
1. Introduction
Human exposure to heat is growing globally as temperatures have been rising in the recent decades and 
are projected to further increase in the future (e.g., Diffenbaugh et al., 2007; Huang et al., 2011; Knutson & 
Ploshay, 2016; Russo et al., 2017). Without appropriate acclimatization and adaptation (Bobb et al., 2014; 
Gasparrini et al., 2015), heat-related impacts on human health are expected to strongly intensify with glob-
al warming as extreme temperatures over land are increasing faster than average temperatures (Sillmann 
et al., 2013; Vogel et al., 2017) and impacts of extreme heat are often nonlinear, for example, for heat-relat-
ed loss of worker productivity (Dunne et al., 2013; Kjellstrom et al., 2013) or, more severe, for premature 
death caused by strong and extreme heat (McMichael et al., 2006; Gasparrini et al., 2015; Mora et al., 2017). 

Abstract Global warming is leading to increased heat stress in many regions around the world. 
An extensive number of heat stress indicators (HSIs) has been developed to measure the associated 
impacts on human health. Here we calculate eight HSIs for global climate models participating in the 
Coupled Model Intercomparison Project Phase 6 (CMIP6). We compare their future trends as function of 
global mean temperature, with particular focus on highly populated regions. All analyzed HSIs increase 
significantly (p < 0.01) in all considered regions. Moreover, the different HSIs reveal a substantial spread 
ranging from trends close to the rate of global mean temperature up to an amplification of more than 
a factor of two. Trends change considerably when normalizing the HSIs by accounting for the different 
scales on which they are defined, but the large spread and strong trends remain. Consistently, exceedances 
of impact-relevant thresholds are strongly increasing globally, including in several densely populated 
regions, but also show substantial spread across the selected HSIs. The indicators with the highest 
exceedance rates vary for different threshold levels, suggesting that the large indicator spread is associated 
both to differences in trend magnitude and the definition of threshold levels. These results highlight the 
importance of choosing indicators and thresholds that are appropriate for the respective impact under 
consideration. Additionally, further validation of HSIs regarding their capability to quantify heat impacts 
on human health on regional-to-global scales would be of great value for assessing global impacts of 
future heat stress more reliably.

Plain Language Summary Heat stress caused by high levels of air temperature and humidity 
is rising globally due to climate change. Various indicators for heat stress have been developed to quantify 
different facets of how heat impacts people. We use data from climate models to calculate the future 
evolution of eight heat stress indicators for highly populated regions of the world. The trends of the 
different indicators vary substantially, with some indicators showing large increases while others only 
increase modestly. For estimating the severity of heat stress, we calculate how often each indicator exceeds 
threshold values that indicate different heat stress severity. Many thresholds will be exceeded much more 
often with rising temperatures. The increases are particularly large for some indicators while others only 
show small increases. Moreover, the indicators with the strongest trends are often not the ones that show 
the highest increase in threshold exceedances. For quantifying the impacts of heat stress caused by climate 
change it is thus important to choose indicators that are appropriate for the respective application. While 
several indicators were tested on small scales (e.g., in cities or single countries), for global heat stress 
assessments it is necessary to have more validation studies on regional-to-global scales.
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Additionally, health assessments including population aging project an increase in the overall vulnerability 
to heat with concomitant increases in mortality (Chen et al., 2020). While heat impacts on small scales 
(e.g., for different cities, age groups, seasons) have been examined in multiple studies (e.g., Armstrong 
et al., 2019; Barnett et al., 2010; Gasparrini et al., 2015; Morabito et al., 2014), global assessments quantifying 
the impacts of heat increase due to climate change are still difficult due to the lack of information on health 
risks at regional-to-global scales (Gasparrini et al., 2017).

Quantifying the impacts of extreme heat on human physiology is a nontrivial task as it involves modeling 
the complex heat transfer between the human body and the surrounding air (e.g., Cheng et al., 2012). Many 
attempts have been made to express human heat stress as function of ambient conditions, resulting in the 
development of a considerable number of heat stress indicators (HSIs) with varying complexity (de Freitas 
& Grigorieva, 2017). Here we use the term “heat stress” for heat-related impacts on human health that are 
associated with high levels of air temperature, humidity, and solar and thermal radiation. Many HSIs con-
sider these variables in their formulation, and some also include additional variables such as wind speed.

A wide range of fields apply HSIs to quantify heat stress. Meteorological services use indicators such as the 
NOAA heat index (Rothfusz, 1990; Steadman, 1979), Humidex (Masterson & Richardson, 1979; as cited 
in Blazejczyk et al., 2012) or Perceived Temperature (Staiger et al., 2011) to provide heat warnings. Wet-
bulb globe temperature is often used to assess occupational illness and injuries caused by heat stress (e.g., 
Garzon-Villalba et  al.,  2016), to estimate heat-related decreases of worker productivity (e.g., Kjellstrom 
et al., 2009; Orlov et al., 2019), to derive heat safety recommendations for athletes (Grundstein et al., 2015; 
Racinais et al., 2015), and for military purposes (Budd, 2008). Several HSIs were originally developed to 
measure the thermal comfort of humans. One important group of such indicators is called “apparent tem-
perature” (Anderson et al., 2013), with the NOAA heat index being the most known representative of this 
group. More sophisticated estimations of thermal comfort consider in detail the heat transfer between the 
human body and the environment, with examples being the Physiological Equivalent Temperature (PET; 
Höppe, 1999) or the Universal Thermal Climate Index (UTCI; Fiala et al., 2012).

Despite the widespread usage of HSIs, epidemiological studies considering multiple indicators (i.e., tem-
perature and different HSIs) often find comparable predictive skills for adverse health effects with no single 
indicator being superior to the others (e.g., Barnett et al., 2010; Burkart et al., 2011; Heo & Bell, 2018; Kim 
et al., 2011; Ragettli et al., 2017; Vaneckova et al., 2011). Additionally, the indicator showing the highest 
impacts on mortality or morbidity rates varies across geographic locations, seasons, or age groups (Barnett 
et al., 2010; Chung et al., 2009; Heo et al., 2019; Kang et al., 2020; Rodopoulou et al., 2015). To date, evidence 
from epidemiological studies suggest that HSI perform similarly well as temperature and, thus, do not seem 
to be particularly more suitable for predicting adverse health effects related to heat stress (e.g., Armstrong 
et al., 2019; Kent et al., 2014; Vaneckova et al., 2011). Moreover, different HSIs may be best suited for as-
sessing particular endpoints, such as physiological heat stress, heat-related mortality, or specific morbidity 
outcomes (Gronlund et al., 2014; Ross et al., 2018; Zhang et al., 2012). Consequently, many health studies 
analyzing the effect of heat on human morbidity and mortality often do not use predefined HSIs but employ 
statistical methods based on temperature and humidity to assess the effects of heat stress on morbidity and 
mortality (e.g., Armstrong et al., 2019; Gasparrini et al., 2015; Li et al., 2016). As there is no clear evidence on 
the superiority of any of the HSIs, most studies on health impact projections rely on projections of mean or 
maximum temperature for estimating future heat-related impacts under climate change scenarios (Gaspar-
rini et al., 2017; Wang et al., 2019).

In contrast to epidemiological studies, climate impact assessments often use HSIs because they constitute a 
rather simple way of estimating human heat stress from meteorological variables (e.g., Morabito et al., 2014; 
Spangler et al., 2018; Wang & Zhu, 2019), particularly on regional-to-global scales. Diffenbaugh et al. (2007) 
and Fischer and Schär (2010) analyzed future heat stress in the Mediterranean and Europe using the NOAA 
heat index and showed that dangerous heat conditions (as defined by the US National Weather Service) 
will be reached in central and southern Europe during a substantial number of days each year by the end 
of the century under moderate to high warming. Using the same indicator, Russo et al. (2017) showed that 
the probability of humid heatwaves (i.e., co-occurring high temperatures and elevated humidity levels) 
will strongly increase with global warming. Pal and Eltahir (2016) and Im et al. (2017) employed wet-bulb 
temperature to show that in some Asian regions even physiological limits of adaptation might be exceeded 
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under very high warming. In historical observations, significant trends were identified for wet-bulb globe 
temperature in various regions between the 1970s and the 2000s (Knutson & Ploshay, 2016; Willett & Sher-
wood, 2012). The frequency of wet-bulb globe temperature extremes is expected to keep increasing with 
rising global mean temperatures (Li et al.,  2020). Wet-bulb globe temperature was further used to quantify 
future occupational heat exposure (Kjellstrom et al., 2013) and the projected economic costs of reduced 
worker productivity caused by heat stress increases due to climate change (Orlov et al., 2020). Future pro-
jections for HSIs that include temperature and humidity are less uncertain than temperature projections 
due to the co-variability between temperature and humidity (i.e., changes in one variable also impact 
the other), which makes trends in these HSIs generally rather robust (Fischer & Knutti, 2013; Willett & 
Sherwood, 2012).

Here, we provide a comparison of the projected evolution of eight different HSIs as function of global 
mean temperature for climate models participating in the Coupled Model Intercomparison Project Phase 
6 (CMIP6; Eyring et  al.,  2016). We only consider temperature, specific humidity, and pressure as input 
variables and do not use HSIs that account for other variables like wind or solar radiation. Consequently, 
the selected HSIs represent conditions in the shade without (or with only little) wind. To assess heat stress 
severity, we further calculate exceedances of impact-relevant thresholds already established in heat warning 
systems, occupational health, assessing decreases in worker productivity, and thermal comfort models. We 
apply these thresholds to identify regions for which a substantial increase of human heat stress is projected.

2. Methods and Data
2.1. Heat Stress Indicators

More than 170 HSIs are available for quantifying human heat stress (de Freitas & Grigorieva, 2017), but 
only a subset is appropriate to be used in climate impact studies. We require that HSIs can be calculated 
from climate model output (within feasible computing time), represent windless conditions in the shade, 
are expressed as equivalent temperature, and have been used in climate impact studies (see Supporting In-
formation Text S1 for a complete list of criteria). The following eight HSIs are included in the analysis (see 
Table 1 for their definition):

2.1.1. Daily Maximum Near-surface Air Temperature (TX)

TX is often used as a simple heat indicator in climate science (e.g., Fischer & Schär,  2010; Sillmann 
et al., 2013; Shiogama et al., 2019). Several epidemiological studies apply TX in addition to daily mean tem-
perature to estimate heat-related mortality or morbidity (e.g., Barnett et al., 2010; Heo & Bell, 2018; Zhang 
et al., 2014). In contrast to other HSIs, there is no set of absolute thresholds defined for TX that could be 
applied on global scales.

2.1.2. Apparent Temperature (AT)

The category “apparent temperature” refers to a group of different HSIs (Anderson et al., 2013), which were 
all developed based on the original AT formulation of Steadman (1984). We employ an AT version which 
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Heat stress indicator Definition/Formula

TX Daily maximum near-surface air temperature

AT AT = 0.92 ⋅ ϑ + 0.22 C ⋅ e/100 Pa - 1.3 °C

HI Formula can be found in Text S5 (Supporting Information)

Hu Hu = ϑ + 5/9 °C ⋅ (e/100 Pa − 10)

TWB Formula can be found in Davies-Jones (2008) or Dunne et al. (2013)

TWBG TWBG = 0.7 ⋅ TWB + 0.3 ⋅ ϑ

TWBGs TWBGs = 0.567 ⋅ ϑ + 0.393 °C ⋅ e/100 Pa + 3.94 °C

UTCI Formula can be found in the supplementary of Bröde et al. (2012)

Table 1 
Definition of the Heat Stress Indicators (HSIs) Used in This Study (ϑ is Temperature in °C and e Vapor Pressure in Pa)
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only uses temperature and vapor pressure as input variables (Zhao et al., 2015). Different versions of AT 
were applied in epidemiological studies and found to perform well for estimating heat-related health im-
pacts (e.g., Gronlund et al., 2014; Mitchell et al., 2016; Urban & Kyselý, 2014; Vaneckova et al., 2011).

2.1.3. NOAA Heat Index (HI)

HI is used by the US National Oceanic and Atmospheric Administration (NOAA) for issuing heat warnings 
and was applied in a number of studies that investigated adverse health impacts due to heat stress (e.g., 
Burkart et al., 2011; Kent et al., 2014; Lin et al., 2012). HI is calculated as multiple linear regression with 
temperature and relative humidity as input variables (Rothfusz, 1990; Steadman, 1979).

2.1.4. Humidex (Hu)

Hu is used by meteorological services in Canada (Masterson & Richardson, 1979; as cited in Blazejczyk 
et al., 2012). It combines temperature and vapor pressure to calculate heat stress. In several studies, Hu 
was found to perform similarly well as other indicators for predicting heat-related mortality (e.g., Barnett 
et al., 2010; Heo & Bell, 2018; Vaneckova et al., 2011).

2.1.5. Wet-Bulb Temperature (TWB)

TWB considers the cooling capacity of a human body through sweating by indicating the temperature an 
air parcel would have in case of complete water evaporation. We employ the formula derived by Davies-
Jones (2008), which calculates TWB from temperature, relative humidity, and pressure using equivalent po-
tential temperature (Bolton, 1980). While TWB has rarely been used in epidemiological studies, it was ap-
plied in several climate impact studies showing that thresholds for human adaptability to heat stress might 
be exceeded in several regions of the world under very high warming (Im et al., 2017; Pal & Eltahir, 2016).

2.1.6. Wet-Bulb Globe Temperature (TWBG)

TWBG in the shade is defined as weighted mean of TWB and near-surface air temperature. It is employed by 
several meteorological services and is frequently used in climate impact studies (e.g., Blazejczyk et al., 2012; 
Lemke & Kjellstrom, 2012). TWBG is used for several purposes, specifically for assessments of occupational 
health (Budd, 2008; Garzon-Villalba et al., 2016) and for quantifying impacts of heat stress on worker pro-
ductivity (Kjellstrom et al., 2009; Orlov et al., 2019). Further, TWBG was applied in several epidemiological 
studies and found to perform as well as other indicators in quantifying adverse impacts of heat stress (e.g., 
Heo & Bell, 2018; Heo et al., 2019; Lin et al., 2012; Urban et al., 2019; Vaneckova et al., 2011).

2.1.7. Simplified Wet-bulb Globe Temperature (TWBGs)

TWBGs uses a linear combination of temperature and vapor pressure to approximate TWBG (American College 
of Sports Medicine, 1984; as cited in Willett & Sherwood, 2012). Many climate impact studies and also sev-
eral epidemiologial studies employ TWBGs instead of TWBG due to its ease of use (e.g., Fischer & Knutti, 2013; 
Lin et al., 2012; Urban et al., 2019; Vaneckova et al., 2011; Willett & Sherwood, 2012; Zhao et al., 2015).

2.1.8. Universal Thermal Climate Index (UTCI)

UTCI was developed as multinode model of human heat transfer (Fiala et al., 2012). Here we use the pol-
ynomial UTCI approximation based on temperature and vapor pressure developed by Bröde et al. (2012). 
UTCI was shown to perform similarly well as other indicators for assessing heat-related mortality in Europe 
(Napoli et al., 2018; Urban & Kyselý, 2014).

2.2. Impact-Relevant Thresholds

The assessment of HSI trends does not allow for direct derivations of society-relevant impacts because 
HSI trends inherently depend on the scales on which the HSIs are defined. To classify the severity of hu-
man heat stress, we thus employ impact-relevant thresholds. While epidemiological studies usually do not 
consider absolute thresholds, safety regulations for occupational athletic health as well as meteorological 
heat warnings do rely on specific thresholds (Blazejczyk et al., 2012; Grundstein et al., 2015; Parsons, 2006; 
Racinais et al., 2015, see also Table S2). Due to the different purposes for which thresholds were developed, 
no uniform impact assessment scheme exists for HSIs and the thresholds applied in the present study are 
gathered from various sources. The selected thresholds are used in heat warning systems (HI, Hu), to screen 
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for heat stress in industry and sport events (TWBG, TWBGs), in assessment 
scales of thermal comfort models (AT, UTCI), or for defining adaptability 
limits for heat stress (TWB), as summarized in Table S1. For some HSIs, 
even multiple thresholds are defined for different geographic regions or 
work intensities (Table S2). Based on this collection, we distinguish four 
different levels for each HSI (see Table 2). Thresholds for Hu and UTCI 
stem from the publications originally introducing these indicators (Bröde 
et al., 2012; Masterson & Richardson, 1979). HI thresholds are adopted 
from the NOAA heat warning scale (https://www.wrh.noaa.gov/psr/gen-
eral/safety/heat and Blazejczyk et  al.,  2012), which is used for issuing 
heat warnings in the USA. For AT, which is calculated here according to 
the formulation of Zhao et al. (2015), we employ the respective thresh-
olds defined therein. For TWB the only defined absolute threshold is the 
lethal value of 35 °C, which we adopt here (Sherwood & Huber, 2010). 
For TWBG and TWBGs, for which multiple thresholds are defined, we use a 
threshold from Kjellstrom et al. (2009), which describes heat impacts on 

workers for sustained medium level work. Additionally, the Supporting Information provides a comparison 
of threshold exceedances when applying different TWBG and TWBGs thresholds (see Section 4).

We employ impact-relevant thresholds as they allow for a global estimation of impacts related to heat stress, 
which would not be possible by only considering HSI trends. However, it is important to note that the appli-
cation of globally uniform thresholds does not consider that the adaptation and vulnerability to heat stress 
varies in different regions of the world and for different population groups. Future adaption will further-
more be different across these groups and regions depending, for example, on the respective socioeconomic 
and demographic development. The employed impact-relevant thresholds can be interpreted as indication 
of heat stress severity but keeping in mind that their definition and application purpose might substantially 
differ across HSIs and also depend on geographic location or other contexts.

2.3. Data

The analysis is performed using 24 CMIP6 models (see Table S3) that pwarovide the necessary data for 
calculating HSIs (as of 30 September 2020), employing data from historical and SSP5-8.5 scenarios (O'Neill 
et al., 2016) and covering the time span 1981–2100. Daily HSIs are calculated using daily maximum near-sur-
face air temperature, daily mean near-surface specific humidity, and daily mean sea level pressure. Ideally, 
values for all three variables would be taken at the same time of day, but standard CMIP6 output is not 
available for periods shorter than one day. Pressure and specific humidity (in contrast to relative humidity) 
do usually not vary much within one day. To avoid overestimation of heat stress, we thus use daily averages 
for these variables (Casanueva et al., 2019; Coffel et al., 2017). Note that a few adjustments are applied to 
pressure and humidity data (see Text S2 for details). The analysis is carried out over land areas (defined as 
grid cells with at least 50% land fraction and excluding Antarctica) and calculations are performed on the 
models' native grids. 29 February is removed for models that consider leap years.

Since many climate indicators scale linearly with global mean temperature (GMT; Seneviratne et al., 2016; 
Wartenburger et al., 2017), we express HSI trends and threshold exceedances as function of GMT. The data 
are linearly interpolated with GMT steps of 0.05 K before calculating multimodel statistics. Yearly GMT 
is calculated for the period 1981–2100 from monthly near-surface air temperature data for historical and 
SSP5-8.5 scenarios using 1850–1900 as reference period, and smoothed with a 20-years moving window. We 
also calculate GMT for SSP1-2.6, SSP2-4.5, and SSP3-7.0 scenarios to indicate the GMT change reached in 
2081–2100 in each SSP. Figure S1 provides an overview of the GMT evolution for all climate models.

The intervals between threshold levels are different for each HSI (e.g., intervals for AT are 3 °C–5 °C, while 
intervals for UTCI are 6 °C–8 °C; see Table 2), reflecting that HSIs are defined each on their individual scale. 
To provide a scale-independent estimate, we normalize the HSI trends dividing them by the mean thresh-
old interval (4.0 °C for AT, 9.0 °C for HI, 8.0 °C for Hu, 2.67 °C for TWBG and TWBGs, and 6.67 °C for UTCI). 
This approach is only applicable to the six indicators that have thresholds defined for all four levels, thus 
not to TX and TWB. While the increase in threshold levels is approximately linear (Figure S2), the intervals 
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AT HI Hu TWB TWBG & TWBGs UTCI

Level 1 28.0 °C 27.0 °C 30.0 °C - 29.0 °C 26.0 °C

Level 2 32.0 °C 32.0 °C 40.0 °C - 30.5 °C 32.0 °C

Level 3 35.0 °C 41.0 °C 45.0 °C - 32.0 °C 38.0 °C

Level 4 40.0 °C 54.0 °C 54.0 °C 35.0 °C 37.0 °C 46.0 °C

Sources for thresholds are: AT from Zhao et al. (2015), HI and Hu from 
Coccolo et al.  (2016), TWB from Sherwood and Huber (2010), TWBG and 
TWBGs from Kjellstrom et al. (2009), and UTCI from Bröde et al. (2012). 
For TX no absolute thresholds are defined.

Table 2 
Overview of the HSI Thresholds Used in This Study, Distinguishing 
Between Four Different Severity Levels (See Table S1 for Detailed 
Definitions)

https://www.wrh.noaa.gov/psr/general/safety/heat
https://www.wrh.noaa.gov/psr/general/safety/heat
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effectively vary with levels. The normalized values do not account for this variation, but rather indicate 
trends in terms of an average interval, which is representative for each HSI.

As reference data for bias adjustment (see Section 2.4), hourly 2 m temperature, 2 m dew point tempera-
ture, and surface pressure from the ECMWF reanalysis ERA5 (Hersbach et al., 2018, 2020) for the period 
1981–2010 are used. Dew point temperature is converted into specific humidity (see Text S2). Maximum 
temperature is calculated as maximum, pressure and humidity as average of the hourly data. ERA5 data are 
interpolated to each climate model's grid by conservative remapping before calculating HSIs.

Since HSIs quantify heat effects on humans, we especially focus on densely populated regions. We use his-
torical population data from ISIMIP2b (Frieler et al., 2017), which is based on the HYDE3.2 database (Klein 
Goldewijk et al., 2017) for the period 1981–2005. Population development for 2006–2100 follows the SSP5 
trajectory (Jones & O'Neill, 2016; Samir & Lutz, 2017), consistent with the employed CMIP6 SSP5-8.5 sce-
nario. Population data is temporally and spatially interpolated (see Text S3 for details). For global averages, 
we only consider grid boxes with more than 1000 inhabitants (see Figure S3).

Regional averages are calculated for nine domains (see Figure 1, top), selected from the regions defined by 
the IPCC Special Report on Extreme Events (SREX; Seneviratne et al., 2012). We use the five most populat-
ed regions in the world (SAS, EAS, and SEA in Asia, WAF and EAF in Africa) and the two most populated 
regions in Europe (MED and CEU) and America (CAM and ENA). For every region, area-weighted averages 
are calculated considering the land fraction of each grid cell.

2.4. Bias Adjustment

Although climate models incorporate our best current knowledge about the climate system, they can 
be prone to biases from various sources. For calculating exceedances above absolute thresholds, bias ad-
justment is thus required. We employ the quantile delta mapping (QDM) approach described by Cannon 
et al.  (2015) to match the CMIP6 model distributions to the reference data set ERA5. QDM adjusts the 
model distribution in the application period to match the distribution of the reference data set in the ref-
erence period. Subsequently, it adds the climate change signal by considering changes between the model 
distribution in the reference and application periods for each quantile individually. QDM considers that 
future climate extremes might move beyond observed values in the reference period and reduces the risk of 
introducing artificial trends (Cannon et al., 2015; Maraun, 2016). To test the robustness of our results, we 
additionally perform bias adjustment using quantile mapping (Gudmundsson et al., 2012) and multivariate 
bias correction (Cannon, 2016, 2018) for comparison (see Text S4).

QDM is applied to the daily HSI distributions for each model on every land grid point separately and for 
each month of the year individually. The reference period is 1981–2010. We apply QDM on 50 quantiles, 
which is a reasonable compromise between allowing for enough flexibility and minimizing the risk of over-
fitting (Lakshmanan et al., 2015; Zscheischler et al., 2019). To get a smooth climate change signal, we use 
30-years long application periods and select the central 10 years for our analysis, that is, data for the pe-
riod 1991–2000 is obtained from the application period 1981–2010, data for 2000–2010 from the period 
1991–2020, etc. Bias adjusted data cover the period 1991–2090 and are only used for calculating threshold 
exceedances.

3. Results
3.1. Trends in Heat Stress Indicators

The multimodel median evolution of the eight HSIs as function of GMT is shown in Figure 1 for nine select-
ed SREX regions (an overview of the intermodel spread is shown in Figure S4). Indicated are yearly maxi-
mum values (denoted by subscript “X”) relative to the 1850–1900 average. The HSIs reveal clear trends as 
function of GMT, although with substantially varying trend magnitude. All HSIs increase faster than GMT 
except TWB,X and TWBG,X. TXX, a frequently used indicator in climate studies, exhibits a moderate increase, 
well within the range of the other indicators and similar to the ATX, TWBGs,X, and UTCIX trends. HIX and HuX 
increase fastest and strongest in all regions. In the GMT range covered by all models in the period 1981–2100 
(0.8 K–3.6 K, gray background), all HSIs increase mostly linearly. At very high GMT changes (beyond 5 K) 
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Figure 1. Global population and evolution of heat stress indicators (HSIs) as function of global mean temperature. Top: Map of global population in 2100 
according to SSP5 and extent of SREX regions. Red colors highlight the nine regions that are discussed more closely in this study, selected according to their 
population (see Section 2.3 for details). Bottom: Multimodel median evolution of yearly maximum values (calculated as maximum of daily values and denoted 
by subscript “X”) for eight HSIs as function of global mean temperature (GMT) in nine SREX regions. HSI and GMT changes are calculated relative to 1850–
1900. Solid lines indicate the evolution of HSIs in the GMT range for which all models are available (gray background), dashed lines indicate a reduced model 
set. The gray solid line represents the identity line. The numbers at the top of each plot specify the total number of models and the number of models reaching 
the respective GMT levels (decreasing number toward higher GMT levels). The red bars at the bottom of each subplot indicate the GMT range reached by the 
models at the end of the 21st century (2081–2100 average) in the four Shared Socioeconomic Pathways SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5.
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several HSIs show amplified trends and even sudden changes due to diverging trends in different models 
and the decreasing model number toward higher GMT levels (Figures S1 and S5). In several regions, models 
that warm up most in terms of GMT also seem to have an amplified trend in HSIs (Figure S5). HSIs increase 
by 2.1 K–3.6 K at ΔGMT = 2 K, 4.5 K–7.1 K at 4 K, and 6.8 K–11.6 K at 6 K (interquartile range across all 
regions and HSIs). When normalizing the HSI trends based on the threshold intervals (see Section 2.3), 
TWBGs,X increases fastest in all regions, followed by ATX and TWBG,X (Figure S6). It is further remarkable that 
HIX and HuX, which have the strongest trends in Figure 1, increase comparatively slowly when normalized.

The trends in HSIs as function of GMT in all 26 SREX regions are summarized in Figure 2 for absolute and 
normalized trends. Both reveal remarkable trend spread. When not normalized (Figure 2a), HIX and HuX 
are the indicators with the strongest increase by far with a mean amplification of more than a factor of two 
compared to the GMT trend, while TWB,X, and TWBG,X increase at a rate close to or even below the GMT trend. 
The other HSIs have 30%–60% amplified trends compared to GMT. The patterns of the indicator spread are 
mostly consistent across regions. The regions with the strongest trends (averaged over all HSIs) are NAS, 
MED, CEU, AMZ, and ENA. HSI trends are lowest in SAU and WSA. The patterns for normalized trends 
differ considerably (Figure 2b), with TWBGs,X, TWBG,X, and ATX having the strongest trends, while HIX, HuX, 
and UTCIX increase more slowly. This difference between absolute and normalized values highlights the 
strong scale-dependence of HSI trends. A comparison between SSP1-2.6 and SSP5-8.5 shows that the HSI 
trends are consistent across these SSPs (Figures S7 and S8), demonstrating that the increase of HSIs is in fact 
mostly determined by the GMT evolution. Trend magnitude and patterns are also similar when replacing 
daily maximum by daily minimum temperature (Figure S9).

3.2. Projected Exceedances of Impact-Relevant Thresholds

For quantifying increases in human heat stress due to climate change, the HSI exceedances beyond im-
pact-relevant thresholds are more informative than trends. The yearly number of days exceeding the level 
3 threshold for the nine selected regions are shown in Figure 3 (exceedances of the other thresholds can be 
found in Figures S10–S12). The average number of exceedance days (Nexc) is below 100 days/y in the current 
climate (ΔGMT ≈ 1 K) for all indicators except TWBGs. In EAS, CEU, and ENA today's exceedance is virtually 
zero. With rising GMT levels Nexc is strongly increasing in several regions, particularly in SAS, SEA, WAF, 
EAF, and CAM (16 days/y to 86 days/y at ΔGMT = 2 K and 72 days/y to 175 days/y at 4 K; interquartile 
range across HSIs in these regions). Nexc increases more slowly in MED, EAS, and ENA, and exceedances in 
CEU stay very low even under high warming. The projections of Nexc strongly vary across HSIs. In general, 
TWBGs and AT exhibit the most exceedance days in all regions, while TWBG and UTCI exceedances are low-
est. Differences across HSIs are particularly large in SAS, SEA, WAF, EAF, and CAM, which are all regions 
with potentially strong increases. In SEA and WAF, also the intermodel uncertainty (shaded areas around 
curves) is comparatively high. In contrast, all the other regions have a rather low uncertainty and show a 
mostly linear increase of Nexc. In SEA and WAF, Nexc follows a saturation curve for several HSIs, with level 3 
exceeded almost every day of the year under very high warming (above 5 K) for all HSIs but TWBG.

Figure 4 shows the fraction of populated land where the different thresholds are exceeded at least once per 
year, which can be interpreted as an indication for global heat stress. The spread across HSIs is considerable, 
but the intermodel spread is relatively low (on average contributing less than 10% to the total variance). 
Thresholds for level 1 and 2 are exceeded on a substantial fraction of populated land already today (38% and 
21% respectively, on average), while level 3 and level 4 exceedances are presently close to zero (except for AT 
and TWBGs at level 3). With global warming, all levels will be exceeded on a larger land fraction, with level 2 
and level 3 increasing strongest (15%–17% more exceedance at ΔGMT = 4 K compared to 1 K, and 27% more 
at 6 K). Substantial level 4 exceedances only occur for AT and TWBGs under more than 3 K global warming. 
When HSIs are calculated using daily minimum temperature instead of daily maximum temperature, glob-
al exceedances are much lower (Figure S13). However, particularly under high warming, level 1 and level 2 
thresholds are exceeded on a considerable land fraction also for minimum temperatures.

The HSI with the highest exceedance percentage varies with threshold levels. For levels 1 and 2, most HSIs 
show similar exceedance percentages except for TWBG which is lower. For level 3, exceedance percentages 
are highest for AT and TWBGs and lowest for TWBG with the remaining HSIs lying in between. For level 4, only 
AT and TWBGs show notable increases, while the other HSIs stay close to zero even at very high warming 
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levels. It is also noteworthy that exceedance percentages of TWBGs and TWBG are substantially different, given 
that the same thresholds are applied to them.

A geographically explicit representation of the yearly number of exceedance days at 3 K GMT increase for 
three representative HSIs (i.e., representing the HSI spread) is shown in Figure 5. The maps reveal a clear 
latitudinal gradient with high exceedance numbers at low latitudes and decreasing values toward the poles. 
Regions close to the equator are thus particularly in danger of exceeding thresholds during a substantial 
number of days each year under 3 K warming. In the Amazon region, central Africa, India, and southeast 
Asia level 1 (and partly level 2) thresholds of UTCI and AT would be exceeded almost every day of the year. 
Yet, differences between the selected HSIs are apparent: AT generally shows the highest exceedance num-
bers, TWBG has the fewest, and UTCI lies in between (in agreement with Figures 3 and 4). This is particularly 
striking for the level 3 threshold, which is exceeded in many low latitude regions during more than half of 
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Figure 2. Multimodel median trends in yearly maximum values of the heat stress indicators (HSIs) in all 26 SREX regions and on the global land area. Trends 
in (a) absolute HSI values and in (b) HSI values normalized by average threshold intervals (only applicable to six HSIs, see Section 2.3 for details). Numbers 
indicate the trends in HSIs per change in global mean temperature and color strength represents the trend magnitude. The rightmost column (colored in violet) 
shows the mean trend across all HSIs. Linear regression is used to estimate trends for each model individually by pairing yearly GMT and yearly maximum HSI 
values for the GMT range 0.8 K–3.6 K (for which all models have data) and, subsequently, the multimodel median is calculated. Bold weighted fonts indicate 
that 90% of the models have a significant trend at the 1% level (estimated by a Wald test with t-distribution of the test statistic).

Figure 3. As in Figure 1 but for the number of days per year (Nexc) on which the level 3 threshold of each heat stress indicator is exceeded. Lines indicate the 
multimodel median, shading in dark colors indicates the multimodel interquartile range, and shading in light colors the total model range. TWB and TX are 
omitted because no level 3 threshold is defined for TWB, and for TX no absolute thresholds are defined at all. Bias adjusted data are used for calculating the 
threshold exceedance. Note that the models HadGEM3-GC31-LL, HadGEM3-GC31-MM, KACE-1-0-G, and UKESM1-0-LL use a 360-days calendar and values 
are thus multiplied by 365/360 to fit the other models.
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the year for AT, while UTCI, and especially TWBG show much fewer exceedance days. The level 4 threshold 
is substantially exceeded only by AT, while exceedance days are low for UTCI and zero for TWBG.

4. Discussion
Future trends in HSIs vary substantially across indicators and depend strongly on the scales on which the 
HSIs are defined. The varying definitions (Table 1) make a direct comparison of HSI trends challenging and 
the indicators with strongest (or smallest) trends can change substantially after normalization (Figure 2). 
Comparing future changes of different HSIs (e.g., Li et al., 2018; Matthews et al., 2017; Wang & Zhu, 2019) 
is thus only meaningful if differences and scale issues are considered and discussed. Importantly, the HSIs 
with the strongest trends in absolute terms (Figures 1 and 2a) do not necessarily correspond to the ones 
that show the highest threshold exceedances, particularly for the high levels 3 and 4 (Figure 4). These lev-
els are most often exceeded by AT and TWBGs, while HI and Hu despite having the strongest trends show 
comparatively low exceedance rates. After normalization, AT and TWBGs are among the indicators with the 
strongest trends (Figure  2b) which corresponds better to the high threshold exceedances of these indi-
cators. In contrast, TWBG has low exceedance rates despite a strong normalized trend. The HSIs with the 
highest exceedances also vary across threshold levels, suggesting that the combination of both the trend 
magnitude and the threshold levels causes the high variability in projected HSI exceedances. This is of 
particular relevance, as different indicators are typically used depending on the impact under considera-
tion. For instance, TWBG and TWBGs are widely applied in the context of occupational health (Budd, 2008; 
Garzon-Villalba et al., 2016) and worker productivity (Dunne et al., 2013; Kjellstrom et al., 2013; Lemke & 
Kjellstrom, 2012) while HI or Hu are used by meteorological services for issuing heat warnings. Recent de-
velopments, such as UTCI, are more sophisticated but still lack certain heat transfer aspects (e.g., clothing, 
Spector & Sheffield, 2014). While evidence about the advantage of using HSIs instead of simpler metrics 
such as minimum, mean, or maximum air temperature to predict heat-related mortality and morbidity 
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Figure 4. As in Figure 3 but for global area-weighted percentage of populated land that exceeds a threshold at least 
once per year. Only grid boxes with at least 1000 inhabitants are considered (see Section 2.3).
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is still inconclusive (Barnett et al., 2010; Burkart et al., 2011; Heo & Bell, 2018; Kim et al., 2011; Ragettli 
et al., 2017; Vaneckova et al., 2011), the divergent future HSI trends and exceedances of impact-relevant 
thresholds call for a more thorough evaluation of HSIs at regional-to-global scales.

Many climate impact and epidemiological studies employ TWBGs as an approximation for TWBG (e.g., Blaze-
jczyk et al., 2012; Matthews et al., 2017; Urban et al., 2019; Vaneckova et al., 2011; Zhao et al., 2015). Ac-
cording to our results, trends and threshold exceedances of TWBGs and TWBG differ substantially (see also 
Figure S14), providing a very strong indication that TWBGs cannot be used as a simple replacement of TWBG. 
Lemke and Kjellstrom (2012) tracked the source of TWBGs and highlighted a potential inconsistency between 
the original citation and the currently used TWBGs equation. Their recommendation to not use TWBGs for re-
placing TWBG is strongly supported by our results. Future research should thus apply TWBG consistent with 
its definition (see Table 1; ideally also including mean radiant temperature to account for radiation) and not 
replace it by the simplified version TWBGs.

Acclimatization to heat depends on the geographic region (Kalkstein & Davis, 1989; Xiao et al., 2014), and 
using globally uniform thresholds is thus a strong simplification. Additionally, human sensitivity to heat 
can depend on various other factors such as workload, age, or socioeconomic status (McMichael et al., 2006; 
Kjellstrom et al., 2009). Consequently, different threshold levels have been defined to integrate these factors 
at least partially (e.g., Grundstein et al., 2015; Kjellstrom et al., 2009). When applying different thresholds 
to one indicator, the exceedance rates can change considerably, as shown in Figure S15 for nine different 
TWBG thresholds. Particularly for levels 1 and 2, the exceedance rates vary substantially when using different 
thresholds. For levels 3 and 4 the spread is not as large, but still exceedances of some thresholds are low even 
under high warming while other thresholds are exceeded frequently. Thresholds are generally much less ex-
ceeded when using daily minimum temperatures (Figure S13), indicating that the applied thresholds seem 
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Figure 5. Multimodel median yearly exceedance (Nexc) of impact-relevant thresholds for the heat stress indicators TWBG, UTCI, and AT at 3 K GMT increase 
(relative to 1850–1900). Note the different color maps and color bar limits for levels 1 and 2 and levels 3 and 4. Climate models are interpolated by conservative 
remapping to 1° resolution before calculating the multimodel median.
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to be more relevant for daytime conditions, while during night time lower thresholds and the persistence of 
warm nights need to be considered (e.g., Laaidi et al., 2012).

In this study, we do not consider that humans have the potential to adapt to increasing heat stress, for exam-
ple, by improving house insulation, installing air conditioning, or changing behavior (e.g., adjust working 
and rest times, avoid direct sunlight, adjust clothing, visit cooling centers if available). Although HSIs scale 
well with GMT (Figure 1), choosing only the SSP5 scenario for the analysis neglects that different socioec-
onomic developments affect the ability of people to adapt to increasing heat exposure (Russo et al., 2019). 
The calculated heat stress for ambient conditions might thus overestimate the real heat stress experienced 
by humans, also because people use to spend much time indoors. Yet, especially in low-income countries, 
which belong to the regions most affected by increasing heat stress, housing quality is often poor and indoor 
conditions can be assumed to be similar to the outdoor state (Lemke & Kjellstrom, 2012; Spector & Shef-
field, 2014). In certain regions, the HSIs we employ (representing conditions in the shade) might thus be a 
reasonable approximation even for indoor conditions. For estimating realistic heat stress for outdoor activi-
ties, variables such as solar radiation or wind speed would be important to consider, which we, however, did 
not include in our analysis. With regard to the threshold levels, adaptation strategies could also alter the lev-
els at which critical human reactions to heat stress emerge (e.g., Bobb et al., 2014; Gasparrini et al., 2015).

The maximum ΔGMT reached in SSP5-8.5 varies greatly across models (from 3.6 K to 7.0 K, see Figure S1). 
Only few models reach very high ΔGMT values, making projections for these high warming levels rather 
uncertain. Yet, as long as these very-high warming scenarios cannot be physically excluded they should be 
considered (Forster et al., 2019) since they could potentially have dramatic impacts on human health due to 
the nonlinear impacts caused by increasing heat stress (Dunne et al., 2013; Gasparrini et al., 2015; Matthews 
et al., 2017).

5. Conclusions
Heat stress indicators (HSIs) are used in a wide range of fields, such as heat warning systems (Blazejczyk 
et al., 2012), occupational health and worker productivity assessments (Garzon-Villalba et al., 2016; Kjell-
strom et al., 2013; Orlov et al., 2019), heat safety estimates of sports events (Racinais et al., 2015; Thorsson 
et al., 2020), and epidemiological studies (e.g., Gronlund et al., 2014; Heo & Bell, 2018; Morabito et al., 2014; 
Ragettli et al., 2017; Vaneckova et al., 2011). In the present study we calculated eight HSIs (TX, AT, HI, 
Hu, TWB, TWBG, TWBGs, UTCI) as function of global mean temperature for future climate projections from 
CMIP6 models. All HSIs show statistically significant future trends in all regions. The trends as well as 
the exceedances of impact-relevant thresholds show substantial spread across indicators, highlighting the 
need for choosing appropriate HSIs according to the respective context of interest (e.g., for meteorological 
heat warnings, occupational health, or worker productivity). Due to this context dependency, thresholds 
for the same level might not be directly comparable across different HSIs, which likely contributes to the 
indicator spread and partly explains that the HSI with the highest exceedance varies for different threshold 
levels. The indicator dependency and the large uncertainty of future heat stress estimations also make the 
choice of HSIs a critical task. In line with findings showing that no HSI can be identified to be superior 
than others for quantifying epidemiological impacts (e.g., Barnett et al., 2010; Burkart et al., 2011; Heo & 
Bell, 2018; Kim et al., 2011; Ragettli et al., 2017; Vaneckova et al., 2011), results of the present study do not 
allow for recommendations on the usage of any particular HSI – except that our results confirm the find-
ings of Lemke and Kjellstrom (2012) that the usage of TWBGs should be avoided. Trends in TXX, which is a 
widely used heat indicator in climate science (e.g., Shiogama et al., 2019; Sillmann et al., 2013), are in line 
with trends in the other HSIs. As recent findings even question the importance of humidity as contributing 
factor to higher mortality (Armstrong et al., 2019), TXX, a comparatively simple indicator, might indeed pro-
vide reliable estimates of future heat stress trends. As no thresholds are defined for TXX, the usage of other 
HSIs is nevertheless necessary for estimating human-relevant threshold exceedances. The large variability 
of threshold exceedances identified in this study highlights the need for further research to better connect 
HSIs to observed impacts on regional-to-global scales, which calls for close collaboration between climate 
science and health impact communities.
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Data Availability Statement
This study contains modified Copernicus Climate Change Service Information 2019. Neither the European 
Commission nor ECMWF is responsible for any use that may be made of the Copernicus Information or 
Data it contains. UTCI code was adapted from the comfort_tool script of the Center for the Built Environ-
ment (https://github.com/CenterForTheBuiltEnvironment). The computations were performed using the 
NS9188K project account and data was stored and shared on project account NS9252K on resources provid-
ed by UNINETT Sigma2 — the National Infrastructure for High Performance Computing and Data Storage 
in Norway. This publication contains Supporting Information, which includes additionally the following 
references: Alduchov and Eskridge (1996); ECMWF (2016); Fischereit and Schlünzen (2018); d'Ambrosio 
Alfano et al. (2011). The data that support the findings of this study are openly available from the NIRD 
Research Data Archive under doi:10.11582/2021.00011. CMIP6 data are available from https://esgf-node.
llnl.gov and ERA5 data from cds.climate.copernicus.eu. Population data can be downloaded from https://
esg.pik-potsdam.de/projects/isimip.
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version may be considered the version of record.
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