of the map up to some proportionality
weights.

On a clesed-graph, the embedding map K* maps an SU(2) invariant cylindrical function to a Spin(4) invariant
funetion in ICSZP o 4), thus the integral kernel satisfies

K(Geage;xv) = K(Hs(e)GeHi:)age;Hv va) (62)
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for any H, € Spin(4). Moreover, the SU(2) symmetry is translated into the induced SU,, (2) symmetry and the
integral kernel satisfies (58)).

The projection map P maps instead a Spin(4) invariant function to an SU(2) invariant functions. Therefore the
integral kernel satisfies

P(Ge, ge, 20) = P(Hs(e)GeH;(elyg&Hv > zy) (63)
and
P(Ge;ge; xv) = P(Gev hs(e)geht_(i)»xv) (64)

for any H, € Spin(4) and h,, € SU,, (2).

B. Lorentzian theory
1. Injectivity

The injectivity condition for the embedding map in the Lorentzian theory is the same as . In order to write
the injective condition in terms of group representations, let us first introduce the ‘spin’representation of the integral
kernels. The integral kernel of K’ is decomposed as

B -
K'(Gigne)= Y. / H plor- o) (K @il TL (D350, (G D (90)) (65)
(2RI l7 =1
mg, n]z \Di i . 4 '

via the Plancherel decomposition for the SL(2,C) part and the Peter-Weyl decomposition for the SU(2) part. The
equation can be inverted to obtain the spin representation of K”:

,":]m

i,ai)ki i,
[K/(I’U)]_gfmili)nzpiQL - pZ al \/S HdG K 7'7gi7x1) ( ]i)"n% ’L)nb )D];’qu( )). (66)

L(2, (C)z 1 =1

using the orthogonality relations of the matrix elements of the representations [34]

daDP Y @p ) (q)y = 5(p — 0')8::810 Byt St Ousar 67
/SL(Q(C) Jmln( ) jmln( ) ,LL(,O,CL) (p p) 33’ Pl ( )

and .

The injectivity condition in terms’of the spinaepresentation reads

(3l k
Z / H dz,[K' (@) ]glpm‘j 1)71LP1QL H Oy 0. = 0 Vi, ai, ji, m, li,n; implies ng fq =0 VK, pi.q;.  (68)
ki,pi,qi

Moreover, the integral kernel of K¢ isidecomposed as

4
K*(Gi, 9i,20) = Z /H 1(pis ai d/’2> [Kw(xv)]ﬁf;nall)n;plm H (D](f;y;(jf n (Gi )DSIQL (92)) (69)
ok a0 =
with
E
[ ol i Hdk /S i) AEV K Girgioa) TT (D3F50, (GO D i)l a: Kiv)). (70
i=1

The injectivity condition in the spin representation is

E

0;,0;)kq 1 ; . . . K/

> [K<xv>]§i7,bizi?nipiqiﬂ(aw((m,ai),m)) bige = 0¥pir @y, iy liymi,my implies @7, = 0 Yk, pf, gl (71)
ki,pi,qi i=1

i

Here @& is w which is replaced the delta distribution to the Kronecker delta.
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2. Isometry

The isometry condition for the embedding map K’ is expressed as

(,9)su(2) = (K'(6), K'(0))sr(2,0)- (72)

Again, the isometry of the map implies its injectivity.
One can also write the isometry condition in terms of the integral kernel of an injective embedding map as

E
2+ [dxv]v /SL(2 ©) [dGe]EK/(Geagea xv)K/(Gea hea xv) = H 5SU(2) (gehe_l)' (73)

The spin representation of the isometry condition reads

Z A+ dwv /H puaz dpz) [K ( )]§p7lnilll)1]1€ Piqi [K/(xv)]gf;;;?lll):fp;q; = H (d}iépip;é‘qiqg(skik;) . (74)

ai,Jislis 1=1
mi,m;

The isometry condition for the embedding map K“ is the same . The equation can be expressed in terms of
the integral kernels

E
/ (] / (G IE K (Ger he ) BH(Gror gor o) = [[ 6(0eh2 D). (75)
H+ SL(2,C)

e=1

The isometry condition in terms of the integral kernel expreéssed dn group representations reads

E
w 4,5 ) Ri w i,a;)k ikl
Z /H+ [da. ] /Il p(pi, ai dm)[K (x“)]gfmal)mpqu [ (m”)]g’fmil)mp’q’ - (d *Op, ’:5‘1iq§5k kl)' (76)

a;,Jisli, =1
mi,m;

Like in the Riemannian case, the isometry condition.on the embedding map K can be obtained from this latter one,
as a special case, when all w are set to the identity.

8. Miscellaneous

Also for the Lorentzian theory, we close this section with some additional useful properties of the embedding and
projection maps. N
When the restriction of the image of embedding map from SL(2,C) to SU(2) yields the original function, we have

A+ [dxv] gea he, xv H 6SU(2) geh ) (77)

For the embedding map K’ on a closed graph, if the SU(2) invariance is translated into the induced SU(2),
invariance then

K'(ho(e)Gehyipys es ) = K'(Gey bl gehieys o). (78)

Again, obviously the,SU (2) anvariance does not ensure SL(2,C) invariance.

This symmetry translation is equivalent to the invariance of the integral kernel under simultaneous left diagonal
SUyg,.,(2)(C[ Spin(4))action and right diagonal SU,_,(2)(C Spin(4)) action on Spin(4), and the SU(2) action on
SU(2) itself.

Thesefinvarianeesimply that the group representation of the integral kernel is a convolution of SL(2,C) and SU(2)
characters.

In the spin representation, each invariance intertwines SL(2,C) and SU(2) representations implying the expression

E . .
(pirai)ki H (5mripz'5mq¢'5jikiéﬁli> if ca+ N

[K(xv)]jimilinipiq'i Xy i=1
if ¢a+N

(79)
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Again, as in the Riemannian case, the symmetry requirement determines the embedding map up to weight factor.
The embedding map K maps an SU(2) function to a SL(2,C) invariant function in ICSL(2 O , thus the integral

kernel satisfies

K(Gevgevxv> = ( s( e)G Ge, Hy, > xv) (80)

t(e)’

for any H,, 6 € SL(2,C). The SU(2) symmetry is translated into the induced SU, (2) symmetry and“the integral

kernel satisfies .
The projection map in the Lorentzian theory satisfies the relations and as well.

IV. CYLINDRICAL FUNCTIONS FOR A 4-VALENT (OPEN) VERTEX

Let us restrict our interest to a direct graph which has only a single vertex which has feur'out-going edges with open
ends for the simplicity. This case is the one needed for immediate application to_spin foam models and to the group
field theory formalism. This restriction is also sufficient to investigate the preperties of the embedding and projection
maps in the general graph case, since the full graph can be obtained by gluing several single vertices with open edges,
and the properties of the embedding and projection map of the full graph are determined by the properties of each
vertex building block.

A. SU(2) states

Any function ¢ € ICkm defined on such graph satisfies y
¢(9:) = @lhyg:), Vh €SU(2) (81)
which leads to
= (D), (82)

b

where A is an arbitrary tensor, (Z)J? =(Z)J17273Js>  "is an 4-valent intertwiner [5], and the spin representation is
defined by

4

olg)=_> " b [[Dhnla) - (83)

Jirmi,ng =1

B. Riemannian theory

Any projected cylindrical function ¢ € ,lef;n(ﬁl) defined on the graph has the induced SU,, (2) invariance
(G, zp) = Y(hGi, 20), Vh € SU(2) (84)
which yields [5],
W = Y B ) T, (85)
Goym® a1
b

where B is an drbitrary tensor and (Z):” , is an 4-valent intertwiner of SU,,(2). The spin representation of the
cylindrical.function is defined by the following decomposition

V(g 97 ), m0) = Z (2] Jl Jl

m.nmn

(Djl+ + gl DJ7 (9;)) . (86)

4
=1

-+ +  +
Ji My ny v
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One can write the embedding map in terms of the spin representation as
il “1; =il i 7jik -
Z [B(xv)]?n+jnfcmf;nfai (xv)<I)ai,:Du = Z H d f'rlL j;nj n+n min; ( )ml A%ik : (87)
liyaq,l o ’ c Jik,mim; i=1 Ji
A simple calculation then gives
i+ o
(Bl = ST (PGl 7 A (88)
o k.ji,mi
where
Wk i o1 3Fi g Gta I s
Pl = 3 [ K@ o @@ D (89)
i o i1 G PNy i my
The orthogonality of 4-valent intertwiners [5]
il —Jik
D@ o) D 2y = 9 (90)

and the orthogonality of the CG coefficients can be used then to invert the 4-valent intertwiners and the CG coefficients.
Since A and B are arbitrary tensors, so is F. The spin representation,of K can be expressed as

L
K =) H( OB (@) DD, [P )57 7 (1)

mmnnm,nl nin; n;
ki l,a; i=1

for a tensor F'.
When the simplicity constraints are imposed, the spin representation of K“ reads

(K () - > H( Gl (@0)) DD, [Pl @) (92)

m m n n min; n, n, ng
kil l,a; i=1
where
lhjti= 5: N kit s, i T

The injectivity and the isometry of #he embedding map will be the focus of the later discussion.
The injectivity conditionschasybeen givendn but it can also be written in terms of the F' factor:

Z [F(zy )]lbiz inl’ Wi gfy, i, V)AL = 0, Vi, 7,1, nf n; implies AZC =0V j;,n,c . (94)

win;ng
Jirmisb

The isometry condition in terms of F' is

4
> H (- T ) F )2 @) F @)l P @) = [[nad™ (95)
i i i=1
C. Lorentzian theory
The induced’SU,, (2) invariance yields
isQi i,ai)jik7dik
W), = 2 B@ " D, (96)

k
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Here we use the fact that SL(2,C) matrix element reduces to a SU(2) matrix element when it is evaluated on elements
of an SU(2) subgroup of SL(2,C):

DY) (HY =6,DJ (H)for He SU(2) C SL(2,C) . (97)

jmlin
The spin representation of the same expression is defined by the decomposition [19]

4

6o = 30 [T (Wowaddns) )i, Dt G (98)
a; j,, l7 =1

The embedding map K in the spin representation reads

S

i,ai)Jik i, )k kil
Z[B(xv)]l(zpn1a )J mz Ty Z H jfmal )nﬂpz(h Aq’t (I)ZM ' (99)
k kil, i= 1
Pi qi
By inverting the intertwiner function, one obtains
i,@i)Jik i:0;)Jikkil k:l
Bl = 37 [Flan)lifye st (100)
kil,q;
where F' is .
Lol ksl
(RS 1kkl L7Lk1 '7; Ty
Pl = 37 1 IGaE @) ggin.pa D, D, (101)
mipii=1 G
Since A and B are arbitrary tensors, F' is also.an arbitrary tensor. The spin representation of K looks then as
( iai)k; kil (pirai)jikkl
meill niPagi ZHdk Ve eo (D [F(xv)]lpnz J’ (102)
k,l i=1
for a tensor F. When the simplicity constraints are imposed, the spin representation of K“ reads
i,ai)k; ; isai)Jikkil
[Kw]gi)mt 1)71sz(11 a Z H dk 7”1 -Kv )gll[F(xv)h(:)nzZz)J (W) ’ (103)
k,l i=1
where
iydi)jikkil _ iyai)jikkil
P @) = [P " el ai) ki) (104)

The embedding map K is\then entirely characterized only by the form of F, with the other factors entering its
expression being fixed by the symmetry requirements.

The injectivity and isometryfconditions on the maps can then be reduced to conditions on this function F only. The
injectiviy condition in germs of the F' function is the condition that

Z [F(acv)]( i.0i)Jikki Lo ((ps, ai), ji;y)A];:l =0 Vp;, a;,n;, k implies A];jl =0Vk,l,q . (105)

liniq;
Jiski,l,q:

The isometry condition in terms of the F is instead the condition that

4 B 7 sl
>/ H( lpisai)idps) [T (dndeg )P o)l @F ol ™ () ZH( %) Realt
i=1

a;,Ji ik Ji,pi t=1
(106)




oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - CQG-107922.R1 Page 16 of 27

16
V. RELATIONS AMONG PROPERTIES OF EMBEDDING AND PROJECTION MAPS

We have investigated the conditions required for the maps to have the properties we are interested in, without
assuming any specific form for the maps (thus without focusing on any specific spin foam model); except, some basic
symmetry requirement. Now we consider the compatibility between some desirable properties of the embedding and
projection maps, including of course injectivity and isometry, and remaining at the same level of generality.

Let us start by considering the inverse of the embedding map.
If K¢ is injective, then there exists an inverse map

- SU(2)

P:Im(K¥) — K, (107)

where P o K¥ = tdsy(2) o

A priori, this P has nothing to do with the projection map. However, we can«hoose P as the restriction of the
projection map Pl gw) = P.

Then, a few propositions can be easily proven.

Proposition 1: Pis injective.
Proof. For any ¢ # 1%, there exists ¢1 # ¢o such that K(@y) # K%(¢3). Since P(y¢) = P(K“(¢;)) = ¢s,
P(yy) # P(¢%). Therefore P is injective. O
Proposition 2: K¥ o P = 1dG |tm (k) IS}

Proof. For any ¢ € Im(K“), there exists ¢ such thét,y* = K¥(¢)./Thus, P(¢*) = P(K“(¢)). By mapping it with

K*, (K“ o P)(¢*) = K“((P o K*)(¢)) = K“(¢) = ¢ which implies that K* o P = idg|im(sc)- O

Proposition 3: If K is isometric then it is injective.

Proof. Suppose K% is isometric. For any ¢ € KU quch that K« (¢) =0,0=(K“(¢), K“(¢))c = (¢, ) su(2)- Since
O

kin
the norm of ¢ is zero, ¢ = 0. Therefore, K“ is injective.

This proposition implies that if the embedding map K“ is isometric then P exist

We are interested in whether the isometry of K« can be compatible with the restriction of the projection map being
an inverse of K“. The following proposition shows that they can be compatible under certain conditions, when P is
chosen to be the restriction of the projeetion map.

Proposition 4: If K¥ is isometric and S“ is an orthogonal projector then f:’(Ge, Je, Ty) = K(Ge, ge, o).
Proof. Since K is injective, Prexists. Consider the isometry condition for K%

(K“(¢), K“(d))a = (6, 0)su(2)- (108)

The left-hand side of the condition reads

/ LY / 4G / [dgedhe ] ER=(Gor gor 20) (g0 K (Ger her ) (), (109)
Q G SU(2)

and the right-hand side of the condition is

sU(2)

kin

/ [dgedhe]“é(ge)d(he) [ [ dsv(2)(gehe ) : (110)
SU(2) e’

4 Tt is/important to note that the injectivity is weaker condition than the isometry, thus the converse of the proposition is not true;
injéctivity does not guarantee isometry.
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By setting two integral expressions equal, one can obtain
~ E _—
0 :/ [dgedhe]E¢(96)¢(he)[H(SSU(Q)(gehe_l) - / [dwv]v/ [dGe]EKW(Gmgeamv)Kw(Geahmxv)
5U(2) em1 SU) Q G
(111)
This relation holds for any ¢, ¢ € ngl@), thus
- E
/ da,]V / (G K= (Gor gor 20 K (Go, hes ) = [ [ S50y (9ehig) (112)
Q G 1 KU
On the other hand, from the fact that P is the inverse of K“, it follows that
~
o(ge) = / (dz,)” / (dhe) / [dG]P P(Ger go, ) K (@afhe, 2 )(he) . (113)
Q 5U(2) G
This implies
} E
/ (da,)V / (G B P(Gor her20) K (Ger gorly) = [ M5y (0:hh)| (114)
Q G o—1 fgL(Z’)
Note that the right-hand side of equations (112]) and (114) are the samegfrom which it follows that
[ [ 106,17 (RG] — P(Gaygedts) ) K*(Gohesn) =0 (115)
Q G

We can conclude that P(Ge, ge, ) = K“(Ge, e, ) up o a function [K“]* (G, g.) which is defined by the relation
/ [dx,,]v/ (G PR (Ger s 20) K(Gey hey ) = 0 (116)
Q €]

In fact, [K“]*(Ge, ge, T.,) constitutes the partiof the embedding map which does not satisfy the simplicity constraint.
This contribution is then zero for afy orthogonal projector type of S, therefore it does not play any role in P
because functions in the domain of P always satisfy the simplicity constraint. O

Proposition 5: If K“ is isometri¢'thent K« (G, ge, ) is an integral kernel of P.

Proof. By comparing 1) and 1) in the proof of the previous proposition, one can conclude that K« (G, ge, )
plays the role of an integral kernebhof P, the inverse map of K. O

Proposition 6: If P(Ge,ge,xv) = K¥(Ge, ge, Tv), then K% is isometric.

Proof.

(K () RE(G)) ol — /Q da,)” /G 1dG.)" /S o ARG e w5 (G )0

- / da,)V / (dG]" / (dgedhe] P P(Ge, gor ) (g K (G her 20)(he)
Q e s5U(2)

/ dg.Pa(g3(9.) = (6 hsuca. (117)
SU(2)

Proposition 7: If P(Ge7ge,xv) = K¥(G., ge, Tv), then P is isometric.
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Proof.

<]3(ww),ﬁ(1;w)>SU(2) = /Q[dxvd-i'v]v SU(Z)[dge]E/G[dGedHerlp(Geage;mv)ww(Gaxv)P(Hevg&jv)lZw(Hiﬂ?v)

:/wmwmf/ R@W/FwmeK%@g&%m%@mnﬂﬂwmmw%mﬁa
Q SU(2) G

:/W%W/M@WWK%%W%QwMZW%WM (118)
Q G

O

To summarize, the injectivity of K* allows us to construct its inverse P. Moreofer, if K“ i§yisometric and S* i
an orthogonal projector, then the integral kernels of P and K are complex conjugates to éach other, which 1mpheb
that P is isometric. For a non-orthogonal projector S, P is still isometric when'the integral kernels of P and K are
complex conjugates to each other. ~
For an orthogonal projector S, if P is chosen to be the (restricted) projection map, then K* can be isometric if and
only if ﬁ(Ge, Jes Ty) = K¥(Ge, ge, ). For a non-orthogonal projector S*, 13(Ge, ge, Zd) = K¥(Ge, ge, x,,) implies the
isometry of K“ and P.
These results suggests a systematic way of finding two maps which arevinverses|to each other and isometric at the
same time:

1. For a given simplicity constraint, check the injectivity of the fembedding map.

2. Once the embedding map is found to be injective, then rescale it in suchba way that the map is isometric.

3. Define the restriction of the projection map such that the.complex conjugate of the corresponding integral kernel

coincides with the integral kernel of the embedding map. R

VI. THE DUPUIS-LIVINE TYPE OF MAPS

In section [[TT} we have shown the symmetr§ requirement on the integral kernel implies the convolution between a
G character © and an SU(2) character x. This same type of (gauge-fixed) embedding map, in the case of the EPRL
imposition of simplicity constraints, has been defined,and studied in [I9] by M. Dupuis and E. Livine. In that work,
the projection map is defined as a restriction of G to the SU(2) subgroup. This definition of Dupuis-Livine (DL)
embedding map and projection map has been then shown to lead to be the incompatibility of the requirement of
isometry for the embedding map with the simultaneous requirement that the projection map is the (restriction of)
inverse of the embedding map.

In what follows, we consider the sa; ype of embedding map, i.e. with the same symmetry requirements, but
generalized to any type of the simplicity m\lstramtb. We investigate injectivity and isometry of the map so generalised.
Furthermore, using the properties discussed{in the section [V] we discuss which types of the simplicity constraints can
provide a projection map that.s amvinverse of corresponding embedding map and simultaneously allows isometry of
the embedding map.

The DL-type embedding mapstare maps between kinematical, i.e. gauge invariant Hilbert spaces, thus one can
gauge fix and then disregard the.dependency on normal vectors for the G-dependent cylindrical functions. Moreover,
we adopt a simple regularization for the inner product, especially in the Lorentzian theory, defining it up to the
volume of the divergent integral over normal vectors.

A. Maps in Riemannian theory

In [19] only Lorentzian theory were discussed. Here we extend their discussion defining the DL-type embedding
map also for the Riemannian theory. Consider the embedding map defined as

4
cpw( Z HA(] I )/ [dh dgl H( g h gz j;)(Gihi)w(jj_vji_vji_fyi)) : (119)

. SU(2 -
37 g it @ i=1

Themap is defined on a single 4-valent vertex and its generalization to arbitrary graphs can be obtained by proper
gluing procedure. The A factors in the maps are to be determined, depending on the properties we want the maps
to have.
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The integral kernel of the embedding map is
(i d) -
K“(Gi, 95, 1 Z HA T / n* 11 ( I (higi)@UT I (Gihi)w(jj,j;,j;,v)) A (120)
) sSU(2) iey
3iai g
The spin representation of the integral kernel is
4 G i) —m——
e (P e WG ) (121)

i=1 Ji

As remarked, the properties of the map depend on the A factor and the simplicity constraint imposition encoded in
the coefficient w.
Consider an embedding map without the simplicity constraints, i.e. with w/= 1. If‘one chooses the A factor as

; (122)

then the embedding map is injective and isometric.
Another interesting choice of A factor is

Gi5a7) _ o

qui - dji ’ (123)
This choice accounts for the case in which, when the domain of thenSpin(4) function are restricted to the SU(2)
subgroup, the function coincides with the SU(2) function before embedding:

©“(gi) = E9¢)(9:) = ¢(gi) (124)

for any g € SU(2) and with the EPRL simplicity constraint being encoded in the coefficient w. If the projection map
is defined as a restriction of the domain of Spin(4)function

P(e)g:) = o(9:) (125)

the (restriction of) projection map is the-inverse of the embedding map, P o K“ = idgy (). However, the choice
(124) does not yield an isometric embedding map. This incompatibility between the two properties stems from the
fact that P(Ge, ge, ) # K*(Ge, ge, Zo)o The systematic method suggested in the section E shows that if one gives
up the requirement concerning thedrestrietion of G to SU(2), and defines the projection map in a non-trivial way,
one can find the maps satisfying both ¢onditions under the assumption that the embedding map is injective. In the
following section, we will pursue thisaoute,/and investigate a generalised DL-type map with several different chocies
of simplicity constraints impesition; focusing on the compatibility between isometry of the embedding map and the
requirement that the projection map being an inverse of the embedding map.

Now consider an embeddingymap /* with non-trivial simplicity constraints. The embedding map K“ is injective
if

ZH(A(J’ WG 372 300) ) Bl = O 357 iy implies @, = 0¥ L pivai - (126)

Ji =1

If the CG cogefficients arerinvertible then K* is injective. Since the invertibility of CG coefficients depends on the
simplicity constraint coefficient, injectivity of the embedding map also depends on the constraint imposition. For an
injective K the isometry condition is then

(A(Jl 2Ji ))2 Yo
ZH( d3d df (ji,ji 7]1’,'7)):1 . (127)

izl

The isometry condition also depends on both A factor and the simplicity constraint coefficient. The injectivity and
the dsometry of the map with non-trivial simplicity constraints are treated in the next section.
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B. Maps in Lorentzian theory
Consider the embedding map defined as
4 4
= / H u(pisandes) TTAY ) [ fanida o) T (3 (hagn)© ) Gin Bt o). i)
ai,ji i=1 SU(2) i=1
(128)

Like in the Riemannian theory, the map is defined on a single 4-valent vertex. The integral kernel'of K“ and its spin
representation are

4 4
lW@m%Dz}j/fH m%dﬁﬂ]ﬁﬁméw) 4H(ﬁhm@WMmﬂm(@ﬂm%%m
Aiq,J4 =1 2 i=1
- (129)
LAl 7) Lijis Skil
o 8o, OV R (s i), i ) if I N
e g = | L (SO 85 (oo b)) g (130)

0 if I; ¢ a N

Consider an embedding map without the simplicity constraint, ite. with w'="1. The map is isometric if

4 4 9 4
> / II (u(pi, ai)dﬂi> 11 (Azﬁfi’“")) =[] d.- (131)
a; i=1 i Y =1

Such A factor is necessarily distributional in the Lorentzian theory.
Now consider an embedding map K“ with a non-trivial.simplicity constraint coefficient. The map is injective if

ST AV S((ps,a0), i V) G, = O Wy, az, My, implies ¢, =0 Vi, pigi (132)

Ji

and isometric if

Z/f[( w(pida:) (i, ai). ki 7)) dpz)f[ iy Hdk : (133)

1=1

The injectivity and isometry of the mapﬁepend again on the explicit form of the simplicity constraint coefficient w.
Another interesting choice of the A factor is when
dg,

=0 (134)

A({’MM)
ki M(Pia ai)

This choice correspondsto the case in which, when the domain of the SL(2,C) cylindrical function is restricted to
the SU(2) subgroup, the function/coincides with the original SU(2) cylindrical function:

©“(9:) = K“(9)(gi) = #(9:) (135)

for any g € SU(2), andwwith the EPRL simplicity constraint having been imposed (and under certain restriction on

the domain of ICSU(2 such that the embedding map is injective). If the projection map P is defined as a restriction
of the domain (as in [19])

P(o)(g:) = ¢(9i), (136)

then the (restriction of) projection map is an inverse of the embedding map P o K = idgy(2). However, the choice
does not give an isometric embedding map. This incompatibility between these two properties stems from the
fact that P(G., ge, ) # K“(Ge, ge, ). Also, in the Lorentzian case, the systematic method suggested in section
canresolve the incompatibility, which is what we discuss in the following section.
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VII. CASE STUDIES

In section [[TI] we have shown that the embedding map between kinematical, gauge-invariant Hilbert spaces is a
convolution of characters. This form of embedding map has been considered then in section [V analyzing its generic
properties. In this section, we investigate the properties of the embedding map with different choices of simplicity
constraints imposition.

A. Riemannian BC model

The Riemannian Barrett-Crane (BC) model [39)imposes the simplicity constraintfstrongly in the generalised spin
network basis: the simplicity constraint written in terms of two Casmir operators of Spin(4)is set to zero, in fact
corresponding to the vanishing of one of them. This model can be seen as a limiting case v — oo of the EPRL model
[36] and of the BO and BO-Duflo models [5, 40]. The fusion coefficient of the mnodel is

wae (i, j 4y =o00) =679 570 (137)

It is immediate to verify that this imposition of the simplicity constraints gives aclearly non-injective (and not thus
isometric) embedding map.

This is not surprising since the simplicity constraints totally trivialize the dependence on the data from the rotation
SU(2) subgroup of Spin(4). Let us point out, however, that this does not mean necessarily that no map between
covariant states and SU(2)-based states can be defined. In fact, we expeet such map to be possible, since the
equivalence of possible descriptions of simplicial geometry in termshof both covariant and SU(2) data remains true
also in this case (i.e. in absence of the Immirzi parameter)./It implies,showever, that the relevant SU(2) cannot be
identified with the rotation subgroup of Spin(4), as we have assumed in'this work.

B. Riemannian EPRL model

The Engle-Pereira-Rovelli-Livine (EPRL) model [36] encodes the simplicity constraints with finite Immirzi param-
eter and results from a weak imposition of themy as necessary in this case, and using a Master constraint technique:
the simplicity constraints, expressed in terms of Casimir operators, are squared and then minimized when imposed
on quantum states (for details on the iposition, see |41]). The corresponding EPRL fusion coefficient is

wEPRL(j_i_aji?jaﬂY) :5j+,\%\j75j,|%\j+ . (138)

Since jT label SU(2) representations, j% = |(1 42)|;/2 should be a non-negative half-integer No/2. This requires v
to be a rational number. For given'values of v/and j, however |(1 +)|j/2 is not always in Ny/2. For such j, the
injectivity condition is not satisfied. Thus, the embedding map with the EPRL imposition of simplicity constraints is
not injective in general.

However, there are choices/f v that.lead to an injective map. For example, if v is any odd integer, j© and j~
become non-negative half-integers. In this case, the map is injectiv As the simplicity constraint coefficient w
has unit norm, the EPRL@mbedding map is isometric when one chooses the A factor to be the one given in .
Moreover, if one defines the projection map such that its integral kernel is the complex conjugate of the integral kernel
of the embedding map4 the restriction of the projection map is the inverse of the embedding map, which is isometric.

C. Riemannian FK model

The Freidel-Krasnoyv. (FK) spin foam model employs a decomposition of cylindrical functions in terms of group
coherent states (for each irreducible representation space, thus eigenspace of the Casimir operators), to impose the
simplicityseonstraints{ in their linear version [42], on coherent state parameters. These are in fact interpreted as
quantum counterpart of the bivector variables which are subject to simplicity constraints at the classical level [33].
The FK model coincides with the EPRL model when v < 1, up to some ambiguities in the fusion coefficient, but with

5 The condition that v is an odd integer is a sufficient condition for identifying specific solutions, but it is not necessary. This makes us
think that we should not insist in trying to assign to it a physical significance (although of course we cannot exclude it).
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the same restriction on the group representations appearing in the decomposition [B]. The group representations are
related as

<1, jF=(1£9)j/2 (139)
v>1, jF=(y£1)j/2 (140)
and the coefficients w in each case are
.
v <1, W}}l 53T (4Mi/2557 (1= J/2|Cjﬂ jﬂ jJ|7 (141)
1
> 1, Wit =67 0HDiRe0-1 J/2|Cj T (142)

For the same reason as in the EPRL case, the FK model is not injective in general.

If v is any odd integer, ;7 and j~ become non-negative half-integers. In this case, the map is injective. As the
simplicity constraint w is not normalized to one, a different expression for A has towbedchosen for achieving the
isometry of the embedding map. Under the rescaling of the A factor given in

GFan)
- A i i
AJTI) o i (143)
[N

the FK embedding map is isometric, which can be justified by (127). Asra result, one can also construct a projection
map whose restriction is the inverse of the isometric embedding map.

D. Riemannian BO-Duflo médel

The Baratin-Oriti (BO) model [40} 43] is constructed, from non-commutative metric/flux formulation of spin foam
models and also imposes the linear version of simplicity constraints [42] directly on such flux variables at the quantum
level, since these are the closest quantum translation of the bivector variables of the discrete classical theory. The
construction of quantum theory starting froms.the discrete classical one requires of course a choice of quantization
map for the classical variables. The quantization mapifor the original BO model is the FLM map (used in [32, 43]
and first introduced in [44]), but a more recent variation of the construction adopts the Duflo map. This has nicer
mathematical properties [45] (see alsog46]) and widersapplicability to any semi-simple and locally compact group,
but it also simplifies computations, providing a new spin foam model for whose fusion coefficients one can obtain an
explicit, complicated but manageable expression [5].

The simplicity constraint coefficient of the BO-Duflo model [f] is

NEyit i+ A o f@ 5 Tt
7 ey DI IR C T R N (144)

where A = 2min(j7,j7) and = T The function T is

wBO(jJr?j_ajaﬁ)/) -

oD 2m 0 .+ ,_
77 (Iﬁ\):(—l)“(—lﬂ)/o (s, 0) sin® 3Xa (Os)xa (9) (145)

where 65 = |3]0 and'the generalized character x7(6) of SU(2) representations and € are defined as

sin Iﬁ\H

j
=i* Y e PCEr Q(B,0) = . (146)

= |B\ sm g

It is not easy to.check the injectivity and isometry of the map directly from , i.e. at the fully analytic level,
due to the complexity of the expression of the coefficient w. However, we can study the behaviour of the coefficient
numerically and‘also check some limiting cases of the model (also discussed in [3]).

The structure/of the fusion coefficient w as well as numerical plots show a simple power-low behavior, for 5 > 0,
for the function II on the right hand side of the following formula:

> dids (51,57, 5,9(8) = 1(a, B, ) (147)

it
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where TI(a, £, 5) = c(a, 3)7"®?) for some coefficients c(a, 3) and n(a, 8). The isometry of the BO-Duflo,model can be
investigated from this numerically derived formula. For a positive g, the isometry condition can always be fulfilled
when the domain of map is restricted to j # 0 because then

de_de,
J J 204+ — . _
jzj;r c(a,ﬁ)j”(“vﬁ)w (.] 7.] 7.]5 ﬁ) - 1 (148)

which implies

L d3detqett
AU o 9T Tt 149
J C(a7 ﬁ)j”](a:ﬂ) ( )

satisfies the isometry condition. The indicated restriction of the range of allowed representation labels is reasonable
(even if it is not automatically implemented by the amplitudes of the model), sinceyit_eoincides with one of the
requirements for cylindrical consistency in canonical LQG. o

Using the linear-regression method, we can also numerically determine II forrany 5 >0 (thus, v > 1):

(a,B,7) = ¢j",n =n(a, B) = —0.98519 + 1.96698a — 0.000917856/,
k(a, B) = log c(a, B) = 1.98163 + 1.33946a + 0.0749463a> — 6.442615 + 9.2220732, (150)

where the standard error, t-statistic, and P-value of each estimated coefficientrfor k£ and 7 are given in Table I and
Table II.

‘ Estimate ‘Standard Error‘ t-Statistich P-Value
constant term | 1.98163 1.19506 1.65819 . 0.10225
coefficient of a | 1.33946 0.190011 740494 |1.639056269781041 x 10~°
coefficient of 8 | —6.44261 6.79493 —0.948149 0.346677
coefficient of a2|0.0749463 0.0832435 0.900326 0.371376
coefficient of 52| 9.22207 7.77542 1.18605 0.240055

Table L. Numerical estimation for k(a, )

‘ Estimate ‘Standard Error‘ t-Statistic ‘ P-Value
constant term | —0.98510 0.00726067 | —135.689 | 8.75140531349814 x 10~ °°
coefficient of a 1.96698 0:00257899 762.697 |1.6915975668819295 x 10101
coefficient of 5| —0.000917856| 0.0151906 |—0.0604226 0.952065

Ta)le Il Numerical estimation for n(a, 3)

These numerical analysis shows n(a,8) (for 8 > 0 regime) is very weakly dependent on 8 (almost constant) and
has a simple expression in_terms ofiy(ay5) = 2a — 1. Having accepted this expression for 7, II becomes independent
of j when a =1/2:

Z \V dj*dj+w2(j+7j_7ja6):C(%vﬁ)' (151)

it
This relation shows A of the form

d3/2d3/4d3£4

A(‘j+7ji) =+ J gt (152)
J 13
(3,7
satisfies the isometry condition (127) even without restricting the domain to j # 0.

For a megative 3, the numerical analysis suggests Il(a, 3, ) on the right hand side of (147) follows a modulated
power-law behaviour instead of a simple power law

o kl ((L, ﬂ)SiIlj - kQ(aa 5)
o jn(a,B)

(a, B, §) (153)
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with some parameter coeflicients k1 (a, ), k2(a, 8), and n(a, 8). The isometry condition can be satisfied for different
values of negative /3, but it can be checked (numerically) only on a case by case basis because fits are less accurate
than positive 5 case.

Now let us consider some limiting cases of the BO-Duflo model.

B — 1: the BC model

In the limit 5 — 1 (the Immirzi parameter v goes to infinity) the simplicity constraints coefficient reduces to the
one of the BC model

wpo(jt,j™,j,00) = 6179 §7° (154)

As discussed before, the resulting embedding map cannot be injective.

B — —1: the topological model

In the limit § — —1, and ~ goes to zero, meaning that one expects the Holst term to be dominant over the
geometrical term in the Palatini-Holst classical action. This could be then a regime in which the theory becomes
topological (but see [47] for a careful analysis at the perturbative guantum level of the continuum theory, indicating
a more subtle outcome). The limiting simplicity constraint coeflicient becomes

(_1)j++2j*

wBO(j+7j_7j70> = (

A VA 155
25 A1) {QJ i~} (155)

where {jT,77,j} = 1 if three j’s satisfy the triangle.inequality/and it vanishes instead if it does not. The constraint
gives an injective embedding map. For the isometty of the embedding map, the A factor given in (122]) has to be
rescaled as follows

iy iy ) i~ o
AV o AU (ST (27 +1). (156)
Under this choice, an isometric restricted projection map'can be constructed, which is an inverse of the embedding

map.

By— 0: the Ooguri model

In the limit 3 — 0, the v convergessto,one./ This model seems to correspond to the SU(2) Ooguri model for
topological BF theory [48]. The fusion coefficient is

2(-1)*"
it i, 1) = 157
WBO(j J 5D ) (2],4»1)2 ( )
The constraint gives an injective embedding map. Under the rescaling of A,
Gran _, GO G i)
AT 2+ 1)2A 7 (158)

the embedding map is isometric and one can construct the restricted projection map which is isometric as well as an
inverse of the embedding map.

E. Lorentzian BC model

The fusion coefficient encoding the simplicity constraint in the Lorentzian BC model [49] is
wro((p,a), j) = 6767 (159)

where. the Immirzi parameter v is absent. Like the Riemannian case, the injectivity condition is not satisfied, for
the same structural reason. The same comment about the possibility of an alternative definition of the quantum
geometric maps applies too.
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F. Lorentzian EPRL model
The fusion coefficient encoding the simplicity constraint in the Lorentzian EPRL model is given by
wepre((p,a),4,7) = 67*6(p — ~a). (160)

This coefficient corresponds to an embedding map that does not satisfy the injectivity condition because it does not
include j; = 0. Two SU(2) cylindrical functions whose spin representations are different only at j; =,0 (at least
for one ¢ among the possible four) are mapped to the same SL(2,C) cylindrical function. However, if one restricts
the domain of the embedding map to the SU(2) functions which do not contain any 4= 0 contributions then the
embedding map is injective. In fact, as we have remarked for the BO-Duflo model, thiswrestrietion of the domain can
be understood as part of the requirements for cylindrical consistency.

The inner product between two functions satisfying the simplicity constraint diverges, if maively defined, because
the simplicity constraint operator is applied twice, with each application projecting out amon-compact part of the
domain. In fact, any simplicity constraint whose implementation has this type of effect (as we may expect for other
Lorentzian models) would produce a similar divergence. This divergence can befregularized by simply dropping the
redundant delta distribution coming from the second imposition of the simplicity constraint.

Under the restriction of the domain which enforces the injectivity of the embedding map, the isometry condition
for this model can be achieved with the A factor

s dg,

Alpead) = [ _TRE (161)
‘ 1(pdyas)

The method suggested in the section [V]requires additional regularization to be implemented, due to the already pointed

out singular feature of the Lorentzian EPRL imposition: once the'projection map is defined such that K¢ (G, g;, ) =

P(Gi, gi, ), its image always carries a redundant 4(0). After dropping one such §(0) as a regularization, one can

achieve P o K“ = idgy(2)-

VIII. CONCLUSION

We have defined quantum geometric maps between, SU(2) quantum states of geometry, as used in the canonical
loop quantum gravity context, and covariant SL(2,C)-based quantum states of geometry, as naturally arising from
the quantization of simplicial geometry in the context of spin foam models, following the formulation of gravity as a
constrained topological BF theory. In déing so, we generalised existing work in the spin foam literature. In particular,
we provided a definition which does not depend on any specific choice for the imposition of the simplicity constraints
(the ones leading from topological BE theory to gravity, in such a way that our results applies to all current spin
foam (and group field theory) models of quantum geometry. In this general setting, we have analysed the properties
of such quantum geometric maps and(the mutual relations and compatibilities between them, as well as the role of
the specific strategies for the imposition of/the simplicity constraints.

We have shown that requiring, the usual gauge symmetries on the domain and target space of the maps produces
for the embedding map thessame convolution structure that had been assumed for the DL embedding map. These
DL-type maps, by construction, show a generic incompatibility between the requirement of isometry and the desired
property that embedding and projection map are inverse to each other (under the restriction of the projection map),
if the projection map.is simply defined as a restriction of the domain of SL(2,C) cylindrical functions to SU(2).
However, our general analysis shows that, if one drops this last assumption, one can always find a pair of embedding
and projection maps, of thé same,DL-type, satisfying the two previously incompatible properties. We provide a
simple algorithmic procedure, as well as the required conditions on the simplicity constraints imposition, for such
reconciliationy

We have also analysed what our conditions imply for existing spin foam models, based on different impositions of
the simplicity eonstraints. In particular, we have shown that embedding maps of the DL type can be an isometry
and an inverse of (the restriction of) the projection map for the Riemannian EPRL-FK models with an odd integer
7, the Riemannian BO-Duflo model, on the basis of a numerical analysis, and for the Lorentzian EPRL model (with
proper regularization).

These results improve our understanding of the quantum geometry underlying spin foam models and group field
theories for 4-dimensional quantum gravity, and of the imposition of simplicity constraints that underlies them. It also
contributes to clarifying the desired connection between the same models of quantum geometry and the description
of the same arising from canonical Loop Quantum Gravity.
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