The HNF-3 Gene Family of Transcription Factors in Mice: Gene Structure, cDNA Sequence, and mRNA Distribution

KLAUS H. KAESTNER, HOLGER HIEMISCH, BRUNO LUCKOW,¹ AND GÜNTHER SCHÜTZ²

Division of Molecular Biology of the Cell I, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany

Received October 26, 1993; revised January 1, 1994

The rat HNF-3 (hepatocyte nuclear factor 3) gene family encodes three transcription factors known to be important in the regulation of gene expression in liver and lung. We have cloned and characterized the mouse genes and cDNAs for HNF-3 α , β , and γ and analyzed their expression patterns in various adult tissues and mouse embryonic stages. The HNF-3 proteins are highly conserved between mouse and rat, with the exception of the amino terminus of HNF-3 γ , which in mouse is more similar to those of HNF-3 α and β than to the amino termini of the rat HNF-3 γ protein. The mouse HNF-3 genes are small and contain only two or three (HNF-3 β) exons with conserved intron-exon boundaries. The proximal promoter of the mouse HNF- 3β gene is remarkably similar to that of the previously cloned rat HNF-3 β gene, but is different from the promoters of the HNF-3 α and γ genes. The mRNA distribution of the mouse HNF-3 genes was analyzed by quantitative RNase protection with gene-specific probes. While HNF-3 α and β are restricted mainly to endoderm-derived tissues (lung, liver, stomach, and small intestine), HNF-3 γ is more extensively expressed, being present additionally in ovary, testis, heart, and adipose tissue, but missing from lung. Transcripts for HNF-3 β and α are detected most abundantly in midgestation embryos (Day 9.5), while HNF-3 γ expression peaks around Day 15.5 of gestation. © 1994 Academic Press, Inc.

quent isolation of the transcription factors important in their regulation (for review see Lai and Darnell, 1991; Sladek and Darnell, 1992; De Simone and Cortese, 1991).

The major liver-enriched transcription factors identified so far include HNF-1, a POU-homeodomain protein; C/EBP α and β , which are bZip proteins; HNF-4, a member of the thyroid-steroid hormone receptor superfamily; and HNF-3, a representative of the HNF-3/fork-

INTRODUCTION

Much progress has been made toward understanding liver-specific gene expression through biochemical analysis of the promoters and enhancers of genes such as those encoding albumin or transthyretin and the subse-

head class of DNA-binding proteins (Lai and Darnell, 1991; Sladek and Darnell, 1992; De Simone and Cortese, 1991, and references therein). The HNF-3 proteins were first identified by their ability to bind to important promoter elements in the α_1 -antitrypsin and transthyretin genes (Costa et al., 1989). Other target sites for HNF-3 have been described in the α -fetoprotein, albumin, tyrosine aminotransferase, phosphoenolpyruvate kinase, transferrin, and HNF-1 α and HNF-3 β genes (Costa et al., 1989; Herbst et al. 1991; Nitsch et al., 1993; Ip et al., 1990; Auge-Gouillou et al., 1993; Kuo et al., 1992; Pani et al., 1992b) as well as the lung-specific gene CC10 (Sawaya et al., 1993). From comparison of the observed HNF-3 binding sites, a consensus element, TATTGA^C/ $_{T}TT^{A}/_{T}G$, has been derived (Costa *et al.*, 1989), although deviations from this consensus sequence have been identified (Nitsch et al., 1993; Pani et al., 1992b). The HNF-3 DNA-binding activities were purified from rat liver extracts and the rat cDNAs subsequently cloned and sequenced (Lai et al., 1990, 1991). The three binding activities observed in gel retardation assays were found to correspond to three proteins encoded by independent genes, which were termed HNF-3 α , β , and γ (Lai et al., 1991). Deletion analysis of HNF-3 α demonstrated that the region between amino acids 124 and 288 is essential for DNA binding (Lai et al., 1990). Subsequent sequence comparison revealed striking similarities between HNF-3 and the Drosophila melanogaster gene forkhead within

The nucletide sequences reported in this paper have been deposited in the EMBL Data Base under Accession Nos. X74936, X74937, X74938, X76684, X76685, and X76686.

¹ Present address: Medizinische Poliklinik, Abt. Klinische Biochemie, Schillerstrasse 42, D-80336 Munich, Germany.

² To whom correspondence should be addressed. Telephone: ++49-6221-423411. Fax: ++49-6221-423404.

the DNA binding domain (Lai et al., 1991; Weigel and Jäckle, 1990), for which 100 of 110 amino acids are identical between HNF-3 β and forkhead. The Drosophila gene forkhead has been described as a region-specific homeotic gene and is required for the proper formation of the terminal structures of the Drosophila embryo

377

0888-7543/94 \$6.00 Copyright © 1994 by Academic Press, Inc. All rights of reproduction in any form reserved.

KAESTNER ET AL.

12123	1200	0.5212924		en de	<u>duaren</u>	2010/00			en en		weed	harres	12/2010/02			0.000		1.	2002017	<u></u>		26200	2012/22		Barro	948 - 98 ⁰	anana.	silan	11.11.12	123223	in an	12/22/12	224986	an a			19 E V V	. St	2-151123	202000	Con Links
1	CQ	SCCG	ÇGC	CG	CGC	CGG	CCG	CCG	CCC	CGC	ACC	SCCG	CGC	CCCC	GCA	GCG	CCG	GGC	TTC	CTC	CTC	GCC	CGG	GTG	GCG	CTG	GGC	CCT	CGA	GCG	CTC	ÇGG	TGA	CCG	ÇAG	CGG	CTC	CGC	GCC	CCT	CCC
	242.50											Sausera	0.000		5 .					c					Barres			The second							•						
21	CC	GCC	CCG	AG	CAG	CG	CAC	ccc	SCCC	GTO	CGC1	1000	CAC	AGG	GTI	GGA	TGG	TTG	TGT	CGG	CCG	GGC	TGG	CTC	CAG	GAT	GTT	AGG	GAC	TGT	GAA	GAT	GGA	AGG	GCA	TGA	GAG	CAA	CGA	CTG	GAA
1																										M	L	G	Т	۷	K	M	E	G	H	E	5	N	D	W	N
								e Ser																	•						89				•			1003			
1	CA	GCT	ACT	AC	GCG	GAG	CAC	GCA	GGA	GGC	CTP	ACTO	CTC	TGI	'CCC	TGT	CAG	CAA	CAT	GAA	CTC	CGG	CCT	GGG	CTC	TAT	GAA	CTC	CAT	GAA	CAC	CTA	CAT	GAC	CAT	GAA	CAC	CAT	GAC	CAC	GAG
7	5	Y	Y		A	D	Т	Q	E	A	Y	5	S	v	P	۷	S	N	M	N	S	G	L	G	S	M	N	S	M	N	Ť	Y	M	T	M	N	T	M	Т	T	S
											3	6						3										.			5				÷3						
1	CG	GCA	ACA	TG	ACC	CCC	GGC	TTC	CTI	CA/	CAT	CGTC	СТА	CGC	CAA	CAC	GGG	CTT.	AGG	GGC	CGG	CCT	GAG	TCC	CGG	TGC	TGT	GGC	TGG	CAT	GCC	AGG	GGC	CTC	TGC	AGG	CGC	CAT	GAA	CAG	CAT
7	G	N	M	Ĕ.	r	P	A	S	F	N	M	S	Y	A	Ņ	T	G	L	G	A	G	L	S	P	G	A	V	A	G	M	P	G	A	S	A	G	A	M	N	5	M
															122 1 .						3.				872 1			04720 20			- 20				149928 (•13			20. 20 . 92			50 4 3
2	GA	CTG	CGG	CG	GGC	GTO	CAC	GGC	CAT	GGG	TAC	CGGC	GCT	GAG	CCC	GGG	AGG	CAT	GGG	CTC	TAT	GGG	CGC	GCA	GCC	CGT	CAC	CTC	CAT	GAA	CGG	CCT	GGG	TCC	CTA	CGC	CGC	CGC	CAT	GAA	CCC
7	I	A	A		5	۷	Т	A	M	G	T	A	L	Ŝ	₽	G	G	М	G	S	M	G	A	Q	P	v	Ť	S	M	N	G	L	G	P	Y	A	A	A	M	N	P
								*		455-02	1940	20090						1000			8500000 98			0.5	20000			32			34	G.			- 10.000 			22.0			0.00
1	GI	GCA	TGA	GT	222	AT	GGC	GTA	CGC	GCC	GTO	CAT	CCT	GGG	CCG	CAG	CCG	CGC	GGG	GGG	CGG	CGG	CGA	CGC	CAA	GAC	ATT	CAA	GCG	CAG	CTA	ccc	TCA	CGC	CAA	GCC	GCC	TTA	CTC	СТА	CAT
1	C	M	5		P	M	A	Y	A	P	S	N	L	G	R	S	R	A	G	G	G	G	D	A	K	T	F	ĸ	R	5	Y	p	R	A	ĸ	P	P	Y	S	Y	1
	0.7					~~										1004		•		-		3.0000	-		25		ai -	85	- Ci	60		- A			- 51	324A		=si .8	9. 	-	92
ä	(***	rcc	TCA	TC	ACG	3.77	scr		1	GCA	CCC		CAC		- 	CCT	CBC	с. С.Т.	CAC	COM		***	CCB	CTC		СЪТ	CCA	· · ·	CTT	rcr	Ста	***	ccc			CCB			ĊŦĊ	cca	C & B
3	0	t t	1.11		r T	M	L	T.	0	0	- B	8	S	SC NA	U.S.	1.001	TT I	3.	୍ଦ୍	D D	361A.	v	o o	а10 ш	T	4	000	T	~11	B	A	4	000	0 0	N N	0	ocn A	930	GIG	60A	ND N
	<u>21 - 14</u>		-	-	100-1		-					_						- 14-			-									-	-	-	0	_ <u></u>	_0_	_ <u>×</u> _	- W .	_12_		<u>v</u>	
	07			~~~		T ~/	~~~		0.007				-	000	-	~~~	~~~		3 000	000		~ 1 1		100			~ ~ ~		-	~ .	*		000		•	~~~	~		~		~ * *
	01	CCA	100		HC	100				U MP	scor	1110		101	CAA		GGC.	ACG.	AIC		364	CAA		AGG	CAA	-		CIA	1.10	GAC	GCI	GCA		GGA	CTC		LAA	CAL	GIN	CGA	GAA
1	÷	14 - M 1		10		5.	1	3		N	<u> </u>	<u> </u>	100	¥.	<u> </u>	_¥	A	ĸ	8	Р.,	и.,	<u>_K</u> _	P	G	ĸ	G	<u> </u>	T	_N_	T	4	. н_	59.52	D	5	G	N.	<u> </u>			<u></u>
	625	15033	123 232	and i	<u>10000</u>	1272 V	26252		328234	News.		Apapas	e e e e e e e e e e e e e e e e e e e	20222	Same	12:2:12			<u>19</u> 82939	8763	12		5373 - 3	19795	•	323	2023	•		127273			1272325	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	1992-129 1992-129	100	1	272335	123	-
1	CG	GCT	GÇI	AC	FTG	CCG	CCG	CCP	IAA/	AGCO	GCTI	ECA	GTC	TGA	GAA	GCA	GCC	GGG	GGC	CGG	AGG	TGG	GAG	TGG	GGG	CGG	CGG	CTC	CAA	AGG	GGG	iccc	AGA	AAG	TCG	CAA	GGA	200	CTC.	AGG	CCC
1	<u>_</u> G		<u>Y</u>	—		R_	R	0	<u> </u>	R	F	<u> </u>	С	E	K	Q	P	G	A	G	G	G	S	G	G	G	G	S	K	G	G	Þ	Е	S	R	K	D	P	S	G	P
				•																	25				a.						3			3				(1952)			
1	GG	GGA	ACC	CC	AGC	GCC	CGA	GTC	ACC	CCT	TCI	TTG	GGGG	TGT	4 22	CGG	AAA	GGC	TAG	CCA	GCT.	AGA	GGG	CCC	GCC	GGC	CCC	CGG	GCC	CGC	CGC	CAG	CCC	CCA	GAC	TCT	GGA	CCA	CAG	CGG	GGC
7	G	N	P	8	S	A	E	S	P	L	H	W	G	v	Ħ	G	ĸ	A	5	Q	L	E	G	A	P	A	P	G	P	A	A	S	P	Q	Ŧ	L	D	Ħ	S	G	A
								۲										3 4										1			5				8 5						
Ĺ.	CA	CGG	CGA	CA	GGG	GGG	CGC	TTC	GGA	GTT	GA	GTC	TCC	AGC	GTC	TTC	ATC	TGC	GCC	cccd	CAT.	AAG	CTC	CGG	GCC	AGG	GGC	GCT	GGC	ATC	TGT	ACC	CCC	CTC	TCA	ccc	GGC	TCA	CGG	CCT	GGC
7	I	A	T		3	G	A	S	E	L	K	S	P	A	S	S	S	A	P	P	1	S	s	G	P	G	A	L	A	S	v	P	P	S	A	P	A	H	G	L	A
				35							9							1			52				8			8			1	8			3			13			
-	AC.	CCC	ACG		rem	C 2/	<u>ጉ</u> ግ	CCA	TOA	CAR	1200		mer		-	000	~~~~	***	TOR	~~~~	-	-	~	~ ~ ~			-	-				Sec.		and the second	2			-		~~~	
1				n n.	1 1	C AL	5.1	QC.P	1101	Unr	M G G	عواواه	1100		NUL IN		C11	1 44	TCA		-11	CIL	CAT	CAA	CAA	CCT	CAL	GIU	CIU	CIL	CGA	GCA	ACA	GCA	CAA	GCT	GGA	CTT	CAA	GLE	ALA

	CG	AGO	CAC	GC	GC	TGC	AG	TA	CT.	ст	cc1	ГТЈ	ATC	GC	GC	TAC	CT	TGO	CC	GCC	'AG'	TCI	GCC	CCC	TTO	GC	AGC	GCO	CTC	AGT	rgg	CCA	CG	AGG.	AGO	ĊCC	AT(GA	GCC	CTO	AG	ccc	TGO	ACC	CAC	SCC	TACT
17	E	(0	A	L	Ċ	5	Y	S		P	Ŷ		;	A	Т	L		5	A	5	L	P	I	6	;	S	A	s	v	A	1		R	S	P	I	E	P	S	A	L	E	F		A .	ΥY
077358	201	OK 228		399976	10	or 9 10		97243	100	2	20	100	-30	÷.,	612		-54552			197	0785	34 34	9121	10.402	2: 10	201 - 20 24	554	-3-421	9676 3	995557 9	-	P1 125		568 I		AF 53	420 (193	10000	1045 ST	99404	(1.54 322	2.77%	5 3	 622	x == }	area a	
61	CC	AAC	GGI	GI	GT	ATT	CC	AG.	AC	cc	GTO	SC2	TAA	AT	AC	TTC	сст	AG	TC	CCA	GA	ACT	GAO	GGG	TTT	TG	TCT	GCI	ATG	GCC	CAA	CCT	GG'	TAG	CAG	GAG	AG	AA	AAC	CAL	ACA	GCA.	AAC	AAA	CAA	AAA	CAC
57	Q	. (G	۷	Y	S		R	P		v	L	N	V	T	S	*	1												aan taa			rorospod					-2019/10/20						P#9340			19-30-30 Million
81	CA	CA	CA	CAC	CAC	ACI	AG	ACA		IC P	CA	CA	cc		ACC	:AA	CC.	ACA	TAJ	TA	***	TT	CCA	AA	TAG	TT	TTA	TTI	TTC	AC	GC	ACA			ААА	AA	1	766									
	6275			15			8	11111		253	575	723	61542	Ka	8	22.82	8232	÷	1282	5254	8	×,	22324	11		ð.,		273	-		348024	6 92	ned)		202	124212	•		24276	8 N	-	<i>ana</i> rar	22		1		
1	CT	GA	CG	ACC	CAG	GGC	GC	CC	AG	AC	CAC	CGC	CG#	\GT	CC'	TAC	GC	GCC	TC:	CTG	AG	SCC	GCC	ccc	GGG	SAC	TTA	AC	rgt/	AAC	CGG	GGA	GGG	GGC	CTC	CGG	AG	CAG	CGG	CC)	AGC	GAG	TT/	LAAG	TA: M	ICC' L	GGGG/ G
1	GC	CG	TG	AAC	АТ	GGJ	A	GGG	Ст	CG	AGO	:c/	ATC	CG	AC'	TGO	AG	CAC	CT	ACT	ACC	ŝ	GAG	SCC	CGA	GG	GCT	AC	rCT'	rcc	CGT	GAG	CA	ACA	TGA	ACG		GC	CTG	GGC	58T	GAA	TGO	CAT	GA	ACA	TATA
4	A	v	1	к	M	E	¢	;	L	E	£	2	S	D	0	W	s	S	Y	Y	1	Ą	E	P	E	G	Y	Į.	5 5	S	۷	S	N	M	N	1		;	6	G	м	N	G	М	N	T	Y
1	AT	GAI	GCI	170	тс	ດດດ	20	CT	GO	CA	TGG	GG	CGG	202	GT'	TĊC	GGG	CAR	CA	TGA	GC		GGC	TC	САТ	GA	ACA	TG	rCA1	FCC	TA	тст	GGC	, 3060	CTG	GAA	TG	GCO	CG	тса	CT	AGC	TGO	CAT	GTO	200	
4	M	S	1	M	S	A	2		A	M	6	0	G	G		s	G	N	M	Ş		Ą	G	5	M	N	M		5 1	5	Y	v	G	A	G	ŀ	1	5 1	P	S	L	A	G	M	S	2	G
1	GC	CG	GCC	GCC	AT	GGC	GC	GC	AT	GA	GCC	GC	СТС	AG	ccé	GGG	GC	GGC	:00	GCG	TGO	ŝĊĠ	GGG	CAT	ĠĠĠ	AC	стс	ACC	TG	AGT	000	GAG	TC	FGA	GCC	CGC	TCC	GGG	GA	CAC	GC	GGC	CGG	GGC	CAT	rGGG	STGGO
4	λ	G	1	4	M	A	G		M	S	G	1	s	A	1	G	A	A	G	۷	1	Ą	G	M	G	P	H		5	5	P	S	L	S	P	I	. (; (;	Q	A	A	G	A	M	G	G
1	CT	TG	cco	cco	TA	ĊGC	C/	AC	AT	GA	ACI	100	GAT	GA	GC	ccc	AT	GT	CG	GGC	AGO	ŝco	GGG	CT	GAG	CC	GCG	CTO	CGG	GAC	ccc	CAA	GA	CAT.	ACC	GAC	GC	GC'	TAC	ACA	ACA	CGC	CAA	ACC	TCO	ссти	ACTCO
4	r	A	1	2	Y	A	N	1	M	N	5	6	M	s		P	M	Y	G	Q		A	G	L	S	R	A	1	R I	2	P	K.	T	Y	B	F			۲.	T	H	<u>A</u>	K	P	P	Ŷ	<u>s</u>
1	7A	CA'	ፕሮግ	100		CAT	Ċ.	CC	87	GG	cc.8	TT.	CCP	NGC	AG	AGO	ccc	CAR	CA	AGA	TGO		ACC	- 	GAG	CG	AGA	TC	: ATC	CAC	STG	GAT	CA2	TGGI	ACC	TCT			٢TC	TAC	CG	CA	GAJ		SCI	AGCI	ः २२७२२२
4	¥.,	I		<u>s</u>	L	I	1		R_	A		<u> </u>	0	0		5	<u>P</u>	N	K				T	<u>L</u> .	S	E	I		Ľ	2	W	I	M	D,	_1	F			E	<u>Y</u>	R	0	N	0	0	R	W
1	CA	GA	ACT	rcc	AT	ccG	co	AC	ŤĊ	TC	TCI	rcc	ĊŦT	CA	ACO	GAC	TG	ст1	TC	ICA	AGO	GTG	ccc	CG	СТС	GC	CAG	ACI	AGG	CC1	GG	CAA	GGG	GCT(сст	TCI	GGA		TG	CAC	• :cc	AGA	ĊŦĊ	GGG	CN	ACAT	GTTO
4	0	N		5	I	R	P	. 4	S	L	ŝ		F	N		0	C	.F	L	K		1	<u>P</u>	R	S	P	D	ŝ	<u> </u>	2	G	K	G	S	F				8	H	P	0	S	G	N	M	F_
1	GA	GA	LC/	c		ĊTa	cr	TC.	ന	ĊC		· A/	:28	· 	CC	ምጥር	-22	GT(TG	ACA	AC		CT	:00	ъст	GA	AGG	221	200		202	TCC	100	CA	275	GCO	CAC	CC1	AG	AAG	-	-GC'	TCC	• 'TCC	GTO	°CC1	
4	E	N		1	c	Y	I		8_	R		2	K	R		F	K	C	E	K	(2	L	A	L	K	E	1	4 1	Ą	Ģ	A	A	S	S	G	; (;]	κ	K	T	A	P	G	S	Q	A
а	TC	TC	AG	307	'CA	GCT	'CC	GG	GA	GG	cca	500	GGG	:CT	CG	GCC	TC		GA	TC	CGO	-	GGG	AC	CGA	GT	ĊĊĊ	CC	TAT	TCC	TAG	ccc	TT	CTC(CGT	GTC	AGO	AG	TAC	AAG		AGG	TGO		AA	scal	GCT
4	S	Q	1	A	Q	L	6		E	A	ł	1	G	S		A	S	E	Ť	P	1	A	G	T	E	s	P	1	4 5	5	5	A	S	P	C	0	1	2	H	K	R	G	G	L	S	E	L
1	AA	GG	GAC	GCA	.cc	TGC	CT	CT	GC	GC	TG≯	G	rcc	TC	cco	GAG	scc	GGC	GC	сст	CGC	ст	GGG	CA	GCA	GC.	AGC	AG	жт(GCA	GC	CCA	CCI	rgc:	rgg	GCC	CAC	СТС	CAC	CAC	ccc	AGG	ĊĊI	GCC	ACC	CAG	IGGCC
4	K	G	1	A	P	A	Ş		A	L	S	5	P	₽		E	P	A	P	S		2	G	Q	Q	Q	Q	1	A 7	Ą	A	H	L	L	G	P	E		8	H	P	G	L	P	P	E	A
1	CA	CC	TG	AAG	cc	CG A	GC	AC	CA	TT.	ACG	CC	CTI		ACO	CAC	cc	ст1	CT	ста	TC	AAC	AAC	ст	CAT	GT	CGT	ccd	CAGO	CAG	CA	ACA	TC	ACCI	ACA	GCC	ACC	ACC	CAC	CAT	rca	GCC	CC#	CAA	AAT	rgg <i>i</i>	ACCTC
	н	L	1	K	P	Е	H	£ 3	Ħ	Y	.,	ę.	F	N	ø 3	H	P	F	S	1	1	N.	N	L	M	S	S	- 3	2)	0	H	H	Н	S	H		1	ł	H	Q	P	Ħ	K	M	D	L
64	930	1021	62	1.50		1252.2		-54 - 37	973) 	1025	a 167	57	12	26	32	~	57.	19550								2554		500	85 E	231 7 	1000	230	87								19 37 -01			02:03		25542	5604

404	A	A	I	8 L	Q	¥		đ	I	r	G	G	I	G	5	. F	M	F	6	5		A	M	G	P	v	1	N	N	A	G	P.	U	A	5	P	Ъ	8 - 3 8	E D		443
				•				2 2																٠							<u> </u>			in the			825			2.5	
1441	AC	TTC	CCT	ACT	ACC	AAG	GAG	TGT/	ACT	CCAG	GCC	TAT	TAT	GAA	CTC	ATC	CTA	AGA	AGA	TGG	CTT	TCA	GGC	CCI	'OD'	TAG	CTC	TGG	TCA	CTG	GGG?	CAA	GGG	AAA	TGA	GAG	CTG	AGTO	GAG	AC	1560
444	T	S	Y	Y	Q	G	۷	Y	S	R	P	Ι	M	N	5	S	*																								460
								•													×							Marine s													
1561	TT	TGO	GGA	GAG	CTT	TGA	GGA	AAA	GTA	GCCA	CCA	CAC	TTC	AGG	CCT	CAA	GGG	AGC	AGT	CTC	ACC	TGT	CTG	TGI	000	CTA	AAT	AGA	TGG	SCC	ACAG	TGA	TCT	GTC	ATT	CTA	ATA	:GG7	AGG	GA	1680
121791202020											٠.										Barrio	2693.555						Herena													
1681	AT	GGI	AAA	TAT	ATA	TGT.	ATA	CAT	ATA	AACT	TGI	TTT?	'AAA	GGA	GCC	TTT	GGI	crc	CTC	TAT	GTA	GAC	TAC	TGC	CTT	CTC	AAG	ACA	ICTO	SCA	GAGI	TTG	ATT	TTT	GTT	GTT(STTC?	[CT]	\TTG	CT	1800
1945-1970-1	26523				19973												Resco							1222			7.424.0			19222		121253372								325	
1801	GT	TGT	ГТG	CAG	Ала	AGT	CTG.	ACTI	TTA/	алла	CAA	ACA	AAC	ала	CAA	AAA	ACT	'TTT	GTG	AGT	GAC	TTG	GTG	TA/	AAA(CCA'	TGT	AGT	TTT.	AAC.	AGAJ	AAC	CAG	AGG	GTT	GTAC	TGA	(GTI	GAA	AA	1920
				Breeze		97,563 977		a Norman									Sumo														Kilian										
1921	GA	GG/	АЛА	GAA	AAA	TAA	TGT	AAGI	AGT	CTGG	TGI	ACC	GGA	CCA	GGA	GAA	AGG	AGA	AAA	ACA	CAT	'CCC	ATT	CTO	GGA	CAT	GGT	GAA	ATC	CAG	GTCI	CGG	GTC	TGA	TTT	AAT:	TAT	GT	TCT	GC	2040
								Barress			×																														
2041	GT	GC1	TTT	ATT	TAT	GGC'	тта	TAA	ATG'	IGTG	TTC	TGG	CTA	GAA	Т	208	2																								

THE MOUSE HNF-3 GENE FAMILY

C 1 1	GCC	GGC	GAQ	TC	CCG	GG	СТС	STG	TGC	CTO	CAG	TCO	GGA/	ACTO	GGGG	GC 1	AGT	GCC	TG'	rag/	GAG	GACO	GA	\GC1	ACTO	GGI	TCO	:000	AGG	GGG	CC1	CAC	SCCI	GGG	GTG	GTO	GGG	GCC	SCAC	GCC	CGGG	GGA M	12 1
121	TCC	• • •	CC	: CT		TC	8.80	28.47	•	cer	- 77-1	NTC		Reco	् ६ २ २ ४	CTO		C.T.S.	୍ଲ (ଜନ୍ମ)		-cei		-000	cet	Icc1	CTS		7777	ACT	7788	ter	• •	ccr	181	0041			TTC'	FCA1	SC TO	ссти		24
161	100		C.	e c	u v	10	nn. V	M T	F	100(u U	0	L	. GGC እ		w	0000	v	v	D	-00.	A N		5	UGO I	v	c .	D	V	N	D	v	D	, С П (u.	8	D	.101	N	C	v		41
4		20	(11.1) (11.1)	3	2 8 3 2		n	1		n	n	- M		n	-	30.	3		- 8 4 3 	5	-			Ð	×	13. 8 3	5	1997	19 1 99	0.00	22.8	100.0		5003	tı			1	1.11		5 X		
241	P (2)	NCC.	<u>.</u>	ICR.		Ca		26		-	- -		*****			~~~	TO B	rrr			-201	rccc	***	200	-200	000	YCCI	-200	· ·	100	in nr	-car	-		- -	CC				n c c c	~***		36
42	1.31	754 F	· + .	GR	nçç D			-70	~ ~ ~	-1		100	5100		AGO ~	, GC 1	104	GGG	.C.I.		.nc.	1900	- I AL	-ngc	n n		GOU	.n	 D			N m	, 1 GC	-60			3000	-υ - ι ι - π			C UUC	, , ,	30
42	3	1	Ъ.	N	2		Ь	Э	ಾ	r	1		- P	G	Ģ	4	Q	Ą	э	r		r	0.312		P	्रम्य	×.	r:	F	H 2		51.52	a .	2	Ъ	9	F	1) 項目的	r	Ş	Ъ	81
261	m.c.r	~~~			•		0000					-			1				2								0.000					•			100								
361	TGC	اریان م	-A(. IG	GTG	GC	AGC	CAC	CGL	AG	GCA	TG	LTTC	CGG	GTA	TG	AGC	ccc	AG	GCC	CGG	. تا فاد	rigi	ACI	ATGO	SAAA	VAG	IGAT	GGU	.868	GGG	5611		GC	GCC	AC:	1660		ACGU	.CA	AAC	AC	48
82	9		т	G	G		5	Т	G	G	S	A	S	G	Y	v	A	P	Ģ	₽	G	Г	v	H	G	K	E	-0.	A	K.	<u> </u>	<u>Y</u>	R_	R	<u>p</u>	1	<u>A</u>	н	<u> </u>	<u>_K</u>	P_	<u></u>	12
					•				۲			1				i.			199							52						•			8	ġ.							
481	CAT	TAT	TTC	CT	ACA	TC	TC	ICI	CAT	FAA	CCA'	rgg	CTAT	TTC/	AGC A	GGC	TCC	AGO	CA.	AGA'	rgc'	TGA	CCC1	EGA	STG2	AA7	CT7	ACCA	ATG	GAT	CAT	rggi	ACC:	TCT?	rcco	GT	ACTI	ACCO	GGG)	AGA	ACCI	AGC	60
122		Y,	S	Y	I		S	L	1	T	M	A	I	0	<u> </u>	A	. P.	G	K	M	L	T	<u> </u>	5	E	I	Y	. 0	W	<u> </u>	M	D	<u> </u>	F	P	Ľ.	<u> </u>	R	E	N	_0	0	16
					•				0.40			-			40 04 04 55	99 - 200 - 29										12			1140 (March 1140) 1140 (March 1140)						53	3			2000 C				
601	AA	CG'	TT	GC	AGA	AC	TCO	CAT	rcco	GC	ATT	CGC	TGTO	CCT	CAA	TGA	CTO	CTT	CG	TCA	AGG	TGG	CACO	SCTO	ccc	CAG	CAJ	AGCO	AGG	CA	AGO	SCTO	CCT	ACTO	GGGG	CT	FGC	ATC	CCA	GCT	CTG	GGA	72
162	8 25	R	W	0	N	7	S	T	R	H	S	L	S	F	N	D	с	F	v	ĸ	V	A	R	S	P	D	ĸ	P	G	к	G	S	Y	W	A	L	К	P	S	S	G	N	20
0.50906																													12			783							160			52	
721	202	a.T/	2111	ማሮ		20	cer	5.00	- 	TO	TOO			10.01		0		001	vec.	NCC.	AC N		-8 81	CAL	ACC		C &C	coo	- 	• A T C	CCC		:03/		ATCO	- - T &/	TCI	CCI	· CCT(- 8.0	CON	• • • •	04
202	AUT	u i	E.	10	100	in C	66, C	~	v	110	100	D	0.00	NGAU V	1000	T	Unr V	I J J	. 00. F	-100 <i>.</i> F	V	NOG.	v V	10 AJ	0.00	M	c	л. О.С. В	.спс Ф	E		c	50-П(В	N	1100	тт	2100	C	C	8	т	c	24
202		14.0			C						R	_ K	- 2		A		Δ.	-		<u></u>	r		15		G	34.3		•	89.8	6.88	122		n	n	6	23			1.00	•	1		24
	100 ED 4	~~~		8	•											19 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19							-		14					~~~		-			53			~~~~		~ ~ ~ ~	~~~		
841	CIC	GCC	CAC	CA.	CTA	ICA	GC.	rGC	CAU	TG	CAG	ICA	CCT	ucce	GGC	TCA	IGCC	CC1	IGCO	CTAC	GC	CAT	JIG.	AGCC	CGI	AGGC		AGAU	TGG	- GGGF	116/	ATG:	rgg	GGG	are:	rGG	ACTO	JUG	LCTU	CAC	Cru	STT	96
242	1	1 82	Т	Т	8	8	A	A	\mathbf{T}	A	V	Т	S	P	A	Q	P	Q	P	Т	P	S	E	P	E	A	Q	S	G	D	D	¥	G	Ģ	Ļ	Ð	С	A	S	P	P	S	28
1020202	2224345	20200	20493					10725484	19							Serana	00000000		1911 - J.					2046540	ana di k	Same			•				272120					2012/02/2	. È.			ŝ.	6307.255
961	CG.	ICO	CAG	CAC	CTI	CAT	TT	CAG	CGC	SCC	TGG.	AGC	TCC	CGGG	GGGP	AC1	raa/	GT:	rGG,	ATG	CGC	ССТ	ATA	ACT:	ICA)	ACCI	ACCO	CTTI	CTC	TAT	CA	ACA	ACC:	LCY,	TGT	CAG	AACI	\GA	CAT	CGA	CAC	CTT	10
282		S	T	P	្រុង		£	S	G	L	E	L	P	G	Е	L	ĸ	L	D	A	Р	Y	N	F	N	H	Р	F	S	I	N	N	L	M	S	E	Q	Т	S	Т	P	S	32
					•														÷.							Ø			3 9 3							g							
1081	CCI	AA	AC'	rGG	ATC	STG	GG	GTI	TGO	GGG	GCT.	ACG	GĠG	CTG	AGAC	TG	GGI	GCC	TG	GAG	TCT.	ACT.	ACCI	AGA	SCC	TCT/	ATTO	cccd	CTC	TC?	rgc:	TTA	ATG	CAT	CCT	AGC.	AGC	SCA	ATT	GGG	AAC	GCC	12
322		ĸ	L	D	1	1	G	F	G	G	Y	G	A	E	s	G	E	P	G	v	Y	Y	Q	S	L	Y	S	R	S	L	L	N	A	S	*								35
									1			17			20	ġ.			2/22			2			27	20			5 4 1			15				2						1	
1201	AT	GA	TG	GC	GTO	GGG	CT	GCI	AAC	STT	CTT	GGG	CTC	TGA	ICTI	TC	rGGT	TAC	CAC	TTT	GCT	TGT	ccci	ATT	AAT	TAA	CAT	CTT	\TTT	rGG?	гстл	ATT	ACTO	GTG	ATA	IGA	CCC	ATT	AGC	TAC	TGT	GGT	13
								432635		HUND N	a-0 %3219	irenan Sili			100000000 201	enaistee M			51 5 3			1999 1990			1207021 (5)				57 5 8			10000000 24							20 20			10000000 10000000000000000000000000000	10.000
1321	AA	СТО	GCO	TAT	GGJ	CT	CT	TTO	GT	AGG	CCT	AGG	GŤTO	GGG	TAT	TAC	GA/	GGG	CAG	ATG	CGT	TTG	GAA	STG	TG	GAL	AGG'	tgg1	CAT	GTI	(GG)	ACA'	TAT'	TGT	SAAC	GC	AGT	FAG	ACT	GGT	GTA	CTA	14
ANTI-CASE A		20192	2003	680159	1252/1950		8908	19700	4.012.50		A \$3552.5	12120-00	0.71400	2017-0213			earlo ite	1.000		304020	-93 (BC)	2735,7753 2725,7753	5400.4G	1977-1978) 1977-1978	C. 4 (27.15)		2/08/03	10-000	8004678 	803.9	1993	1999	0.0466	19100	0.575	9.250 By: 	194 98 99 10	141.000	61/6/014		8594408	10000	114000

1441	TGAAAGCTAGCCATA	TTAAGTGAA	GCCATTGGGTG	ATTGATCCA	TGGGTGCCTG	ATGGTCGTG	ATGTTGGATGA	CACATGTCTO	GTCCTTTGG/	TGATGTGTTG	GCAATCTTGA	TTGAC	1560
1561	CTGTGTTGGACATCT	TGATTGACC	TTTTGAGTATG	TGACAGAAC	ACATCTTCTT	GGCTCATTT	IATCCTGGGAI	CGCCTCTTTT	TTTTCCTCTT		TTCTTTTTT	CTTTT	1680
1681	CCTTTTTTCTTTCTT	TTTTCTTTT	TTGGCAGACTT	CTTGGTTCA	SCAGATGCCAA	ATTGGCCAC	CATATCACATO	GTGTCTTTT	TGACATTCTC	GATGCATGGA	AGGTCACTGI	ATTGG	1800
1801	CAAGGTGACATCTCA	GCATGCTGC	TATGCACCAAG	ATAGATGGT	IACCACAGGCC	TGCCATCTC	TTGGTGGAGO	STTGGGTGAG	IGGAAGAGGTO	GAGCAGACCTA	TCGAGTTTTT	CTCTG	1920
1921	AAGCCCATCCCCAC	CTGTCTGTC	SAGAAAGGGCT	AGTGTGGGTG	STCGGGAGTTC	CTACTGAGG	CAAGTTCTTC	TCTGGGGCT1	GGGAATACTO	CTGTGTTTG	GCCATTANA	AAGGCAC	2040
2041	CATCTCCATAAAAAA		AAA 2067										

FIG. 1. Nucleotide and translated amino acid sequences of the mouse HNF- 3α , β , and γ cDNAs. Shown is the sequence of the sense strand of composite cDNAs and the corresponding amino acid sequence of the longest open reading frame for HNF- 3α (A), HNF- 3β (B), and HNF- 3γ (C). The boldface sequences in A and C indicate potential polyadenylation signals. The sequences of the 110-amino-acid forkhead DNA binding domains are underlined.

(Jürgens and Weigel, 1988; Weigel *et al.*, 1989). The forkhead gene is expressed in ectodermal as well as endodermal portions of the gut, the yolk nuclei, the salivary glands, and certain cells of the nervous system. Subsequently, sequences closely related to the HNF-3/ forkhead DNA binding domain have been found in species ranging from yeast to man (Oliver *et al.*, 1992; Knöchel *et al.*, 1992; Dirksen and Jamrich, 1992; Ruiz i Altaba and Jessell, 1992; Häcker *et al.*, 1992: Tao and Lai, 1992; Li *et al.*, 1991, 1992; Li and Vogt, 1993; Kaestner *et al.*, 1993; Clevidence *et al.*, 1993). In mice, six HNF-3/forkhead homologues that have at least 57% amino acid identity within the DNA binding domain with forkhead have been described (Kaestner *et al.*, 1993).

The rat HNF-3 genes have been shown to be ex-

postimplantation and midgestation mouse embryos (Sasaki and Hogan, 1993; Monaghan et al., 1993). The HNF-3 family members were found to be sequentially transcribed in the developing definite endoderm, HNF- 3β being the first gene to be activated, followed by HNF- 3α and finally γ . Interestingly, HNF- 3β and α mRNAs were also found in cells of the notochord and ventral neural epithelium, suggesting additional functions for these genes in mesoderm and neural axis formation (Monaghan et al., 1993). Recent experiments suggest that the very early expression of the HNF-3 proteins in the liver primordium is responsible for the reorganization of the chromatin structure, as the HNF-3 proteins are involved in the precise positioning of nucleosomes over the albumin enhancer only in those tissues where the enhancer is active (McPherson et al., 1993). As a prerequisite to further our understanding of the importance of the HNF-3 gene family in mouse development, through promoter analysis in transgenic mice and generation of null alleles via homologous recombination in embryonic stem cells, we have cloned and characterized cDNAs and genomic fragments encoding the mouse HNF-3 genes. In addition, we have quantitatively analyzed their expression pattern in adult mouse tissues and whole mouse embryos from midgestation to term.

pressed, in addition to liver, in stomach, intestine, and lung (Lai et al., 1990, 1991), which are all tissues derived, at least in part, from embryonic endoderm. This fact, combined with the high degree of similarity to the Drosophila gene forkhead, has led to the proposal that the HNF-3 genes are important in early endoderm and liver development in addition to their role in adult liver transcription (Lai and Darnell, 1991). This notion is supported by recent in situ hybridization studies on early

KAESTNER ET AL.

λE6

FIG. 2. Restriction map of the mouse HNF-3 α , β , and γ genes. The restriction map of each gene together with the extent of the lambda phage clones from which it was derived is shown. The exons of the three genes are shown as black boxes, and the forkhead DNA binding domains are indicated as white boxes.

MATERIALS AND METHODS

Library construction and cDNA and genomic cloning. A 300-nt probe corresponding to the forkhead domain of the mouse HNF-3 α gene originally obtained by PCR (Kaestner et al., 1993) was used to screen two mouse liver cDNA libraries (Ruppert et al., 1990; B. Luckow et al., 1994) using high-stringency hybridization and washing conditions (Church and Gilbert, 1984). Fourteen hybridizing lambda phages were purified and the cDNAs were subcloned into Bluescript (Stratagene) and classified by dideoxy sequencing (Sanger et al., 1977). The complete coding as well as part of the untranslated regions of the mouse HNF-3 α , β , and γ cDNAs were sequenced after generating nested deletions of the cDNAs with exonuclease III (Henikoff, 1984).

Genomic clones containing the HNF-3 α and β genes were obtained through screening of an amplified mouse 129/Ola library in λ GEM-12

TABLE 1

	HNF- 3α	
Exon 1 AACGCAGGAG <u>gt</u> gagaggcggg T Q E ₂₄	2.5-kb intron	Exon 2 tctccgctcc <u>ag</u> GCCTACTCCT A ₂₅ Y S
	HNF-3 β	
Exon 1 GCGAGTTAAAgtttttctaaat	1.5-kb intron	Exon 2 ctcggcttcc <u>ag</u> TATGCTGGGA M _l L G

Intron-Exon Boundaries of the HNF-3 Genes in Mice

Note. The intron-exon boundaries were obtained by comparison of cDNA and genomic sequences. The consensus dinucleotides gt and ag at the intron borders are underlined.

FIG. 3. Mapping of the transcription initiation sites of the mouse HNF-3 α , β , and γ genes. Synthetic oligonucleotide primers complementary to the sense strand of the cDNAs were end-labeled with ³²P to a specific activity of 10⁸ cpm/µg. Primer extension analysis was carried out with 5 µg of poly(A⁺) RNA from stomach or 5 µg tRNA. Marker lanes contain the dideoxy nucleotide sequencing reactions of

embryonic stem cell line E14TG2a (Hooper *et al.*, 1987), partially digested with the restriction endonuclease Sau3AI, size fractionated (16 to 23 kb fragments), and ligated into λ Dash II (Stratagene) according to Frischauf (1987). Two million primary phages of this library were screened with various portions of the mouse HNF-3 γ cDNA to assemble the complete HNF-3 γ contig. The genomic lambda phages were mapped, and exon-containing fragments subcloned and sequenced to obtain the intron-exon boundaries.

Primer extension analysis. Primer extension analysis was carried out as described previously (Kaestner et al., 1989) using synthetic oligonucleotides and 5 μ g tRNA or poly(A⁺) RNA purified from stomach using oligo(dT) Dynabeads (Dynal). The primers used were complementary to nucleotides 64 to 85 of the HNF-3 α cDNA, nucleotides 61 to 83 of the HNF-3 β cDNA, and nucleotides 61 to 83 of the HNF-3 γ cDNA (see Fig. 1). To map the endpoint of the primer-extended product, dideoxy sequencing (Sanger et al., 1977) of genomic subclones containing the first exon of each gene was performed using the corresponding oligonucleotide as a primer.

RNA isolation and RNase protection analysis. Total RNA from a variety of mouse tissues or whole mouse embryos was isolated by centrifugation through a CsCl cushion after homogenization in guanidinium thiocyanate (Chirgwin *et al.*, 1979). The quality of the RNA preparations was controlled by ethidium bromide staining of the 18S and 28S rRNAs after electrophoretic separation of the RNA in denaturing agarose gels. RNase protection analysis was performed as described previously (Kaestner *et al.*, 1989) using $[\alpha - {}^{32}P]$ UTP-labeled antisense RNA probes derived from Bluescript (Stratagene) subclones containing 191 bp (HNF-3 α , position 1165 to 1355), 221 bp (HNF-3 β , position 1169 to 1389), or 338 bp (HNF-3 γ , position 993 to 1330) of the mouse HNF-3 cDNAs. The probes chosen were from regions outside the conserved domains of the HNF-3 family to avoid the possibility of cross-hybridization. The antisense probes were hybridized against 50 μ g (adult tissues) or 20 μ g (embryonic samples) total RNA

the first exon of each gene using the same primers. Arrows indicate the major start sites of transcription.

(Promega) kindly provided by Anton Berns (Amsterdam) using the probe and hybridization conditions as used for the cDNA library screen. An additional genomic library was constructed from murine embryonic stem cells. Genomic DNA was isolated from the murine

A									
ACGATCCTTG	CGCTGTAGCT	CTGATGCCAC	CACCCAGGTC	CTTCTCCCGC	AGCACAGCTC	TTTGGGTCCA	GAGCCCTGGC	CTGTCCTCCA SP1	-396
AGGCACCGCC	TATTTTTCCT	TTTCTTCTTT	TTTTTCCTTT	TCTTTTCTTT	CTCTTTTTTT	CCTTTTCCAA	AGGGGGTCAC	ACACACACCC	-306
GCCCTATTT	CCTCTTTCCC	TACCCCCCAR	CCTTAAACCA	ATTATACTCC	TTTCTABACA	AAGTGAGGGC	CAGGTTTGGG	CCAGGGGATG	-216
SP1	0010111000	INCCOUCING	Jost Imm <u>com</u>	SP1	11101Aunon	111010100000	SP1	U SHOODINI <u>U</u>	
<u>GCGGG</u> AGGGG	CGCGGGGGGGC	GCGCAGGCGC	TGGCGCGGCG	GGGCGGGAGG	CGCGGCGGCT	GGACTGGC <u>GG</u>	GCGGCCGCCT	CACAGGTGCA	-126
CCTCGGGCTT	TGTAGGTGCG	AGCGTCTTTG	TGCGGCGGAC	AAATGGGGAG	AGGACGAGGA	GGTGGGCACT	CCGGCGACGT	AAGATCCACA	-36
TCAGCTCAAC	TGCACTCGCT	TCGCACAGG <u>C</u>	<u>CGCCC</u> GCTCA	CTTCCCGCGG	AGGCGCTGCC	GGGCGCCGGC	TCCGCGGCCG	CCTCCTGTCC	+56
CCGGCGCTGC	CCCCTCCcgc	cgcgccg							
в					HNF-	-3			
CCTAGTCTCG	GTCTTGGTAG	CTAACAATAT	AAATGACATA	CTCTGTTGTT	TTCATGTTTG	<u>TTTT</u> GTTTGG	GGCAGACAAG	GTTTCTCTCT	-365
GTAGCCGGAT	GTCTTGAAAC	TCACTCTATA	GACTAGGTCA	GCCTAGACTT	CTCTGAGATC	CTCCTGCCTC	TGCCTCAAAG	GCAGAAGACA	-275
ACACTTCAAA	TGACACTTTT	TAACACCTAG	AAGCTAAAGA	GAAAAGAAAC	TGAAATTTTC	AATTTTTATA	AGACAGTCCT	GGTCTCTGCA	-185
						UF1-H3	β	HNF-3	3
GGCAGAGAAC	ACAGATCCTC	CTGAAGTCAT	CCCACAAGGC	CCATTATTGA	TTTTTTCTCC	TGCCCTACCC	CCCACCTACT	GCCCT <u>GTTTG</u>	-95
LF-1	нзβ			UF2-H	зβ				
TTTTAGTTAC +1	GAAATGCTTT	GGGCACCTTG	GATTTAACTG	AAAAGTAACC	TTGAAACACC	GAGGCCCTCA	TGCCAGAGGC	AAATCGCTGC	~5
CTCCCGGGTA	TTGGCTGCAG	CTAAACGGGT	CTCTCCAGGC	CGACTGAGGT	GGGTAGCCAG	AAAGAGGACT	GAGGTAActo	acqa	

C TCTAGAGTTT CCCTCCTTTA GCTGGAGATG ATGAAACACT TAGAGGCAGA AAGATTCCCC GGCTCCCGCT CTGTTGCTCT AGGGCTTTTG -230 GGATCAGCAG GGTGTGGCTC TCTACCCACG CCTTGTAGTC CCCGACTCTT CATCCATCGC AAGCTTCCAG GTGCCAGGAC CGAGGCTCCC -140 SP1 AGTGCCTGAG GTCTCTCTTC TTGCGATCCC GCAGGGGGCG CCCCAATCCG AGGGCGCCGC GCTCGGGGAG GCGCCGCGGGG AGCCCG<u>GGGC</u> -50 TFIID +1 G<u>GGCCCCGGGA GGGGGTGTCC CGGCTATAAA</u> AAGTGGCTGC CTCCCAAGGC GCCTGGGCCA gcgggaetce caggetgtg gectcaggt

FIG. 4. Nucleotide sequence of the 5' flanking regions of the mouse HNF-3 α (A), β (B), and γ (C) genes. The transcription initiation sites determined by primer extension analysis (Fig. 3) are shown in boldface, and the 5' most were designated as +1. Potential binding sites for known transcription factors are underlined. The sequences present in the cDNAs are shown in lower case letters.

382

KAESTNER ET AL.

FIG. 5. Quantitative analysis of the tissue distribution of the mouse HNF- 3α , β , and γ mRNAs. (A) Fifty micrograms of total RNA from the tissues indicated was hybridized to a cocktail of excess ³²P-labeled antisense RNA probes specific for HNF- 3α , β , and γ , and the level of the mRNAs for all three genes was determined by RNase protection analysis as described under Materials and Methods. The lane marked "Probes" contains 1000 dpm each of the three probes used and served to standardize the values obtained in the quantitation (see below). The arrows indicate the positions of the probes (α , β , and γ) and the protected fragments (HNF- 3α , β , and γ). (B) The signals obtained in A were quantified

using a phosphoimager and converted to fmol-specific mRNA per milligram total tissue RNA. The signals were corrected for the specific activity of the different probes and reflect the true ratios of the three mRNAs.

at 54°C in 80% formamide overnight. Excess probes were removed by digestion with RNases A and T1 and, the protected probe fragments analyzed on denaturing 6% polyacrylamide gels. The signals obtained were quantified on a Molecular Dynamics phosphoimager and converted to fmol RNA/mg total RNA assuming 100% hybridization of the target RNAs and normalizing the signals for the number of UMP residues incorporated in the hybridizing portion of each probe.

RESULTS AND DISCUSSION

Using a 300-nt probe spanning the forkhead DNA binding domain of the mouse HNF-3 α gene (Kaestner *et al.*, 1993), we screened two mouse liver cDNA libraries. A total of 15 phages (10 for HNF-3 α , 1 for HNF-3 β , and 4

THE MOUSE HNF-3 GENE FAMILY

FIG. 6. Temporal expression of the HNF-3 α , β , and γ mRNAs during mouse embryogenesis. Twenty micrograms of total RNA from the developmental stages indicated (in days post coitum) were analyzed by RNase protection as described in the legend to Fig. 5. The antisense probes and protected fragments are indicated by arrows.

for HNF-3 γ) were purified from 1.3 million phages

tain genomic fragments containing all three genes. The resulting phages were mapped and the exon-containing regions identified by Southern blotting and subcloning. The restriction patterns of the cloned regions were compared to those obtained in mouse genomic Southern blots to exclude possible rearrangements of the lambda phages (data not shown). The resulting gene structures for HNF-3 α , β , and γ are shown in Fig. 2. All three genes span less than 10 kb and contain two (HNF-3 α and γ) or three exons (HNF-3 β). The intron-exon boundaries were determined by comparing the cDNA and genomic sequences and are summarized in Table 1. Interestingly, the intron within the coding region is at the same relative position in all three genes, that is, at -1 with respect to a conserved YS dipeptide, indicating a common ancestor gene. In addition, the above-mentioned divergence of the amino terminus of the mouse HNF-3 γ gene from its rat counterpart cannot be explained by alternate exon usage, as this region covers the first 55 amino acids, while the intron is located at position 24. In addition, no evidence for alternate splice variants of HNF-3 γ was found in RNase protection experiments using probes covering the first 452 nucleotides of the HNF-3 γ cDNA (data not shown). The intron-exon boundaries of the rat HNF-3 β gene, the only other HNF-3 gene analyzed so far (Pani et al., 1992b), are identical to the ones for the mouse gene described here. To determine the start site of transcription for HNF-3 α , β , and γ , we performed primer extension experiments with gene-specific primers. The results of these experiments using poly(A⁺) RNA from stomach (where the HNF-3 gene family is expressed most strongly, see below) or tRNA as negative control are shown in Fig. 3 alongside a sequencing ladder using the same primer. In all three cases, multiple, but closely spaced, start sites are apparent. The most 5' of these transcription initiation sites was designated as position +1 (see Fig. 4). The transcriptional start site of the rat HNF-3 β gene (Pani *et al.*, 1992b) has been mapped to within 5 nt of the one observed in mouse, again underscoring the close relationship between the two genes. As an initial step toward the understanding of the regulatory elements governing the expression of the HNF-3 gene family, we subcloned and sequenced the proximal promoters of the three mouse genes and searched them for potential binding sites of known transcription factors (Fig. 4). Despite the relatedness of the three cDNAs and the similarity of the mRNA distribution of the three genes, the promoters are dissimilar. The promoters of HNF-3 α and γ have in common only binding sites for the general transcription factor Sp1 (Fig. 4), while only HNF-3 γ contains a canonical TATA-box at the appropriate position relative to the start site of transcription. The proximal promoters of the rat and mouse HNF-3 β genes are remarkably well conserved, with 116 of the first 120 nucleotides being identical. Especially important is the fact that the two binding sites for a liver-specific protein, termed LF-H3 β , and a binding site for HNF-3 itself are conserved in sequence as well as spac-

under high-stringency conditions. The phage inserts ranged from 1 to 2.1 kb and contained the complete coding regions of all three genes. As demonstrated by sequence analysis and transcriptional start site mapping, the cDNA lack less than 50 bp at the 5' end. The cDNAs for HNF-3 β and γ are almost full length, as the corresponding mRNAs were shown to be 2.3 and 2.1 kb in size (data not shown). The cDNAs for HNF-3 α are lacking 1.6 kb of untranslated sequence at the 3' end, as its mRNA was found to be 3.4 kb in length (data not shown). The sequence of the mouse HNF-3 cDNAs was determined and is shown in Fig. 1 along with the amino acid sequence for the longest open reading frame. The cDNAs encode proteins of 468 (HNF- 3α), 459 (HNF- 3β), and 353 (HNF- 3γ) amino acids with calculated molecular weights of 48.9, 48.5, and 34.6 kDa, respectively. As expected, sequence comparison demonstrated that the mouse and rat sequences (Lai et al., 1990, 1991) are highly conserved, with amino acid similarity ranging from 93% (for HNF-3 γ) to 99% (for HNF-3 β). A noteworthy exception is the amino terminus of the HNF-3 γ gene, at which the mouse sequence is more similar to the mouse HNF-3 α and β genes (16 of the first 55 amino acids are conserved) than to its rat counterpart (6 of 55 conserved amino acids). This is especially interesting in light of the finding that the amino-terminal 52 amino acids of the HNF-3 β protein were shown to be important in transcriptional activation through testing of deletion mutants in transfection assays (region IV; Pani et al., 1992a). This domain is rich in serine and tyrosine residues and contains two putative casein kinase I phosphorylation sites. Therefore, it seems likely that the amino terminus of the mouse HNF-3 γ gene can function in transcriptional activation as well. This region of the mouse HNF-3 γ sequence was also confirmed by sequencing the corresponding genomic region (see below). Using the mouse cDNA probes for HNF-3 α , β , and γ , we screened two mouse genomic phage libraries to obing (Fig. 4; and Pani et al., 1992b). Pani et al. (1992b) have shown through transfection of rat HNF-3 β promoter mutants in HepG2 cells that both binding sites are important for strong expression of chimeric HNF- 3β /reporter gene constructs. They proposed a model for cell-specific transcription of the HNF-3 gene in liver cells involving activation by the cell-specific LF-H3 β protein and maintenance of this expression through positive autoregulation by HNF-3 β . Interestingly, a second HNF-3 binding site of identical sequence is found farther upstream (position -400 to -390) in the mouse HNF-3 β promoter, which might also take part in this proposed autoregulation. A second possibility is the regulation of the HNF-3 β promoter by HNF-3 α and γ , which are also present in liver and have similar DNA binding properties (Lai et al., 1991). Most likely, similar regulatory pathways are operative in the regulation of the mouse and rat HNF-3 β genes. This notion is supported by the finding that the proximal mouse HNF-3 β promoter confers cell-type-specific expression on a β -galactosidase reporter gene (data not shown). A detailed promoter analysis of the divergent HNF-3 α and γ genes through transfection as well as transgenic mouse experiments is in progress to understand which regulatory pathways control these genes, as their proximal promoters lack binding sites for HNF-3 and LF-H3 β . As a first step toward understanding the full potential of the HNF-3 gene family as transcription factors in mice, we studied the expression patterns of its three members through quantitative RNase protection using gene-specific probes (see Materials and Methods for details), allowing for a first direct comparison of the expression levels of the three genes. The results of our survey of adult mouse tissues are shown in Fig. 5. While HNF-3 α is expressed strongly in large intestine and stomach, and weaker in liver, lung, and small intestine, HNF-3 β mRNA is present in the same tissues at more balanced levels. HNF-3 γ is expressed strongly in large and small intestine, stomach, and liver, but is absent from lung. This is consistent with the observation of Monaghan *et al.* (1993) that HNF-3 γ expression in midgestation mouse embryos is restricted to derivatives of the endoderm posterior to the liver. The expression of HNF-3 α and β in the adult mouse is restricted to derivatives of the embryonic endoderm, while HNF-3 γ mRNA was also found in heart, adipose tissue, ovary, and testis as well as embryonic stem cells. The tissue distribution of the HNF-3 mRNAs in mice is qualitatively similar to that observed in the rat (Sladek and Darnell, 1992; Lai et al., 1991). The expression of HNF-3 γ in heart, adipose tissue and embryonic stem cells has not been observed before. We extended our analysis of the expression of the HNF-3 gene family to RNAs obtained from mouse embryos from Day 9.5 post coitum onward using the same gene-specific probes (Fig. 6). HNF-3 β is expressed strongly on Days 9.5 and 10.5, weakly detected during the next 2 days, and returns to an intermediate level of expression on Day 15.5. HNF-3 α follows a similar pattern as HNF-3 β , but is expressed at lower levels. The

transient dip in the mRNA levels of HNF-3 α and β corresponds to the disappearance of the two mRNAs from the embryonic liver as revealed by in situ hybridization (Monaghan et al., 1993). HNF- 3γ , while hardly detectable on Day 9.5, is being activated on Day 12.5 and peaks on Days 15.5 and 16.5. This peak in mRNA levels coincides with the increased expression of HNF-3 γ in endoderm-derived structures such as the liver, stomach, intestine, and pancreas observed by in situ hybridization (Monaghan et al., 1993).

As an initial step toward understanding the role of the HNF-3 gene family of transcription factors, we have cloned and characterized the cDNAs and genes of its three members. The information obtained will allow identification of important regulatory elements in the promoters of HNF-3 α , β , and γ through transfection of chimeric promoter/reporter gene constructs into tissue culture cells and by analysis of these constructs in transgenic mice. Furthermore, gene targeting experiments in mouse embryonic stem cells that will allow us to determine the precise role of these genes in mouse embryonic development and tissue-specific transcriptional regulation in the adult are in progress.

ACKNOWLEDGMENTS

We thank Drs. A. P. Monaghan and J. Blendy for critically reading the manuscript, B. Lupp and H. Kern for technical assistance, and W. Fleischer for oligonucleotide synthesis as well as photographic work. This work was supported by the Deutsche Forschungsgemeinschaft through Sonderforschungsbereich 229, the Leibniz-Programm, and Fonds der Chemischen Industrie.

REFERENCES

- Auge-Gouillou, C., Petropoulos, I., and Zakin, M. M. (1993). Liverenriched HNF-3 alpha and ubiquitous factors interact with the human transferrin gene enhancer. FEBS Lett. 323: 4-10.
- Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J., and Rutter, W. J. (1979). Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18: 5294-5299.
- Church, G. M., and Gilbert, W. (1984). Genomic sequencing. Proc. Natl. Acad. Sci. USA 81: 1991-1995.
- Clevidence, D. E., Overdier, D. G., Tao, W., Qian, X., Pani, L., Lai, E., and Costa, R. H. (1993). Identification of nine tissue-specific transcription factors of the HNF-3/forkhead DNA binding domain family. Proc. Natl. Acad. Sci. USA 90: 3948-3952.
- Costa, R. H., Grayson, D. R., and Darnell, J. E. (1989). Multiple hepatocyte-enriched nuclear factors function in the regulation of transthyretin and α -1 antitrypsin genes. Mol. Cell. Biol. 9: 1415-1425.

De Simone, V., and Cortese, R. (1991). Transcriptional regulation of liver-specific gene expression. Curr. Opin. Cell Biol. 3: 960-965. Dirksen, M. L., and Jamrich, M. (1992). A novel, activin-inducible, blastopore lip-specific gene of Xenopus laevis contains a forkhead DNA binding domain. Genes Dev. 6: 599-608. Frischauf, A. M. (1987). Construction and characterization of a genomic library in λ . Methods Enzymol. 152: 190-199. Häcker, U., Grossniklaus, U., Gehring, W. J., and Jäckle, H. (1992). Developmentally regulated Drosophila gene family encoding the fork head domain. Proc. Natl. Acad. Sci. USA 89: 8754-8758.

Henikoff, S. (1984). Unidirectional digestion with exonuclease III

THE MOUSE HNF-3 GENE FAMILY

creates targeted breakpoints for DNA sequencing. Gene 28: 351-355.

- Herbst, R. S., Nielsch, U., Sladek, F., Lai, E., Babiss, L. E., and Darnell, J. E. (1991). Differential regulation of hepatocyte-enriched transcription factors explains changes in albumin and transthyretin gene expression among hepatoma cells. New Biol. 3: 289-296.
- Hooper, M., Hardy, K., Handyside, A., Hunter, S., and Monk, M. (1987). HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. *Nature* 326: 292-295.
- Ip, Y. T., Poon, D., Stone, D., Granner, D. K., and Chalkley, R. (1990). Interaction of a liver-specific factor with an enhancer 4.8 kilobases upstream of the phosphoenolpyruvate carboxykinase gene. *Mol. Cell. Biol.* 10: 3770-3781.
- Jürgens, G., and Weigel, D. (1988). Terminal versus segmental development in the Drosophila embryo: The role of the homeotic gene forkhead. Roux's Arch. Dev. Biol. 197: 345-354.
- Kaestner, K. H., Lee, K.-H., Schlöndorff, J., Hiemisch, H., Monaghan, A. P., and Schütz, G. (1993). Six members of the mouse forkhead gene family are developmentally regulated. *Proc. Natl. Acad. Sci. USA* 90: 7628-7631.
- Kaestner, K. H., Ntambi, J. M., Kelly, T. J., and Lane, M. D. (1989). Differentiation-induced gene expression in 3T3-L1 preadipocytes: A second differentially expressed gene encoding stearoyl-CoA desaturase. J. Biol. Chem. 264: 14755-14761.

Cloning, expression and chromosomal localization of the 140 kDa subunit of replication factor C from mouse and man. *Mol. Cell. Biol.*, in press.

- McPherson, C. E., Shim, E.-Y., Friedman, D. S., and Zaret, K. S. (1993). An active tissue-specific enhancer and bound transcription factors existing in a precisely positioned nucleosomal array. *Cell* 75: 387-398.
- Monaghan, A. P., Kaestner, K. H., Grau, E., and Schütz, G. (1993). Post-implantation expression patterns indicate a role for the mouse forkhead/HNF-3 α , β and γ genes in determination of the definite endoderm, chordamesoderm and neuroectoderm. *Development* **119:** 567-578.
- Nitsch, D., Boshart, M., and Schütz, G. (1993). Activation of the tyrosine aminotransferase gene is dependent on synergy between liverspecific and hormone-responsive elements. *Proc. Natl. Acad. Sci.* USA 90: 5479-5483.
- Oliver S. G., et al. (1992). The complete DNA sequence of yeast chromosome III. Nature 357: 38-46.
- Pani, L., Overdier, D. G., Porcella, A., Qian, X., Lai, E., and Costa, R. H. (1992a). Hepatocyte nuclear factor 3β contains two transcriptional activation domains, one of which is novel and conserved with the Drosophila fork head protein. Mol. Cell. Biol. 12: 3723-3732.
- Pani, L., Qian, X., Clevidence, D., and Costa, R. H. (1992b). The restricted promoter activity of the liver transcription factor hepatocyte nuclear factor 3β involves a cell-specific factor and positive

- Knöchel, S., Lef, J., Clement, J., Klocke, B., Hille, S., Köster, M., and Knöchel, W. (1992). Activin A induced expression of a *fork head* related gene in posterior chordamesoderm (notochord) of *Xenopus laevis* embryos. *Mech. Dev.* 38: 157-165.
- Kuo, C. J., Conley, P. B., Chen, L., Sladek, F. M., Darnell, J. E., and Crabtree, G. R. (1992). A transcriptional hierarchy involved in mammalian cell-type specification. *Nature* 355: 458-460.
- Lai, E., and Darnell, J. E. (1991). Transcriptional control in hepatocytes: A window on development. *Trends Biochem. Sci.* 16: 427-430.
- Lai, E., Prezioso, V. R., Smith, E., Litvin, O., Costa, H. R., and Darnell, J. E., Jr. (1990). HNF3A, a hepatocyte-enriched transcription factor of novel structure is regulated transcriptionally. *Genes Dev.* 4: 1427-1436.
- Lai, E., Prezioso, V. R., Tao, W., Chen, W. S., and Darnell, J. E., Jr. (1991). Hepatocyte nuclear factor 3α belongs to a family in mammals that is homologous to the *Drosophila* homeotic gene forkhead. Genes Dev. 5: 416-427.
- Li, C., Lai, C., Sigman, D. S., and Gaynor, R. B. (1991). Cloning of a cellular factor, interleukin binding factor, that binds to NFAT-like motifs in the human immunodeficiency virus long terminal repeats. *Proc. Natl. Acad. Sci. USA* 88: 7739-7743.
- Li, C., Lusis, A. J., Sparkes, R., Tran, S.-M., and Gaynor, R. (1992). Characterization and chromosomal mapping of the gene encoding the cellular DNA binding protein HTLF. *Genomics* 13: 658-664.
- Li, J., and Vogt, P. K. (1993). The retroviral oncogene *qin* belongs to the transcription factor family that includes the homeotic gene fork *head. Proc. Natl. Acad. Sci. USA* **90**: 4490-4494.

Luckow, B., Bunz, F., Stillman, B., Lichter, P., and Schütz, G. (1994).

autoregulation. Mol. Cell. Biol. 12: 552-562.

- Ruiz i Altaba, A., and Jessell, T. M. (1992). Pintallavis, a gene expressed in the organizer and midline cells of frog embryos: Involvement in the development of the neural axis. Development 116: 81-93.
- Ruppert, S., Boshart, M., Bosch, F. X., Schmid, W., Fournier, R. E. K., and Schütz, G. (1990). Two genetically defined trans-acting loci coordinately regulate overlapping sets of liver-specific genes. *Cell* **61**: 895-904.
- Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463-5467.
- Sasaki, H., and Hogan, B. L. M. (1993). Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo. *Development* **118**: 47-59.
- Sawaya, P. L., Stripp, B. R., Whitsett, J. A., and Luse, D. S. (1993). The lung-specific CC10 gene is regulated by transcription factors from the AP-1, octamer, and hepatocyte nuclear factor 3 families. *Mol. Cell. Biol.* 13: 3860-3871.
- Sladek, F. M., and Darnell, J. E. (1992). Mechanisms of liver-specific gene expression. Curr. Opin. Genet. Dev. 2: 256-259.
- Tao, W., and Lai, E. (1992). Telencephalon-restricted expression of BF-1, a new member of the HNF-3/fork head gene family in the developing rat brain. Neuron 8: 957-966.
- Weigel, D., and Jäckle, H. (1990). The *fork head* domain: A novel DNA binding motif of eucariotic transcription factors. *Cell* **63**: 455–456.
- Weigel, D., Jürgens, G., Küttner, F., Seifert, E., and Jäckle, H. (1989). The homeotic gene *fork head* encodes a nuclear protein and is expressed in the terminal regions of the drosophila embryo. *Cell* 57: 645-658.