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a b s t r a c t 

Visual motion discrimination involves reciprocal interactions in the alpha band between the primary visual cor- 

tex (V1) and mediotemporal areas (V5/MT). We investigated whether modulating alpha phase synchronization 

using individualized multisite transcranial alternating current stimulation (tACS) over V5 and V1 regions would 

improve motion discrimination. We tested 3 groups of healthy subjects with the following conditions: (1) individ- 

ualized In-Phase V1 alpha -V5 alpha tACS (0° lag), (2 ) individualized Anti-Phase V1 alpha -V5 alpha tACS (180° lag) and (3) 

sham tACS. Motion discrimination and EEG activity were recorded before, during and after tACS. Performance 

significantly improved in the Anti-Phase group compared to the In-Phase group 10 and 30 min after stimula- 

tion. This result was explained by decreases in bottom-up alpha-V1 gamma-V5 phase-amplitude coupling. One 

possible explanation of these results is that Anti-Phase V1 alpha -V5 alpha tACS might impose an optimal phase lag 

between stimulation sites due to the inherent speed of wave propagation, hereby supporting optimized neuronal 

communication. 
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. Introduction 

Interactions among brain areas are assumed to be essential to most

rain functions. Previous studies of inter-areal interactions have de-

cribed the spiking activity of neurons in distant areas ( Chouinard and

vanowich, 2014 ; Nowak et al., 2008 ; Roe and Ts’o, 1999 ; Ruff and Co-

en, 2016 ) under different contexts ( Jia et al., 2013 ; Nowak et al., 2008 ;

emisch et al., 2015 ; Pooresmaeili et al., 2014 ; Semedo et al., 2019 ).

euroimaging studies in humans have also related specific connectivity

atterns to behavioral profiles (Schipul et al., 2011 ; Wen et al., 2018 ),

roviding insight into how inter-regional interaction strength, direction-

lity or spectral features are shaped by attentional state ( Bosman et al.,

012 ; Oemisch et al., 2015 ; Ruff and Cohen, 2016 ), decision mak-

ng ( Gangopadhyay et al., 2021 ), stimulus drive ( Jia et al., 2013 ;

oberts et al., 2013 ), or task demands ( Pooresmaeili et al., 2014 ;

alazar et al., 2012 ). 
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The visual system is the archetype of a complex model that arises

rom the interplay among multiple brain regions that are hierarchically

rganized into a coarse, but richly interconnected network ( Dosher and

u, 1998 ; Gilbert et al., 2001 ; Gilbert and Sigman, 2007 ). For motion dis-

rimination, research in humans ( Blakemore and Campbell, 1969 ) and

rimates ( Simoncelli and Heeger, 1998 ) has established that the primary

isual cortex (V1) and medio-temporal areas (MT/V5, labeled hence-

orth as V5) are co-activated in complementary feedforward and feed-

ack sweeps ( Lamme and Roelfsema, 2000 ; Newsome and Pare, 1988 ),

weeps that are tuned to the characteristics of the stimulus (e.g., ori-

ntation) and to the anatomical pathways that are recruited. Moreover,

his channel is endowed with specific patterning of electrical signals.

ecent evidence suggests that communication between these two re-

ions may be established by orchestrated phase synchronization of os-

illations at lower frequencies (i.e., at Alpha-Beta frequencies, < 25 Hz),

cting as a temporal reference frame for information conveyed by high-
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2  
requency activity (at Gamma frequencies > 40 Hz) ( Bastos et al., 2015 ;

onnefond et al., 2017 ; Fries, 2009 ; Seymour et al., 2019 ). In fact,

he orchestrated interactions between Alpha and Gamma oscillations

ay serve as a framework supporting the feedforward and feedback

oops of inter-regional brain communication within the visual system

Kerkoerle et al., 2014; Michalareas et al., 2016 ). Specifically, top-

own Alpha appears to control the timing and elicitation of higher fre-

uency rhythms, thus optimizing communication in the visual cortex

 Fries, 2015 ; Michalareas et al., 2016 ). 

More generally, phase synchronization is a key neuronal mecha-

ism that drives spontaneous communication among dynamical nodes

 Gollo et al., 2014 ), implying that this mechanism supports atten-

ional, executive, and contextual functions ( Doesburg et al., 2009 ;

reunberger et al., 2007 ; Palva and Palva, 2011 ). The two simplest

hase synchronization patterns are in-phase synchronization (i.e., zero

hase lag between the two regions) and anti-phase synchronization (i.e.,

80° phase lag between the two regions). In-phase synchronization be-

ween two distant neuronal populations is thought to serve the integra-

ion of separated functions that are performed in these different regions

 Engel et al., 1991 ; Roelfsema et al., 1997 ; Wang et al., 2010 ). Con-

ersely, anti-phase patterns reflect more dynamical reciprocity, where

ertain areas of the brain increase their activity while others decrease

heir own activity. Such anti-phase patterns have been reported dur-

ng sleep ( Horovitz et al., 2009 ), or during visual attentional tasks

 Yaple and Vakhrushev, 2018 ). It has been proposed that these anti-

hase oscillation patterns reflect time-delays in functional coupling be-

ween two connected regions ( Petkoski and Jirsa, 2019 ). Since commu-

ication between neurons is achieved by propagation of action poten-

ials throughout axons, with conduction times defined by some regional

pecificities, such as myelination density, number of synaptic relays, in-

ibitory couplings etc., an optimal phase delay relationship between two

nterconnected regions could be a key driver of successful brain commu-

ication. 

In this article, we set out to determine whether motion dis-

rimination performance can be enhanced when ‘artificially’ entrain-

ng/manipulating the phase relationship between V1 and V5. This is

ased on the idea that inter-areal synchronization plays a significant

ole in V1-V5 communication, as demonstrated previously ( Lewis et al.,

016 ; Siegel et al., 2008 ). We used individually adjusted, Alpha tran-

cranial alternating current stimulation (tACS) to entrain endogenous

scillations ( Helfrich et al., 2014 ) and enhance inter-areal information

ow ( Zhang et al., 2019 ). The modulation consisted in applying approx-

mately 15 min of concurrent, bifocal (over V1 and V5), individualized

lpha-tACS. We assessed two conditions of stimulation: In-Phase (zero

hase lag) stimulation and Anti-Phase stimulation (180° phase lag); and

 Sham tACS group was evaluated to control for non-specific, placebo-

ike effects. 

Furthermore, the entire experiment was conducted while record-

ng multi-channel electroencephalography (EEG). Electrophysiological

nalyses were computed with the objective of determining EEG markers

f interareal modulation between the two target areas. We paid special

ttention to connectivity metrics in the Alpha band, as well as in the

amma band because of their role in visual feature binding ( Elliott and

üller, 1998 ; Gray and Singer, 1989 ; Zhang et al., 2019 ) and inter-

real communication in the visual cortex ( Fries, 2015 ; Michalareas et al.,

016 ). Taken together, we hypothesize that the best inter-areal Alpha

hase relationship for optimal oscillatory entrainment leading to re-

pective behavioral enhancement is associated with changes in Alpha-

amma coupling within the V1-V5 pathway. 

. Materials and methods 

.1. Subjects 

50 healthy subjects were recruited (range age: 18 to 40 years old, 24

emales). All individuals were right-handed with normal or corrected to
2 
ormal vision, and had no history of neurological diseases or cognitive

isability. A written consent form was obtained from all participants

rior the experiment. The study was performed according to the guide-

ines of the Declaration of Helsinki and approved by the local Swiss

thics Committee (2017–01,761). 

.2. Study design 

Individual testing started with a familiarization phase followed by

he actual experiment. During the familiarization phase, we ensured

hat the subject understood the visual discrimination task and reached

table performance. After EEG acquisition was prepared, a baseline

lock, which consisted of a task-related EEG recording without tACS

as started. After a few minutes of rest, electrodes were placed over the

ccipital and temporal cortex, and electrical stimulation was started,

emaining on for the entire duration of the block. Immediately after

he start of stimulation, the second timepoint (TP0) was recorded with

oncurrently-measured EEG. Thereafter, the stimulation electrodes were

emoved and after a few minutes of rest, two succeeding evaluation

oints (TP10: 10 min after stimulation, TP30: 30 min after stimulation)

ere measured using the same task-related EEG setup, without tACS

see Fig. 1 A ). 

.3. Visual discrimination task 

The visual task used is a well-established 2-alternatives, forced-

hoice, left-right, global direction discrimination and integration task

150 trials per time point) ( Das et al., 2014 ; Huxlin et al., 2009 ). The

timulus consisted of a group of black dots moving globally left- or right-

ards on a mid-gray background LCD projector (1024 × 768 Hz, 144 Hz)

t a density of 2.6 dots per degree and in a 5 ̊diameter circular aperture

entered at cartesian coordinates [ − 5°, 5°] (i.e., the bottom left quadrant

f the visual field, relative to central fixation) (see Fig. 1 B and 1 C). This

timulus location was used to optimized V5 activation strength based on

revious literature (e.g., ( Albright, 1989 ); ( Seiffert et al., 2003 ) ). Direc-

ion range of the dots was varied between 0 ̊(total coherence) and 360°

complete random motion). The degree of difficulty was increased with

mproving task performance by increasing the range of dot directions

ithin the stimulus. A 3:1 staircase design was implemented to allow us

o compute a threshold level of performance for direction integration at

he end of each timepoint ( Das et al., 2014 ; Huxlin et al., 2009 ). For ev-

ry 3 consecutive correct trials, direction range increased by 40 ̊, while

or every incorrect response, it decreased by 40 ̊. The black dots making

p the stimulus were 0.06° in diameter and moved at a speed of 10° per

econd over a time lapse of 250 ms for a stimulus lifespan of 500 ms.

t every stimulus onset, an auditory beep was played for the subject.

fter each trial, auditory feedback indicated whether the response was

orrect or incorrect. Correct trials were followed by two beeps at 800 Hz

nd 1000 Hz. Incorrect trials were followed by two beeps at 500 Hz and

00 Hz. 

.4. Transcranial electrical stimulation 

Subjects were randomly assigned into 3 groups: In the first experi-

ental group ( n = 17, 10 females), In-Phase (0° phase lag) bifocal tACS

as applied over the right V1 and V5 areas. The second experimental

roup ( n = 18, 8 females), received Anti-Phase (180° phase lag) bifocal

ACS over V1 and V5 areas, also in the right hemisphere (see Fig. 1 E).

he control group ( n = 15, 6 females) received Sham (i.e., ramp up and

ubsequent ramp down lasting in total one individually defined alpha

ycle) bifocal stimulation over identical V1 and V5 locations as the first

wo groups. The electrode placement on V1 and V5 were determined ac-

ording to the 10–20 EEG system, based on previous literature investi-

ating motion processing ( Kar and Krekelberg, 2014 )( Michalareas et al.,

016 ) ( Hülsdünker et al., 2019 ) ( Zito et al., 2015 ) i.e., covering the Oz-
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Fig. 1. General features of the study (A) Experimental design . The total duration of the experiment was around 3 hrs. (B) Real example of the experimental 

setup inside the Faraday’s cage. The EEG system and an ongoing visual task are shown. (B) Schematic example of the motion discrimination task. (C) Schematic 

of the bifocal tACS applied with concentric electrodes over P6 and O2 while subject performs the global direction discrimination visual task. ( D) Electrical field 

3D representation of bifocal tACS at the two different phase differences ( Thielscher et al., 2015 ). The dispersion of the field does not change over time in the two 

conditions, but rather the magnitude of the electrical field lines ( Saturnino et al., 2017 ). 
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2 and P08-P6 electrodes, respectively. Fig. 1 D gives an overview on

he stimulating electrodes’ positions for the three groups. 

Prior to the baseline recording, the Alpha peak frequency of each in-

ividual was determined over a 180s-long EEG resting-state recording

ith the eyes open, used thereafter as the individualized frequency for

he tACS in time point TP0. The individualization of the Alpha rhythm

s justified by the idea that Alpha rhythms appear to be in charge of

ottom-up and top-down inter areal sweeps, that ultimately gate and

ime the information flow in cortical networks ( Sauseng et al., 2009 ;

on Stein et al., 2000 ). Moreover, there have been several examples of

on-invasive stimulation studies showing that tailoring the oscillatory

races to the endogenous Alpha rhythms, effectively modulates the on-

oing activity ( Neuling et al., 2013 ; Vosskuhl et al., 2016 ; Zaehle et al.,

010 ). Mean Alpha stimulation frequency for the In-Phase group was

 Hz (range 7–11 Hz), for the Anti-Phase group:10 Hz (range 7–12 Hz)

nd for the Sham group: 10 Hz (range 7–11 Hz). 

.5. Apparatus and devices 

All experiments took place inside the same, shielded Faraday cage

esigned for EEG recordings, and under the same light conditions. Par-

icipants’ heads were placed over a chin-rest at a distance of 60 cm from

he presentation screen, assuring a fixed position across all trials. The

ask ran on a Windows OS machine, based on a custom Matlab (The

athWorks Inc., USA) script, using the Psychophysics Toolbox. 
3 
Gaze and pupils’ movements were controlled in real time with an

yeLink 1000 Plus Eye Tracking System (SR Research Ltd., Canada)

ampling at a frequency of 1000 Hz. The task required the subject to

xate a target at the center of the screen for every trial, with a maxi-

al tolerance for eye deviation from this fixation target of about 1°. If

he participant broke fixation during stimulus presentation, the moving

timulus froze and then disappeared; the trial was discontinued, and an

uditory tone (at 400 Hz) was presented. Once the participant reposi-

ioned their gaze correctly, a novel trial was started. 

Bifocal tACS was delivered by means of two Neuroconn DC Plus stim-

lators (Neurocare group) triggered every cycle repeatedly to assure

he chosen phase synchronization between the two stimulation sites.

ustom-made, concentric, rubber electrodes of external diameter 5 cm,

nternal diameter of 1.5 cm and 2.5 cm of hole diameter were used

o deliver stimulation. The intensity was fixed to 3 mA corresponding

o a current density of 0.18 mA per cm 

2 . The electrodes were held by

lacing the EEG cap over them. The period of continuous stimulation,

lthough it was slightly different for every participant, took on average

13 ± 2 min (SEM), i.e., the time to complete 150 trials of the motion

iscrimination task described above. The inter-individual variability in

he stimulation duration is explained by the fact that participants were

old to be as accurate as possible without having any time pressure, re-

ulting in a relatively large inter-individual variability in reaction times,

ence durations to complete the 150 trials. 

EEG was recorded from a 64 channels passive system (Brain Products

MBH) at a sampling frequency of 5 kHz. 
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.6. Data analysis 

Behavioral data: For each subject and time point, we extracted di-

ection range thresholds using all trials, by fitting a Weibull function,

hich defined the direction range level at which performance reached

5% correct. These direction range thresholds were then normalized to

he maximum possible range of motion (360°), resulting in a normal-

zed direction range threshold (NDR), a procedure previously described

 Das et al., 2014 ; Huxlin et al., 2009 ). 

𝐷𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙 𝑑 ( % ) = 

[ 
( 360 ◦ − 𝑊 𝑒𝑖𝑏𝑢𝑙 𝑙 𝑓𝑖𝑡𝑡𝑒𝑑𝐷𝑅 ) 

360 

◦] 
∗ 100 

Finally, NDR thresholds were corrected for inter-individual variabil-

ty in baseline performances by dividing all data by the individual base-

ine performances (referred as baseline-corrected NDR throughout the

anuscript). 

EEG data: All analyses on EEG data were performed on peri-

ds without tACS (at Baseline, TP10 and TP30) using MNE-Python

 Gramfort et al., 2013 ) and customized scripts. 

For the preprocessing, data were re-referenced to the average of sig-

als, filtered through a Finite Response Filter of order 1, between 0.5 and

5 Hz, epoched in 3 s blocks , corresponding to − 1.5 s before and + 1.5 s

fter the stimulus onset. Every epoch corresponded to the time interval

f a trial from the behavioral task. They were visually inspected to clear

p noisy channels or unreadable trials. Bad channels were interpolated,

ata was re-sampled to 250 Hz. Independent component analysis was

sed to remove physiological artifacts (i.e., eyeblinks, muscle torches). 

For analyses in the frequency domain, Morlet wavelets convolution

hanging as a function of frequency was applied to 40 frequency bins,

etween 2 and 42 Hz, increasing logarithmically. 

For the source reconstruction analyses, data was re-referenced to

he average of signals, noise covariance matrix was calculated to en-

ance the source approximation, a template brain and segmentation

as used to compute the forward solution for 4098 sources per hemi-

phere. The inverse solution was calculated by means of MNE algo-

ithm ( Hämäläinen and Ilmoniemi, 1994 ). The source estimates were

omputed with dipole orientations perpendicular to the cortical sur-

ace ( Lin et al., 2006 ). The source points belonging to specific areas

f interest (i.e. V1 and V5), were defined using the templates pro-

ided in the “SPM ” open access database included in the MNE library

 Wakeman and Henson, 2015 ). In order to extract one time-series per

rea of interest, we computed the first principal component from all

ource dipoles within each area. This first principal component is rep-

esenting the source estimates associated with these pre-defined areas.

ubsequently, a sign-flip was applied with the objective of avoiding sign

mbiguities in the phase of different source estimates within the same

rea ( Gramfort et al., 2012 ). 

From the preprocessed EEG signals, we extracted a series of mark-

rs to depict the global features of the signal in the temporal, spectral

nd spatial domains with a specific focus on the activity over V1 and

5 and the coupling between the two areas, in the two frequency bands

f interest: Alpha and Gamma rhythms. Specifically, the EEG metrics

f interest computed were: Power Spectral Density (PSD) in the Alpha

nd Gamma band, both computed in the sensors’ space, Coherence and

maginary Coherence in the Alpha and Gamma Band, V1 Alpha Phase

o V5 Gamma Amplitude coupling (ZPAC-V1pV5a) and, V5 Alpha Phase

o V1 Gamma Amplitude coupling (ZPAC-V5pV1a), computed in the

ources’ space. Given that the sensor signals have passed through a

ource reconstruction method prior the calculation of the connectiv-

ty metrics, the problem of volume conduction is reduced (Hoechstet-

er et al., 2004). All these variables were baseline-normalized. More-

ver, the Phase Amplitude coupling (i.e. PAC) was standardized to avoid

onfounders by creating a non-parametrized distribution of values to

hich to compare the observations through a Z-score transformation

i.e. ZPAC) ( Canolty et al., 2006 ; Cohen, 2014 ). 
4 
Thus, PSD ( Φ) was calculated taking an average of all electrodes

hrough the Welch’s estimator ( Welch, 1967 ), that considers averaging

SDs from different windows, according to the formula: 

( 𝑓 ) = 

1 
𝐾 

𝐾 ∑
𝑖 =1 

1 
𝑊 

||𝑋 𝐾 ( 𝑣 ) ||2 , 𝑤ℎ𝑒𝑟𝑒𝑊 = 

𝑀 ∑
𝑚 =1 

𝑤 

2 [ 𝑚 ] 

here K corresponds to the number of segments where a windowed

iscret Fourier Transform is computed, X is the segment where it is

omputed at some frequency v and w is the window segment 

(Magnitude-square) Coherence ( Carter, 1987 ) was calculated

hrough: 

 𝑥𝑦 ( 𝑓 ) = 

|||Φ𝑥𝑦 ( 𝑓 ) 
|||2 

Φ𝑥𝑥 ( 𝑓 ) ⋅Φ𝑦𝑦 ( 𝑓 ) 

V1-V5 coherence analyses are used to investigate frequency-specific

hase coupling between these source areas. Although coherence values

ight be biased due to source leakage effects ( Palva et al., 2018 ), we in-

luded this metric because it is of relevance given our brain stimulation

pproach. Specifically, we expect that tACS will modulate the amplitude

f the endogenous the Alpha, fact that will have direct repercussions in

he weighting of the (Magnitude Square) Coherence metric. 

Imaginary Coherence (Nolte et al. 2014), followed the formula: 

 𝐶 𝑥𝑦 ( 𝑓 ) = 

𝐼 
[
Φ𝑥𝑦 ( 𝑓 ) 

]
√
Φ𝑥𝑥 ( 𝑓 ) ⋅Φ𝑦𝑦 ( 𝑓 ) 

here I denotes the imaginary part of the numerator. Although we do

ot expect this metric to directly catch changes in the Alpha amplitude

odulated by the tACS, the Imaginary Coherence was chosen as a con-

ectivity metric that is not influenced by volume conductance 

Phase Amplitude coupling (PAC) ( Canolty et al., 2006 ) was obtained

hrough: 

 𝐴𝐶 = 𝑛 −1 
𝑛 ∑

𝑡 =1 
𝑎 𝑡 ( 𝑓 ) ⋅ 𝑒 𝑖𝜃𝑡 ∨

Where t corresponds to a certain time point, a denotes the power at

 certain specific frequency for this specific time point, i is the imagi-

ary variable, 𝜃 the phase angle and n the number of time points. PAC

alues were Z-transformed (i.e., ZPAC) by means of a non-parametric

ermutation test. This was carried out by shuffling repeatedly the power

alues (maintaining the phase array) with the aim of drawing a distri-

ution allowing null hypothesis testing. This distribution was then used

o make a comparison with every observation. Ultimately, this proce-

ure avoids problems of circular normality, power fluctuations and scal-

ng (Cohen, 2014). In the manuscript, we will refer to ZPAC V1 Alpha

hase – V5 Gamma amplitude (ZPAC-V1p Alpha V5a Gamma ) as a bottom-

p modulation and PAC V1 Gamma amplitude – V5 Alpha phase (ZPAC-

1a Gamma V5p Alpha ) as a top-down modulation (see Nandi et al., 2019 ).

e have chosen a priori these two bands of interest, Alpha and Gamma,

ecause the oscillatory traces that have been widely reported in litera-

ure of the visual system rather correspond to these two frequency bands

 Michalareas et al., 2016 ; ( van Kerkoerle et al., 2014 ) ( Doesburg et al.,

009 ); Fries, 2015 ; Gray and Singer, 1989 ; Hanslmayr et al., 2011;

ensen and Mazaheri, 2010; Michalareas et al., 2016; Tu et al., 2016) .

oreover, our hypothesis is built under the premise that if we stimulate

n the Alpha band, that is the frequency that is going to be modulated

 Dosher and Lu, 1998 ) by the stimulation. In order to verify the lack of

nfluence concerning the signal leakage problem in the calculation of

he Phase Amplitude Coupling, computations showing the modulation

f the phase and amplitude within the same areas of source estimates

ere computed (See supplementary Fig. 2). 

.7. Statistical analyses 

Behavior: Statistical analyses were carried out using mixed-effect lin-

ar models. The evolution of the baseline-corrected NDR was investi-
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ated as a dependent variable, with stimulation group and time points

s the main fixed effects. 

EEG metrics: PSD (Gamma and Alpha components across time) sig-

ificance within subjects was tested through a sliding FDR-corrected T-

est. Significance within subjects in the Coherence and Phase-Amplitude

oupling spectrums were evaluated through non-parametric permuta-

ion tests and clusters-based corrected for multiple comparisons. Differ-

nces were considered significant when p < 0.05. 

A mixed linear model was performed in order to evaluate the vari-

bility of the chosen EEG metric (dependent variable) over time, among

timulation groups. 

Best EEG metric: In order to determine the EEG metric that had the

ighest impact on the behavioral scores and then reduce the model space

f the baseline-corrected NDR mixed linear model, an embedded regu-

arization method (i.e., least absolute shrinkage and selection operator -

asso) was applied ( Tibshirani, 1996 ) following the Langragian version

f the formula: 

𝑟𝑔𝑚𝑖 𝑛 𝛽‖𝑦 − 𝐹 ⋅ 𝛽‖2 + 𝜆𝑠 ‖𝛽‖
here 𝛽 corresponds to the unknown vector of weighted coefficients

stimated for every metric (regression coefficient), y is the matrix with

ll the labeled metrics, 𝜆 is in charge of the variable selection and F

orrespond to the acquired data points. Lasso was selected due to the fact

hat it provides a preferred solution with the highest sparsity given the

hrink provided by the penalty term. The vector of 𝜆 chosen consisted

n 30 testing points spaced between 0 and 1. The number of iterations

as set to 1000. 

Behavior ± EEG: As a second step, covariates that could explain vari-

nce in NDR outcome and a possible interaction effect with stimulation

roup were added to the first mixed linear model. A random intercept

er subject was used to correct for the dependency between time points

or all models. Given that we implement a single mixed linear model

ith several factors accounting for the variance of the same variable

i.e., NDR), there is no need to correct for multiple comparisons. All

ontrasts were obtained by changing the labels at the intercept. The

esiduals of each statistical model were tested for normality by inspect-

ng histograms and through the omnibus normality test ( D’Agostino and

earson, 1973 ). 

. Results 

All participants tolerated the stimulation well and did not report any

dverse effects, such as peripheral sensory or phosphene perception.

ive participants could not be included in the analyses: One participant

iscontinued the experiment without stating the reason for it and four

articipants were discarded, due to poor performance (60% correct re-

ponses or less). Poor task performance prevented reliable curve-fitting

rocedures to extract our primary output, the direction range thresholds.

herefore, 45 full sets of data were analyzed, forming homogeneous

roups of 15 participants/group. For the EEG metrics of interest (ZPAC),

hree data points (i.e., 2 from the In-Phase group, 1 from the Anti-Phase

roup) were found by Cook’s Distance algorithm ( Cook, 1977 ) to be

ore than two standard deviations from the mean of the distribution,

nd were thus not included in the analyses. 

.1. Motion direction performance throughout groups and time 

Fig. 2 A displays the mean baseline-corrected NDR thresholds across

articipants, reflecting the normalized motion direction value corre-

ponding to 75% correct performance (see Method section) across

roups and time. There was no statistically significant difference be-

ween groups at baseline (Anti Phase vs. In Phase b = 1.670, P = 0.809,

I = − 11.835 15.175, Sham vs. In Phase b = 3.260, P = 0.624,

I = − 9.770 16.290, Sham vs Anti Phase b = 1.590, P = 0.815,

I = − 11.696 14.876; see also Supplementary Table 1 providing the raw
5 
DR values), as the baseline values showed large variability, we applied

 baseline correction procedure to account for this variability. When

onsidering all the groups together, the change in baseline-corrected

DR was not significant between TP0 and TP10 ( b = − 0.05, P = 0.189,

I = − 0.124 0.024) nor between TP0 and TP30 ( b = − 0.067, P = 0.079,

I = − 0.141 0.008), neither between TP10 and TP30 ( b = − 0.017,

 = 0.657, CI = − 0.091 0.057). However, there was a significant differ-

nce at TP0, TP10 and TP30 between the In-Phase and the Anti-Phase

roup ( b = 0.257, P = 0.015, CI = 0.05 0.464). There was no difference

or other group comparisons for all time points ( b = 0.16, P = 0.118,

I = − 0.04 0.36 Sham and In-Phase; b = − 0.097, P = 0.349, CI = − 0.301

.107 Sham and Anti-Phase). 

.2. EEG results 

In all participants, the visual discrimination task led to an amplitude

ncrease in the Theta/Low Alpha band, right after the onset of the stim-

lus, followed by a phasic decrease in power in the High Alpha/Low

eta bands ~200 ms thereafter ( Fig. 2 B ). Additionally, in frequencies

bove 30 Hz, there was a constant decrease in magnitude during stim-

lus presentation, as previously described in the literature for this type

f visual task (e.g., Siegel et al., 2007 ; Townsend et al., 2017 ). 

The Lasso model, defined for each time point, showed that a single

EG marker, namely ZPAC-V1p Alpha V5a Gamma had the largest explana-

ory value for the variance of NDR at TP10 (R 

2 = 0.1081, 𝜆= 0.0516) and

P30 (R 

2 = 0.0731, 𝜆= 0.1114), irrespective of the stimulation group. 

Since the ZPAC-V1p Alpha V5a Gamma values best explained changes in

he performance after stimulation, the rest of the manuscript focuses

n this metric in order to further explore stimulation and time effects.

he opposite direction, ZPAC-V1a Gamma V5p Alpha was used as a control

nalysis to test for the directional specificity of the present results. 

Changes in bottom-up V1 Alpha phase (V1p Alpha ) - V5 Gamma

mplitude (V5a Gamma ) coupling 

Fig. 3 A shows the mean baseline-corrected ZPAC-V1p Alpha V5a Gamma 

alues for the three groups across time. As a pre-requisite, we ensured

hat there was no significant difference at baseline between the In Phase

roup and the Anti Phase group ( b = − 0.506, P = 0.486, CI = − 1.93

.918) nor between the In Phase and the Sham group ( b = − 1.052,

 = 0.121, CI = − 2.382 0.279). Likewise, there was no significant differ-

nce between the Anti Phase and the Sham group ( b = − 0.545, P = 0.422,

I = − 1.878 0.787). These values were extracted from the significant

odulation of interest between the Alpha/High Theta and the Low

amma bands shown in Fig. 3 B. It reveals a significant diminishment

n the Alpha/High Theta (5–12 Hz) – Low Gamma (30–42 Hz) phase

mplitude coupling at TP10 for the Anti-Phase and the Sham group and

 significant augmentation in coupling for the In-Phase group. At TP30,

here is overall a more prominent augmentation of the coupling for the

n-Phase group, a more pronounced diminishment for the Anti-Phase

nd rather a stable response for the Sham group. To statistically ana-

yze the descriptive differences between the three conditions, we com-

uted a mixed linear model on the ZPAC-V1p Alpha V5a Gamma values. The

odel returned a marginally significant change over time between the

nterval TP10 and TP30 ( b = − 0.769, P = 0.055, CI = − 1.556, 0.018),

ut no significant differences between the Anti-Phase and the In-Phase

roups ( b = 0.836, P = 0.35, CI = − 0.916, 2.588). This held true also

hen comparing the Anti-Phase and Sham groups ( b = 1.009, P = 0.249,

I = − 0.708 2.726), and the In-Phase and Sham groups ( b = 0.173,

 = 0.84, CI = − 1.51 1.856). 

When ZPAC-V1p Alpha V5a Gamma values were entered as a single con-

ounder into the baseline-corrected NDR model, it did not significantly

ccount for the overall variance for all the stimulation groups at all time

oints ( b = 0.015, P = 0.196, CI = − 0.008, 0.039). However, ZPAC-

1pV5a from the Anti-Phase group as compared to the In-Phase group,

id significantly account for the variability of the NDR as a fixed ef-

ect over time at both TP10 and TP30 ( b = 0.071, P = 0.048, CI = 0.001,
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Fig. 2. Main behavioral results and their main EEG associated traces. (A) Baseline-corrected NDR (Normalized Direction Range) threshold evolution across 

time-points for the three stimulation conditions. Bars correspond to Standard Errors of the Mean (SEM). Anti-Phase stimulation induced an increased performance 

translating into a significantly pronounced behavioral improvement over time at the group level. The behavioral performance of the Anti-Phase group was significantly 

enhanced compared to the In-Phase group. (B) Time-frequency representation of the averaged response during a trial at the baseline period, before the stimulation. 

It shows a typical Event Related Synchronization at (ERS) the Theta/Alpha band, followed by an Event Related Desynchronization (ERD) in the Beta band (in z- 

scores). (C) 3D plot representation of the normalized activation of sources V1 and V5 of interest defined using the templates provided in the “SPM ” open access 

database included in the MNE library ( Wakeman and Henson, 2015 ) for the Alpha and Gamma band during the stimulus presentation. 

0  

f  

C  

S  

t  

T

3

p

 

e  

F

.142). This was not the case when comparing the ZPAC-V1pV5a values

rom the In-Phase group versus those from Sham ( b = − 0.023, P = 0.44,

I = 0.081, 0.035), nor when comparing those from Anti-Phase and

ham groups ( b = 0.048, P = 0.095, CI = − 0.008, 0.105) at any of the

wo time points (all other comparisons are shown in the Supplementary

able 2). 
6 
.3. Changes in top-down V1 gamma amplitude (V1a Gamma ) - V5 Alpha 

hase (V5p Alpha ) coupling 

To test the eventual directional specificity of the present results, we

xamined the opposite phase-amplitude coupling between V1 and V5.

ig. 4 A provides the descriptive data for the ZPAC-V1a Gamma V5p Alpha 
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Fig. 3. V1-Alpha phase V5-Gamma Amplitude PAC (A) Baseline-corrected, bottom-up V1-Alpha phase V5-Gamma Amplitude coupling across time-points . 

Bars correspond to Standard Errors of the Mean (SEM). Please note the strong decrease for the In-Phase group towards TP30. ( B) Averaged, baseline-corrected, 

V1-Gamma amplitude V5-Alpha phase coupling spectrums for the three stimulation groups and for the two time points after stimulation averaged during the 

stimulus presentation interval. Significant clusters are highlighted in red ( p < 0.05, corrected for multiple comparisons). 
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or all 3 experimental groups over time. To statistically analyze these

ata, we applied a comparable approach as in the previous section. Base-

ine comparison revealed no overall baseline difference group versus

nti-Phase group ( b = − 0.587, P = 0.457, CI = − 2.136 0.962), In-Phase

roup versus Sham group ( b = 0.141, P = 0.85, CI = − 1.318 1.599) and

nti Phase group versus Sham group ( b = 0.728, P = 0.324, CI = − 0.718

.175). Fig. 4 B shows the results for the ZPAC-V1a Gamma V5p Alpha ,

hich appeared to have a significant Alpha/Theta – Low Gamma phase
7 
mplitude cluster at both TP10 and TP30. Diminished coupling is evi-

ent for the three stimulation groups when V5 Alpha/ High Theta (6–

0 Hz) modulated Low V1 Low Gamma (30–37 Hz) amplitude. We then

uilt a similar mixed linear model using the ZPAC-V1a Gamma V5p Alpha 

alues. These analyses showed no significant change in time between

P10 and TP30 ( b = 0.409, P = 0.286, CI = − 0.343, 1.161). Neither at

P10 nor at TP30 was a significant difference between the Anti-Phase

nd Sham group ( b = − 0.718, P = 0.484, CI = − 2.727, 1.292), between
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Fig. 4. V1-Gamma amplitude V5-Alpha phase PAC (A) Baseline-corrected, top-down V1-Gamma amplitude V5-Alpha phase coupling across time-points. 

Bars correspond to Standard Errors of the Mean (SEM). (B) Averaged, baseline-corrected, V1-Gamma amplitude V5-Alpha phase coupling spectrums for the 

three stimulation groups and for the two time points after stimulation averaged during the stimulus presentation interval. Significant clusters are highlighted in red 

( p < 0.05, corrected for multiple comparisons). 
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he Anti-Phase and In-Phase group ( b = 0.695, P = 0.506, CI = − 1.353,

.744) or between the In-Phase and Sham group ( b = − 1.413, P = 0.161,

I = − 3.39, 0.564). Unsurprisingly, when ZPAC-V1a Gamma V5p Alpha was

ntered as a confounder into the NDR model, it did not significantly

ccount for the variance in NDR scores for all the stimulation groups

ogether at all time points ( b = − 0.007, P = 0.53, CI = − 0.029, 0.015).

dditionally, there was an absence of a significant interaction between

PAC-V1a Gamma V5p Alpha and each stimulation group, suggesting that

he ZPAC-V1a Gamma V5p Alpha group values did not explain the group

ifferences in the NDR values at all timepoints (In-Phase vs. Anti-Phase:

 = − 0.055, P = 0.432, CI = − 0.191, 0.082, In-Phase vs. Sham: b = 0.006,

 = 0.908, CI = − 0.09, 0.101, Anti-Phase vs. Sham: b = 0.06, P = 0.234,

I = − 0.039, 0.16) (all other comparisons are shown in the Supplemen-

ary Table 3). 
8 
. Discussion 

By applying multisite tACS in the Alpha range to V1 and V5 with a

hase difference of 180° (Anti-Phase) with respect to zero degree (In-

hase), we were able to improve motion direction discrimination and

ntegration in young healthy individuals, by modulating inter-regional

scillatory coupling between the two stimulated areas (see Fig. 5 ). More

pecifically, the three main findings can be summarized as follows: (1)

nti-Phase V1 Alpha -V5 Alpha tACS stimulation leads to an improvement

n visual performance shortly after stimulation compared to In-Phase

1 Alpha -V5 Alpha , which appears rather detrimental to motion discrimina-

ion and integration, (2) improved performance with Anti-Phase V1 Alpha -

5 Alpha tACS can best be explained by reduced bottom-up V1 Alpha

hase - V5 Gamma amplitude coupling ( ZPAC-V1p Alpha V5a Gamma ), and
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Fig. 5. Summary and mechanistic interpretation of the effects of bifocal In-Phase tACS (left part) and the Anti-Phase tACS (right part). 
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(  
3) the opposite, top-down modulation ( ZPAC-V5p Alpha V1a Gamma ) did

ot influence performance in the current paradigm. 

.1. Anti-Phase V1A lpha -V5 Alpha tACS and In-Phase V1 Alpha -V5 Alpha tACS 

rive opposite effects on motion discrimination and integration 

In-Phase tACS between two distant regions is motivated by the

dea of increasing interregional synchronization and connectivity within

 network ( Polanía et al., 2012 ; Schwab et al., 2019 ; Vieira et al.,

020 ), under the hypothesis that a reduced phase-lag (~0°) between

ites would promote an optimal inter-areal coupling and thus, opti-

al communication (Fries, 2005)). There is empirical evidence support-

ng this hypothesis. For instance, In-Phase stimulation has been associ-

ted with increased performance in visuo-attentional and memory tasks

 Alagapan et al., 2019 ; Polanía et al., 2012 ; Violante et al., 2017 ), to-

ether with increased phase synchronization in the stimulated frequency

and. In contrast to these data however, the present results showed op-

osite effects, i.e., the In-Phase condition rather impaired visual dis-

rimination capacity during the stimulation period of 13 ± 2 min, and

erformance did not improve, but rather decreased 10 and even 30 min

fter applying it. 

Visual discrimination is associated with local Alpha desynchroniza-

ion right after stimulus presentation ( Dijk et al., 2008 ; Erickson et al.,

019 ; Hillyard et al., 1998 ; Sauseng et al., 2009; Zammit et al., 2018 ).

ubsequently, it has been shown in several perceptual experimental

odalities that a decrease in the Alpha-Beta band is linked to better

timulus perception ( Griffiths et al., 2019 ). Thus, a high amplitude and

ero-phase lag condition seems not to be optimal in this case because, as

hown in the present data, focal increases in V1 Alpha phase - V5 Gamma

mplitude coupling post stimulation (co-modulograms) are rather asso-

iated with poor performance. Instead, the underlying oscillatory mech-

nisms would most likely involve an intricate orchestration of oscilla-

ory signatures that travels throughout the clusters of the neural net-

ork, controlled by stimuli properties ( Muller et al., 2018 ). This oscil-

atory orchestration could be modeled as a multi-level interacting dy-

amical system ( Alexander et al., 2019 ). Ultimately, cognition relies on

eedback and feedforward dynamics. These processes are only possible

hrough complex, well-orchestrated phase and amplitude interactions

 Siegel et al., 2012 ). 

From a more integrative perspective, the inhibition timing hypoth-

sis ( Klimesch, 2012 ) states that the optimal electrophysiological sce-

ario that promotes perception relies on an inter-regional interplay of

lpha inhibition and Alpha disinhibition among areas belonging to the

ame network, as shown in the visual cortex ( Shen et al., 2011 ). When

his precise timing of activation/deactivation is disrupted by enforced

lpha In-Phase rhythms, it might generate a subsequent flood of mas-
9 
ively synchronized signals, creating an artificial source of noise that

ay prevent accurate perception of stimulus features ( Faisal et al., 2008 ;

oytek and Knight, 2015 ). The neuronal oscillatory system might re-

uire some time to come back to its basal processing state, as pointing

o for the performance at 10 min and 30 min after stimulation of the

n-Phase group. 

In conclusion, though based on a straight forward assumption, pos-

tive behavioral effects are not always necessarily associated with an

n-Phase synchronized magnification of the Alpha occipital rhythms,

ut under certain circumstances visual processing is driven through an

rdered gating of oscillations that the Anti-Phase condition might pro-

ote. As a matter of fact, the improved offline performance reported in

he present study is in accordance with a body of literature showing that

nter-areal Anti-Phase stimulation might boost behavior in several con-

exts. For instance, Beta band Anti-Phase bi-hemispheric stimulation has

een shown to increase visual attentional capacity ( Yaple and Vakhru-

hev, 2018 ). In the same vein, Theta band Anti-Phase stimulation over

he prefrontal and perysilvian area has been found to improve controlled

emory retrieval ( Marko et al., 2019 ), while Gamma band Anti-Phase

timulation between the cerebellum and M1 enhances visuomotor con-

rol ( Miyaguchi et al., 2019 ). Here, we found that Anti-Phase V1 Alpha -

5 Alpha tACS applied on average for 13 ± 2 min during a motion discrim-

nation task significantly supported motion direction discrimination and

ntegration 10 min after the end of the stimulation and the effects con-

inued to strengthen even 30 min later when compared to In-Phase. 

Alekseichuk and colleagues compared intracranial recordings in the

emporal area of macaques undergoing frontoparietal 10 Hz Anti-Phase

r In-Phase stimulation, as well as, the voltage and electric field distri-

ution associated with the two stimulation modes ( Alekseichuk et al.,

019 ). Results showed a higher electric field magnitude, plus an uni-

irectional concentration of field lines for the Anti-Phase condition,

hereas for the In-Phase condition there was a reduced magnitude and a

idirectional flow of electric field lines. The present electrical field sim-

lation globally revealed similar spatial patterns suggesting that Anti-

hase stimulation generates more dynamical changes in electrical field

istribution, with specific dynamics across time, which might be related

o signal propagation speed. 

After-effects of tACS are under debate in the field ( Strüber et al.,

015 ), we think that the improved performance measured in the Anti-

hase group, which persists over time, are not only explained by an

ffline effect of the stimulation per se. Instead, we argue that it is the

epeated practice of the task combined with the Anti-Phase tACS con-

ition that promotes a “learning-like aftereffect ”. These after-effects

ight indeed find a justification in the accumulation of offline ef-

ects that lead to a carry-over of the achieved behavioral improvement

 Heise et al., 2019 ). These offline effects might then generate favorable
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lastic changes in the visual cortex due to the learning associated with

he task, as it has been shown in non-human primates ( Yang and Maun-

ell, 2004 ). 

.2. Anti-Phase tACS might exert its beneficial behavioural effects through 

ottom-up phase-amplitude decoupling 

The present positive behavioral effects were associated with a

ottom-up V1-Alpha phase V5-Gamma amplitude decoupling. This mea-

ure reflects the idea that the feedforward direction between V1 and V5

s regulated by a controlled amplitude modulation of Alpha-V1 over the

hase of Gamma-V5, which scales with improved motion discrimination

n the Anti-Phase group. Using EEG-derived phase amplitude coupling,

t is possible to infer directionality of signal flow ( Nandi et al., 2019 ).

he direction of the coupling is assumed to be bottom-up if the modu-

ating signal (Alpha band) is recorded in a primary functional neuronal

opulation, located in lower anatomical areas (V1), whereas the carrier

ignal (Gamma band) is rather on higher cognitive and anatomical ar-

as (MT/V5), receiving inputs mainly from other regions of the cortex

 Jiang et al., 2015 ). Otherwise, the interaction ought to be top-down.

his idea could be supported at some extent from a signal processing

oint of view, where it is presumed that in order to achieve modulation,

he low frequency Alpha wave holding the information must travel and

e imposed over the amplitude of the local high frequency Gamma that

urns into the carrier wave (Roder, 1931) . This superimposition of Al-

ha V1 into Gamma V5, provides a framework of direction and thus,

n orientation of information flow. Furthermore, this idea is also fed by

lectrophysiological studies in primates, where it have been shown that

igh-frequency Gamma oscillatory activity (e.g., amplitude modulation

oefficients almost equal to 1, meaning that the amplitude of the modu-

ating signal equals the maximum peak amplitude of the carrier without

odulation) preferably seems to travel in a feedforward manner in the

isual cortex, whereas low-frequency Alpha (e.g., amplitude modulation

oefficient almost equals to 0) appears to flow in a feedback direction

 Michalareas et al., 2016 ) ( van Kerkoerle et al., 2014 ). 

Visual stimulus onset has been shown to trigger propagating rhythms

n the primary and secondary visual cortices of monkeys, leading to

 specific phase relationship between the oscillations at both sites

 Muller et al., 2014 ). In humans, propagation of feedforward flows has

een reported during visual motion discrimination, with latencies mod-

lated by characteristics of the stimulus ( Sato et al., 2012 ; Seriès et al.,

002 ). Then, this suggests the idea that there is an optimal range of Al-

ha rhythm magnitude that is more favorable to generate trains of local

amma bursts, which might convey the most relevant information of the

isual stimulus’ features to promote motion discrimination ( Nelli et al.,

017 ; Tu et al., 2016 ). 

This bottom-up Alpha-Gamma interaction is in line with the theory

f cross-frequency nested oscillations ( Bonnefond et al., 2017 ). Accord-

ngly, the organization of tasks in the visual system is done through the

imed gating of information encoded in local Gamma bursts, happening

very 10–30 ms and that are regulated through the Alpha inhibitory role

 Jensen et al., 2014 ). Additionally, our finding that changes in phase am-

litude coupling between Alpha-V1 and Gamma-V5 predict behavioural

mprovements in the Anti-Phase group is congruent with the fact that

otion discrimination has been shown to occur as a feedforward oscilla-

ory phenomenon ( Seriès et al., 2002 ), and that these oscillations in the

ccipital cortex do not only belong to a single frequency band, but rather

o a modulation of Alpha and Gamma rhythms ( Bahramisharif et al.,

013 ). 

Finally, we did not find any significant changes in the opposite

op-down V5-Alpha phase - V1-Gamma Amplitude coupling and the

alues measured 10 min and 30 min after stimulation did not ac-

ount for changes in motion discrimination performance or their vari-

nce. Although recordings in monkeys’ visual cortex have shown a

op-down Alpha-Beta that granger-causes a bottom-up Gamma rhythm

 Richter et al., 2017 ), it does not necessarily contradict our findings
10 
ince what we report reflect bottom-up coupled nested oscillations from

ne neuronal cluster to another, rather than a causal generation of os-

illatory activity from one site to another. These markers indeed im-

ly two different processes of interaction, in most of the circumstances,

ot mutually exclusive. Then, there might be different cross-frequency

echanisms that sustain visual discrimination that are revealed by these

ifferent electrophysiological markers. Exploring this variety of markers

ight lead to a better understanding of neural communication support-

ng visual discrimination. 

. Conclusions 

The present experiments revealed that generating Anti-Phase oscil-

ation patterns between V1 and V5 during motion discrimination us-

ng bi-focal tACS might enhance performance persisting even after the

timulation period. These after-effects were mechanistically partially ex-

lained by changes in bottom-up V1-Alpha V5-Gamma Phase-Amplitude

oupling. We believe that these results might illustrate enhanced signal

ropagation from V1 to higher visual areas, under a precise phase-timing

elationship. One can speculate that an optimal phase-lag between stim-

lation sites, induced by Anti-Phase tACS aftereffects, did promote neu-

onal communication because of the inherent speed of wave propaga-

ion. Furthermore, one could infer that Alpha Anti-Phase tACS might act

s a controller of the Alpha disinhibition-gating capacities and as such,

ight modulate bottom-up trains of Gamma bursts in the V1-V5 path-

ay. The precise characteristics of the Gamma bursts (e.g., phase, time)

ight play a significant role in improving the performance in motion

iscrimination. 

The present findings might point towards the exciting potential of

he current approach to be extended towards an ameliorated stimula-

ion orchestration with cross-frequency montages targeting the motion

iscrimination pathway. Furthermore, it potentially opens a novel di-

ection of non-invasive interventions to treat patients with deficits in

he visual domain, such as after a stroke. 
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