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Abstract
When physicians are asked to determine the positive predictive value from the a priori 
probability of a disease and the sensitivity and false positive rate of a medical test (Bayes-
ian reasoning), it often comes to misjudgments with serious consequences. In daily clinical 
practice, however, it is not only important that doctors receive a tool with which they can 
correctly judge—the speed of these judgments is also a crucial factor. In this study, we 
analyzed accuracy and efficiency in medical Bayesian inferences. In an empirical study 
we varied information format (probabilities vs. natural frequencies) and visualization (text 
only vs. tree only) for four contexts. 111 medical students participated in this study by 
working on four Bayesian tasks with common medical problems. The correctness of their 
answers was coded and the time spent on task was recorded. The median time for a correct 
Bayesian inference is fastest in the version with a frequency tree (2:55 min) compared to 
the version with a probability tree (5:47 min) or to the text only versions based on natural 
frequencies (4:13 min) or probabilities (9:59 min).The score diagnostic efficiency (calcu-
lated by: median time divided by percentage of correct inferences) is best in the version 
with a frequency tree (4:53  min). Frequency trees allow more accurate and faster judg-
ments. Improving correctness and efficiency in Bayesian tasks might help to decrease over-
diagnosis in daily clinical practice, which on the one hand cause cost and on the other hand 
might endanger patients’ safety.
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Introduction

Importance of Bayesian reasoning for medical students and physicians

In daily clinical practice, physicians are often confronted with so-called Bayesian reasoning 
situations: For example, when they have to explain test results of a mammogram, it is impor-
tant for the patient to know what exactly these results mean, that means how likely it is that a 
positive result indicates a sickness. It is already known that physicians and also medical stu-
dents are prone to errors at correctly estimating the probability of certain diseases and at inter-
preting test results (Eddy 1982; Hoffrage and Gigerenzer 1998; McDowell and Jacobs 2017).

We illustrate the situation in the breast cancer screening problem (adapted from Eddy 
1982):

Screening for breast cancer—Probability format:
The probability of breast cancer is 1% for a woman of a particular age group who par-
ticipates in a routine screening (a priori probability, also called prevalence P(B)). If a 
woman who participates in a routine screening has breast cancer, the probability is 80% 
that she will have a positive mammogram (sensitivity P(M + |B)). If a woman who par-
ticipates in a routine screening does not have breast cancer, the probability is 9.6% that 
she will have a false-positive mammogram (false-alarm rate P(M + |¬B)).

What is the probability that a woman who participates in a routine screening and has a 
positive mammogram actually has breast cancer?

Most physicians in former studies assumed this probability to be between 70 and 80%, which 
is far from the correct positive predictive value (Eddy 1982; Hoffrage and Gigerenzer 1998). A 
wide variety of empirical studies have shown that physicians, medical staff, and patients (Gar-
cia-Retamero and Hoffrage 2013; Hoffrage and Gigerenzer 1998) have difficulties with prob-
lems of this kind. However—maybe due to this misjudgment—the mammography screening 
for breast cancer is heavily promoted in many countries as necessary for every woman in a 
particular age group although it is very expensive (Gigerenzer and Gray 2011) and its medical 
benefit can be questioned seriously (Wegwarth and Gigerenzer 2013).

The a posteriori probability P(B|M+), which is the relevant one for patients, is also called 
the positive predictive value of a medical test. Given the prevalence of the disease P(B), the 
sensitivity of the test P(M + |B) and the false-alarm rate of the test P(M + |¬B), the positive 
predictive value can be calculated, for instance, with the help of the Bayes’ theorem. In the 
example above, the Bayes’ theorem shows that the actual probability of breast cancer given a 
positive mammogram P(B|M+) is only about 7.8%.

Fortunately, there are two effective strategies for overcoming occurring cognitive illusions 
and helping people to understand statistical information—namely, natural frequencies and 
visualizations (Binder et al. 2015; McDowell and Jacobs 2017; Spiegelhalter et al. 2011).

P(B|M+) =
P(M + |B)P(B)

P(M + |B)P(B) + P(M + |¬B)P(¬B)

=
80% ⋅ 1%

80% ⋅ 1% + 9.6% ⋅ 99%

≈ 7.8%
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Strategies to overcome Bayesian reasoning errors: Natural frequencies 
and visualizations

Natural frequencies

Rather than presenting all statistical information in Bayesian reasoning situations in the 
format of conditional probabilities and percentages, one can provide natural frequencies 
instead. In a seminal paper, Gigerenzer and Hoffrage (1995) translate the numbers in the 
breast cancer screening problem into natural frequencies in the following way:

Screening for breast cancer—Natural frequency format:
100 out of 10,000 women of a particular age group who participate in a routine 
screening have breast cancer. 80 out of 100 women who participate in a routine 
screening and have breast cancer will have a positive mammogram. 950 out of 9,900 
women who participate in a routine screening and have no breast cancer will have a 
false-positive mammogram.

How many of the women who participate in a routine screening and receive positive 
mammograms have breast cancer?

It is now easier to understand that there are 80 + 950 women with positive mammograms in 
the sample, and that only 80 out of these 1,030 women actually have breast cancer, which 
results in a positive predictive value of about 7.8%. With the natural frequency version 
significantly more people are able to make the correct inference (Gigerenzer and Hoffrage 
1995; McDowell and Jacobs 2017; Siegrist and Keller 2011; Weber et  al. 2018). A cur-
rent meta-analysis has shown that the effect of natural frequencies in Bayesian reasoning 
is quite robust; the typical performance for the probability versions of Bayesian reasoning 
tasks across studies is 4%, while it is 24% for the corresponding natural frequency ver-
sions (McDowell and Jacobs 2017). Interestingly, some of the participants fail to solve the 
tasks in natural frequency versions correctly, because they translate the given information 
back into complicated probabilities (Weber et al. 2018). Even though the natural frequency 
effect is known since about 25 years now, Bayesian reasoning problems are often explained 
to medical students with the help of probabilities (Kirkwood and Sterne 2010).

Besides changing information format from probabilities to natural frequencies there is 
a second strategy for improving Bayesian reasoning, namely, visualizations (Binder et al. 
2015; Binder et al. 2018; Brase 2008; Khan et al. 2015; Spiegelhalter et al. 2011).

Visualizations

There are several different visualizations with respect to Bayesian reasoning tasks, like 
icon arrays (Brase 2008 2014; Galesic et al. 2009; Tubau et al. 2019; Zikmund-Fisher et al. 
2014), 2 × 2-tables (Binder et  al. 2015; Eichler et  al. 2020; Steckelberg et  al. 2004), tree 
diagrams (Binder et al. 2015; Budgett et al. 2016; Friederichs et al. 2014; Steckelberg et al. 
2004; Yamagishi 2003), double-trees (Binder et al. 2020; Eichler et al. 2020), net diagrams 
(Binder et al. 2020), Euler diagrams (Micallef et al. 2012; Sirota et al. 2014), roulette-wheel 
diagrams (Brase 2014; Yamagishi 2003), frequency grids (Garcia-Retamero and Hoffrage 
2013; Sedlmeier and Gigerenzer 2001), and unit squares (Böcherer-Linder and Eichler 
2017; Pfannkuch and Budgett 2017). Most of these visualizations usually do not contain 
any numbers (e.g., icon arrays). However, tree diagrams usually contain numbers (for an 
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exception see Friederichs et  al. 2014) and can be filled with probabilities or natural fre-
quencies (see Fig. 1). However, only tree diagrams containing frequencies in the nodes, not 
tree diagrams with probabilities at the branches or without any numerical information, sig-
nificantly foster insight into Bayesian reasoning problems (Binder et al. 2015, 2018). All the 
mentioned visualizations have already been tested empirically (Eichler et  al. 2020; Khan 
et al. 2015; Spiegelhalter et al. 2011). However, there is evidence that not all types of visu-
alizations support people in their decision-making processes. Furthermore, whereas most of 
the discussed visualizations entails an enormous effort to be produced (e.g., by paper & pen-
cil), tree diagrams can be depicted very quickly (Binder et al. 2015, 2018). As a result, the 
tree diagram can also be used very well for the training of medical students and physicians.

Because so far speed of Bayesian inferences has rarely been investigates so far, we will 
shed light on this question in the following.

Time on task and diagnostic efficiency

As mentioned before, physicians are confronted with Bayesian reasoning situations quite 
often in their daily clinical practice. To treat patients correctly and to advise them wisely—
for example how to deal with a positive mammogram—it is important that physicians are 

Fig. 1  Tree diagram with probabilities (above) or natural frequencies (below) for the breast cancer screen-
ing problem
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taught in Bayesian reasoning. Besides making correct decisions, in daily clinical practice it 
is also important to make correct decisions fast: For example, the average time a physician 
has to treat a patient in a family practice is about 5 min (Falk Osterloh 2012). So, although 
it might be desirable to invest as much time as needed in a certain patient, this wish simply 
does not reflect real working conditions. It is already known, that diagnostic efficiency, 
which can be defined as the number of correctly solved clinical cases divided by the time 
needed for diagnosis is a competence facet of physicians (Braun et al. 2017) that can be 
improved by scaffolding such as representation prompts. Furthermore, also other instruc-
tional approaches such as structured reflection and feedback can reduce the time needed 
for diagnosing (Braun et al. 2019). In sum, instructions can help medical students to solve 
diagnostic problems faster without being less accurate.

There are, however, only few studies that deal with the speed of diagnosis in Bayesian 
tasks: On the one hand, an eye tracking study, which only looked at tasks with natural fre-
quencies, indicates that incorrect Bayesian judgements are given more quickly than correct 
judgements (Reani et  al. 2018). On the other hand, another eye tracking study found no 
clear difference in the processing time between correct and incorrect answers (Bruckmaier 
et  al. 2019). Furthermore, it seems that visualizations—and especially tree diagrams—
increase the diagnostic speed of Bayesian tasks formulated in natural frequencies (Reani 
et al. 2018).

Previous studies that have already dealt with the time required to complete a Bayesian 
task, for example, have shown that the processing time is increased with the number of 
mental steps required (e.g., when the question sample is not compatible in size to the target 
sample of the question, participants took longer to answer the Bayesian reasoning task; 
Ayal and Bayth Marom 2014).

In the present study, we will address the influence of information format (probabilities 
vs. natural frequencies) and visualization (text only vs. tree only) on processing speed sys-
tematically for the first time. In this study the following research question was ought to be 
answered (besides a replication of accuracy effects): Do natural frequencies and tree dia-
grams help to reach a diagnosis faster in Bayesian reasoning tasks? We hypothesized that 
the combination of natural frequencies and tree diagrams is the best combination not only 
to foster accuracy, but also diagnostic efficiency.

Material and methods

Participants

111 medical students (66 female, 44 male, 1 unknown) have participated in this study in 
July and August 2018 and proceeded all cases. Participants were on average 24.61 years old 
(SD = 7.97), the average year of medical education was M = 6.95 (SD = 3.46), the school 
leaving examination grade (1 = best grade to 6 = worst grade) was M = 1.50 (SD = 0.54) and 
the grade of preliminary medical examination was M = 3.24 (oral, SD = 1.39) and M = 3.34 
(written, SD = 1.34). They had on average 1.98 weeks (SD = 1.73) of clinical experience.

All students were informed that their participation was voluntary, and anonymity was 
guaranteed. Participants had given their prior written consent to participating in the study. 
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For participating, they received a financial incentive of ten Euros. The study was approved 
by the Ethical Committee of the Medical Faculty of LMU Munich (Number: 17-829).

Study design

Since both purely textual formulations and tree diagrams per se principally contain all num-
bers that are needed for Bayesian inferences, we decided to split both representations and pre-
sent either one of them to participants. Figure 2 shows the 2(information format: probabilities 
vs. natural frequencies) × 2(visualization: text only vs. tree only) × 4(contexts: not a factor of 
interest)-design of the prospective study with a quasi-experimental design. After a short intro-
duction text, participants completed an electronic questionnaire regarding socio-demographic 
characteristics. Then, they worked within the electronic case simulation platform CASUS (Fis-
cher et al. 1999) in a laboratory setting on four Bayesian situations (see Table 1 and “Appen-
dix”). Overall time or time to spend on each case was not limited. Pocket calculators were 
distributed and students were allowed to use them at any point during the test.

Fig. 2  Study design
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Material and medical encounters

Each participant worked on four different cases with the following medical encounters: 
HIV, breast cancer, Rubella and Trisomy (Eddy 1982; Gigerenzer and Hoffrage 1995; Prinz 
et al. 2015; Steckelberg et al. 2004). Each of these problems was realized by four versions: 
probabilities (text only), probability tree, natural frequencies (text only) and frequency tree. 
The problem formulation of the breast cancer screening problem can be found in Table 1 
(the other problem formulations are depicted in the "Appendix").

Each participant received two of the four problem contexts in probability format (one 
of them with a tree diagram the other one only with the text) and the other two problem 
contexts in natural frequency format (again one of them with a tree diagram the other one 
only with the text), with the order of context, information format and visualization varied 
systematically.

The overall time or the time on a certain task was not restricted, but students were informed 
that the time spent on the tasks was recorded (“Each task takes 5–10 min. In your daily work 
you have to make important decisions in limited time. Therefore, the processing time is not 
limited, but it is registered by the program.”).

Coding

In accordance with Gigerenzer and Hoffrage (1995), a response elicited from a probability 
version was classified as correct if it was the exact Bayesian solution or rounded to the next 
whole percentage point above or below. In the natural frequency versions, responses were 
classified as correct only if both numbers (e.g., in the breast cancer screening solution of “80 
out of 1,030”, both the 80 and the 1,030) were denoted correctly.

Statistics

The sample size was derived by power analysis and thus based on effect sizes observed in pre-
vious studies using a similar design (Binder et al. 2018; McDowell and Jacobs 2017), which 
suggest a format effect close to 100% power (95% CI, 96.4% to 100%) with a sample size of 
about N = 120 students.

In order to statistically compare the effects of the information format and the types of visu-
alization, we estimated (generalized) linear mixed models (with a logit link function) to pre-
dict 1) performance for the Bayesian reasoning task and 2) time for solving the task. In this 
model, we specified the probability version without a tree diagram as the reference category 
and included the possible explanatory factors “natural frequencies” and “tree diagram” via 
dummy coding.

Results

Participants’ performance (accuracy)

The probability versions of the Bayesian reasoning tasks were answered correctly by 6% 
(text only) or 22% (probability tree; see Fig. 3a, or Table 2, left). The performance rate in 
natural frequency versions was substantially higher; the rate was 42% (text only) and 60% 
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(frequency tree). Thus, both natural frequencies and tree diagrams could increase the perfor-
mance significantly.

In a generalized linear mixed model (GLMM) for predicting the correctness of the answer, 
the (unstandardized) regression coefficients, both for natural frequencies (b1 = 2.96, SE = 0.39, 
z = 7.68, p < 0.001) and for presenting a tree diagram (b2 = 1.41, SE = 0.31, z = 4.60, p < 0.001), 

Fig. 3  a participants’ performance in the Bayesian reasoning tasks (across contexts). b. Median time for 
solving one Bayesian reasoning tasks correctly or incorrectly (across contexts)
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were significant (unstandardized regression coefficient: b0 = −3.58, SE = 0.46, z = −7.76, 
p < 0.001), indicating that both factors helps students in decision making (and therefore rep-
licating previous effects). Other variables, however, such as the age, gender, grade of the par-
ticipant, order of the task or context of the task (factor 3) had no significant influence on the 
performance in the task.

Time for inference

In addition to the correctness of the answer, the speed of diagnosis is of great impor-
tance in everyday medical life. Table 2 shows the median time required by the medical 
students for each problem type, and also the median time for each problem type if one 
only considers the right answers. Furthermore, Fig. 3b shows the median time for each 
problem type, separated by correct and incorrect inferences. The median is reported 
instead of the arithmetic mean, since the times (as it is usually the case with processing 
times of participants) are distributed strongly right skewed.

Overall (and without taking correctness into account), the tasks are processed faster if 
they are shown with natural frequencies (median = 3:11  min, CI: [2:55; 3:32]) instead of 
probabilities (median = 7:41  min, CI: [5:04; 9:31], across text only and tree only ver-
sions). Furthermore, the tasks are processed faster, if they are shown with a tree diagram 
(median = 3:18 min, CI: [2:54; 4:03]) instead of a purely textual version (median = 4.36 min, 
CI: [3:20; 6:24], across probability and natural frequency versions). The effect of the tree 
diagram on diagnostic speed is particularly evident in the version with natural frequencies.

In a linear mixed model (LMM) for predicting the time to come to a Bayesian infer-
ence, the standardized regression coefficients, both for natural frequencies (β1 = −0.08, 
SE = 0.04, t = −2.10, p = 0.04) and for presenting a tree diagram (β2 = −0.16, SE = 0.04, 
t = −4.03, p < 0.001), were significant (unstandardized regression coefficient: β0 < 0.01, 
SE = 0.06, t < 0.01, p = 1.00). Other variables, however, such as the age, gender, grade of 
the participant or the order of the task or the context of the task had no significant influence 
on the time on solving the task.

Of particular interest, however, is the analysis of processing times for correct answers, 
as descriptively shown in Fig.  3b. In addition, we ran a further linear mixed model for 
predicting the time to come to a correct Bayesian inference. In this model, the standard-
ized regression coefficients both for natural frequencies (β1 = −0.45, SE = 0.07, t = −6.77, 
p < 0.001) and for presenting a tree diagram (β2 = −0.34, SE = 0.06, t = −5.43, p < 0.001), 
were significant (unstandardized regression coefficient: β0 = 0.02, SE = 0.08, t = 0.21, 
p = 0.84).

Efficiency in solving Bayesian reasoning tasks

Finally, it is possible to analyze accuracy and speed in combination. In Table  2 (right) 
two different possible scores regarding diagnostic efficiency are depicted. Score 1 divides 
the median time on task by the proportion of correct inferences. Lower values of this 
score indicate more correct and faster diagnoses. The best score occurs for the frequency 
tree (4:54 min), while the worst score occurs for the text only version with probabilities 
(1:16:40  h). A second possibility to calculate a score is to divide only the median time 
for a correct diagnosis by the proportion of correct inferences. Score 1 can also be inter-
preted by imagining people solving Bayesian tasks one after the other in a fixed format 
(e.g., probabilities with a tree): The score indicates the average time it takes for the first 
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correct diagnosis to be given. For example, for answering the first version with a frequency 
tree correctly, it needs 4:53 min. On the other hand, it takes 1:16:40 h to answer the first 
probability task without a tree diagram correctly (see also Table 2).

Discussion

This is the first study investigating the influence of information format (probabilities vs. 
natural frequencies) and tree diagrams (text only vs. tree only) on the efficiency in Bayes-
ian reasoning. In sum, natural frequencies and tree diagrams can help medical students 
not only to answer these tasks more often accurate, but also more efficient. These results 
should affect medical education directly: Bayesian tasks should be taught by using fre-
quency trees: it takes less time to answer these tasks correctly and—as the format is easier 
to understand for students—furthermore, the strategy is also more memorable than the for-
mula of Bayes (Sedlmeier and Gigerenzer 2001). Therefore, it combines two advantages: 
Medical students can be easily prepared to solve Bayesian tasks correctly and they will be 
more efficient in their daily clinical practice.

Although is has been known for a long time that probabilities are not the best way to teach 
students Bayesian reasoning, it is still the standard teaching method in the curriculum of our 
medical school—and most likely in many other medical schools as well. This study shows 
that teaching Bayesian reasoning with natural frequencies and tree diagrams improves accu-
racy and efficiency of medical students. On this basis, medical courses should be revised to 
improve medical education and also to create changes in everyday clinical practice.

Limitations and outlook

Although this study investigated diagnostic efficiency in Bayesian tasks quite comprehen-
sively, a few limitations remain. First, we did not test any long term effects and whether 
medical students will use natural frequencies on their own (for example, whether they con-
vert probabilities into natural frequencies when they are confronted with Bayesian-tasks; 
Weber et al. 2018). Furthermore, we did not compare different visualizations and cannot 
comment on the effect of other diagrams (e.g., net diagrams or double trees; Binder et al. 
2020). These questions could be addressed in further studies.

Furthermore, besides pure calculation in Bayesian reasoning situations, it is also impor-
tant that medical students learn, how to extract and asses evidence from scientific articles 
(Keller et  al. 2017). In addition, using frequency trees to explain test results to patients 
might be a promising tool for doctor-patient communication and should be tested.

Although the risk literacy itself seems not to be dependent on the context, nevertheless, 
further studies might investigate the influence of the specific medical profession on the 
accuracy in Bayesian reasoning. For example, a gynecologist who is often confronted with 
the breast cancer screening problem in his daily clinical practice, might be better in solving 
those tasks as he is familiar with the correct solution.

Furthermore, the application of the Bayesian reasoning model has limitations in every-
day clinical practice. For a lot of clinical signs, symptoms or even diagnostic tests, preva-
lence data or sensitivity and specificity are not defined or unknown (Moons et al. 1997). 
Therefore, the suggested strategy of using natural frequency trees is limited to Bayesian 
reasoning situations, where information on prevalence, sensitivity and specificity is known, 
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and cannot be used in every possible scenario (in those cases specific heuristics might be 
helpful; Leuders and Loibl 2020).

As a consequence of our results (and former results on the natural frequency effect), we 
suggest a revision of the clinical training not only for medical students, but for physicians 
and other health careers such as nurses and physiotherapists as well. All health careers are 
confronted with Bayesian problems in their everyday clinical life but there do not seem to 
be adequate, systematic training concepts for all groups. Using tree diagrams with natural 
frequencies might be a first step for implementation (Kurz-Milcke et al. 2008).

Conclusion

In this study with 111 participants, natural frequencies and frequency trees help medical 
students not only to answer Bayesian tasks more accurate, but also faster. In analyzing 
diagnostic efficiency one must distinguish between correct and incorrect inferences.

Appendix

Probability version Natural frequency version

Trisomy

Medical situation

Imagine being a gynecologist in your own practice. For each pregnant 
woman, you perform a triple test for prenatal diagnosis between the 15th 
and 18th week of pregnancy in order to detect a possible trisomy 21 in the 
unborn child

You are currently counseling a pregnant woman who has received a positive 
test result in the triple test. This woman wants to know what this means 
for her unborn child

For your answer, only the following information is available, based on a 
sample of pregnant women who have also undergone a triple test

Presentation of information Text only Text only
Tree diagram only Tree diagram only

Text The probability that the unborn child 
has trisomy 21 is 0.18%

12 out of 6,760 unborn children have 
trisomy 21

The likelihood that a pregnant 
woman will receive a positive 
triple test when the unborn child 
has trisomy 21 is 75%

In 9 of 12 unborn children with 
trisomy 21, the pregnant woman 
receives a positive triple test

The likelihood that a pregnant 
woman will receive a positive tri-
ple test by mistake even though the 
unborn child does not have trisomy 
21 is 5.9%

In 395 out of 6,748 unborn children 
without trisomy 21, the pregnant 
woman is mistakenly receiving a 
positive triple test

Tree diagram Probability tree (in the version with 
a tree diagram)

Frequency tree (in the version with a 
tree diagram)

Question What is the probability that her 
unborn child will actually have 
Trisomy 21?

How many unborn children with a 
positive triple test actually have 
trisomy 21?

Answer: _________ Answer: _____ out of ______
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Rubella

Probability version Natural frequency version

Medical situation In the context of the German Pregnancy Accompanying Examination, a test 
for rubella infection of the expectant mother is mandatory, since rubella 
can lead to serious damage to the embryo

You are currently counseling a woman who has had rubella during her preg-
nancy. This woman wants to know what this means for her unborn child

For your answer, only the following information is available:
Presentation of information Text only Text only

Tree diagram only Tree diagram only
Text The probability that a child is born 

with damages that can be attributed 
to a disease of the mother is 0.5%

100 out of every 20,000 children are 
born with damage that can be attrib-
uted to a disease of the mother

If a child with such damage is born, 
then the likelihood of the mother 
suffering from rubella during 
pregnancy is 40%

In 40 out of every 100 children born 
with such damage, the mother was 
diagnosed with rubella during 
pregnancy

If a healthy child is born, then the 
likelihood of the mother suffering 
from rubella during pregnancy 
is 1%

In 199 out of 19,900 children born 
healthy, the mother had been suffer-
ing from rubella during pregnancy

Tree diagram Probability tree (in the version with a 
tree diagram)

Frequency tree (in the version with a 
tree diagram)

Question What is the likelihood that this 
mother will give birth to a child 
with damages that can be attributed 
to her mother’s illness?

In how many of the women who have 
had rubella during pregnancy, is the 
child born with fetal damage?

Answer: _______ Answer: ____ out of _____

Probability version Natural frequency version

HIV

Medical situation Imagine being a doctor at an AIDS counseling center. In addition to indi-
vidual counseling sessions, HIV tests are also carried out in this AIDS 
counseling center. For this purpose, a blood sample is taken from the 
client and an HIV test is carried out

They are currently counseling a low-risk client who has received a positive 
HIV test result. This client wants to know what this means for him

For your answer, you will only have the following information available, 
based on a sample of low risk individuals who have all been HIV tested:

Presentation of information Text only Text only
Tree diagram only Tree diagram only

Text The probability of a low-risk person 
being HIV-infected is 0.01%

100 out of every 1,000,000 low-risk 
individuals are HIV-infected

The probability that a person will 
receive a positive HIV test result 
when infected with HIV is 99.7%

100 out of 100 people who are 
infected with HIV receive a positive 
result in the HIV test

The likelihood of a person being 
mistakenly positive for the HIV 
test while not HIV-infected is 
0.0004%

4 out of 999,900 people who are 
not infected with HIV mistakenly 
receive a positive result from the 
ELISA test
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Probability version Natural frequency version

Tree diagram Probability tree (in the version with 
a tree diagram)

Frequency tree (in the version with a 
tree diagram)

Question What is the probability that this 
person is actually HIV-infected?

How many of those positively tested 
for HIV are actually HIV-infected?

Answer: _______ Answer: ____ out of _____
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