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Abstract
Trial-to-trial variability during visuomotor adaptation is usually explained as the result of two different sources, planning 
noise and execution noise. The estimation of the underlying variance parameters from observations involving varying 
feedback conditions cannot be achieved by standard techniques (Kalman filter) because they do not account for recursive 
noise propagation in a closed-loop system. We therefore developed a method to compute the exact likelihood of the output 
of a time-discrete and linear adaptation system as has been used to model visuomotor adaptation (Smith et al. in PLoS Biol 
4(6):e179, 2006), observed under closed-loop and error-clamp conditions. We identified the variance parameters by maximiz-
ing this likelihood and compared the model prediction of the time course of variance and autocovariance with empiric data. 
The observed increase in variability during the early training phase could not be explained by planning noise and execution 
noise with constant variances. Extending the model by signal-dependent components of either execution noise or planning 
noise showed that the observed temporal changes of the trial-to-trial variability can be modeled by signal-dependent planning 
noise rather than signal-dependent execution noise. Comparing the variance time course between different training schedules 
showed that the signal-dependent increase of planning variance was specific for the fast adapting mechanism, whereas the 
assumption of constant planning variance was sufficient for the slow adapting mechanisms.

Keywords Human · Motor control · Reaching movements · Adaptation · System identification · Kalman filter

1 Introduction

Programming visually guided movements requires associat-
ing visual errors with the appropriate motor corrections. For 
example, the visual representations of the distance and direc-
tion of a target from the hand can guide a pointing movement 

to the target. Random and unexpected errors of such move-
ments can be corrected by visual feedback used either for 
driving a series of visually guided corrective movements 
or by online corrections integrated in the ongoing primary 
movement. In contrast, repeated occurrence of systematic 
errors gradually changes the relation between the visual 
stimulus and the feedforward component of the motor com-
mand. This gradual distortion of the mapping of the visual 
space onto the motor space is called motor adaptation and 
represents a basic form of motor learning. Motor adapta-
tion was investigated in different motor modalities and error 
types, such as prism adaptation (Held and Schlank 1959), 
saccade adaptation (McLaughlin 1967), force field adapta-
tion (Lackner and Dizio 1994; Shadmehr and Mussa-Ivaldi 
1994), and adaptation to visuomotor rotation (Cunningham 
1989).

1.1  Present state of modeling adaptation dynamics

Previous studies modeled force-field adaptation (Smith 
et al. 2006), saccade adaptation (Chen-Harris et al. 2008; 
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Ethier et al. 2008), and visuomotor adaptation (McDougle 
et al. 2015) by the linear dynamics of one or two adaptive 
memory states driven by the experienced errors. The two 
essential features of linear adaptation dynamics are the fol-
lowing. First, small errors induce small adaptive changes 
and larger errors induce larger adaptive changes. The ratio 
between the adaptive change and the error is called error 
sensitivity. Second, acquired adaptive changes decrease in 
the absence of errors, faster for large than for small errors. 
The fraction of the adaptation that is retained after a time 
step is called the retention rate. In the simplest case, with 
only a single memory state, these dynamics predict expo-
nential time courses for learning and forgetting. The studies 
mentioned above showed that motor adaptation involves two 
components with different dynamics, a fast component with 
a large error sensitivity and a small retention rate, and a slow 
component with a small error sensitivity and a large reten-
tion rate (Fig. 1). This two-rate model (described in detail 

in “Appendix A1”) is very successful in explaining an effect 
that occurs during error-clamp trials (i.e., when errors are 
clamped to zero by the experimenter) after a reversal train-
ing period. Under this condition, a spontaneous recovery of 
the adaptive changes toward the initial adaptation direction 
is observed. This so-called rebound effect was observed in 
force-field adaptation (Smith et al. 2006), in saccade adapta-
tion (Ethier et al. 2008), and in adaptations to visuomotor 
rotations (McDougle et al. 2015) and is adequately predicted 
by the two-rate model.

This classical model of sensorimotor adaptation has two 
different sources of trial-to-trial variability: The first source 
is called execution noise, subsuming all motor effects on 
the initial pointing direction that are unrelated to the visu-
ally guided motor plan. The second source of trial-to-trial 
variability is additive noise on the internal memory states 
reflecting the variability of the fast and slowly adapting com-
ponents of the visually guided motor plan. Therefore, we call 

Fig. 1  Structure of a classical multi-rate adaptive system, modeled as 
a time-discrete linear filter. The visuomotor distortion (u) is the input, 
and the pointing direction (d) is the output of this system. The two 
components of the vector x represent the slow and fast adapted mem-
ory states. These are equally weighted by the scalar product with the 
vector c = [1; 1] and added to the motor goal (g) to form the adapted 
visually guided pointing direction (vd). This internal motor plan is 
superimposed with other components (v) contributing to the executed 
pointing direction (d). These non-visual components include planned 
exploration, peripheral motor noise, and potential external mechani-

cal perturbations. In the current experiment, they are not determined 
by the experimental stimulus of the experiment and are therefore sub-
sumed under the term “execution noise” (v). The visual error (e) is 
the input to the adaptation dynamics modeled as a 2D state-space 
model with error sensitivities b =

[

bs;bf
]

 and error sensitivities 

A =

[

as 0

0 af

]

 . The model is identical with the one proposed by 

(Smith et  al. 2006) except the additional optional feature (for q > 0) 
that the execution noise v can partly be accounted for by the expected 
visual feedback
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this second noise component planning noise. The distinction 
was made originally by van Beers (2009) who investigated 
the trial-to-trial variability of repeated visually guided point-
ing movements. In his study, the autocorrelation (lag 1) of 
repeated pointing movements was close to zero and differed 
significantly from the negative autocorrelation expected if, 
at positive error sensitivities ( b in Fig. 1), the trial-to-trial 
noise were exclusively due to peripheral execution noise ( v 
in Fig. 1). In contrast, planning noise entering at the level of 
the internal memory states (noise vector w in Fig. 1) induces 
a positive autocorrelation. Qualitatively, these predictions 
follow directly from the fact that execution noise transfers 
with a negative sign to the next trial (because of the adaptive 
error correction), whereas the planning noise transfers with 
a positive sign to the next trial (since the retention factors 
A are positive). Therefore, van Beers (2009) could explain 
the missing negative autocorrelation by the superposition of 
execution noise and planning noise. These experiments did 
not involve adaptation to artificially altered visual feedback 
(u in Fig. 1), but the distinction between execution noise and 
planning noise was also made in modeling trial-to-trial vari-
ability in visuomotor adaptation (Zarahn et al. 2008; Albert 
and Shadmehr 2017). Under the assumption of linear adapta-
tion dynamics, this seems a natural generalization since in 
linear systems the noise superimposes additively with the 
deterministic inputs and is therefore not expected to depend 
on additional input such as an externally applied visuomotor 
distortion.

The model shown in Fig. 1 is most generally described by 
the following formulation:

The detailed definitions of this system and of the involved 
variables are provided in “Appendix A1” (Eq. A16a–f). 
**Here we only briefly mention the most important ones: 
The system output yn denotes the relative pointing direc-
tion with respect to baseline and zn denotes the deterministic 
input dependent on either the visuomotor distortion ( un ) in 
closed-loop trials or on the direction of the cursor move-
ment ( hn ) in error-clamp trials. A linear combination of two 
noise signals ( vn , wn ) contaminates the update of the system 
states x

n
 (Eq. 1a), whereas the output equation (Eq. 1b) is 

only affected by vn . The two noise signals were assumed to 
be independent:

The variable �n denotes the gain by which the execution 
noise vn is transferred to the error signal driving adaptation. 

(1a)x
n+1

= An xn + b
n

(

zn + γnvn
)

+ Dn wn

(1b)yn = cTx
n
+ vn.

(2)
[

vn
w
n

]

∼ N

([

0

0

]

,

[

�2 0T

0 W

])

.

This gain differs between closed-loop trials and error-clamp 
trials and is directly related to the noise-compensation gain 
(0 ≤ q  ≤ 1), i.e., the fraction of the execution noise that is 
accounted for in the expected feedback signal ( ̂hn).

2  Research questions

The current study focusses on the identification of the vari-
ance parameters in visuomotor adaptation, a problem that is 
of major interest also for the analysis of movement patholo-
gies involving increased motor variability (e.g., cerebellar 
diseases). Before addressing such advanced questions, it 
is essential to develop a model suitable to describe motor 
variability observed under varying feedback conditions in 
healthy subjects. Therefore, we investigated here whether 
trial-to-trial variability of the pointing direction during 
complex adaptation experiments involving error-clamp and 
closed-loop conditions can be explained similarly as dur-
ing simple repetitive pointing by a superposition of con-
stant components of execution noise and planning noise or 
whether more complex mechanisms are involved. This is 
known to occur in motor skill acquisition where motor vari-
ability increases during the early training phase (Cohen and 
Sternad 2009). Also in motor adaptation, it has been sug-
gested that, similar to reinforcement learning, trial-to-trial 
motor variability may also reflect explorative behavior that 
supports learning (Dhawale et al. 2017). This notion has 
been supported by the observation that motor variability 
improves error-based force-field adaptation (Wu et al. 2014). 
From that point of view, one could also expect an increase 
of motor variability during the early phase of visuomotor 
adaptation. A related question is whether increased motor 
variability affects visuomotor adaptation.

To our knowledge, these hypotheses have not been tested 
explicitly so far. Therefore, we developed two different 
models that could explain such an early increase of motor 
variability and test their explanatory power when fitted to 
experimental data. Both models extend the assumption of 
noise sources with constant variances by additional sig-
nal-dependent noise, i.e., white Gaussian noise with unity 
variance multiplied by an internally accessible signal and 
scaled by a constant coefficient of variation ( � ). The first 
model implements a signal-dependent planning noise, which 
increases with the magnitude of the adaptive change. We 
assumed that such a strategic increase of explorative plan-
ning is most plausible for the fast adaptive process of the 
classical two-rate model since the fast process contributes 
mostly during the early training phase. Signal-dependent fast 
planning noise would therefore predict increased variability 
during the early training phase. The second model imple-
ments an execution noise that increases proportionally to the 
feedback error in the previous trial. This model would also 
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predict an increase of the noise during the early adaptation 
phase when the feedback error is large. Both models dif-
fer in their prediction of how temporally increased planning 
or execution variance affects the inter-trial autocorrelation. 
Increased planning variance causes increased autocorrela-
tion since it propagates positively to the next trial, whereas 
increased execution variability predicts the opposite. We will 
test these predictions here.

To compare these different noise models with experi-
mental data, it is essential to correctly estimate not only 
the parameters determining the adaptation dynamics, i.e., 
the expected temporal evolution of the mean pointing direc-
tion for a given visuomotor distortion, but also the involved 
variance parameters. Our goal is to develop a maximum 
likelihood estimation method for all parameters of the sys-
tem depicted in Fig. 1 observed under an arbitrary sequence 
of trial types involving closed-loop conditions and error-
clamp conditions when the visual feedback is manipulated 
by the experimenter to become independent of the pointing 
direction.

The application of this method will not only allow the 
modeling of the variance/covariance structure of inter-trial 
noise in visuomotor adaptation to be refined, but it will 
also permit estimates of adaptation dynamics and variance 
parameters in individual subjects to be obtained with opti-
mized precision. The best of the considered variance models 
will then be used to assess baseline data of the distribution 
of the estimated parameters across a healthy population.

2.1  Previous approaches of model identification 
and their problems in estimating the variance/
covariance structure of sensorimotor 
adaptation

In the past, methods of system identification were applied 
to identify the learning parameters (error sensitivities and 
retention rates) of linear adaptation models under closed-
loop conditions. Especially the so-called direct approach 
to closed-loop system identification (Ljung 1997) has been 
applied for model identification in sensorimotor learning 
(Cheng and Sabes 2006; Tanaka et al. 2012; Albert and 
Shadmehr 2017). This approach treats the sequence of 
measured feedback errors ( {e}N−2

0
 ) as a deterministic input 

to the linear adaptation dynamics and the sequence of rela-
tive pointing directions {y}N−1

0
 as its output:

These equations express the input/output relation of the 
adaptive system and ignore the fact that, under closed-loop 
conditions, the error is directly related to the system states 

(3a)x
n+1

= A x
n
+ ben + w

n

(3b)yn = cTx
n
+ vn.

(Eq. A10). Under the assumption that both the input en and 
output yn are available to the observer, the direct approach 
identifies the parameters of Eq. (3a/b) rather than those of 
Eq. (1a/b). This is much easier because the noise terms 
of the update (Eq. 3a) and output (Eq. 3b) are independ-
ent of each other (Eq. 2), whereas this is not the case in 
the closed-loop formulation (Eq. 1a/b). This independ-
ence is a necessary precondition for the use of the standard 
Kalman observer (Kalman 1960). The details of the standard 
Kalman filter are described in “Appendix A2.” For the direct 
approach, it is of major interest that the Kalman filter pro-
vides a highly efficient algorithm to compute the sequence 
of likelihoods L

(

yn
|

|

{y}n−1
0

, �
)

 conditioned on the previ-
ous output observations {y}n−1

0
 and the system parameters 

� =
[

x
0
,A, b, �2,W,�0

]

 . By multiplying these conditional 
likelihoods (see Eq. A24), one obtains the likelihood of the 
entire output sequence (0 ≤ n < N).

This likelihood can then be maximized for optimal esti-
mation of the system’s filter coefficients A and b . Notably, 
the likelihood maximized with this approach is conditioned 
on the observed sequence of feedback errors ( {e}N−2

0
 ) and 

does not reflect the unconditional likelihood of the observed 
response with respect to the set of all possible responses 
for a given visuomotor distortion {u}N−2

0
 and fixed system 

parameters ( � ). For estimating the filter coefficients ( A, b ), 
this is appropriate because maximizing the likelihood 
(Eq. 4) provides the minimum variance estimate for A, b 
without bias.

In contrast, for estimating the variance parameters 
( �2,W ), the direct approach to closed-loop system iden-
tification induces systematic biases. This becomes obvi-
ous when considering the system in the absence of 
planning noise ( W = 0 ). In this case, the residual error 
{r}N−1

0
∶=

{

y − y
}N−1

0
 of the system with deterministic input 

{e}N−2
0

 is white Gaussian noise: rn ∼ N
(

0, �2
)

 . In contrast, 
in the closed-loop system, the absence of planning noise 
will not lead to a white residual error, because the execution 
noise vn will not only contaminate the output yn but will also 
transfer with a negative gain to the state x

n+1
 and thereby 

also to the output yn+1 (Eq. 1a). Consequently, the residuals 
rn and rn+1 will negatively correlate with each other (van 
Beers 2009). Estimating the variance parameters ( �2,W ) 
with the direct approach to closed-loop system identifica-
tion causes the systematic error that the execution noise 
transferred to the internal memory states via feedback will 
be misattributed to planning noise. A second fundamental 
drawback of this method is that it does not account for the 
fact that the distribution of the observed residual ( {r}N−1

0
 ) 

depends on whether the control loop is opened or closed, 

(4)L
(

{y}N−1
0

|

|

|

, �
)

= L
(

y0
|

|

�
)

N−1
∏

n=1

L
(

yn
|

|

{y}n−1
0

, �
)

.
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even with constant variance parameters ( �2,W ). This is 
because the recursive transfer of both the execution noise 
and the planning noise onto the observed output yn differs 
between the error-clamp and closed-loop conditions as 
shown in Eq. A16a–f. The direct approach (Eq. 3) cannot 
correctly identify the variance parameters in the closed-
loop condition because it treats the input/output relation 
of the systems inside of the control loop as if this relation 
had been observed under open-loop conditions. Therefore, 
it will attribute all differences of the output and state vari-
ances between the error-clamp and closed-loop conditions 
to differences of the variance parameters ( �2,W ). This is 
not correct because differences of the output variance occur 
between open- and closed-loop conditions also at constant 
�2 and W . Therefore, the classical direct approach to closed-
loop system identification is not suitable for estimating the 
variance parameters in experimental designs in which error-
clamp and closed-loop conditions alternate such as in the 
classical experiments demonstrating the rebound effect.

2.2  Approach of the current study

Since the direct approach to closed-loop system identifica-
tion, as described in the previous paragraph, does not allow 
the variance parameters in complex paradigms to be esti-
mated correctly, we used the closed-loop formulation 
(Eq. 1a/b) throughout this study for model simulation, ana-
lytical computation of the expected model output and its 
variance/covariance structure, as well as for maximum-like-
lihood estimates of the model parameters. Even when the 
noise signals ( vn , wn

 ) were modeled as stationary processes, 
the model predicts that the variance and the autocovariance 
of the model output are not stationary as a consequence of 
opening the loop during the error-clamp trials. To test these 
predictions, we evaluated the empiric within-subject, trial-
to-trial variance/autocovariance of the relative pointing 
direction ( yn ) within a window moving along the trial 
sequence. The model prediction for these measures and their 
changes across the adaptation experiment was computed 
based on the full covariance matrix Y of the output vector of 
y = {y}N−1

0
 of the system defined in Eq. (1a/b). The model 

predictions of the mean output y , the covariance matrix Y , 
and their dependence on the model parameters 
� =

[

x
0
,A, b, �2,W,�0

]

 are derived in “Appendix A3.” In 
principle, y

(

�
)

 and Y
(

�
)

 could be used to compute the likeli-

hood L
(

y
|

|

|

�
)

 of the observation for a given parameter set � 
and thereby for implementing a maximum-likelihood esti-
mator for the parameters � (Eq. A30). However, this method 
is computationally costly because it involves numerical 
inversion of the large matrix Y , which has the square dimen-
sion of the numbers of trials (220 in our experiment). This 

is practically important because numerical maximization of 
the likelihood requires L

(

y
|

|

|

�
)

 to be evaluated very often for 
each parameter fit. We also wanted to obtain an approxima-
tion of the expected within-subject distribution of the fitted 
parameters by parametric bootstrapping. For that purpose, 
it is necessary to first simulate many model responses for a 
given parameter set � and then to repeat the fitting procedure 
on each of those. In such a procedure, the numerical effi-
ciency in computing the likelihood L

(

y
|

|

|

�
)

 is highly 
important.

To provide an efficient method for computing the likeli-
hood L

(

y
|

|

|

�
)

 according to Eq. 4, we developed a generalized 
version of the standard Kalman observer, which allows the 
series of conditional likelihoods (the right side of Eq. 4) for 
the general closed-loop formulation of the system (Eq. 1a/b) 
to be computed and does not rely on the assumption of the 
independence of variance components of the update equa-
tion and the output equation as the standard Kalman observer 
does. The details of this generalized Kalman observer are 
presented in “Appendix A4.”

A further advantage of the method we propose here is 
the possibility to correctly deal with missing observations 
that cause a problem in the traditional “direct approach to 
closed-loop system identification” because the Kalman filter 
can deal with missing observations only if its deterministic 
input is known. Consequently, treating the error signal as 
deterministic input causes the problem that the error depends 
on the missing observations. In contrast, in our approach, 
the deterministic input to the system is not the error but 
the visual distortion, which is always known, even for trials 
with missing observations. The technical details of how our 
algorithm deals with missing observations are explained in 
“Appendices A3 and A4.”

We applied this new parameter estimation method to 
experimental data acquired with healthy volunteers per-
forming two different variants of a manual reach adaptation 
experiment with visuomotor rotation. To achieve a more 
solid empirical basis, we included subjects in a wide age 
range to test for potential age effects on adaptation dynam-
ics and on inter-trial variability. Pointing to a visual target 
was performed without vision of the hand under visual feed-
back of a cursor movement. The training protocol involved 
a block-wise sequence of baseline-, training-, washout-, 
and error-clamp trials where the first three blocks were per-
formed under closed-loop conditions (cursor direction con-
trolled by the subject). This training protocol was applied 
because it involves the rebound effect, which depends on the 
difference in the retention rates between fast and slow pro-
cesses. Therefore, this protocol is most suitable to estimate 
the adaptation dynamics of both processes simultaneously in 
individual subjects. In the final error-clamp trials, the cursor 
movement was directed straight to the target (independent of 
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the movement direction of the hand). To quantify the adap-
tive change, we evaluated for each trial the relative initial 
pointing direction (see “Appendix A1,” definition of dn and 
yn ) expressed with respect to its (target-specific) value dur-
ing the non-adapted state (baseline). The two variants of the 
adaptation tasks differed in the perturbation schedule. The 
first introduced the visuomotor distortion gradually and did 
not expose the subjects to very large errors. In the second 
experiment, a 45 deg rotation was introduced abruptly and 
provoked large errors during the early adaptation phase. The 
comparison between abrupt and gradual training protocols 
was done because differences in the adaptation dynamics 
(error sensitivities and retention rates) between these pro-
tocols would point either to nonlinear effects of error size 
(Criscimagna-Hemminger et al. 2010) or to a non-stationar-
ity of the system (Turnham et al. 2012; Herzfeld et al. 2014).

3  Methods

3.1  Subjects

Forty-nine healthy subjects were examined partly at the Cen-
tre for Vision Research, York University, Toronto, CA, and 
partly at the University Hospital LMU, Munich, GE. The 
experimental setup, the protocol, and the task were identical 
at both locations. The used hardware differed in only minor 
details. The age distribution involved two age groups with 23 
subjects below 30 years (mean ± sd = 20.8 ± 1.4 years) and 
20 above 50 years (62.5 ± 8.4 years). Only 6 subjects were 
between 30 and 50 years old. All subjects performed the 
task with the dominant hand (Oldfield 1971). All except two 
subjects were right dominant. None of them had any history 
of movement disorders or neurological disease.

3.2  Apparatus and setup

The experiment setup was in a semi-dark room, with a 
height-adjustable chair so that the subjects could sit com-
fortably while facing the apparatus. Subjects performed 
pointing movements without direct visual feedback of the 
hand. Hand movements were recorded with a writing tab-
let (WACOM Cintiq 21UX, width × height = 43.2 cm × 32
.4 cm). Vision of the hand and of the arm was prevented 
by a reflective surface mounted horizontally and vertically 
centered between the surface of the writing tablet and an 
LCD-screen (HPL2245wg, 22″, 60 Hz) oriented downward. 
Subjects viewed the image on the monitor by viewing from 
above to a reflective surface. The reflecting surface was par-
allel to both monitor and tablet, so that the virtual images of 
the targets appeared on the plane of the writing tablet. The 
starting position of the movements was indicated by a green 
circle (diameter: 1 cm) horizontally centered and at about 

15 cm from the subject (Fig. 2). The target was indicated 
by a blue circle (diameter: 1 cm) and was located at ± 25 
or ± 35 deg to the right or to the left of the midline and at a 
distance of 12 cm from the starting position. Visual feedback 
of the hand movement was provided only by a cursor (yellow 
circle, diameter: 1 cm) the distance of which from the (vir-
tual) starting point was always the same as that of the pen. 
Artificial distortions of the visual feedback were induced by 
rotating the cursor around the start position. The visuomotor 
rotation angle ( r ) was specified with respect to the pointing 
direction (defined as the interconnecting line between pen 
and the start position). Under closed-loop conditions, the 
visual feedback of the hand direction was directly controlled 
by the subject’s action since the direction of the cursor was 
at any time identical to the sum of the visuomotor rotation 
and the direction of the hand. In contrast, under error-clamp 
conditions, the cursor always moved on the straight line 
between the starting point and the target. The distances of 
the hand and of the cursor from the starting point were still 
identical. Thus, no visual feedback of pointing direction was 
available. The cursor movement direction became independ-
ent of the subject’s action. Therefore, in the context of the 

Fig. 2  Visuomotor reach training task with rotated cursor (yellow 
circle). Reach targets (blue circles) were located at ± 25 and ± 35 deg 
from the midline. Subjects point toward the target without visual 
feedback of the hand. In each training block, only the two targets on 
the one side of the midline were shown. The distance of the cursor 
from the start position (green circle) was always identical to the dis-
tance of the pen from the starting point. Visuomotor distortions were 
induced by rotating the yellow cursor against the pointing direction of 
the hand around the start position (color figure online)
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model (Fig. 1), the feedback loop is opened during error-
clamp condition.

The pen position was acquired by a custom C-program 
that communicated with the tablet driver, which provided 
event-based position signals with variable sampling inter-
vals. The acquisition process transferred these data online 
into a shared memory buffer. In this way, the MATLAB pro-
cess controlling the graphics and running synchronized with 
the 60-Hz frame rate of the graphics card could access the 
actual pen position from the shared memory even though 
the recording of the tablet signals and the graphics output 
were running asynchronously. During the hand motions, the 
average sampling rate of the pen position signal was 136 Hz.

3.3  Task and procedure

At the beginning of each trial, subjects moved the cursor 
onto the starting point and waited until the target appeared. 
They were instructed to move the cursor immediately after 
target onset toward the target. During the practice trials, 
they learned by verbal instruction from the experimenter 
to achieve three features of the cursor movements: (1) the 
cursor should move in a straight line to the target, (2) the 
movement duration should be about one second, and (3) 
the movements should be initiated with a clear rapid accel-
eration. Care was taken that these three movement features 
were learned in practice trials under closed-loop conditions 
with zero distortion before the start of the experiment. Par-
ticipants were also informed that at some point during the 
experiment the cursor might move in an unexpected way and 
that their task was to maintain or restore these three features 
of the cursor movements as well as possible. These instruc-
tions were crucial to provide the subjects with a clear adap-
tation goal and to ensure that the initial movement direction 
could always be clearly evaluated.

The trial started with the appearance of the blue target 
and the simultaneous disappearance of the green starting 
point, which provided the go-signal for the movement. The 
target disappeared when the cursor stopped at the target. 
Immediately afterward, the green starting point reappeared, 
and the subject had to move the cursor back to the starting 
position. The next trial started when the cursor stopped at 
the starting point. The stopping criterion for the cursor was 
that it reached a distance of less than 0.5 cm from the target 
or the starting point at a velocity of less than 0.5 cm/s. Dur-
ing closed-loop trials, the cursor was permanently visible 
with the same visuomotor rotation. During error-clamp tri-
als, the cursor disappeared at the end of the outward move-
ment simultaneously with the target. The return to the start-
ing point was performed without visual feedback until the 
cursor reappeared when the y-component of the distance 
between the pen and the start position became smaller than 
2 cm.

3.4  Experimental design

After the practice trials, the experiment started with the 
recording of the baseline pointing directions for each target. 
Subjects performed 40 trials under closed-loop conditions 
with zero visuomotor rotation and 40 trials under error-
clamp conditions. During these baseline recordings, all four 
target positions were presented in pseudorandom order with 
balanced counts (10 presentations per target and condition).

After the baseline recordings, two blocks with 220 trials 
each followed. Each of these blocks was composed of an 
additional 40 closed-loop trials with zero visuomotor rota-
tion, followed by a training section with 120 trials under 
closed-loop conditions with nonzero visuomotor rotation, 
20 closed-loop trials with zero rotation (washout) and finally 
40 error-clamp trials. During these 220 trials, only two of 
the four target positions, either on the right or on the left, 
were presented in randomized and balanced order. The two 
targets directions differed by 10 deg and occurred both with 
the same frequency. The randomization implied that the 
frequencies of the inter-presentation intervals were similar 
for each target and that the probability of increasing inter-
vals decreased in an exponential fashion. Intervals 1 and 2 
accounted for about 75% of all cases. The two blocks were 
separated by a short pause of a few minutes.

The two blocks differed only with respect to the learning 
sections. In the abrupt training, a visuomotor rotation of 
45 deg was applied for all 120 trials of the learning section. 
In the gradual training, the visuomotor rotation increased 
during the first 60 trials of the learning section linearly from 
0 to 45 deg (rate: 0.75 deg per trial) and remained constant 
at 45 deg for the remaining 60 trials of the learning section. 
Each subject performed one of four possible experimental 
protocols in which the first block comprised either an abrupt 
or a gradual training section with visuomotor rotation either 
to the right or to the left. Only the two targets on the left 
side (target directions − 25, − 35 deg) were presented dur-
ing blocks with clockwise visuomotor rotation, and only the 
targets on the right side (+ 25, + 35 deg) during blocks with 
counterclockwise visuomotor rotation.

3.5  Data analysis

For each trial, the outward movement was automatically 
detected based on the largest peak of the tangential hand 
velocity. The start and the end of the movement were defined 
as the time when the hand tangential velocity increased 
above or fell below 10% of the peak velocity. The initial 
movement direction was defined as the direction of the 
line connecting the start point of the movement with the 
intersection of the movement trajectory and a circle with 
a radius of 3 cm around the start point. In our data set, the 
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first 3 cm of the trajectory was completed after 224 ± 53 ms, 
which is shorter than the reaction time (275 ms) of man-
ual pointing movements toward (non-cued) visual targets 
(Barthélémy and Boulinguez 2002). Therefore, this initial 
movement direction was taken as an estimate of the move-
ment direction of the feedforward component of the motor 
command and is called the pointing direction ( dn ) hereafter 
for brevity. The pointing direction was defined with respect 
to the straight-ahead direction. Positive values indicate 
rightward directions. The movement was marked as invalid 
if the peak tangential velocity stayed below 8 cm/s, if the 
distance between the green start marker and the start point 
of the movement was larger than 2.5 cm, or if the distance 
between the green start marker and the movement end point 
was smaller than 6 cm. From the pointing direction of each 
movement, the relative pointing direction ( yn ) was computed 
by subtracting the mean pointing direction averaged across 
the 10 error-clamp trials of the baseline recording with the 
same target position. The movement n was also marked as 
invalid if the relative pointing direction yn was classified as 
an outlier within the sample y|n+4

n−4
 . The outlier criterion was 

fulfilled if the distance of yn from the median was larger than 
4 times the median-quartile distance. (For normal distribu-
tions, this criterion corresponds to an outlier fraction of 3%.) 
On average, 9% of the movements were marked as invalid.

The parameters of the two-rate model of Smith et al. 
(2006) were fitted to the observed relative pointing direc-
tions by maximizing the likelihood of the observed relative 
pointing directions. These fits were performed separately 
for each subject and for each training condition (gradual/
abrupt). The details of this procedure are described in 
“Appendices 4/5/6.” In all models, the two components of 
the planning noise were assumed to be independent

The investigated models included not only constant vari-
ances of execution noise ( �2 ) and planning noise ( W ) but 
also additional signal-dependent noise components char-
acterized by their coefficients of variation (planning noise: 
� =

[

�s;�f
]

 , execution noise: �e ). The mathematical details 
of these signal-dependent noise components are described 
in “Appendix A5.” Model extensions with signal-depend-
ent execution noise were previously proposed (Albert and 
Shadmehr 2017; Cheng and Sabes 2006; Harris and Wolpert 
1998, 2006) but not modeled quantitatively to explain trial-
to-trial variability in visuomotor adaptation. A possible rea-
son is that signal-dependent execution noise was primarily 
introduced to describe the increase of force variability with 
increasing mean muscle force, whereas visuomotor adapta-
tion does not adapt muscle force but movement direction.

(5)W =

[

w2
ss

0

0 w2
ff

]

.

Fitting the adaptation time courses of many individuals 
raises the question to what extent the residuals of theses 
fits were due to systematic or random errors of the model. 
To address this question, we submitted the residuals to a 
standard repeated measures ANOVA with one factor (trial 
number) and computed the variance components of the two 
random effects (subject and the interaction subject*trial), 
as well as the variance of the fixed effect (trial number). 
This analysis was performed with the MATLAB-function 
“anovan.m” (The MathWorks, Inc. Version 2017b).

In our study, we compared four different models of inter-
trial noise. The first model (M1) included only constant 
execution noise and no planning noise. The second model 
(M2) included constant execution noise and constant plan-
ning noise and is identical to the one used by Albert and 
Shadmehr (2017). Furthermore, we extended previous vari-
ance models by two different types of noise increase, which 
could possibly account for the increase of motor variability 
that is generally observed in early motor-skill acquisition 
and was quantified by the so-called N-Costs (Cohen and 
Sternad 2009). One possibility to explain such an increase 
is an increase of execution noise with increasing feedback 
error as modeled by Eq. (A46). The strength of this error-
dependent execution noise is characterized by the additional 
variance parameter �e (M3). An alternative explanation of 
N-Costs is an increase of planning variance during early 
training stages, which is proportional to the size of the adap-
tive change (M4). Such a signal-dependent planning noise 
is characterized by two coefficients of variation � = [�s;�f ] , 
one for each planning state (see Eq. A49). Such a mechanism 
implies that the precision of visuomotor planning decreases 
with the magnitude of the adaptive change. The “Appen-
dix A5” shows that both types of signal-dependent noise 
can smoothly be embedded in our approach of a maximum-
likelihood estimation of the closed-loop system. The tested 
variance models differed in the constraints imposed on these 
parameters as shown in Table 1.

Model comparisons were performed using the Akaike 
information criterion (Akaike 1974) evaluated as

where Np denotes the number of fitted model parameters. 
The difference ΔAICi,k = AICi − AICk between two models 
k and i fitted to the same data set is an unbiased estimator 
of how much larger the expected likelihood of the observed 
data is under the assumptions of model k than under that of 
model i. Since ΔAICi,k measures the relative likelihood on a 
logarithmic scale, positive ΔAICi,k indicates that model k is 
preferable to model i.

To characterize the distribution of fitted model parame-
ters or AIC-differences across the population, we report here 
in general median [interquartile range (iqr)] because none 

(6)AIC = 2Np − 2 log
(

L
(

y
|

|

|

, �
))

,
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of these parameters was normally distributed. This applies 
in particular to the slow retention rates, which were close to 
the upper limit one and to the variances of the slow planning 
noise, which were close to zero. AIC-differences frequently 
showed skew and long-tailed distributions. Therefore, group 
comparisons between younger and elderly subjects were per-
formed using a multivariate generalization of the two-sample 
Wilcoxon-Mann–Whitney test of Oja and Randles (2004). 
The exact version of this multivariate rank-sum test is based 
on the distribution of its test statistic across all possible N! 
permutations of the N subjects. We approximated this test 
by evaluating the fraction of false positives from a sample of 
500,000 random permutations. Multivariate paired compari-
sons of the adaptation dynamics (represented by the error 
sensitivities and retention factors) between training condi-
tions were performed with the Oja and Randles multivariate 
nonparametric sign test. Univariate group comparisons were 
performed with the Mann–Whitney test and paired univari-
ate comparisons (e.g., on ΔAIC ) with the Wilcoxon signed-
rank test.

4  Results

In the following, we will first compare the different mod-
els in their ability to mimic the adaptation dynamics and 
the inter-trial variance/covariance structure. After iden-
tifying the best variance model, in the last three sections 
of the Results, it will be used to assess the distribution of 
the estimated parameters across our subject group. Finally, 
evaluation of the within-subjects precision of our estimates 
will show how strongly it affects the between-subjects 
distribution.

The red line in Fig. 3 shows the mean expected rela-
tive pointing direction ( yn ) as predicted by the model with 
signal-dependent planning noise (M4). The line shows the 
average of yn across all individual fits. At the end of the 
training phase, subjects compensated for 90% (gradual: 
40.52 ± 5.15 deg; abrupt: 40.29 ± 4.21 deg) of the adaptation 

requirement (45 deg). The difference in this final adaptive 
state between the training conditions (gradual/abrupt) was 
not significant (paired t-test: T(48) = 0.29; p = 0.77). As 
in previous studies, the model successfully explained the 
rebound effect in the final error-clamp trials. We also evalu-
ated the maximum differences of the population mean of 
yn predicted by model M4 and those predicted by the other 
models across the entire time course (0n < N). All of these 
three differences stayed below 1.5 deg for both gradual and 
abrupt training and are hardly resolvable in Fig. 3. Thus, the 
mean time course of the adaptation predicted by the four 
different models did not differ systematically. This is not 
surprising since the expected relative pointing directions 
( yn ) were identical across all models for any given values of 
their learning parameters ( x

0
,A, b ) and did not depend on 

their variance parameters ( q, �2,W,�0, �s, �f , �e).
T h e  i n d i v i d u a l  m e a n  s qu a r e d  r e s i d u a l s 

�

1

N

∑N−1

n=0

�

yn − yn
�2
�

 differed systematically between models 
(Friedman ANOVA:  ch2(3) = 26.95; p < 0.0001). The mean-
squared residuals (Table 2, last column) were smaller for the 
model with constant execution noise only (M1: 
median = 29.36 deg2) than for the three models with more 
complex variance models (median = 31.85 deg2). The under-
lying reason is that the model with execution noise only 
predicts a sequence of residuals that resembles white noise 
more closely than the residuals explained by the more com-
plex variance models. Consequently, minimizing the likeli-
hood under the assumptions of model M1 leads to smaller 
residuals than under the assumptions of the other models.1 
Figure 3 shows also that the model predicted the expected 
adaptation dynamics very well. To investigate to what extent 
the residuals of this fit were due to systematic or random 
errors of the model, we applied a standard repeated measures 
ANOVA with one factor (trial) to the residuals of all sub-
jects. The estimated variance component of the random 

Table 1  Specifications of the 
different variance models. 
Model M1 accounts only for 
constant execution noise; 
Model M2 includes constant 
planning noise. The Models M3 
and M4 extend Model M2 by 
additional signal-dependent 
planning noise or error-
dependent execution noise. 
All models included the 7 
parameters xs0 , as , af , bs , bf  , q , 
and �2 (see “Appendix A6”)

Model ID Name Execution 
noise

Planning noise Number of 
parameters 
( Np)

�2 �e W �

M1 Constant execution noise  > 0 �e = 0 w2

ss
= 0

w2

ff
= 0

�s = 0

�f = 0

7

M2 Constant planning noise  > 0 �e = 0 w2

ss
= w2

ff
> 0 �s = 0

�f = 0

8

M3 Error-dependent execution noise  > 0 𝜅e > 0 w2

ss
= w2

ff
> 0 �s = 0

�f = 0

9

M4 Signal-dependent planning noise  > 0 �e = 0 w2

ss
= w2

ff
> 0 �s = 0

𝜅f > 0

9

1 Minimizing the mean-squared residual and minimizing the likeli-
hood are identical for a variance model predicting white and Gaussian 
residuals.
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interaction (subject*trial: 32.2 deg2) was much larger than 
the variance of the fixed effect (trial: 0.43 deg2). The vari-
ance component of the random factor subject was also small 
(0.68 deg2). Thus, the great majority of the residual errors 
between model and data reflected random errors due to inter-
trial noise, not systematic errors. This is important because 
it further confirms that likelihood differences between the 
different models do not reflect differences of the predicted 
mean adaptation time course but differences in the predicted 
noise distributions.

4.1  Comparison between different variance models

Out of all the investigated four models (see Table 1), the 
model with signal-dependent planning noise (M4) showed 
the best performance as indicated by the smallest AIC-
values (Fig. 4). The median of the AIC-differences of both 
ΔAIC1,4 (gradual: 10.3; abrupt: 7.4) and ΔAIC2,4 (gradual: 
4.7; abrupt: 3.7) was positive (> 2), showing that the models 

with constant noise sources (M1 & M2) were not or consid-
erably less (Burnham and Anderson 2002) supported by the 
data when compared with the model with signal-dependent 
planning noise (M4). The comparison with the model with 
error-dependent execution noise was less clear since the 
median ΔAIC3,4 (gradual: 2.3; abrupt: 2.2) was smaller but 
still positive. These results show that, during adaptation to 
visuomotor rotation, the assumption of constant execution 
noise and constant planning noise was clearly rejected by 
the data. The AIC analysis did not allow a clear distinction 
between error-dependent execution noise (M3) and signal-
dependent planning noise. We also evaluated the AIC-differ-
ence ΔAIC1,2 the median of which was also clearly positive 
(gradual: 2.8; abrupt: 2.3).

The fitted variance parameters are shown in Table 2. 
Compared to the model with pure constant execution noise 
(M1), the execution variance �2 decreased with increasing 
influence of other noise sources (M2, M3, M4). The constant 
component of the planning variance w2

ss
 ( = w2

ff
= 1.77 , M2) 

did not change when the model with constant planning and 
constant execution noise (M2) was extended by the error-
dependent execution noise (M3). In contrast, when model 2 
was extended by signal-dependent fast planning noise (M4) 
the constant components of planning noise w2

ss
 ( = w2

ff
= 1.03 , 

M4) decreased in favor of a signal-dependent fast planning 
noise with a coefficient of variation of �f=0.29. Conse-
quently, in the best model (M4), the mean ( w2

ff
= 7.09 deg2) 

of the fast planning variance averaged across all trials was 
almost 7 times larger than the slow (constant) planning vari-
ance ( w2

ss
).

This shows how the relative contributions of execution 
noise, fast planning noise, and slow planning noise to the 
entire structure of inter-trial variance depend critically on 
the assumptions of the underlying variance model: Consider-
ing constant planning noise only (M2), previous studies 
(Albert and Shadmehr 2017) did not observe evidence for 
differences between slow and fast planning noise. In con-
trast, including signal-dependent planning noise, we showed 
that fast planning noise was much larger, but this difference 
was specific to the signal-dependent components and not the 
constant components of planning noise. This difference 
seems to be implied by the fact that all our three models 
including planning noise (M2, M3, M4) were fitted under 
the constraints w2

ss
= w2

ff
 and �s = 0 . However, these con-

straints were not arbitrary but resulted from the analysis of 
two further models:

The first one (M5) was identical to the model with con-
stant planning noise (M2) but allowed the (constant) vari-
ances for the fast and for the slow state to differ ( w2

ss
≠ w2

ff
 , 

Np = 9 ). We found that in that case w2
ff
 (median [iqr] = 6.50 

[7.48] deg2) was larger than w2
ss

 (1.23 [ 2.26] deg2). However, 
the AIC-difference between this less constrained model and 

(a)

(b)

Fig. 3  Relative pointing direction with respect to baseline. The curves 
show the averages of the behavioral data (blue), together with the 
model fit of the expected output (red, y ), the memory states (cyan: 
slow, xs , magenta: fast, xf  ) of the model with signal-dependent plan-
ning noise (Model M4). The model curves are means of the models 
fitted separately to each of the 49 subjects. The black line shows the 
visuomotor distortion ( u) (color figure online)
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model M2 did not differ from zero ( ΔAIC5,2=0.36 [2.02]; 
p = 0.43). This analysis reproduced results of Albert and 
Shadmehr (2017), suggesting that the constant components 
of planning noise did not differ strongly between fast and 
slow planning processes. It also provides a first justification 
for our constraint w2

ss
= w2

ff
.

The second additional model (M6) was identical with our 
model M4 but included unequal constant planning noise 
components ( w2

ss
≠ w2

ff
 ) and slow signal-dependent planning 

noise 𝜅s > 0 ( Np = 11 ). In this model, the paired difference 
(1.52 [4.16] deg2) between the slow ( w2

ff
=2.59 [5.11] deg2) 

and the fast ( w2
ss

=0.63 [1.54] deg2) constant planning vari-
ance was smaller than in the previous model (M5), and the 
coefficient of variation of the slow planning noise was very 
small ( �s = 0.03 [ 0.05]). Model comparison showed that 
model M6 had even larger AIC-values than model M4 
( ΔAIC4,6= − 2.87 [3.39]). Therefore, omitting the two con-
straints w2

ss
= w2

ff
 and �s = 0 did not improve the perfor-

mance. These results suggest that a signal-dependent vari-
ance of the fast planning process is the most efficient of the 
considered extensions of previous variance models.

4.2  Changes of the inter‑trial variance 
and autocovariance of the pointing direction 
during adaptation

The model comparison based on AIC-differences revealed 
that the inter-trial variability of the pointing direction was 
best described by constant execution variance, signal-
dependent fast planning variance, and constant slow plan-
ning variance (M4). Even though each of these three noise 
sources was modeled as white noise, their recursive process-
ing in the closed-loop system (Fig. 1) results in a non-white 
and time-dependent noise of the observed pointing direction. 
To understand better why model M4 provided the best match 
to the probability distribution of the observed inter-trial 
noise, we estimated the time course of its inter-trial variance 
( var_rn ) and autocovariance ( acov_rn(Δ = 1) ) directly from 
the observed residuals. These two parameters were estimated 
in a moving window of length 21 centered around the trial 
n and compared with the expectation predicted by the dif-
ferent models (see “Appendix A3”). The results are shown 
in Fig. 5. During the closed-loop condition, the model with 
constant planning noise (M2, magenta) predicts small posi-
tive autocovariance (Fig. 5c, d) and fits the observed data 
in that respect better than the negative autocovariance pre-
dicted by the model without planning noise (M1, cyan). But 
both of these models with constant noise sources only do not 
explain the prominent temporal changes of the noise during 
the training phase (Fig. 5 a, b, d). The measured data show 
a slow increase of the variance with progressing gradual 
training (Fig. 5a) and a fast increase of the variance and the 
autocovariance immediately at the beginning of the abrupt 
training (at trial 40, Fig. 5b, d). In approximate agreement 
with the data, both model M4 and M3 predicted a gradual 
variance increase of the gradual training (Fig. 5a) and an 
abrupt variance increase of the abrupt training (Fig. 5b). The 
later was overestimated by model M3 (blue line in Fig. 5b, 
trial40). Both models differed in their predictions of the 

Table 2  Median [iqr] characterizing the distribution of the fitted vari-
ance parameters across the 49 individual model fits. q : Noise com-
pensation gain (see Eq.  A6); �2 : constant execution variance; w2

ss
 : 

constant planning variance of the slow memory state ( w2

ff
= w2

ss
 ). w2

ff
 : 

mean of the planning variance of the fast memory state (for models 

without signal-dependent planning noise (M1, M2, M3), w2

ff
 equals 

w2

ff
 and w2

ss
 ); �f  : coefficient of variation of the fast planning noise; �e : 

coefficient of variation of the error-dependent execution noise. msq_
res: mean square residual of the model fit

Model ID: q �2 w2

ss w
2

ff
�f �e msq_res

M1 1.00 [0.02] 27.91 [11.91] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 29.36 [12.11]
M2 0.71 [0.45] 19.80 [8.73] 1.77 [2.60] 1.77 [2.60] 0.00 [0.00] 0.00 [0.00] 30.65 [15.07]
M3 0.50 [0.46] 13.81 [11.65] 1.77 [2.34] 1.77 [2.34] 0.00 [0.00] 0.22 [0.24] 32.26 [10.61]
M4 0.39 [0.33] 13.23 [10.56] 1.03 [1.89] 7.09 [5.33] 0.29 [0.28] 0.00 [0.00] 31.60 [12.56]

Fig. 4  AIC-differences between the models listed in Table  1. Bars 
and whiskers indicate the median and the quartiles of the pairwise 
AIC-differences for all 49 subjects. The positive values indicate that 
the AIC-values of the model with signal-dependent planning noise 
(M4) were smaller than that of the other models
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change of the autocovariance at the onset of the abrupt train-
ing onset. The model with signal-dependent planning noise 
(M4) correctly explains the sudden increase of the autoco-
variance (Fig. 5d, trial40), whereas the model with error-
dependent execution noise (M3) makes here the opposite, 
incorrect prediction. This is because planning noise ( w

n
 ) at 

trial n enters into the pointing direction yn+1 of the follow-
ing trial with a positive sign and execution noise ( vn ) with 
a negative sign (Fig. 1). Model M4 also outperforms model 
M3 in that it does not predict a strong variance increase at 
the beginning of the washout phase (at trial 160, Fig. 5a, b). 
This difference between the models reflect the fact that the 
increase of the feedback error is larger than that of the fast 
state. This can be seen, for example, in the gradual train-
ing (Fig. 3a) where the absolute feedback error changed 
by 130% from 5.24 deg at trial 160–12.05 deg at trial 165, 
whereas the fast planning state changed only by 57% (from 
6.98 to 10.98 deg) in the same interval.

Opening the loop (at trial 180) induced an increase of 
the observed autocovariance in the gradual training (Fig. 5c) 
that was less pronounced as predicted by all models. The 
differences of the observed time courses (black) between the 
training conditions (gradual/abrupt) were explained by the 
signal-dependent planning noise of model M4, even though 
its variance parameters ( q , �2 , w2

ss
 , �f  ) did not show such 

a difference (see above). Because model M4 was the best 
one considered, all population statistics of the fitted model 

parameters reported in the following will refer to the param-
eters of model M4.

4.3  The distribution of the noise parameters 
across subjects

The distribution of the noise parameters (M4) is shown 
in Fig. 6. The execution noise correlated negatively with 
the mean fast planning variance (Spearman’s ρ(�2 , w2

ff
)  

=  − 0.42; p < 0.01) and with the coefficient of variation of 
the fast planning noise (ρ(�2 , �f ) =  − 0.36; p < 0.02). Exe-
cution noise and constant planning noise did not correlate 
significantly with each other. The fitted noise parameters 
( q , �2 , w2

ss
 , �f  ) of model M4 did not differ between the 

training conditions (gradual/abrupt) (Oja & Randles mul-
tivariate sign test: chi2(4) = 7.71; p = 0.10). None of the 
four univariate comparisons of these variance parameters 
between gradual and abrupt training was significant (Wil-
coxon signed-rank: p > 0.09). To test for potential effects 
of age on the trial-to-trial variability, we compared these 
four variance parameters between subjects younger than 
30 (N = 23) and older than 50 (N = 20). Differences of 
[

q, �2,w2
ss
, �f

]

 between the age groups did not reach signifi-
cance (Oja & Randles multivariate rank sum test: p > 0.1) 
for any training condition (gradual/abrupt).

Fig. 5  Temporal evolution of 
the trial-to-trial variability of 
the residual relative point-
ing direction. Lines show 
the variance (a, b) and the 
autocovariance (lag one) (c, 
d) of the residual evaluated in 
a running window of length 
N = 21 centered around the 
trial number (x-axis) for the 
gradual (a, c) and the abrupt 
(b, d) training blocks. The 
measured data (black) and the 
model predictions (colored) 
were evaluated separately in 
individuals (Eq. A25) and then 
averaged across subjects. The 
gray shaded area shows the 
95% confidence interval of the 
observed mean (black). The 
models with constant noise 
sources only (model M1, M2) 
do not explain the increase of 
the variance during the training 
period. Signal-dependent plan-
ning noise (model M4) matches 
the observed data better than 
error-dependent execution noise 
(model M3)

(a) (b)

(c) (d)
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4.4  The distribution of error sensitivities 
and retention rates across subjects

Table 3 shows the median and interquartile ranges of the 
distribution of error sensitivities and retention rates across 
all subjects (M4). The distribution of 

[

as, af , bs, bf
]

 differed 
significantly between the training conditions (Oja & Ran-
dles multivariate sign test: chi2(4) = 15.06; p = 0.0046). This 
effect was due to a highly significant (Wilcoxon signed-rank 
test: p = 0.0001) decrease of the fast error sensitivity in the 
abrupt ( bf= 0.17) compared to the gradual training condition 
( bf= 0.26). The fitted learning parameters of model M4 were 
also compared between subjects younger than 30 (N = 23) 
and older than 50 (N = 20). Differences of 

[

as, af , bs, bf
]

 
between these age groups did not reach significance (Oja & 
Randles multivariate rank sum test: p > 0.15) for any train-
ing condition (gradual/abrupt). Together with the absence 
of age effects on the variance parameters (see above), this 
result shows that, in our subject group, age did not systemati-
cally affect adaptation dynamics or trial-to-trial variability. 
Therefore, pooling across all subjects for the purposes of 
model selection was justified. The decrease of the fast error 
sensitivity in the abrupt training compared to the gradual 
training manifests in the downward step of the fast state at 
the beginning of the washout period (trial 160), which was 
larger in the gradual (Fig. 3a, magenta) than in the stepwise 

training (Fig. 3b, magenta). As a consequence of this effect, 
the average speed of the deadaptation between trials 160 and 
163 was faster in the gradual (− 9.17 [3.97] deg/trial) than in 
the abrupt training condition (− 7.44 [5.01] deg/trial). The 
paired difference (1.94 [6.03] deg/trial, N = 49) was signifi-
cant (Wilcoxon signed-rank test: p = 0.02).

Across the population, the total adaptive change at the 
end of the training period ( yn||n=159 ) did not depend on the 
mean-squared residual error (Spearman’s rank correlation 
coefficient: gradual: � = 0.13; p = 0.38; abrupt: − � =0.17; 
p = 0.25), the average of the planning variance across trials 
( w2

ff
+ w2

ss
, |�|<0.12; p > 0.3), or the average of fast planning 

variance ( w2

ff
, |�|<0.4; p > 0.7). Thus, the overall adaptation 

performance was not related to the trial-to-trial variability.

4.5  Observability of the learning dynamics 
and variance parameters

The between-subjects variance is the sum of the variance due 
to real differences between individuals and the variance due 
to the trial-to-trial noise, which limits the precision of the 
parameter estimation in each subject. Therefore, we asked 
for the relative contribution of the within-subject variance 
to the between-subject variance. Based on the parameters 
individually fitted with the model, we simulated for each 
subject and for each gradual and abrupt training experiments 
600 pointing sequences. The population medians and iqrs 
of the used learning parameters are shown in Table 3 and 
the variance parameters in Table 2 (model M4). Model M4 
was then fitted to each of these 49 × 2 × 600 = 58,800 simu-
lated data. The variance of the resulting model parameters 
across these fits reflects the estimation noise of our method. 
These within-subject variances of the learning parameters 
were pooled across all subjects and then compared with 
the experimentally observed between-subjects variance 
(Table 4). The relative contribution of estimation noise to the 
total between-subjects variability was considerable (between 
20% for af  and 46% as ). The estimation noise was also larger 

Fig. 6  The distribution of the variance parameters of the model with 
signal-dependent fast planning noise (M4) across the 49 subjects 
(crosses). Data show the average between gradual and abrupt train-
ing conditions. According to this model, the trial-to-trial variability 
of each subject is characterized by three variances. The execution 
variance ( �2 ) and the average of the signal-dependent fast planning 
noise across all trials ( w2

ff
 ) have similar sizes, whereas the constant 

slow planning variance ( w2

ss
 ) is clearly smaller. The heat map shows a 

smoothed density estimation

Table 3  Median [iqr] of the retention rates ( 
[

as, af
]

 ) and error sensi-
tivities 

[

bs, bf
]

 across all 49 subjects (model M4) for the gradual and 
the abrupt training conditions. The difference of the fast error sen-
sitivity between the conditions (third row, column bf  ) was negative 
(Wilcoxon signed-rank test; row four), indicating that the fast error 
sensitivity was larger in the gradual than in the abrupt condition

as af bs bf

Gradual 0.99 [0.02] 0.78 [0.34] 0.10 [0.06] 0.26 [0.13]
Abrupt 0.99 [0.01] 0.72 [0.48] 0.08 [0.08] 0.17 [0.14]
Difference  − 0.00 

[0.02]
0.02 [0.37]  − 0.00 

[0.09]
 − 0.10 [0.16]

p (signed-
rank)

0.3523 0.6944 0.9722 0.0001
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in the parameters of the fast adapting process ( af , bf  ) than 
in the slow adapting process ( as, bs ). Nevertheless, the dif-
ference of the population variance between the fast and the 
slow processes is not explained by the inferior observability 
of the fast process only because the relative contribution of 
the estimation noise to the total between-subjects noise was 
even smaller in the fast than in the slow process (Table 4, 
rows within/between). Thus, the large differences of the fast 
learning parameters between individuals reflect behavioral 
differences.

The same model fits to simulated data were also used to 
investigate how the estimation of the variance parameters of 
the two-rate adaptation model of Smith et al. (2006) depends 
on the choice of the variance model. Of practical interest is 
the absolute size of the estimation errors induced by choos-
ing variance models that do not correctly fit to the statistics 
of the observations. We included in this analysis also the 
standard regression model, which assumes white Gaussian 
noise on the observed pointing directions, and for which the 
method of least squares (LSQ) is identical with maximizing 
the likelihood of the observation. The standard regression 
is a special case of the general formulation of Eq. (A16a–f), 
characterized by the absence of planning noise ( w

n
= _0 ), 

and no noise transfer from the motor output to the error 
driving adaptation ( � = 0 ) in closed-loop and error-clamp 
trials. Table 5 shows that the errors were smallest for the 
model M4 that fully accounted for the variance structure of 
the simulated data. The two models ignoring planning noise 
(LSQ, M1) cause errors in the estimation of the variance of 
the execution noise ( �2 ) of up to 10 deg2. The model assum-
ing constant variance of execution and planning noise (M2) 
showed errors that were larger ( q : 115%, �2 : 61%, w2

ss
 : 147%, 

w
2

ff
 : 144%) than the errors of model M4. This demonstrates 

that the estimation of the variance parameters depends criti-
cally on the completeness of the model. Making a wrong 
assumption about only one parameter such as the assumed 
constancy of the fast planning noise (M2) affects all other 
variance estimates.

The median absolute errors shown in Table 5 include 
both systematic and random estimation errors. To evalu-
ate the systematic errors, we computed the medians of the 
parameter estimates across the 600 simulations separately 
for each of the 2 × 49 data sets and compared the median of 
these estimates (Fig. 7, bars) with the median of the “true” 
variance parameters (Fig. 7, dashed horizontal lines) used 
to create these 49 × 2 data sets. The noise-compensation 
gain q and the execution variance �2 were overestimated 
by model M1, M2 (Fig. 7a, b). Similar overestimation of �2 
was also obtained by the LSQ-fit. Both models including 
constant planning variance ( w2

ss
 ) showed systematic differ-

ences between the estimated and the “true” value: M2 over-
estimated and M4 underestimated wss (Fig. 7c). A stronger 
discrepancy between the models M2 and M4 occurred in the 
mean fast planning variance ( w2

ff
 ), which was more underes-

timated by the model with constant planning variance (M2) 
than by model M4 (Fig. 7d). This reflects the fact that model 
M4 could appropriately mimic the time dependency of the 
fast planning noise with its coefficient of variation �f  of 0.29 
(Fig. 7e).

The uncertainty of the parameter estimation due to the 
trial-to-trial variability was quantified by the median-quartile 
distance of the estimate distribution within the 600 fits to the 
simulations with the same “true” parameter set (whiskers in 
Fig. 7). Compared to the other models, M4 showed a smaller 
interquartile range of this distribution for the variance of the 
slow planning noise ( wss , Fig. 7c) only. For the variance of 
the execution noise, the estimation noise was similar for all 

Table 4  The variances of the retention rates ( as, af  ) and error sensi-
tivities ( bs, bf  ), fitted with model M4. The variance across the popu-
lation (between variance) is compared with the variance and across 
simulated pointing sequences (within variance) for both gradual and 
abrupt training conditions. The row labeled “within/between (%)” 
shows the relative contribution of the estimation noise to the total 
observed variance across the population in percent. The variances 
of the parameters of the fast process are larger than that of the slow 
process. In contrast, relative contributions of the within-subject noise 
were smaller in the fast than in the slow process

as af bs bf

Gradual Between-variance 1.11 e-4 5.46 e-2 1.95 e-3 1.22 e-2
Within-variance 0.45 e-4 1.05 e-2 0.95 e-3 0.46 e-2
Within/between 

(%)
40.1 19.3 48.5 37.5.1

Abrupt Between-variance 8.96 e-5 7.23 e-2 2.60 e-3 1.01 e-2
Within-variance 4.60 e-5 1.49 e-2 0.63 e-3 0.22 e-2
Within/between 

(%)
51.3 .5 20.6 24.2 22.1

Table 5  Median absolute error of the variance parameters fitted 
to model simulations. For each subject and each training condi-
tion (gradual/abrupt), 600 experimental runs were simulated based 
on model M4 and on its parameters obtained by fitting M4 to the 
49 × 2 individual experimental data. Each of these 49 × 2 × 600 sim-
ulated data sets was then fitted by four different models. LSQ least 
squares; M1, M2, M4: Maximum-likelihood fits of closed-loop 
models (Table  1). Shown is the median of the absolute difference 
between the fitted parameters and the “true” ones used for the simu-
lation (N = 58,800). Ignoring planning noise (LSQ, M1) causes large 
errors in the estimation of execution noise ( �2 ). The absolute errors of 
model M2 ignoring the signal dependency of the fast planning noise 
were between 60 and 150% larger than those of M4

Model ID: q �2[deg2] w2

ss
[deg2] w

2

ff
[deg2] �f

LSQ – 9.83 – – –
M1 0.526 10.42 – – –
M2 0.369 3.85 0.663 4.22 –
M4 0.172 2.39 0.268 1.73 0.060
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models (whiskers length in Fig. 8b). This shows that smaller 
systematic errors rather than smaller random errors of model 
M4 were mainly responsible for the better performance of 
model M4 concerning the absolute errors (Table 5).

Fitting model M4 many times to data sets simulated with 
the same underlying parameter set also allowed the statistic 
dependence between the different variance parameters to be 
investigated on the level of the estimation noise. Correlating 
the execution noise with the mean fast planning variance 
across the 600 simulations within each of the 49 × 2 data 
sets showed a Spearman’s rank correlation coefficient with 
a median of ρ(�2 , w2

ff
) =  − 0.57 [0.27] (N = 98). The median 

and the interquartile range of the Spearman’s correlation 
between execution noise and the coefficient of variation 
were ρ(�2 , �f ) =  − 0.33 [0.17]). That these correlations did 
not differ from the ones observed across the population as 
reported above (ρ(�2 , w2

ff
) =  − 0.42; ρ(�2 , �f ) =  − 0.36) sug-

gests that the negative correlation between execution noise 
and fast planning noise reflects a feature of the estimation 
noise rather than a feature of the parameter distribution 
across subjects.

5  Discussion

We developed and applied a maximum-likelihood estimation 
method for a closed-loop linear adaptation model including 
two different types of signal-dependent noise. The model 
comparison confirmed previous results (van Beers 2009) 
that a combination of execution noise and planning noise 
accounted better for the nonnegative autocovariance (lag 
one) of the pointing direction ( ΔAIC1,2 > 0 ) than execution 
noise alone. Extending previous studies, we showed that the 
assumption of constant execution noise and constant plan-
ning noise is not fulfilled during visuomotor adaptation. 

A model with constant execution variance, equal constant 
planning variance for both slow and fast adapting planning 
states, and additional signal-dependent fast planning noise 
(M4) showed smaller AIC-values (Fig. 4) and matched the 
time course of the variance and of the autocovariance of 
the within-subject (trial-to-trial) noise better than all other 
models (Fig. 5). Even though the model with error-depend-
ent execution noise (M3) could not clearly be rejected in 
favor of signal-dependent planning noise (M4) based on AIC 
alone, M4 was strongly supported by the increase of the 
autocovariance (lag 1) that occurred simultaneously with 
the fast increase of the output variance (Fig. 5b, d, trial 40). 
Increased execution noise would have had just the opposite 
effect on the autocovariance.

Throughout this study, we simplified modeling by assum-
ing that errors occurring at a particular movement direc-
tion contribute equally to the adaptation of movements of 
the other direction. This is an oversimplification since it is 
known that visuomotor adaptation of a single target direc-
tion generalizes by only about 70% to target directions that 
differ by 22.5 deg (Krakauer et al. 2000). In the present 
study, two target directions, separated by 10 deg, were pre-
sented randomly at equal probability. In this case, according 
to the modeling approach of Tanaka et al. (2012), ignor-
ing the lack of generalization when the error sensitivity for 
the neighbored target equals only a fraction (f < 1) of the 
sensitivity for the trained target would lead to an underes-
timate of the error sensitivities (on the trained direction) in 
range of (1 + f )∕2 . The estimates of the retention rates are 
not expected to be systematically affected by the simplifica-
tion. However, our new method to compute the maximum 
likelihood of the observed pointing direction could easily be 
applied to the multi-target adaptation model of Tanaka et al. 
(2012). This model is a time-variant discrete linear filter 
with a state space, which is extended to a dimension 2M , 

(b)(a) (c) (d) (e)

Fig. 7  Variance parameters fitted to simulated data. The execution 
noise-compensation gain ( q ) and the coefficient of variation of the 
fast planning noise ( �f  ) are dimensionless, the variances of execu-
tion noise ( �2 ) slow ( w2

ss
 ) and fast ( w2

ff
 ) planning states are shown in 

units of  deg2. Dashed horizontal lines: median of the parameters used 
for simulation (see Table  2, row M4). Bars: Median (across 2 × 49 

parameter sets) of the medians of the parameters fitted to the 600 sim-
ulated data sets per individual and condition (gradual/abrupt). Whisk-
ers: the length indicates the upper and the lower median-quartile 
distance within the 600 model simulations with the same underlying 
parameter set (uncertainty of the parameter estimation due to trial-to-
trial noise)
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where M denotes the number of trained target directions. 
Therefore, the extended state-space model for multi-target 
adaptation is a special case that is formally covered by the 
time-variant formulation (Eq. A16a/b) and all further deriva-
tions of the appendices.

5.1  Differences between gradual and abrupt 
training

Overall, we did not observe strong differences of the adap-
tation dynamics between gradual and abrupt training. The 
retention rates of both fast and slow mechanisms, as well 
as the slow error sensitivity, were identical for both train-
ing conditions. Only the fast error sensitivity was signifi-
cantly smaller in abrupt than in gradual training. This effect 
confirms that the adaptation dynamics are not independent 
of the history of the presented errors as shown by previ-
ous studies. Zarahn et al. (2008) argued that such effects 
of metalearning can be modeled by changes of the learning 
parameters across the phases of an adaptation experiment. 
Huang and Shadmehr (2009) found in force field adaptation 
that retention rates measured during error-clamp trials were 
larger after gradual than after abrupt training. Turnham et al. 
(2012) observed in adaptation to visuomotor rotation that the 
fast adapting process showed larger error sensitivity and, to a 
lesser degree, a larger retention rate after gradual or random 
training than under control conditions. These effects were 
interpreted in the context of a model that predicts that the 
error sensitivity decreases when errors change inconsistently 
(Herzfeld et al. 2014).

5.2  Maximum‑likelihood estimation of variance 
parameters of a closed‑loop system

The maximum-likelihood estimator is asymptotically bias-
free and has the best efficiency of all normally distributed 
estimators (Fisher 1925), i.e., the smallest variance for a 
given number of observations. Applied to linear models 
with additive Gaussian noise (like the two-rate adaptation 
model), it has two major additional benefits that make it 
the generally preferred estimator: First, the estimates of 
the filter coefficients (i.e., the parameters determining the 
expectation of the model output) are bias-free not only 
asymptotically but even for small samples. Second, even 
using wrong variance models does not induce biases for 
the estimates of the filter coefficients. For that reason, 
the linear regression model (LSQ) is widely used even if 
its strong assumption of white noise is not strictly justi-
fied. Unfortunately, this robustness only applies for the 
filter coefficients, not for the variance parameters (i.e., 
the parameters determining the noise distribution). The 
best-known example is the maximum likelihood estimate 
of the variance in a simple constant model with additive 

Gaussian noise xi = m + ri for 1iN with ri ∼ N(0, �2) . 
The maximum-likelihood estimator of the variance is 
�̂2 =

1

N

∑N

i=1

�

xi − m
�2 , which is not bias free but has the 

expectation E
{

�̂2
}

=
N−1

N
�2 . Similarly, our maximum like-

lihood estimator with the variance model that accounted 
fully for the variance structure of the simulated data (M4) 
is also not completely bias-free. Figure 7 shows that the 
planning noise ( wss , wff  ) was underestimated by M4. How-
ever, Fig. 7 also shows that using a wrong variance model 
for estimating the variance has more severe consequences 
on the estimates of the variance parameters. Ignoring the 
signal dependency of the fast planning noise (M2) causes 
the noise-compensation gain q , the execution variance �2 , 
and the slow planning variance wss to be overestimated. 
The fast mean planning noise wff  is underestimated. 
Overall, Fig. 7 demonstrates that our maximum likeli-
hood estimator is able to identify the complex variance 
structure of these data most accurately when it is based 
on the correct model (M4). This is important because the 
observed variance and autocovariance of the behavioral 
data (Fig. 5, black) could not be modeled appropriately 
by constant execution and planning noise (M1, M2). Thus, 
the complexity of model M4 is required to describe the 
pointing variability in our experiment and must therefore 
also be considered in a maximum likelihood estimator to 
identify its variance structure. The algorithm for comput-
ing the exact likelihood of the closed-loop system, which 
is described in “Appendices A3/4/5,” is therefore a neces-
sary tool for the purpose of this study.

An interesting new aspect of our variance model is that 
it allows an empirical estimate for the noise-compensation 
gain ( q ) to be obtained. Previous studies estimating plan-
ning noise (Albert and Shadmehr 2017; Zarahn et al. 2008) 
in visuomotor adaptation ignored the possible transfer of 
execution noise into the error signal ( � = 0 ) and could there-
fore apply the standard Kalman filter for computing the like-
lihood of the output (see “Appendix A2”). One of the main 
problems with this assumption is that in closed-loop trials 
this corresponds to a compensation gain of q = 1 , whereas 
in error-clamp trials � = 0 corresponds to q = 0 . The dif-
ficulty to justify this assumption in experiments involving 
both closed-loop and error-clamp trials was one of the main 
motivations to develop the generalized Kalman filter for the 
closed-loop system (“Appendix A4”). The median of q was 
0.39 (Table 2, line 4), suggesting that the expected visual 
feedback accounts for 39% (population median) of the exe-
cution noise contaminating the actual visual feedback in the 
closed-loop trials.

In a previous study, Albert and Shadmehr (2017) already 
evaluated the estimation errors of the learning parameters 
( as , af  , bs , bf  ) in individuals and obtained similar simulation 
results as the ones shown in Table 4 (within variance). Thus, 
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our extension of the underlying variance model had only 
marginal benefit for the estimation of the learning param-
eters. However, substantial benefit was not expected since 
in linear models, the efficiency of the coefficient estimates is 
relatively robust with respect to small errors of the variance 
model. One benefit of our method is that it allows analysis 
of the precision of the variance estimates obtained in a sin-
gle subject (whiskers in Fig. 7, M4). Of primary interest is 
here not only the interquartile range of the within-subject 
distribution per se, but also its ratio to the interquartile range 
observed across the population (Table 2, line 4, [iqr]). Val-
ues of this ratio close to zero indicate that the corresponding 
variance estimate can be used as an individual characteristic, 
whereas values close to one indicate the opposite. These 
ratios were q : 1.02; �2 : 0.38  deg2; w2

ss
 : 0.16  deg2; w2

ff
 : 0.52 

 deg2; �f  : 0.43. They show that, similar to the learning param-
eters (Table 4), a considerable part of the dispersion across 
subjects was due to the limited precision of the estimation 
in a single subject. Especially the noise-compensation gain 
q proved to be not suitable for characterizing an individual, 
despite its small estimation bias (Fig. 8a, M4). In contrast, 
estimates of w2

ss
 , �2 and, to a lesser extent also �f  , allow 

inter-individual comparisons.

5.3  Time‑variant planning noise during visuomotor 
adaptation

On the one hand, our observation that trial-to-trial variabil-
ity increased during the early part of visuomotor adaptation 
resembles the increase of execution variability during early 
motor skill learning. But on the other hand, we did not find 
any hint that the overall performance of visuomotor adapta-
tion improved with increasing variance of the residual, the 
total planning variance, or the fast planning variance. Thus, 
in contrast to the reward-based motor learning task of Wu 
et al. (2014), we did not find any benefit of execution noise 
on task performance. This indicates that the execution vari-
ability may be more important in the reward processing task 
of Wu et al. (2014) that resembled a reinforcement learning 
task more closely than the visuomotor adaptation of the cur-
rent study. Our finding confirms the classical two-rate model 
in that its expected adaptation time course does not depend 
on the noise level. At the same time, the current study dem-
onstrates that the variance of the fast adapting memory state 
is modulated in time even though this noise was not benefi-
cial for the adaptation task (absence of a correlation between 
w
2

ff
 and the total adaptive change). This is not contradictory, 

as increased variability also did not impair adaptation in our 
study even though such an impairment might be expected 
based on studies investigating the effect of error consist-
ency on error sensitivity (Herzfeld et al. 2014) or studies 
suggesting a direct influence of the noise level on the error 
sensitivity due to a statistic evaluation of error relevance 

(Berniker and Kording 2011; Wei and Körding 2009). The 
absence of effects of execution or planning variance on the 
total adaptive change suggests that potential nonlinear con-
tributions of trial-to-trial noise did not have any effect, either 
positive or negative. It seems therefore that the fast adapt-
ing planning process is linked with a mechanism of active 
variance control, possibly because the same planning pro-
cess is also involved in reinforcement learning tasks where 
it is beneficial. The participation of this planning process 
in visuomotor adaptation does not require modification of 
its associated variance control because it is irrelevant in the 
adaptation task.

Our interpretation that the temporal modulation of the 
observed trial-to-trial variance was due to signal-dependent 
fast planning noise is supported by the finding that the increase 
of the trial-to-trial variance in the early adaptation phase 
closely followed the time course of the fast adapting planning 
state which increased more slowly and reached its peak later in 
the gradual than in the abrupt training (Fig. 3, magenta). The 
same variance parameters of model M4 could explain the two 
different time courses of variance and autocovariance in both 
conditions (gradual/abrupt; Fig. 5). Thus, the observed vari-
ance increase was specifically linked to the contribution of the 
fast adapting process. This specificity supports the notion that 
fast and slow components of visuomotor adaptation represent 
distinct and separable mechanisms. Originally, the two-rate 
model did not implicate a clear separability of the underlying 
processes (Smith et al. 2006). Later studies (McDougle et al. 
2015) suggested that fast and slow adaptation mechanisms 
are associated with explicit and implicit motor learning. The 
present study contributes to this discussion in that it shows 
that the fast mechanism but not the slow one is involved in the 
control of planning variability. This is a functional distinction 
between the two mechanisms even though it remains unclear 
whether control of planning variability is an explicit or implicit 
process.

The current study tested the alternatives regarding 
whether the observed variance increase in the early phase 
of visuomotor adaptation was due to non-stationary (error-
dependent) execution noise or non-stationary (signal-
dependent) planning noise. The sudden increase of the 
autocovariance at the beginning of the training phase sug-
gested that the non-stationary planning noise was responsi-
ble for the observed variance increase. We showed here that 
signal-dependent planning noise can explain the presented 
results, but it has to be noted that other mechanisms of non-
stationary planning noise may provide possible alternatives. 
For example, planning variability may be conceived as a 
combination of genuine (constant) planning noise and explo-
ration. Exploration is not needed when performance is fine 
and increases only with larger errors when exploration is 
beneficial. Such a mechanism, which can be characterized 
as error-dependent planning noise, was previously discussed 
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mainly in the context of reinforcement learning. The current 
study cannot distinguish between such error-dependent plan-
ning noise and signal-dependent fast planning noise because 
both the error and the fast adaptive component show large 
values in the early training phase.

In summary, the modified Kalman approach developed in 
this study allowed the variance parameters of time-discrete 
adaptive systems observed under varying feedback condi-
tions to be estimated. This method allowed modeling of 
the temporal changes of the trial-to-trial variance and auto-
covariance of the pointing direction in a complex training 
paradigm in visuomotor adaptation. The results showed that 
trial-to-trial variability increased during the early learning 
phase similar to motor skill learning. This increase was due 
to an increase of planning noise rather than execution noise 
and could be modeled by signal-dependent fast planning 
noise.

Appendix

A1: Model definition

The structure of a two-rate model of sensorimotor adaptation 
is shown in Fig. 1. This model is almost identical with the 
two-rate adaptation model proposed and applied by many 
previous studies (Smith et al. 2006; Criscimagna-Hem-
minger and Shadmehr 2008; Albert and Shadmehr 2017; 
Ethier et al. 2008; Zarahn et al. 2008). Figure 1 visualizes 
the mathematical relations between the internal memory 
states represented here by the two components of the two-
dimensional state vector (xn), the observed pointing direction 
(dn), and the experimentally induced visuomotor distortion 
(un). Earlier studies did not fully investigate the implications 
of this model for the variance/covariance structure of the 
pointing sequence ( {d}N−1

0
 ). In particular, the dependence of 

the variance of pointing direction on the trial type (closed-
loop, error-clamp) was never compared with the predictions 
of this model. Therefore, the current study focuses on that 
aspect.

n: Trial number. The experiment is composed of N trials 
which are numbered from n = 0 to n = N − 1. In the follow-
ing, quantities that are specific for each trial appear with 
the index n.

dn (deg): Pointing direction. The pointing direction was 
defined as the direction of the line connecting the start point 
of the movement with the intersection of the movement tra-
jectory and circle with a radius of 3 cm around the start 
point. The pointing direction is specified with respect to the 
straight-ahead direction. Positive values indicate rightward 
directions.

gn (deg): Motor goal. The angle g specifies the average 
direction of the pointing movement in the non-adapted state. 

It is identical to the sum of the target direction and potential 
motor biases for a given target and is defined relative to the 
straight-ahead direction. Positive values of gn indicate move-
ments to the right. The motor goal is defined as the mean 
pointing direction that is adopted when the subject is fully 
familiarized with the pointing device in the absence of any 
artificial visuomotor rotation (rn). Therefore, the motor goal 
is also called the baseline pointing direction and is specific 
for the direction of the target presented in trial n. The func-
tional dependence of the motor goal on target direction is 
assumed to be independent of time. Thus, the index n in gn 
does not reflect temporal changes of that function but only 
that the target direction differed from trial to trial.

vdn (deg): Visually guided pointing direction. This angle 
is the pointing direction that would be executed in the 
absence of planned motor exploration, external transient 
mechanical perturbations, and motor noise. All these types 
of noise are subsumed under the term “execution noise” (vn)

vn (deg): Execution noise. We assume that the execution 
noise is distributed normally with zero-mean and variance σ2

rn (deg): Visuomotor rotation. The angle rn specifies the 
rotation of the cursor with respect to the pointing direction 
of the hand. Positive rn indicates clockwise rotation of the 
cursor. The actual visual feedback (hn) is the sum of the 
pointing direction and the visuomotor distortion

The artificially introduced visuomotor rotation is the 
quantity that causes the systematic errors driving the motor 
adaptation. Clockwise visuomotor rotations induce counter-
clockwise changes in the visually guided pointing direction. 
To use the same sign convention for the driving stimulus 
and for the resulting adaptive change, we also define the 
signal un.

un (deg): Visuomotor distortion. This is the negative of 
the visuomotor rotation

en (deg): Visual feedback error. The visuomotor distortion 
is not directly accessible. Therefore, the adaptation to this 
distortion is indirectly driven by the visual feedback error. It 
is defined as the difference between a visual reference orien-
tation ( ̂hn ) and the actual feedback (hn). Like the visuomotor 
distortion, positive values of en induce positive (clockwise) 
changes of the visually guided pointing direction. Conse-
quently, en is defined as

(A1)vdn = dn − vn.

(A2)vn ∼ N
(

0, �2
)

.

(A3)hn = dn + rn.

(A4)un = −rn.
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With this definition, the visual reference orientation ĥn is 
implicitly defined as the visual feedback that, when consist-
ently applied, leads finally to the baseline pointing direction 
(gn). Thereby, ĥn is not necessarily a deterministic variable 
but may be interpreted as a random variable (like the actual 
visual feedback hn). This seems natural because the refer-
ence orientation ĥn has been interpreted previously as the 
“expected visual feedback” (Synofzik et al. 2006, 2008) rep-
resented by neural activity. Therefore, we do not assume that 
ĥn = gn but only that the expectation of the random variable 
ĥn equals the motor goal gn. Another reason to assume that 
ĥn is a random variable is that previous studies suggested 
that error sources affecting the actual visual feedback, such 
as transient external perturbation sources (Wei and Körd-
ing 2009) or errors due to planned exploration (Collins and 
Wallman 2012) can be ignored and do not contribute to 
adaptation. To achieve this, the expected visual feedback 
must account for the ignored error components. Our model 
does this by assuming that the visual reference orientation ĥn 
is derived from the motor goal by adding a certain fraction 
(q) of the execution noise v (0q1).

q: Noise-compensation gain:

The visual feedback error en drives the adaptation in the 
following way:

where A is a diagonal 2 × 2 matrix with the retention rates 
a =

[

as;af
]

 applied to the slow and fast memory state, i.e., 
the components of the state vector x

n
 . The vector b =

[

bs;bf
]

 
is a 2-dimensional column vector containing the error sen-
sitivities of the slow and the fast memory state, and the 
two-dimensional random vector w

n
 denotes the two noise 

components added to the memory states. This reflects the 
idea that the generation of a specific internal motor plan 
(in this case that of a visually guided movement) is adapted 
with respect to a memory of its previous state and that this 
memory is subject to noise (van Beers 2009). We assume 
here that w

n
 is normally distributed with zero mean and a 

diagonal matrix of covariance

In the simplest version of the model, it is assumed that 
W is constant (independent of time) like �2 , the variance 

(A5)en = ĥn − hn.

(A6)ĥn = gn + qvn.

(A7a)x
n+1

= A x
n
+ ben + w

n

(A7b)dn = gn + cTx
n
+ vn

(A8)w
n
∼ N

(

0,W
)

;W =

[

w2
ss

w2
sf

w2
sf

w2
ff

]

.

of the execution noise. The scalar product ûn = cTx
n
 on the 

right side of (Eq. A7b) denotes the projection of the memory 
states onto the motor output. The adaptive change ûn = cTx

n
 

of the adaptation dynamics can be interpreted as an estimator 
of the visuomotor distortion un. This estimate is added to the 
motor goal to obtain the visually guided pointing direction 
vdn , which is then contaminated by the execution noise vn to 
obtain the actual pointing direction dn . The projection weight 
cT is a row vector with both elements identical to one. This 
assumption is motivated by the problem that the relation 
between input ( en ) output ( dn ) of this system is unaffected 
by linear transformations of the filter coefficients of the type 
∼

A= TAT
−1,

∼

b= Tb,
∼
c
T

= cTT−1 . Thus, the assumption of c 
being fixed avoids ambiguities in model identification.

yn (deg): relative pointing direction with respect to base-
line. This angle is defined as the difference between the 
pointing direction dn and the motor goal

This definition is useful because it allows the adaptive 
process to be expressed independent of the direction of 
the motor goal as follows. For closed-loop trials, when the 
visual feedback signal hn depends on the movement of the 
subject, Eqs. (A1–A7) can be used to express the feedback 
error in relation to the state vector:

Inserting Eqs. (A9) and (A10) in Eq. (A7a/b) leads then 
to the following time discrete filter

In error-clamp trials, the visual feedback does not depend 
on the subject’s action but is determined by the experi-
menter. The cursor moves at a fixed angle with respect to 
the target direction and consequently also at a fixed angle 
( −�n ) with respect to the motor goal

According to Eqs. (A5/A6/A12), the feedback error eval-
uates in error-clamp trials to

, and Eq. (A11a) must be replaced in error-clamp trials by

Following Albert and Shadmehr (2017), we also consider 
set breaks that may occur after a closed-loop trial or after 

(A9)yn = dn − gn.

(A10)en = un − cTx
n
+ (q − 1)vn.

(A11a)x
n+1

=
(

A − b cT
)

x
n
+ b

(

un + (q − 1)vn
)

+ w
n

(A11b)yn = cTx
n
+ vn.

(A12)hn = gn − �n.

(A13)en = �n + qvn,

(A14)x
n+1

= A x
n
+ b

(

�n + qvn
)

+ w
n
.



78 Biological Cybernetics (2021) 115:59–86

1 3

an error-clamp trial with the index n. In those cases, the 
state updates for the rial n + 1 result from Eqs. (A11a) and 
(A13), by left-multiplying the right side of these equations 
by a matrix Dn which is assumed to be a diagonal matrix of 
the form

where pn is larger than zero for set breaks after the trial n and 
equals zero otherwise. Equations (A11a/b, 13), and (A15) 
can be put together into a single time-variant discrete system 
of the form. For greater generality, we use here an output 
gain-vector c

n
 that is also time-dependent:

where An denotes the time-dependent system matrix 

bn denotes the time-dependent input gain

zn denotes the deterministic input

and �n denotes the transfer gain of the execution noise into 
the feedback error en

Concerning the model predictions of the expected output 
{

y
}N−1

0
 , Eq. (A16a–f) is identical with the standard two-rate 

model mentioned above (Smith et al. 2006). The new aspect 
of the formulation given in Eq. (A16) is that the state update 
(Eq. A16a) is contaminated by both execution noise ( vn ) and 
state noise ( w

n
 ), whereas the system output (Eq. A16b) is 

only disturbed by execution noise. In addition, the noise-
compensation gain (q) allows partial compensation of the 
adaptation input for execution noise to be taken into account.

In the literature (Smith et al. 2006), the filter coefficients 
( as, af , bs, bf  ) are often estimated by computing the expected 
output ( yn ) of the model by simulating Eq. (A16a/b) in the 
absence of noise ( vn = 0 , w

n
= 0 ) and by minimizing the 

sum of squared residuals

(A15)Dn =

[

as 0

0 af

]pn

,

(A16a)x
n+1

= An xn + b
n

(

zn + γnvn
)

+ Dn wn

(A16b)yn = cT
n
x
n
+ vn,

(A16c)

An =

⎧

⎪

⎨

⎪

⎩

Dn

�

as − bs, −bs
−bf , af − bf

�

, for closed loop trials

Dn

�

as, 0

0, af

�

, for error - clamp trials

(A16d)b
n
= Dn b,

(A16e)zn =

{

un, for losed loop trials

�n, for error - clamp trials
,

(A16f)�n =

{

q − 1, for closed loop trials

q, for error - clamp trials

This method of least squares (LSQ) is optimal in the 
sense of minimum variance estimates only if the sequence of 
the residual

{

y − y
}N−1

0
 is a stationary and white random pro-

cess. In this case, minimizing the sum of squared residuals 
maximizes the likelihood of the observed output. However, 
for a system modeled as above, this would only be the case 
in the absence of the state noise ( W = 0 ) and if the execu-
tion noise did not contribute to the feedback error (γn = 0). 
Therefore, LSQ provides estimates of the filter coefficients 
at a lower precision than a maximum-likelihood estimator 
based on the correct variance model.2 Beside the potential 
benefits of a correct variance model on the precision of the 
estimated filter coefficients, correctly estimating the variance 
components W and σ2 is an interesting question because it 
allows central and peripheral sources of execution noise to 
be distinguished (van Beers 2009). The development of a 
suitable variance model and of the corresponding maximum-
likelihood estimator is therefore important for quantitative 
understanding of visuomotor adaptation. Previous stud-
ies (Tanaka et al. 2012; Albert and Shadmehr 2017) have 
already used maximum-likelihood methods based on the 
standard Kalman observer. The next section describes this 
approach and its advantages and drawbacks.

A2: The standard Kalman observer

The standard Kalman approach for optimal state estimates 
of linear dynamic systems from noisy output observations 
(Kalman 1960) is made under the assumption of two distinct 
and independent noise sources: measurement noise and pro-
cess noise. It assumes that the internal states of the system 
are iteratively updated by multiplication with the system 
matrix A and linear summation with a weighted input sig-
nal sn . In addition, the state update is contaminated by the 
process noise w

n
:

The scalar output ( yn ) is the weighted sum of the process 
states ( x

n
 ), contaminated by the measurement noise vn:

In addition, the standard Kalman observer assumes that 
both measurement noise and process noise are Gaussian with 
zero-mean and that both are independent of each other:

(A17)
N−1
∑

n=0

(

yn − yn
)2

= min.

(A18a)x
n+1

= A x
n
+ bsn + w

n

(A18b)yn = cT
n
x
n
+ vn

2 Note that using a wrong variance model in estimating the fil-
ter coefficients (as, af, bs, bs) does not induce systematic errors but 
impairs the precision of these estimates.
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For this system, the state vector x
n
 is also normally dis-

tributed because it results from linear operations on the 
deterministic signal sn and the normally distributed process 
noise wn.

The Kalman observer provides an iterative update of 
the mean and the covariance matrix of the states. Thus, the 
Kalman observer provides with x

n+1
 and �n+1 the time course 

of the prior distribution of the state vector x
n+1

 conditioned 
on all previous observations {y}n

0
 . This iterative update is 

performed in two steps per trial. First, the prior estimates are 
updated by the information provided by the measurement of 
yn , yielding the so-called posterior estimates of the means 
( xp

n
 ) and covariance matrix ( �p

n
 ) of the state vector:

The elements of the vector k denote the so-called Kalman 
gains, i.e., the sensitivity of the posterior mean states with 
respect to the difference between the actual and expected obser-
vation. In the second step of the iteration, the posterior estimates 
are updated to the prior estimates of the next time step n + 1 by 
considering the system dynamics and the process noise:

The iteration Eqs. (A21/A22) start with the distribution 
parameters of the initial states x0:

Fo r  a  g i ve n  s e t  o f  s ys t e m  p a r a m et e r s 
� =

[

A, b, �2,W,�0, x0

]

 , the prior distributions of x
n
 , pro-

vided by the Kalman observer, can be used to compute the 
negative log-likelihood (NLL) of the observation ( {y}N−1

0
 ) 

conditioned on these parameters:

(A19)
[

vn
w
n

]

∼ N

([

0

0

]

,

[

�2 0T

0 W

])

(A20)x
n
∼ N

(

x
n
,�n

)

,�n =

[

�2
sn

�2
sfn

�2
sfn

�2
fn

]

(A21a)k
n
= �ncn∕

(

cT
n
�ncn + �2

)

(A21b)x
p

n
= x

n
+ k

n

(

yn − cT
n
⋅ x

n

)

(A21c)�
p
n
= �n − k

n
cT
n
�n

(A22a)x
n+1

= A x
p

n
+ bsn

(A22b)�n+1 = A �
p
n
A
T +W

(A23)x
0
∼ N

(

x
0
,�0

)

(A24)NLL = −log
(

L
(

{y}N−1
0

|

|

|

, �
))

=
1

2

N−1
∑

n=0

(

yn − cT
n
x
n

)2

cT
n
�ncn + �2

+
1

2

N−1
∑

n=0

log
(

cT
n
�ncn + �2

)

+
N

2
log(2�)

Minimizing the negative log-likelihood (Eq. A24) can 
then be used not only to fit the system’s filter coefficients A, 
b, and the expectation of the initial state vector 
(

x
0
=

[

xs0
xf0

])

 , but also the variance parameters ( �2
v
 , W, �0).

Previous studies (Albert and Shadmehr 2017; Tanaka 
et al. 2012; Zarahn et al. 2008) minimized the negative log-
likelihood (Eq. A24) of data acquired in the context of an 
adaptation experiment to visuomotor rotation (the same type 
of adaptation investigated by the current study). They used 
the same two-rate adaptation model (Smith et al. 2006; 
Criscimagna-Hemminger and Shadmehr 2008) described 
above and minimized the likelihood of the observed pointing 

directions with respect to the error sensitivities ( b =

[

bs
bf

]

 ) 

and the two retention factors ( A =

[

as 0

0 af

]

 ). The visual 

feedback error ( en ) was identified with the system’s input 
signal sn (Eq. A18a), and the relative pointing direction with 
respect to the baseline represented the system’s output 
sequence yn (Eq. A18b).

The above-mentioned studies differed in that Zarahn et al. 
(2008), as well as Tanaka et al. (2012) minimized the nega-
tive log-likelihood directly, whereas Albert and Shadmehr 
(2017) used an expectation–maximization (EM) algorithm 
(Dempster et al. 1977). However, this difference concerns 
mainly the convergence properties of the applied algorithms 
because the EM-algorithm converges at the same solution 
as the maximum-likelihood approach. In the following, we 
describe the various aspects of the variance structure defined 
by Eq. (A16) that are simplified by this approach.

First, by identifying the feedback error en with the input 
signal sn of the standard Kalman approach ignores the fact 
that the input to the state update equation ( zn + γn ∙ vn , 
Eq. A16a) is deterministic only for error-clamp trials with 
zero noise-compensation gain (q = 0). In all other cases, the 
stochastic nature of the system input zn + γn ∙ vn will cause 
the distribution of the output {y}N−1

0
 to differ from that pre-

dicted by the simplified model. Second, in the simplified 
model (Eqs. A18), the system matrix A is the same for error-
clamp and closed-loop trials, whereas in the more general 
formulation of the adaptation model (Eq. A16), the system 
matrix An depends on the trial type. We therefore expect that 
the asymptotic covariance matrix ( �∞ ) of the system states 
differs between trial types, whereas the simplified model 
does not predict such a difference. Third, the variance of 
the noise (wn, Eq. A18a) entering the simplified state update 
does not depend on the trial type. In contrast, the sum of 
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the noise components entering the state update of the more 
general model ( w

n
+ b ∙ �n ∙ vn , Eq. A16a) depends on the 

trial type because the transfer gain of the execution noise 
into the feedback error ( �n ) depends on the trial type. Equa-
tion (A16f) shows that a dependence of the state noise on 
the trial type exists independent of the assumptions about 
the noise compensation gain (0 ≤ q ≤ 1). This is another 
reason why the general but not the simplified model predicts 
that 𝚺n

|

|n→∞
 depends on the trial type. In conclusion, previ-

ous applications of the Kalman observer for computing the 
likelihood of observations in visuomotor adaptation were not 
consistent with the variance/covariance structure defined by 
Eq. (A16) because these approaches did not consider that in 
visuomotor adaptation the peripheral execution noise reent-
ers the system’s input via the error signal.

In the current study, we want to develop a maximum-like-
lihood estimation method for the variance structure defined 
by the model as defined by Eq. (A16). Therefore, we must 
clarify how the above Kalman observer can be extended to 
be applied to the closed-loop model. The dependence of the 
system matrix and of the state noise on time can easily be 
included in the standard Kalman approach by supplying A 
or the W in Eq. (A22a/b) with the index n. In contrast, the 
transfer of execution noise to the state update constitutes a 
problem for the standard Kalman approach because it causes 
the state noise ( w

n
+ b ∙ �n ∙ vn , Eq. A16a) and the measure-

ment noise ( vn , Eq. A16b) to depend statistically on each 
other. This violates an important precondition (Eq. A19) 
of the standard Kalman observer and therefore prohibits its 
direct application for computing the likelihood of an obser-
vation {y}N−1

0
 of the adaptation system (Eq. A16).

These considerations underline the fact that previous 
approaches to maximum-likelihood estimators in visuomotor 
adaptation mark important progress in identifying the two-
rate learning model compared to the simpler least-square 
approach. However, the use of the standard Kalman observer 
implied a simplification of the variance structure of the 
adaptation system that is not fully compatible with the sys-
tem defined by Eq. (A16). To compute the exact likelihood 
of {y}N−1

0
 for this system, we developed two different meth-

ods. First, we will present an algorithm to compute the mean 
y (dimension N × 1) of the observation vector y ∶= {y}N−1

0
 

and its covariance matrix Y (dimension N x N). The inverse 
Y
−1 is then needed to compute the log-likelihood of the mul-

tivariate normal distribution of the observationy . The sec-
ond method, which is numerically much more efficient, will 
extend the standard Kalman observer to the case when the 
measurement noise (or a fraction of it) is fed back into the 
system’s input as in the model defined by Eq. (A16).

A3: The variance/covariance structure 
of the observation

Testing the variance/covariance structure of the pointing 
directions predicted by the model (Eq. A16) requires a com-
parison of the expected covariance matrix ( Y = [Yi,j]

N−1

i,j=0
 ) 

with the empiric data ( y ). Ideally, to estimate the empiric 
covariance matrix, it would be desirable to observe repeated 
adaptation time courses in the same subject under identical 
conditions, i.e., with identical initial conditions of the inter-
nal visuomotor memory and with the same underlying adap-
tation dynamics. Such empirical data are difficult to obtain, 
first, because the memory states are affected by previous 
experiences and, second, because it was also suggested that 
the adaptation dynamics depend on previous experience 
(Herzfeld et al. 2014; Huang and Shadmehr 2009). Like 
most previous studies, we did not acquire many repeated 
adaptations in a single subject but estimated the character-
istics of the within-subject noise by evaluating the variance 
and the autocovariance of the residual error 

(

rn = yn − yn
)

 
within a window of length N = 2w + 1 centered around the 
trial n. These empiric measures were compared with the 
corresponding model predictions that were obtained as fol-
lows: For the given trial window, the expected autocovari-
ance at lag Δ can be derived from the expected covariance 
matrix Y

where Yi,j denotes the element of Y in row i and column 
j. As a special case, we obtain also the expected variance of 
the residual ( var_rn = acov_rn(Δ = 0) ) in this window. We 
evaluated the time course of the observed residual variance 
and autocovariance in a running window with the length 
of 20 trials and compared it with the corresponding model 
predictions obtained by Eq. (A25).

To test this model prediction of the expected autocovari-
ance, we need to evaluate the covariance matrix Y. This was 
achieved by the following algorithm. Within a first loop, 
the expectation 

{

x
}N−1

0
 of the states, their covariance matri-

ces 
{

�n

}N−1

0
 , the expected observation y =

{

y
}N−1

0
 , and the 

diagonal elements 
{

Yi,i
}N−1

i=0
 were computed. The iteration 

started with

and proceeded with

(A25)

acov_rn(Δ) = E

{

1

N − Δ

n+w−Δ
∑

k=n−w

(

rk −
1

N − Δ

n+w−Δ
∑

i=n−w

ri

)

⋅

(

rk+Δ −
1

N − Δ

n+w−Δ
∑

j=n−w

ri+Δ

)}

=
1

N − Δ

(

n+w−Δ
∑

k=n−w

Yk,k+Δ

)

−
1

(N − Δ)2

(

n+w−Δ
∑

i,j=n−w

Yi,j+Δ

)

(A26)y0 = cT
0
x
0
, Y0,0 = cT

0
�0c0 + �2
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Then, the non-diagonal elements of Y were computed as 
follows

The elements of Y above the diagonal were obtained from 
the symmetry feature of covariance matrices ( Yj,j = Yj,i).

The asymptotic covariance matrix ( �∞ ) of the states can 
be computed from Eq. (A27b) by

where V denotes the matrix of eigenvectors ofA∞ , � denotes 
the vector of eigenvalues of A∞ and./ denotes elementwise 
division. We exclude here the occurrence of set-break tri-
als in the asymptotic system by assuming thatD∞ = E . The 
resulting �∞ can be used to compute the asymptotic variance 
of the output y∞ by inserting �∞ in Eq. (A27c). The asymp-
totic autocovariance function ACF(Δ)=Y∞+Δ,∞ is computed 
by inserting �∞ in Eq. (A28a–c). For the special case of 
a one-rate adaptation model during closed-loop condition 
without noise-compensation (γ =  − 1), and with perfect 
retention (a = 1), van Beers (2009) provided the formulas 
for the asymptotic variance and the ACF(1). We verified that 
our formulas are, for this special case, identical with those 
of van Beers (2009). Thus, the method presented above is 
a generalization of van Beers (2009) formula to multi-rate 
adaptation models and allows y and Y to be computed for a 
large variety of experimental designs including non-station-
ary ones composed of arbitrary sequences of closed-loop 
trials, error-clamp trials, and set-break trials.

Once the mean y and the covariance matrix Y of the 
observation are known for a given set of model parameters, 
the negative log-likelihood (NLL) of an observation y can 
be computed by

(A27a)x
n+1

= Anxn + b
n
zn, yn+1 = cT

n+1
x
n+1

(A27b)�n+1 = An�nA
T
n
+ DnWD

T
n
+ �2

n
�2b

n
bT
n

(A27c)Yn+1,n+1 = cT
n+1

�n+1cn+1 + �2.

(A28a)
cov

(

x
n+k

, x
n

)

= An+k−1An+k−2An+k−3 …An�n, for 1 ≤ k ≤ n − 1,

(A28b)Yn+1,n = cT
n+1

cov
(

x
n+1

, x
n

)

c
n
+ cT

n+1
b
n
�n�

2,

(A28c)

Yn+k,n = cT
n+k

cov
(

x
n+k

, x
n

)

c
n

+ cT
n+k

An+k−1An+k−2 …An+1bn�n�
2 for 2 ≤ k ≤ N − n − 1.

(A29)
�∞ = V

( (

V
−1

(

W + �2
∞
�2b

∞
bT
∞

)

V
−1T

)

⋅ ∕E − ��T
)

V
T ,

If any of the observations yn are missing or invalid, the 
log-likelihood can be computed using the same formula 
Eq. (A30) after deleting the missing elements from the vec-
tors y , y , after deleting the corresponding rows and columns 
of Y, and after reducing N by the number of missing yn . 
Equation (A30) allows the negative log-likelihood of the 
output sequence y for the system Eq. (A16) to be computed 
even though this closed-loop system cannot be optimally 
observed by the standard Kalman approach.

Unfortunately, using Eq. (A30) to compute the nega-
tive log-likelihood is rather inefficient because the required 
inversion of the N × N matrix Y is a time-consuming proce-
dure. Therefore, in the following section, we extended the 
standard Kalman observer to estimate the likelihood of the 
model Eq. (A16).

A4: Kalman observer for recursive adaptive systems

Adaptive systems typically learn from errors resulting from 
their own actions. Therefore, peripheral noise, such as exe-
cution noise, usually feeds back into the process noise as 
modeled in Eq. (A16a–f). This noise feedback violates the 
assumption of the standard Kalman observer that the noise 
components contaminating the state-update and the model 
output are independent as in Eq. (A18a/b). To generalize the 
Kalman observer to the closed-loop situation of 
Eq. (A16a–f), we derive here its update equations by the 
method used by Nakata and Tonetti (2010). The essential 
idea of this method is to compute the prior distribution of 
(

x
n+1

|

|

|

{y}n
0

)

, conditioned on all previous observations of 
{y}n

0
, from the joint distribution of

, which is normally distributed with the mean

and the covariance matrix

Note that both Eqs. (A32) and (A33) are consistent with 
Eq. (A27). The conditional distribution of 

(

x
n+1

|

|

|

{y}n
0

)

 is 

(A30)

NLL = −log
(

L
(

{y}N−1
0

|

|

|

, �
))

=
1

2

(

y − y
)T

⋅ Y
−1

⋅

(

y − y
)

+
1

2
log(det (Y)) +

N

2
⋅ log (2 ⋅ �).

(A31)

(

[

x
n+1

yn

]

|

|

|

|

|

{y}n−1
0

)

∼ N
(

m
n+1,n

, Sn+1,n

)

(A32)m
n+1,n

=

[

Anxn + b
n
zn

cT
n
x
n

]

(A33)

S
n+1,n

=

[

An�nA
T
n
+ DnWD

T
n
+ �2

n
�2b

n
bT
n
, An�ncn + �nbn�

2

cT
n
�nA

T
n
+ �nb

T

n
�2, cT

n
�ncn + �2

]

.
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now identified from Eqs. (A32) and (A33) by using the fol-
lowing lemma about conditional normal distributions:

If 
[

x
1

x
2

]

 is normally distributed

then the conditional distribution of  x
1

|

|

|

x
2
 is

Applying this lemma to the joint distribution of 
Eqs. (A31), (A32), and (A33) yields

with

and

These two equations define the iterative update of the 
generalized Kalman observer. Starting with the initial condi-
tion Eq. (A23), we used this generalized Kalman observer 
to compute the means 

{

x
}n−1

0
 and the covariance matrices 

{�}n−1
0

 of the prior distributions for all trials and inserted 
them into Eq. (A24) to compute the negative log-likelihood 
of the observation {y}N−1

0
 . It is easy to verify that for the 

special case �n = 0 , Dn = E the generalized Kalman update 
(Eqs. A36/A37) is identical to that of the standard Kalman 
observer (Eqs. A21/A22).

In case one or more subsequent measurements {y}n+k
n+1

 are 
missing (k > 0), the generalized Kalman observer must 
update the parameters of the prior distribution of 

(

x
n

|

|

|

{y}n−1
0

)

 

to those of 
(

x
n+1+k

|

|

|

{y}n
0

)

 . This is achieved by applying the 
lemma Eq. (A34) on the joint distribution of

Mean and covariance matrix of this distribution are 
d e f i n e d  r e c u r s i v e l y  s t a r t i n g  w i t h  b y 

m
n+1,n

=

[

�
xk

�yk

]

, Sn+1,n =

[

Sxxk, sxyk
sT
xyk
, syyk

]

 i d e n t i c a l  t o 

Eqs. (A32/A33) for k = 0 and proceed with

(A34a)
[

x
1

x
2

]

∼ N

([

�
1

�
2

]

,

[

�11 �12

�21 �22

]

)

,

(A34b)
x
1

|

|

|

x
2
∼ N

(

�
1
+ �12�

−1
22

(

x
2
− �

2

)

,�11 − �12�
−1
22
�21

)

.

(A35)
(

x
n+1

|

|

|

{y}n
0

)

∼ N
(

x
n+1

,�n+1

)

.

(A36)

x
n+1

= Anxn + b
n
zn

+
(

An�ncn + �nbn�
2
)(

cT
n
�ncn + �2

)−1(
yn − cT

n
x
n

)

,

(A37)

�n+1 = An�nA
T
n
+ DnWD

T
n
+ �2

n
�2b

n
bT
n

−
(

An�ncn + �nbn�
2
)(

cT
n
�nc

T
n
+ �2

)−1(
cT
n
�nA

T
n
+ �nb

T

n
�2
)

.

(A38)

(

[

x
n+k+1

yn

]

|

|

|

|

|

{y}n−1
0

)

∼ N
(

m
n+k+1,n

, Sn+k+1,n

)

.

and

Finally, application of lemma Eq. (A34) leads to the fol-
lowing generalized Kalman algorithm for computing the 
log-likelihood of the available observations {y}n−1

0
:

(1) Set n = 0 and initialize x
n
 and �n with the predefined 

values x
0
 and �0.

(2) If yn is not missing, then compute the posterior esti-
mates xp

n
 and �p

n
:

and initialize the following auxiliary variables

(3) Otherwise, if the measurement yn is missing, then 
update the auxiliary variables �  , �1 , and �2:

(4) Independent of whether yn is missing or not, update the 
auxiliary variables xa and �a:

(A39)m
n+k+1,n

=

[

An+k�xk
+ b

n+k
zn+k

�y0

]

(A40)

Sn+k+1,n =
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T
n+k

+ Dn+kWD
T
n+k

+ �2
n+k

�2b
n+k

bT
n+k

, An+ksxyk

sT
xy0

A
T
n+k

, syyk

]

.

(A41a)k
n
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(

cT
n
�ncn + �2

)

(A41b)x
p

n
= x

n
+ k

n

(

yn − cT
n
⋅ x

n

)

(A41c)�
p
n
= �n − k

n
cT
n
�n

(A42a)xa = x
p

n

(A42b)�
a = �

p
n

(A42c)ka = �nbn�
2∕
(

cT
n
�ncn + �2

)

(A42d)� = ka
(

yn − cT
n
⋅ x

n

)

(A42e)�1 = kacT
n
�n A

T
n

(A42f)�2 = ka�nb
T

n
�2.

(A43a)� = An� .

(A43b)�1 = An�1 A
T
n

(A43c)�2 = An�2 A
T
n
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(5) Compute the prior estimates x
n+1

 and �n+1:

(6) Set n = n + 1 and go to 2) until n ≥ N.
(7) Use the obtained 

{

x
}N−1

0
 and {�}N−1

0
 to evaluate the 

negative log-likelihood of the available observations 
{y}n−1

0
 by computing the sum of Eq. (A24) across all n 

for which yn is not missing.

This algorithm assumes that y0 is not missing. Otherwise, 
the auxiliary variables needed in step 3 would be non-ini-
tialized. However, this assumption does not involve any loss 
of generality since the summation in step 7 starts with the n 
corresponding to the first non-missing yn . Therefore, if the 
index of first valid measurement ynv is positive (nv > 0), then 
replace all indices n by n-nv before starting the algorithm. 
Again, for �n = 0 and Dn = E , this algorithm based on the 
generalized Kalman observer is identical to that based on the 
standard Kalman observer (Eqs. A21/A22/A24).

We tested numerically that the negative log-likelihood 
−log

(

L
(

{y}N−1
0

|

|

|

, �
))

 provided by the above algorithm is 
the same as and is numerically more efficient than that pro-
vided by the method of the previous section (Eq. A30). For 
an experiment with 520 trials (N), the computing time of the 
Kalman-based method was about 30 times smaller.

A5: Optimal observation of a recursive adaptive 
system with signal‑dependent execution noise 
and planning noise

We considered two extensions of the model by replacing the 
white constant noise sources for planning noise and execu-
tion noise by time-variant noise sources consisting of a sum 
of constant and multiplicative noise.

The first type of model extension (M3) considered a time 
variant version of the execution noise vn consisting of a sum 
of constant and multiplicative noise where the multiplicative 
component was assumed to be proportional to the feedback 
error in the previous trial:

where the feedback error en was defined according to 
Eq. (A10), Eq. (A13), and (A16f) by

(A44a)xa = Anx
a + b

n
zn

(A44b)�
a = An�

a
A
T
n
+ DnWD

T
n
+ �2

n
�2b

n
bT
n
.

(A45a)x
n+1

= xa + �

(A45b)�n+1 = �
a − �1 − �

T
1
− �2

(A46)
v
n+1

= vcn + 𝜅e ⋅ en ⋅ ṽn

with vcn ∼ N
(

0, 𝜎2
)

and ṽn ∼ N
(

0, 1
)

,

These definitions lead to the following difference equa-
tion for the temporal development of the execution noise:

Starting with �2
0
= �2 , we applied Eq. (A48) to compute 

the time-dependent execution noise along with the iteration 
Eq. (A27a/b) for every n and used the result to replace the 
constant �2 in the generalized Kalman algorithm (Eq. 41a, 
A42c/f, and A44b) by the time-dependent �2

n
.

The second type of model extension (M4) introduced a 
signal-dependent planning noise ( w

n
 , Eq. A48) defined as 

the sum of a noise with constant covariance matrix W and a 
product of the respective component of state vector x

n
 with 

white Gaussian noise ( 
∼
w
n
):

The random vector 
∼
w
n
 was assumed to be independent 

of both the state vector x
n
 and the constant noise compo-

nent w
cn

 . The vector � =
[

�s;�f
]

 denotes the two coefficients 
of variation of the slow and fast memory states. The time-
dependent covariance matrix ( Wn ) of this signal-dependent 
noise is

The function diag is here defined as the MATLAB func-
tion diag, i.e., it returns a quadratic diagonal matrix with the 
elements of its argument in the diagonal if the argument is 
a vector and returns a vector with the diagonal elements of 
its argument if the argument is a quadratic matrix. Equa-
tion (A50) shows that Wn depends only on �  , x

n
 , and �n . 

Moreover, the signal-dependent noise w
n
 is statistically inde-

pendent of the state vector x
n
 (because of the assumed inde-

pendence between 
∼
w
n
 and x

n
 ). Consequently, in the recursion 

for computing the covariance matrix Y (Eq. A27b), the con-
stant W can be substituted by the time-dependent Wn as 
defined in Eq. (A50). It is important to note that the expecta-
tion E

{

diag
(

x
n

)2
}

 is taken in Eq. (A50) across all outputs 
y possibly observed for a given model input {u}N−1

0
 and fixed 

model parameters ( A, b, �2,W, x
0
, q, � ). Thus, the uncondi-

tioned mean x
n
 and the unconditioned covariance matrix �n 

in Eq. (A50) are identical with those used in the recursion 

(A47)en =

{

un − cT
n
x
n
+ �nvn for closed loop

�n + �nvn for error clamp
.

(A48)

�2
n+1

=

{

�2 + �2
e

(

(

un − cT
n
x
n

)2
+ cT

n
�ncn + �2

n
�2
n

)

for closed loop

�2 + �2
e

(

�2
n
+ �2

n
�2
n

)

for error clamp
.

(A49)

w
n
= w

cn
+ diag

(

�
)

⋅ diag
(

x
n

)

⋅ w̃
n

with w
cn
∼ N

(

0,W
)

and w̃
n
∼ N

(

0,

[

1 0

0 1

])

,

(A50)

Wn = W + diag
(

�
)2

⋅ E
{

diag
(

x
n

)2
}

= W + diag
(

�
)2

⋅

(

diag
(

diag
(

�n

))

+ diag
(

x
n

)2
)

.
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Eq. (A27a/b), but not with the state mean x
n
 and the covari-

ance matrix �n in the algorithm for the generalized Kalman 
observer (Eqs. A41–A45) because the later ones are condi-
tioned on the observations {y}n−1

0
 . To account for the time 

variant covariance Wn of the state noise in the generalized 
Kalman observer, Wn was computed in parallel with and 
before each step of the iteration Eq. (A27a/b). The resulting 
time variant Wn was then used to replace the constant W in 
the generalized Kalman algorithm (Eq. A44).

A6: Model fitting

F o r  e a ch  s u b j e c t ,  t h e  m o d e l  p a r a m e t e r s 
� =

[

A, b, �2,W,�0, x0, q, �s, �f , �e
]

 were fitted to the 
observed relative pointing directions {y}N−1

0
 by minimizing 

the negative log-likelihood −log
(

L
(

{y}N−1
0

|

|

|

, �
))

 under the 
following constraints:

(1) The system (Eq. A16a–f) must be overdamped and 
asymptotically stable for both error-clamp trials and 
closed-loop tr ials, i.e., both eigenvalues of 

A =

[

as, 0

0, af

]

 as well as those of A − bcT must be real 

and in the interval between 0 and 1.
(2) Both error sensitivities must be positive.
(3) The initial value of the expected fast state was con-

strained to zero: x
0
=

[

xs0
0

]

 . This constraint was moti-

vated by the observation that leaving both initial mean 
states as free parameters led to large ambiguity because 
large initial values of the fast state could be compen-
sated by large initial values of the slow state without 
strong consequences on the likelihood. This ambiguity 
is the reason why both initial state values are difficult 
to estimate from the observation of the relative pointing 
directions only. This was already observed by Albert 
and Shadmehr (2017) who addressed this problem by 
using an expectation–maximization algorithm. Our 
approach to constrain the fast initial state to zero may 
provide a pragmatic and simple solution for this prob-
lem.

(4) q must be in the interval between 0 and 1.
(5) �2 must be positive.
(6) W is diagonal and positive-definite. Thus, we assumed 

that w2
sf

=0. The planning variances of the slow process 
( w2

ss
>0) and of the fast process ( w2

ff
>0) were fitted.

(7) In case of constant execution-noise variance �2 and 
constant planning-noise variances w2

ss
 and w2

ff
 , the sta-

bility of the dynamics of the state mean (enforced by 
constraint 1) is sufficient to asure the stability of the 
linear time-discrete system Eq. (A27b) determining the 
temporal evolution of the planning variance �n . In con-

trast, with signal-dependent planning noise or error-
dependent execution noise, the coupling of the tempo-
ral evolution of �n (Eq. A27b) with that of Wn (Eq. 50) 
or with that of �2

n
 (Eq. A48) can become instable even 

when the constraint 1) is fulfilled. To avoid such an 
instability, further constraints were applied that were 
derived from the dynamics of the involved variances 
( �n , Wn ) or ( �n , �2

n
 ). Equations  (A27b/A50) or 

Eqs. (A27b/A48) show that they are linear with respect 
to the elements of �n and Wn . Therefore, they can be 
transformed into the standard linear form of a time-
discrete dynamic state update. For the signal-dependent 
planning noise, we extract the elements of �n and Wn 
(see Eqs. A8 and A20) in a single vector and obtain

where MP depends only on the coefficients of variation 
of the planning noise ( � ) and on An . The stability of 
this system was ensured by the constraint that the mag-
nitude of the eigenvalues of the matrix MP must be 

smaller than one for A
n
=

[

as, 0

0, af

]

 as well as for 

A
n
=

[

as, 0

0, af

]

− bcT.

(8) For error-dependent execution noise, the combined 
variance dynamics (Eqs. A27b/A48) takes the form

To ensure the variance stability in the case of error 
proportional execution noise, we constrained the mag-
nitude of the eigenvalues of MM to stay below one for 
any of the occurring values of �n and An.

(9) The initial value �0 of the state covariance matrix was 
assumed to be identical with its asymptotic value ( �∞ ) 
for the initial trial type, i.e., closed-loop trials in our 
experiment. For models without signal-dependent noise 
( �s = �f = �e = 0 ), we computed �0 = �∞ according to 
Eq. (A29) for any given A , b , �2 , W , and q . For models 
with signal-dependent noise, �0 = �∞ was computed 
from the stationary solution of Eq. (A51) or from that 
of Eq. (A52). Consequently, the elements �0 were not 
treated as additional model parameters to be fitted.
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All models investigated in this study were fitted under the 
above constraints and always fitted the 7 parametersxs0,as , 
af , bs,bf ,q , and�2 . They differed only with respect to addi-
tional constraints on the variance parametersw2

ss
,w2

ff
,�s,�f  , 

and �e.
The computation of the negative log-likelihood as a func-

tion of the model parameters � , based on the generalized 
Kalman observer, was implemented by a custom code writ-
ten in MATLAB and numerically minimized by using the 
MATLAB function fmincon. The code is available at https 
://githu b.com/T-Egger t/Close dLoop Syste mIden tific ation 
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