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Augmented Inverse Probability Weighting

and the Double Robustness Property

Christoph F. Kurz

This article discusses the augmented inverse propensity weighted (AIPW) estimator as an estimator for average treat-
ment effects. The AIPW combines both the properties of the regression-based estimator and the inverse probability
weighted (IPW) estimator and is therefore a ‘‘doubly robust’’ method in that it requires only either the propensity or
outcome model to be correctly specified but not both. Even though this estimator has been known for years, it is
rarely used in practice. After explaining the estimator and proving the double robustness property, I conduct a simu-
lation study to compare the AIPW efficiency with IPW and regression under different scenarios of misspecification.
In 2 real-world examples, I provide a step-by-step guide on implementing the AIPW estimator in practice. I show
that it is an easily usable method that extends the IPW to reduce variability and improve estimation accuracy.

Highlights

� Average treatment effects are often estimated by regression or inverse probability weighting methods, but
both are vulnerable to bias.

� The augmented inverse probability weighted estimator is an easy-to-use method for average treatment
effects that can be less biased because of the double robustness property.
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Estimating treatment effects is central to health economic
practice to evaluate policy interventions and medical
trials. Ideally, the effects caused by treatments are investi-
gated in experiments that randomly assign individuals to
treatment or control, thereby ensuring that comparable
groups are compared under competing treatments, but
many experiments with humans are infeasible or unethi-
cal.1 Therefore, most analyses rely on observational data.

In this article, I discuss an estimator for average treat-
ment effects (ATEs) known as the augmented inverse pro-
pensity weighted (AIPW) estimator. Although the AIPW
has been known for 20 y, most analyses in health and

social sciences rely on the traditional inverse propensity
weighted (IPW) estimator or the regression estimator.2

There was a typo in the AIPW estimator equation on page 159 in the

initial publication that has been corrected. For full details please see

Corrigendum 10.1177/0272989X221075672.
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The AIPW estimator involves 2 basic steps: first, fit-
ting a propensity score model (i.e., the estimated prob-
ability of treatment assignment conditional on observed
baseline characteristics), and second, fitting 2 models that
estimate the outcome under treatment and control condi-
tions. Each outcome is then weighted by the propensity
score from the previous step to produce a weighted aver-
age of the 2 outcome models.

I illustrate that the AIPW estimator has a property
called ‘‘double robustness,’’ meaning that it is consistent
(i.e., it converges in probability to the true value of the
parameter) for the ATE if either the propensity score model
or the outcome model is correctly specified.3 To demon-
strate the accuracy of the AIPW estimator for the ATE, I
conduct a Monte Carlo simulation study to compare it to
the IPW estimator and a regression estimator and provide
real-world examples on how to apply it. I show that this is
an easy-to-use estimator that can be more accurate under
different scenarios of misspecification (i.e., when treatment
assignment or outcome model are uncertain).

Causal Effects Framework

Throughout this article, I will stick to the causal effects
framework established by Neyman4 and Rubin.5 Suppose
N individuals, indexed by n= 1, . . . ,N and randomly
sampled from some population, a binary treatment assign-
ment A 2 f0, 1g, Xn a set of observed covariates, and Yn a
continuous outcome. In this setting, Y (1)

n is the outcome
that we would observe if individual n had received treat-
ment and Y (0)

n otherwise. These quantities are often
referred to as the ‘‘potential’’ outcomes, given that we
never observe both Y (1)

n and Y (0)
n for the same individual:

Y (An)
n =

Y (1)
n if An = 1

Y (0)
n if An = 0:

(

In other words, for a binary cause with 2 causal states
and associated potential outcome variables Y (1)

n and Y (0)
n ,

a corresponding causal exposure variable, An, is specified
that takes on 2 values: An is equal to 1 for members of
the population who are exposed to the treatment state
and equal to 0 for members of the population who are
exposed to the control state. Exposure to the alternative

causal states is decided through a specific mechanism,
usually an individual’s decision to join one state or
another, an outside actor’s decision to assign individuals
to one state or another, a planned random allocation
carried out by an investigator, or any combination of
these alternatives.6 The causal effect of the treatment can
be represented by the difference in potential outcomes,
Y (1) � Y (0). We assume that the actual observed outcome
is connected to the potential outcomes through

Yn = Y (1)
n An + Y (0)

n (1� An):

This equation implies that one can never observe the poten-
tial outcome under the treatment state for those observed in
the control state, and one can never observe the potential
outcome under the control state for those observed in the
treatment state. The fact that we are missing either Y (1)

n or
Y (0)

n for every observation is sometimes called the ‘‘funda-
mental problem of causal inference.’’7,8

The probability distribution of Y (An)
n represents how

outcomes in the population would turn out if everyone
received treatment (A= 1) or control (A= 0), with
means E Y (1)

n

� �
and E Y (0)

n

� �
, respectively.

Because calculating individual-level causal effects is
usually difficult, we concentrate on estimating carefully
described aggregate causal effects. Where the difference in
possible outcomes is used to describe the individual-level
causal effect, aggregate causal effects are usually defined
as averages of these individual-level effects. The broadest
possible average effect is the ATE in the population as a
whole. To have a causal interpretation for the ATE,

tATE =E Y 1
n � Y 0

n

� �
,

we need to require restrictions on the data-generating dis-
tribution. First, we assume that the stable unit treatment
value assumption (SUTVA)9 holds, such that the treatment
status of a given individual does not affect the potential
outcomes of any other individual. It is a basic assumption
of causal effect stability that can often be enforced through
careful study design.10 See Morgan and Winship6 for
examples of possible violations of the SUTVA assumption.

Second, we assume exchangeability (also called ‘‘ignor-
ability,’’ ‘‘exogeneity,’’ ‘‘unconfoundedness,’’ or ‘‘selection
on observables’’) given X, that is, all causes of both the
treatment and the outcome have been measured:

Y (1)
n , Y (0)

n

� �
?? AnjXn, ð1Þ

where the symbol ?? denotes statistical independence.
This assumption implies that the missing outcome
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information for the counterfactual treatment status for a
given individual can be recovered using individuals with
similar observed characteristics. In other words, under
exchangeability, the actual exposure does not predict the
counterfactual outcome,11 and controlling for X makes the
treatment unconfounded. Exchangeability means that
treatment decisions (or assignments) are not based on
what the outcomes might be under various scenarios for
treatment. If we undertake to assess the effect of some
treatment, we need to make sure that any response differ-
ences between the treated and the control group are due to
the treatment itself and not to some intrinsic differences
between the groups that are unrelated to the treatment.6,11

An important third assumption is positivity (or over-
lap), that is, every individual has a positive nonzero prob-
ability of receiving treatment,

0\P(An = 1jXn)\1: ð2Þ

Equation 1 allows for the identificaiton of treatment
effect parameters by conditioning on X ,

E Y (1) � Y (0)jX
� �

=C(X )=E Y jA= 1,X½ � � E Y jA= 0,X½ �,

and together with Equation 2 implies

tATE =E E Y jA= 1,X½ � � E Y jA= 0,X½ �½ �: ð3Þ

The violation of any of these assumptions means cau-
sal effects will not be identifiable,7,12 meaning estimates
will be biased for the ‘‘true’’ ATE.

Under SUTVA, the ATE represents the difference in
average outcomes induced by shifting the entire popula-
tion from no treatment (i.e., control) to treatment,13 but
researchers often aim to estimate ATE after accounting
for a set of individuals’ characteristics, X . This means that
when we average over all possible values of X , we get

E E Y jA= 1,X½ �½ �=E E Y (1)jA= 1,X
� �� �

=E E Y (1)jX
� �� �

=E Y (1)
� �

,

and similarly, E E Y jA= 0,X½ �½ �=E Y (0)
� �

.

Estimating the Treatment Effect

Traditional causal estimation relies on either fitting a
model for the outcome conditional on the treatment and
confounding covariates (often called modeling the
response surface [RSM]i or modeling the treatment assign-
ment mechanism).14 Models to fit the response surface

include regression models but also more advanced models
from the machine-learning literature.15,16 According to
Equation 3, if we define E Y jAn = 1,Xn = x½ �= f (1, x) and
E Y jAn = 0,Xn = x½ �= f (0, x), we get the formula for the
treatment effect:

tATE =E f (1,X )� f (0,X )½ �,

and all approaches that can flexibly estimate f yield the
following estimator of the ATE:

t̂RSM
ATE =

1

N

XN

1= n

(f̂ (1,Xn)� f̂ (0,Xn)):

This is the empirical analog of Equation 3, and it relies
on the same assumptions (Equation 1 and Equation 2).
It is also equivalent to estimating the contrast function
C(X ) at each of the observed data points:

ĈRSM (Xn)= f̂ (1,Xn)� f̂ (0,Xn):

These outcome models are basically used to estimate a
contrast between what would happen if every observation
were put in the control group and what would happen if
every observation were put in the treatment group.17

However, modeling the response surface has a major
disadvantage: it requires that the postulated model f is
correct, that is, f must capture the true relationship
between Y, A, and X. For example, regression analysis
cannot reliably adjust for differences in observed covari-
ates when there are substantial differences in the distri-
bution of these covariates in the 2 groups.18 Estimation
over such nonoverlapping ranges may massively underes-
timate the uncertainty in this estimator.19

For these reasons, researchers opted for methods that
model treatment assignment instead of (regression) mod-
els for the outcome.20 IPW removes confounding by cre-
ating a ‘‘pseudo-population’’ in which the treatment is
independent of the measured confounders.21 When we
define the propensity score as the conditional probability
of receiving treatment given covariate values,

e(X )=E A= 1jX½ �,

we can rewrite the treatment effect as

tATE =E
AY

e(X )
� (1� A)Y

1� e(X )

� �
: ð4Þ

See Appendix A.
Again, the IPW estimator can be obtained by the con-

trast function
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ĈIPW (Xn)=
AnYn

ê(Xn)
� (1� An)Yn

1� ê(Xn)
,

and the IPW estimator for the ATE is

t̂IPW
ATE =

1

N

XN

n= 1

AnYn

ê(Xn)
� (1� An)Yn

1� ê(Xn)

� 	
:

The fundamental difference between modeling the
response surface and approaches using propensity scores
(including IPW) is that the former models the relationship
between a covariate and the outcome, whereas the latter
models the relationship between the covariate and the
treatment assignment. The IPW estimator is constructed
by estimating each individual’s propensity score and then
weighting the observation for that individual by the
inverse of this estimated probability. That is, participants
in the treatment condition receive a weight of 1=ê(Xn), and
participants in the control condition receive a weight of
1=(1� ê(Xn)). Because of the exchangeability assumption,
we can generate an unbiased estimate of every potential
outcome by reweighting each sample by the inverse prob-
ability of that sample receiving the treatment we observed.

If the propensity score is known, then this IPW esti-
mator is unbiased. Therefore, e(x) must be the true pro-
pensity score for this estimator to be consistent.22 In
addition, the IPW has poor small sample size properties
when the propensity score gets close to 0 or 1. For exam-
ple, a unit that receives treatment and very low propen-
sity scores (i.e., is highly unlikely to receive the treatment
based on the observed covariates) will provide extreme
contributions to the estimate.

AIPW Estimator

For these reasons, the IPW estimator has been improved
to combine information about the probability of treat-
ment and predictive information about the outcome vari-
able. Robins et al.17 augmented the IPW by a weighted
average of the outcome model, called the augmented
inverse propensity weighted (AIPW) estimator:

ĈAIPW (Xn)=
AnYn

e(Xn)|ffl{zffl}
IPW

�An � e(Xn)

e(Xn)
f (1,Xn)|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Augmentation

0
BBB@

1
CCCA

� (1� An)Yn

1� e(Xn)|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
IPW

�An � e(Xn)

1� e(Xn)
f (0,Xn)|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Augmentation

0
BBB@

1
CCCA,

t̂AIPW
ATE =

1

N

XN

n= 1

ĈAIPW (Xn):

This AIPW is called ‘‘doubly robust’’ because it is consis-
tent as long as either the treatment assignment mechan-
ism or the outcome model is correctly specified. If, for
example, the propensity score e(Xn) does a very good job
of estimating whether or not the patient will receive the
treatment of interest, then An � e(Xn) will go to 0 in
expectation and AIPW will simplify to the IPW estima-
tor. In the same way, if the propensity score is inaccurate,
the estimator reduces to the RSM model. See Appendix
B for detailed proofs. If both RSM and propensity score
are replaced with their true counterparts, the augmenta-
tion term again has expectation zero.

The AIPW is more flexible in that it does not require
the same set of covariates Xn to be used in both the pro-
pensity score model and the response surface model. The
only requirement is that conditional ignorability holds
given Xn. In addition, ĈAIPW can be shown to be asymp-
totically normally distributed, and valid standard errors
can be derived by an empirical sandwich estimator23,24 or
bootstrapping,20,25 It is easy to see that this method aug-
ments the IPW to reduce variability and improve esti-
mate efficiency while holding the same assumptions as
the IPW. The only drawback of this estimator is that one
must estimate a propensity score model and 2 response
surface (e.g., regression) models (1 for treatment and 1
for control).

Monte Carlo Simulation

In a simulation study, I compared the performance of
the 3 ATE estimators described above: 1) the doubly
robust AIPW estimator, 2) the IPW estimator, and 3)
the ATE estimator based on RSM using regression. All
the data sets in the simulation feature 5 variables (similar
to Glynn and Quinn20): 3 covariates X1,X2,X3, binary
treatment status A, and continuous outcome Y . I drew
X1,X2, and X3 from standard normal distributions and
treatment status A from a Bernoulli distribution, where
the probabilities of A= 1 were dependent on the realized
X1,X2 through the standard normal distribution function
F( � ), Pr(A= 1jX )=F(X1 +X2 + 0:4X1X2). The inter-
action term adds a small degree of confounding. After
X1,X2,X3, and A were generated, I drew the outcome
variable Y from a normal distribution with a mean that
depends on X2,X3, and A and a constant variance of one,
Y ;N (1 � A+X2 +X3, 1). Using this specification, the
true treatment effect is exactly 1. Note that the treatment
assignment depends on X1 and X2, whereas the outcome
depends on X2, X3, and A. This means that adjusting for
X2 is sufficient to produce a consistent estimate of the
ATE of A on Y .26

I defined 3 settings to compare the accuracy of AIPW,
IPW, and RSM to estimate the treatment effect: 1) both
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propensity score and response surface are correctly speci-
fied; 2) the propensity score is correct, but the response
surface is not; and 3) the propensity score is incorrect
but the response surface is correctly specified. The incor-
rect propensity score is a logistic regression estimate of
A ; X1 (leaving out the confounder X2), whereas the
incorrect response surface model for the outcome esti-
mated Y ; X3 (again leaving out X2) using linear regres-
sion. I further defined a setting with low number of
observations (N = 300) and one with a high number of
observations (N = 5000). All Monte Carlo experiments
were repeated 1000 times.

Figure 1 presents the results of the Monte Carlo simu-
lation study. The general pattern is that only the AIPW
provides unbiased estimates across all settings. In the set-
ting in which both propensity score and outcome
response surface model are consistent, all 3 estimators,
AIPW, IPW, and RSM, estimate the ATE very accu-
rately. Here, RSM provides the least variation around
the true effect, followed by AIPW. In the setting in
which the response surface is incorrectly specified, RSM
estimates are severly biased, as expected. AIPW and
IPW are unbiased here. In the third setting with incor-
rectly specified propensity score, IPW is biased while
AIPW and RSM remain intact. In all settings, we see a
finite sample size effect as N increases from 300 to 5000,
producing more accurate ATE estimates.

Application

In this section, I will walk through 2 examples on how to
calculate the AIPW in a real-world setting. The first
example uses data from the RAND Health Insurance
Experiment (HIE). Because these data are based on a
randomized experiment, they avoid many problems such
as the exchangeability assumptions that observational
data have. However, this simple example nicely illus-
trates that under such ‘‘perfect’’ conditions, AIPW, IPW,
and RSM produce similar results. The second example
uses data from the National Health Interview Survey
(NHIS) to show how the AIPW can be robust to
misspecification.

Both examples are implemented in the R program-
ming language,27 but the AIPW estimator is also avail-
able in, for example, the teffects aipw function in
STATA and as an option for the causaltrt function
in SAS. For simplicity, these examples include a continu-
ous outcome (see Chernozhukov et al.28 for a discussion
of binary outcomes). The R code is also available as an
online supplement that additionally illustrates how to
calculate bootstrap confidence intervals.

The RAND HIE

In this example, I calculate the AIPW estimator using
data from the RAND HIE. This US study ran from 1974
to 1982 and measured health care costs, among other
outcomes, of people randomly assigned to 1 of 14 differ-
ent health insurance plans. The HIE was motivated pri-
marily by an interest to assess the impact of health
insurance on health care costs and health. In a very
ambitious attempt, the investigators tried to answer
whether free medical care led to better health and lower
costs than insurance plans that require the patient to
shoulder part of the cost. Participants did not have to
pay insurance premiums, although there were a number
of cost-sharing clauses in the policies, resulting in signifi-
cant variations in the amount of insurance they provided.
The most generous plan offered free comprehensive
treatment, whereas 6 ‘‘catastrophic coverage’’ plans at
the other end of the insurance spectrum required families
to pay 95% of their health care costs. All other plans
were in between these extremes with different amounts of
co-payment and coverage. Because of the many small
treatment groups spread over 14 insurance plans, most
analyses start by grouping subjects who were assigned to
similar HIE plans together.29

Here, I provide a very simplified analysis to measure
the causal effect of a ‘‘free’’ plan versus a ‘‘catastrophic’’
coverage plan on total medical costs. As illustrated, the
outcome of interest is total medical spending over 1 y,
and I include 5 covariates in the analysis (age, sex, race,
education, and number of chronic diseases). First, I load
the HIE data (available in the R package sampleSelec-
tion) and clean the data set:
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Figure 1 Box plot results of the simulation study to compare the accuracy of augmented inverse propensity weighted, inverse
probability weighted, and response surface estimators for the average treatment effect, based on 1000 repetitions in each panel.
The dashed red line marks the true treatment effect of 1.0.
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library(tidyverse)
data("RandHIE", package = "sampleSelection")
rand <- RandHIE %>%

mutate(plantype = case_when(plan %in% c(2,3,4,14,15,16) ~ "Catastrophic",
plan == 11 ~ "Free") %>% as_factor) %>%

# select only first year observation for each person
group_by(zper) %>% slice (1) %>%
select(xage , # age in years

female , # 1 if person is female
black , # 1 if race of household head is black
educdec , # education of household head in years
disea , # number of chronic diseases
meddol , # all covered medical expenses
plantype) %>%

# remove observations with missing values
drop_na()

The next step is to calculate the propensity score e(X ) and the response surface model, together with f (1,X ) and
f (0,X ). For simplicity, I use the same covariates in both propensity model and regression.

# calculate the propensity score
ps <- predict(glm(plantype ~ xage + female + black + educdec + disea , family = "

binomial", data = rand), type = "response") %>% as.numeric

# calc Ey
m <- glm(meddol ~ plantype + xage + female + black + educdec + disea , family = "

gaussian", data = rand)
# calc ey1
ey1 <- predict(m, newdata = rand %>% mutate(plantype="Free"), type = "response")

%>% as.numeric
# calc ey0

ey0 <- predict(m, newdata = rand %>% mutate(plantype="Catastrophic"), type = "
response") %>% as.numeric

Finally, I can easily calculate the AIPW using a custom function:

# aipw estimator
aipw <- function(a, y, ps , ey1 , ey0) {

mean( ( (a*y)/ps - (1-a)*y/(1-ps) ) - (a-ps)/(ps*(1-ps)) * ( (1-ps)*ey1 + ps*
ey0 ) )

}
aipw(a = as.numeric(rand$plantype)-1, ps = ps , y = rand$meddol , ey1 = ey1 , ey0 =

ey0)
> 78.31

This results in an estimate of US $78.31 increased medical spending for participants in the ‘‘free’’ health insurance
plan over a year. For comparison, I calculate the IPW estimator and the response surface model based on linear
regression:
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# ipw estimator
ipw <- function(a, y, ps) {

mean(a*y/ps - (1-a)*y/(1-ps))
}
ipw(a = as.numeric(rand$plantype)-1, y = rand$meddol , ps = ps)
> 78.18

# regression estimate
mean(ey1 - ey0)
> 77.52

I get estimates of 78.18 for IPW and 77.52 for the response surface model. All results are very close, and one can
be somewhat sure that both the propensity model and outcome response surface model are correctly specified. This is
expected because this example is a randomized experiment in which the risk of misspecification is low.

NHIS 2009

The NHIS is an annual survey of the US population with detailed information on health and health insurance. The
research question in this example is whether having health insurance is associated with better health. For that, I used
an index that ranges from 1 to 5, where 5 indicates excellent health and 1 poor health as the outcome of interest. This
index is based on self-reports. For simplicity, I restrict to a sample of married 2009 NHIS respondents between 26
and 59 y old who may or may not be insured. Available covariates include age, sex, education, family size, employ-
ment status, and household income. The first step is loading and cleaning the data:

data("NHIS2009", package = "masteringmetrics")
# install with
# devtools :: install_github (" jrnold/masteringmetrics", subdir = "masteringmetrics

")

nhis <- NHIS2009 %>%
# only include married adults between 26 and 59 in age and

# remove single households
filter(between(age , 26, 59),

marradult , adltempl >= 1) %>%
select(age , # age

fml , # female yes/no
yedu , # years of education
famsize , # family size
empl , # employment status
inc , # houshold income
health , # health status
uninsured) # insurance status

I then calculate the propensity score. As in the previous example, I include all available covariates in the propen-
sity score model:

# calculate the propensity score
ps <- predict(glm(uninsured -1 ~ age + fml + yedu + famsize + empl + inc , family =

"binomial", data = nhis), type = "response") %>% as.numeric
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Then I calculate the regression estimates,

# calc Ey
m <- glm(health ~ uninsured + age + fml + yedu + famsize + empl + inc , family = "

gaussian", data = nhis)
# calc ey1
ey1 <- predict(m, newdata = nhis %>% mutate(uninsured =1), type = "response") %>%

as.numeric
# calc ey0
ey0 <- predict(m, newdata = nhis %>% mutate(uninsured =0), type = "response") %>%

as.numeric

and lastly the AIPW estimator using the previously defined function:

aipw(a = nhis$uninsured -1, ps = ps, y = nhis$health , ey1 = ey1 , ey0 = ey0)
> -0.073

I get an estimate of 20.073, meaning that the absence of health insurance has a slightly negative effect on self-
reported health. Compare this with the response surface estimator using regression:

# regression estimate
mean(ey1 - ey0)
> -0.044

The regression estimate of 20.044 is slightly higher than the AIPW but still very close. Finally, I calculate the
IPW for comparison:

ipw(a = nhis$uninsured -1, y = nhis$health , ps = ps)
> -0.543

The IPW estimate of 20.543 is significantly lower than
the previous 2 estimates of AIPW and RSM. What does
this mean? It could hint that the IPW estimator is actu-
ally biased in this case. The IPW relies solely on the pro-
pensity score. Note that to calculate the propensity
score, I regressed insurance status on age, sex, education,
family size, employment status, and income. The reason
this is problematic is because employment status might
be reversely causated with insurance; having insurance
can be a consequence of being employed. In addition,
timing is important. Control covariates should generally
be measured before the treatment variable (here, insur-
ance status), so they cannot be changed by the treat-
ment.29 This is unproblematic for age, sex, and probably
education, but income and employment status may be
on direct or intermediate causal pathways of insurance
status. This is less of an issue in the RSM model with
health status as the outcome because the health variable
is determined at the time of the survey. This example

shows that misspecifications are often difficult to detect,
but the AIPW estimate is consistent in such a case.

Discussion and Conclusion

In this article, I have illustrated the AIPW estimator, an
extension of the traditional IPW estimator. The most
interesting property is that AIPW is ‘‘doubly robust’’ in
that it will be consistent for the ATE whenever either the
propensity model is correctly specified or the outcome
response surface models are correctly specified. This has
the advantage that the AIPW can provide more reliable
results in a complicated real-world setting where treatment
assignment process and outcome model are uncertain.

A simulation showed that the AIPW performs about
as well as the IPW or RSW under fully correct specifica-
tions. However, the AIPW estimator is more accurate
when either IPW or RSM is misspecified. This is by no
means a comprehensive simulation study, but it seems

164 Medical Decision Making 42(2)



reasonable that applied researchers should consider the
AIPW estimator for the ATE when the specification is
partially deficient.

Two examples using real data showed that the AIPW
is easy to calculate in practice and can be more robust
when the propensity score model may be misspecified.
However, it is often difficult to specify the 2 key pieces
of the AIPW estimator: the propensity score model and
the response surface model. For the propensity model, it
is generally wise to choose adjustment covariates that
both remove bias and produce maximal overlap between
the distributions of the estimated propensity scores for
the treated and control units.20 Because the AIPW esti-
mator weights observations in accordance with their
observed similary, the propensity score distributions do
not need to be perfectly congruent but sufficient overlap
is important.30 Conversely, the set of adjustment covari-
ates for the response surface model should be sufficient
to control bias and minimize residual variance. In simu-
lations, Glynn and Quinn20 found that using a minimally
sufficient set of adjustment covariates for the propensity
score model and a maximally sufficient set of adjustment
covariates for the response surface model can result in
lower sampling variability for the AIPW estimator.

Of course, in many situations, the causal process of
the data generation is unclear. In such settings, the
proper specification decisions are much less clear, and
one could use, for example, causal diagrams31 to identify
sets of covariates that can be adjusted for to remove bias.

However, in situations in which the researcher has a plau-
sible idea of both contextual factors that motivate treat-
ment assignment and important adjustment covariates for
the outcome, this can lead to very sophisticated AIPW
estimators. For example, in an analysis by Scott,30 the
author was able to derive key factors for treatment assign-
ment from the literature and at the same time could choose
completely different covariates for the outcome model.

It is important to note that even though the AIPW
estimator has many advantages, it can still be biased
because of unobserved factors that affect both treatment
and outcome. In situations in which both propensity
score model and response surface model for the outcome
are incorrectly specified, its performance might be poor.
These limitations, however, are universal drawbacks of
using observational data and affect all methods estimat-
ing treatment effects.

There is some evidence that the doubly robust estima-
tor can be less efficient than the maximum likelihood
estimator with a correctly specified model.23 Thus, there
is a tradeoff to consider between potentially reducing
bias at the expense of precision. It is generally advisable
to compare effect estimates of several models to rule out
possible biases and misspecifications. Still, the AIPW
estimator comes at little additional cost but with much
greater reliability. Recent research explores how doubly
robust effect estimates can be combined with machine
learning. Such approaches allow machine learning to be
used to weaken parametric modeling assumptions.28,32,33
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Appendix B

Double Robustness of the AIPW Estimator

Only the Y (1) case is shown, but it is an analog for Y (0).
Scenario 1: The propensity score model is correct,
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� �

, but the response surface
model is incorrect, f (1,X ) 6¼ E Y jA= 1,X½ �.

E½A� e(X )

e(X )
Y (1) � f (1,X )�

=E½E½A� e(X )

e(X )
(Y (1) � f (1,X ))jY (1),X ��

=E½(Y (1) � f (1,X ))E½A� e(X )

e(X )
jY (1),X ��

=E½(Y (1) � f (1,X ))
E½AjY (1),X � � e(X )

e(X )
�

=E½(Y (1) � f (1,X ))
E½AjX � � e(X )

e(X )
�

=E½(Y (1) � f (1,X ))
e(X )� e(X )

e(X )

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{= 0

�

= 0:

Scenario 2: The propensity score model is incorrect,
e(X ) 6¼ E AjX½ �=E AjY (1),X

� �
, but the response surface

model is correct, f (1,X )=E Y jA= 1,X½ �.
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Note

i. In the following, I will stick to the RSM terminology.
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