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Abstract

Background: To model the progression of geographic atrophy (GA) in patients with age-related macular
degeneration (AMD) by building a suitable statistical regression model for GA size measurements obtained from
fundus autofluorescence imaging.

Methods: Based on theoretical considerations, we develop a linear mixed-effects model for GA size progression that
incorporates covariable-dependent enlargement rates as well as correlations between longitudinally collected GA size
measurements. To capture nonlinear progression in a flexible way, we systematically assess Box-Cox transformations
with different transformation parameters λ. Model evaluation is performed on data collected for two longitudinal,
prospective multi-center cohort studies on GA size progression.

Results: A transformation parameter of λ = 0.45 yielded the best model fit regarding the Akaike information
criterion (AIC). When hypertension and hypercholesterolemia were included as risk factors in the model, they showed
an association with progression of GA size. The mean estimated age-of-onset in this model was 67.21 ± 6.49 years.

Conclusions: We provide a comprehensive framework for modeling the course of uni- or bilateral GA size
progression in longitudinal observational studies. Specifically, the model allows for age-of-onset estimation,
identification of risk factors and prediction of future GA size. A square-root transformation of atrophy size is
recommended before model fitting.

Keywords: Geographic atrophy, Age-related macular degeneration, Box-Cox transformation, Mixed-effects models,
Prediction, Age-of-onset estimation

Background
Age-related macular degeneration (AMD) is a leading
cause of blindness, especially for people in developed
countries older than 60 years [1, 2]. AMD has two
late stages: choroidal neovascularization (CNV) and geo-
graphic atrophy (GA). Here we consider GA, which is
thought to be the end stage of AMD when CNV does
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not develop [3] and which is responsible for vision loss
in approximately 20% of all patients with AMD [4]. More
than five million people are estimated to be affected by
GA worldwide, a number which is supposed to increase
with the aging of the population [2]. To date, there is no
effective standard treatment available [5].
GA is defined by atrophic lesions of the outer retina

resulting from loss of retinal pigment epithelium (RPE),
photoreceptors and underlying choriocapillaris (reviewed
by [6]). These areas enlarge with time and lead to irrever-
sible loss of visual function [7]. A relevant clinical measure
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of disease progression is the eye-specific size of GA which
can be quantified based on imaging techniques including
color fundus photography, spectral domain optical coher-
ence tomography imaging, or fundus autofluorescence
(FAF) imaging [8, 9].
A better understanding of the risk factors that accel-

erate GA size progression is necessary for the develop-
ment of treatment options, in particular for the design
of (interventional) clinical trials. To date, empirical evi-
dence on GA size progression is usually collected through
longitudinal observational studies (e.g. [10–12]). In these
studies, it is essential to analyze GA size trajectories over
time using an adequate statistical model. Specifically, in
the absence of a randomized study design, data analysis
needs to account for confounding issues as well as corre-
lation patterns, for instance when both eyes of a patient
are included in the study. In the latter case, the corre-
lations between the eyes within one patient need to be
incorporated as well as the correlations due to repeated
measurements over time.
The aim of this analysis is to systematically derive a

statistical approach for modeling GA size in observa-
tional ophthalmologic studies. As will be demonstrated
in the following sections, the proposed approach general-
izes various statistical models for GA size progression that
have been used in previous publications (see below). Spe-
cial focus will be given to the following issues, which are
considered to be of particular importance for the planning
and design of future interventional trials:

(i) Transformation of GA size. Before model fitting,
it is important to consider whether the response (here,
GA size) should be transformed. Finding an appropri-
ate transformation can provide information about the
underlying natural processes that drive the progression
of GA. In recent publications on GA size progression,
there has been an ongoing discussion about the opti-
mal choice of transformation [11, 13–15]. Three main
modeling paradigms have emerged: The first set of mod-
els assumes a linear relationship between GA size and
covariables (e.g. risk factors or confounding variables).
This implies a constant enlargement of GA size over time.
Examples of this modeling approach can be found in [13,
14]. The second approach assumes a quadratic enlarge-
ment of the lesion size. This is motivated by the thought of
circular atrophic lesions that constantly enlarge with their
radiuses [11, 15]. The third model type is an exponen-
tial model in which atrophic lesions enlarge exponentially.
Compared to a linear growth model, Dreyhaupt et al. [13]
found that the assumption of exponential growth led to
improved model fits.

(ii) Age-of-onset estimation. Another relevant topic for
modeling GA size progression is the estimation of the

age of disease onset. Research on this topic is motivated
by the fact that in many clinical trials patients can only
be included when the disease is already manifested in a
later stage. The estimated age-of-onset may, in contrast to
lesion size, be considered as time-invariant variable, and
facilitate association analyses with other time-invariant
variables such as the genotype.

(iii) Identification of risk factors and confounding
variables. For the development of AMD treatments, it is
essential to specify meaningful inclusion and exclusion
criteria for use in future clinical trials. It is therefore of
high importance to identify relevant risk factors and
confounding variables, and to analyze their relation-
ships with GA size progression. Such an analysis can be
achieved by building a multivariable regression model
from observational data that includes relevant risk factors
and confounders as covariables.

To address the issues described above, we derive a
statistical regression model that includes (possibly trans-
formed versions of) GA size as response variable, as well
as potential risk factors and/or confounders (such as e.g.
age, smoking) as covariables. To account for the above
mentioned correlations between eyes of the same patient
as well as temporal correlations, we investigate the use
of a mixed-effects modeling approach with patient- and
eye-specific random effects terms. In this framework, we
identify the “optimal” transformation of GA size by con-
ducting a systematic search within the family of Box-Cox
transformations [16]. As will be shown, this systematic
approach also allows for the derivation of formulas for
age-of-onset estimation. Furthermore, we demonstrate
how predictions of future (untransformed) GA size values
can be obtained from the fitted regression model.
For model derivation and illustration, we will apply the

proposed methods to a data set collected by the multi-
center Fundus Autofluorescence in AMD (FAM) study
(NCT00393692) and by its single-center extension study,
the Directional Spread in Geographic Atrophy (DSGA)
study (NCT02051998). These noninterventional, prospec-
tive natural history studies adhered to the tenets of the
Declaration of Helsinki and were approved by the institu-
tional review boards of the participating centers. Written
informed consent was obtained from each participant
after explanation of the studies’ nature and possible con-
sequences of participation.

Methods
Data
The data set used here was collected from patients with
GA secondary to AMD that were recruited for the FAM
study and followed-up in the DSGA study.
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The inclusion and exclusion criteria have been
described elsewhere [14, 17]. In brief, the two studies
included eyes without any history of retinal surgery, radi-
ation therapy, laser photocoagulation or retinal diseases
other than AMD. GA size measurements were obtained
by grading FAF retinal images that were recorded at the
baseline and follow-up visits. Data was only used for sta-
tistical analysis if the difference in total GA size between
two graders was smaller than 0.15mm2 and if the patients
had at least two visits.
Our analysis data set contained N = 150 eyes from

n = 101 patients that where examined in up to nine
follow-up visits. At baseline, the median age was 75.7
years (IQR: 70.7 − 80.6 years); 61.4% of the patients were
female, and themean follow-up time was 3.36 years (range
0.5− 13.7 years) due to the extension by the second study.
The GA size varied strongly between eyes: mean GA
size at baseline was 5.64mm2, ranging between 0.07mm2

and 31.41mm2. The status of hypertension and hyperc-
holesterolemia was assessed by a patient-reported ques-
tionnaire at the baseline visit. Information was obtained
based on patients’ reports and current medication; med-
ical reports were included in the assessment if available.
For details see Table 1.

Regression modeling
Within a typical ophthalmologic study setting, patients
participate in several follow-up visits at which one or
both eyes are examined. This leads to correlated measure-
ments, both within the patients and over time. Thus, a
model is needed that captures complex correlation struc-
tures. A popular regression model, which has been used
regularly in the literature on GA [11, 13] and which is also
considered here, is a mixed-effects model with random
effects terms for both eye and patient. Yet, there exists a
variety of model specifications and the specific structure
is still a matter of debate [18].
Before introducing the full mixed-effects model with

possible risk factors and confounders, we start with a
model that contains a time trend as only (continuous)
covariable. This model serves as a basic model that cap-
tures the time dependency of GA enlargement.

Mixed-effects model with time as only covariable. As
suggested by Shen et al. [18], we follow the hypothesis that
the progression of GA has an underlying process of GA
expansion that is mostly the same over time for all eyes.
Differences in eyes may arise due to different exposition to
environmental conditions, and, most importantly, GA size
varies between patients as they enter the study at different
time points in their disease history. We therefore propose
to include the disease age �i ≥ 0 of an eye i at study entry
directly in the model. We further assume that the atrophy
size yit of an eye i depends on the (unknown) age of the

Table 1 Characteristics of the analysis data set used for statistical
modeling

Count Percent

Patients (n) 101

Eyes (N) 150

Bilateral GA 49 48.50%

Unilateral GA 52 51.50%

Hypertension

yes 56 55.40%

no 44 38.60%

Hypercholesterolemia

yes 28 27.70%

no 70 69.30%

No. of patients with no. of visits

2 visits 25 24.75%

3 visits 23 22.78%

4 visits 23 22.78%

5-9 visits 30 29.70%

Mean (Range) Median (IQR)

Age at baseline 75.61 75.66

[years] (57.23 - 95.06) (70.67 - 80.62)

Follow-up time 3.36 2.90

[years] (0.50 - 13.70) (1.61 - 4.57)

GA size at baseline 5.64 4.30

mm2 (0.07 - 31.40) (1.76 - 7.60)

All data considered in this paper was collected from patients with GA secondary to
AMD that were recruited for the FAM study. If further monitoring of these patients
was performed via the DSGA study, the further progression is included in the
analysis data set

disease at study entry �i and the (observable) follow-up
time t ≥ 0 that has passed since. Time is assumed to be
measured on a continuous scale, e.g. in days or years since
baseline. Under the assumptions by Shen et al. [18], and
considering (for the moment) a linear enlargement of GA,
this leads to the following regression model:

yit = β · (�i + t) + εit , (1)

where β denotes the regression slope (i.e. the constant
enlargement rate). The residuals εit , i = 1, . . . ,N , are
assumed to be normally distributed with zero mean and
variance σ 2.
If it is further assumed that the disease age at study entry

can be approximated by a normal distribution, the model
in (1) can be parameterized such that it becomes a linear
mixed-effectsmodel. This is seen by defining θi := β·�i ∼
N

(
μθ , σ 2

θ

)
and αi := θi − μθ ∼ N

(
0, σ 2

θ

)
, so that Model

(1) can be written as

yit = μθ + βt + αi + εit . (2)

In this form, the model reads as follows: The atrophy size
yit depends on a fixed intercept μθ , an eye-specific ran-
dom intercept αi that reflects the deviation of the disease
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age of eye i at study entry from the mean disease age at
study entry, and an overall linear time trend βt that is the
same for all eyes.
When there are patients in the study that contributed

data from both eyes, one needs to consider the nested data
structure and account for the correlations between mea-
surements taken from the same patient. This can be done
by extending the model equation as follows:

yijt = μθ + βt + ζj + αi + εijt , (3)

where ζj ∼ N
(
0, σ 2

ζ

)
, j = 1, . . . , n, is a normally dis-

tributed patient effect and αi the effect of an ’eye within a
patient’. Note: While it is assumed that the residual terms
εijt are independent of the random effects αi and ζj, the
latter two terms are generally allowed to be correlated. For
simplicity, and without loss of generality, we will assume
independence of all random effects terms in the following.

Mixed-effects model with covariables. When intro-
ducing covariables into the model, it is reasonable to
assume that risk factors and/or confounders equally influ-
ence the enlargement of GA before and after inclusion of
an eye in the study. This assumption can be incorporated
in Model (1) by adding a covariable-dependent slope to
the model equation:

yit = (
β + β

ᵀ
x xi

) · (�i + t) + εit , (4)

where xi = (x1, ..., xk)
ᵀ
i is a vector of k (possibly

time-dependent) risk factors for each eye and βx =(
βx1 , ...,βxk

)ᵀ is a vector of parameters that accelerate or
slow down GA size progression (βxs > 0 and βxs < 0,
respectively, s ∈ {1, . . . k}). Note that in the following, we
will not distinguish between risk factors and confounders
any more, as we assume that both are collected in the
vectors xi.

Similar to the reparametrization used above, we write
�i := (μ� + γi) ∼ N

(
μ�, σ 2

�

)
, where μ� and σ 2

� denote
the mean and the variance of the i-the eye at study entry.
The mixed-effects model with covariables can then be

written as

yit = (
β + β

ᵀ
x xi

)
μ� + (

β + β
ᵀ
x xi

)
γi + βt + β

ᵀ
x xit + εit

= βμ� + βt + μ�β
ᵀ
x xi + β

ᵀ
x xit + βγi + β

ᵀ
x xiγi + εit .

(5)

with eye-specific random effects γi ∼ N
(
0, σ 2

�

)
. The lin-

ear enlargement in Model (5) thus implies dependency of
yit on an interaction term between t and xi, and also on
random slopes of the covariable values xi. Importantly,
Eq. 5 implies numerous dependencies between the slope
parameters associated with t, xi, xit, γi, and xiγi, so that
the model no longer possesses the structure of a “stan-
dard” mixed-effects model with unrestricted estimation of
coefficients. Details on model fitting will be given below.
Finally, when considering patients that contribute data

from both eyes, one specifies

yijt = βμ� + βt + μ�β
ᵀ
x xi + β

ᵀ
x xit + βγi

+ β
ᵀ
x xiγi + βζj + β

ᵀ
x xiζj + εijt

(6)

with patient-specific random effects ζj ∼ N
(
0, σ 2

ζ

)
, j =

1, . . . , n, and an additional interaction term between xi
and ζj.
The model equations presented so far ascribe a linear

relationship between time, risk factors, and GA size. In
the following section, possible transformations are exam-
ined, so that the modeling approach is extended to model
nonlinear progressions.

Transformation of the response
As an example, Fig. 1 A shows the GA size trajectories of
four eyes contained in the analysis data set. Considering

Fig. 1 Progression of GA size. A Untransformed GA size trajectories of four different eyes contained in the analysis data set and B trajectories on a
transformed scale with transformation parameter λ = 0.45
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these progressions, it is conceivable to assume that the tra-
jectories are not strictly linear. Since the model equations
above (Models (1) to (6)) refer to linear enlargement pro-
cesses, a transformation of the response is convenient for
modeling non-linear progression (see Fig. 1B).
Three different transformation approaches have been

used in recent publications on GA size progression (e.g.
[11, 13–15]): (i) Linear models with no response trans-
formation implying a linear relationship between GA
size and the covariables, (ii) linear models with square
root transformation of the response, and (iii) linear
models with log-transformed response – or equivalently
exponentially transformed models with no transformed
response – implying an exponential enlargement of the
lesion size.

Box-Cox transformation Instead of comparing only the
most commonly used transformations, we consider a sys-
tematic and more comprehensive strategy for finding an
appropriate transformation of the GA size. For this sys-
tematic approach, the Box-Cox model class is applied
because it covers a wide range of transformations, includ-
ing the transformations (i) to (iii) above. More specifically,
for an atrophy size y > 0 we consider the class of Box-Cox
transformations

fλ(y) := y(λ) =
{

yλ−1
λ

if λ �= 0,
log(y) if λ = 0,

(7)

as introduced by [16]. Applying (7) to one of the Mod-
els (1)-(6) reads as follows: λ = 1 refers to a model with
no response transformation, λ = 0.5 corresponds to a
square-root transformation of the response and λ = 0 can
be interpreted as exponential enlargement of the GA size.

Model comparison The main criterion used for our
model comparisons was Akaike’s Information Criterion
(AIC) [19]. More specifically, our aim was to choose the
transformation parameter λ that minimized AIC on the
analysis data set while assuring that the assumptions of
Models (1) to (6) were best possibly met, in particular
the normality of the residuals. The AIC is defined by
AIC = −2 · log(L) + 2 · nparams, where L is the likelihood
of the model under consideration (evaluated at the maxi-
mum likelihood estimate) and nparams denotes the number
of parameters used in the model. As we compared mod-
els with a transformed response, we applied the density
transformation theorem to compute the likelihood L.

Maximum likelihood estimation The estimation of the
model parameters was performed bymaximum likelihood
(ML) estimation. ML estimation was carried out for a
grid of fixed transformation parameters λ using the trans-
formed GA size values. Subsequently, the likelihoods were

compared and the transformation parameter referring to
the model with minimum AIC was considered best.
We initially assumed that there was an “optimal” value

λ for which the transformed atrophy size given the ran-
dom effects followed a normal distribution. In addition,
we briefly considered random effects with an unspecified
mixing distribution as a non-parametric cross-check. The
two approaches will be described in the next paragraphs.

Normally distributed random effects As noted above,
the linear model in (6) imposes numerous side conditions
on the slope parameters associated with t, xi, xit, γi, and
xiγi. In order to fit Model (6) using readily available soft-
ware for the estimation of the slope parameters (without
side conditions, such as the R add-on package lme4[20],
version 1.1-25), we propose to iterate the following steps:

(i) For given estimates β̂ and β̂x compute the values of
the working covariable x̃i := β̂ + β̂

ᵀ
x xi.

(ii) Fit the linear mixed-effects model

yijt = βt + β
ᵀ
x xit + μ�x̃i + x̃iγi + x̃iζj + εijt (8)

to obtain updates of the coefficient estimates of μ̂�,
β̂ , and β̂x. Note, that Model (8) is just a
re-formulation of Model (6) that can be fitted
without side conditions on its slope parameters. For
the fitting procedure a fixed intercept term is added
to increase computational stability and to relax the
condition that the empirical mean of estimated
random effects terms is forced to be zero.

The starting values for β̂ and β̂x in Step (i) may be
obtained from (8) with an initial value of x̃i = 1. As
demonstrated in the supplementary materials (see Addi-
tional file 1), repeated execution of (i) and (ii) will typically
converge to the final estimates after less than 20 iterations.

Random effects with unspecified mixing distribution
As an alternative tomixed-effects modeling with normally
distributed terms, Almohaimeed et al. [21] proposed to
consider a nonparametric maximum likelihood (NPML)
approach. This approach approximates the distribution of
each random effect by a discrete distribution with finite
number of mass points K. It then uses an expectation-
maximization algorithm to find the nonparametric max-
imum likelihood estimate. Here, the NPML approach
is used to verify the optimal transformation parameter
obtained from modeling with normally distributed ran-
dom effects.

Age-of-onset estimation
Model without covariables As defined by [22], a diag-
nosis for GA can be given at a minimum lesion diameter
of 250 μm and thus a lesion area of 0.05mm2. Based on
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this specification and denoting λopt as the value of λ that
is optimal w.r.t. AIC, the time t̂0ij at which the atrophy size
was ŷijt0 = 0.05[mm2] (i.e. ŷ(λ)

ijt0 = λ−1
opt · (0.05λopt − 1))

can be obtained by solving the model equation of the
transformed mixed-effects Model (3) for t:

t̂0ij =
λ−1
opt · (

0.05λopt − 1
) −

(
μ̂θ + ζ̂j + α̂i

)

β̂
, (9)

where β̂ and μ̂θ denote the ML estimates of β and μθ ,
respectively, and ζ̂j and α̂i denote the realizations of the
random effect terms. As a consequence, subtracting the
estimated time t̂0ij from the patient’s age at study entry
results in the estimated age-of-onset of GA in the i-th eye
of patient j. Remark: While from a modeling perspective a
theoretical atrophy size of yijt0 = 0mm2 could be defined
at the time of disease onset, we will focus on the clinically
relevant definition

(
yijt0 = 0.05mm2) here. For y = 0 it

holds that t0ij = �ij = 1
β

· (μθ + ζj + αi).

Model with covariables Analogous to (9) one can esti-
mate the ages of GA onset of the study eyes in a model
with additional covariables. From Eq. 8 one obtains

t̂0ij =
λ−1
opt · (

0.05λopt − 1
) − x̃i

(
μ̂� + ζ̂j + α̂i

)

x̃i
(10)

where x̃i := β̂ + β̂
ᵀ
x xi contains the parameters obtained

fromML estimation.

Prediction
Evaluating a model and its coefficients only on a trans-
formed scale is challenging as the linearity of the
predictor-response relationships in Models (5) and (6)
only holds on the transformed scale but not on the original
scale of the response (provided that λ �= 1). As a con-
sequence, the calculation of the expected GA size E(y|x)

– and hence any prediction of expected disease progres-
sion – cannot be done in an unbiased way by a simple
back-transformation.
To see this, consider a non-linear Box-Cox transforma-

tion f (y) with an arbitrary parameter λ �= 1 and, where
existent, the corresponding inverse Box-Cox transforma-
tion f −1(y). Further, let f (yijt|xi) = zijt + εijt , where
zijt := E(f (yijt|xi)) and εijt denote the linear predictor
and the residual, respectively in one of the above mod-
els. A naive back-transformation would directly take the
inverse of the linear predictor, i.e. f −1(zijt), which dif-
fers from the desired expected GA size value E(yijt|xi) =
E

(
f −1 (

zijt + εijt
))

by Jensens’s inequality [23]. In other
words, f −1 (

E
(
f
(
yijt|xi

))) �= E(yijt|xi). To address this
issue and to obtain unbiased predictions of the GA size,
we propose to sample r = 10, 000 residuals from the
empirical distribution ε̂1, ..., ε̂r in the respective fitted
model. The expected atrophy size on the original scale can
then be estimated by ̂E(yijt|xi) := 1

r
∑r

u=1 f −1 (
ẑijt + ε̂u

)
,

where ẑijt denotes the fitted value of f (yijt|xi).

Results
In this section, we present the results obtained from fit-
ting Models (2), (3) and (6) to the analysis data set (150
eyes of 101 patients). Missing values in the covariables
were imputed using the R package mice [24] with one
imputation run. Fitting was done using lme4 [20] with the
algorithm described above.

Modeling of GA size trajectories
Determination of the transformation parameter In
order to determine the optimal value of the transfor-
mation parameter λ, we evaluated linear mixed-effects
models of the forms (3) and (6) on the analysis data set.
Box-Cox-transformed responses with varying values of λ

were considered in each of the models. As seen in Fig. 2A,
the minimum AIC value was reached at λopt = 0.45 in the
model without covariables. The model with covariables

Fig. 2 Determination of the optimal Box-Cox transformation. For each value of the transformation parameter λ, parametric mixed-effects models A
without covariables as in Model (3) and B with covariables as in Model (6) were fitted to the analysis data set. Model fitting was performed using the
R package lme4. The orange dot indicates the optimal fit, which was achieved at λopt = 0.45. For Model (3), the optimal AIC value was
AICλ=0.45 = 1413.69 and for Model (6) the optimal AIC value was AICλ=0.45 = 1347.78
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Fig. 3 Optimization using NPML approach. Log-likelihood values obtained from fitting Model (2) to the analysis data set with the NPML method, as
implemented in the R package boxcoxmix [21]. The black line indicates the optimal values of the transformation parameter λ for varying numbers
of mass points K. The corresponding values can be found in Table 2

also yielded an optimal AIC value at λopt = 0.45 (Fig. 2B).
The NPML approach led to similar results for the opti-

mal value of λ in the setting without covariables. As seen
in Fig. 3, the obtained values for the optimal λ ranged
between 0.35 and 0.5. For a larger number of mass points
(K > 7) the same optimal λ (= 0.45) as in the parametric
approach was found.

Normality of the residuals Figure 4 shows the residual
diagnostics obtained from fitting Model 6 to the analysis
data, including hypercholesterolemia and hypertesnsion
as risk factors. It is seen that even after transformation
the fitted residuals were not normally distributed. How-
ever, homoscedasticity was better met after transforma-
tion with λopt = 0.45. Furthermore, the distribution of the
residuals was less skewed after transformation.

Effects of risk factors As shown in Fig. 4, the residu-
als obtained from fitting Model 6 to the analysis data set
did not perfectly follow a normal distribution, even after
transformation of the response. Therefore, inference pro-
cedures that rely on asymptotic normality may not be the
best choice to investigate the effects of risk factors on
(transformed) GA size. To address this issue, we used a
bootstrap approach to obtain the 95% confidence intervals
of the parameters within Model (6). The results are pre-
sented in Table 3 and in Fig. 5. It is seen, that time was
associated with the transformed GA size, growing by 0.42
(95% CI [0.36,0.50]) per year. Also the absence of hyper-
cholesterolemia was associated with more rapid enlarge-
ment of the lesion size (estimate: 0.11, 95% CI [0.06,0.17]),
while a slower progression in patients without hyperten-
sion (estimate: −0.09, 95% CI [−0.17,−0.03]) was found.

Note that the estimated coefficients refer to transformed
GA size and thus cannot be directly interpreted in terms
of an enlargement of the GA size measured in mm2.
Remark: Model fitting was performed on an imputed

data set, using the R package mice [24] with one impu-
tation. Results obtained from complete case analysis were
almost identical.

Age-of-onset estimation
Figure 6 presents the estimated ages of disease onset of the
study eyes, as obtained from Models (3) (without covari-
ables) and (6) (with covariables). For the simple model

Table 2 Optimization using NPML approach

K loglik λopt AICbm

1.00 -1593.02 0.35 3192.04

2.00 -1402.21 0.35 2814.41

3.00 -1310.29 0.45 2634.57

4.00 -1230.15 0.40 2478.30

5.00 -1164.85 0.40 2351.70

6.00 -1142.70 0.35 2311.39

7.00 -1127.57 0.35 2285.14

8.00 -1107.63 0.45 2249.26

9.00 -1102.10 0.45 2242.19

10.00 -1096.30 0.45 2234.60

The table presents the optimal values of the transformation parameter λ that were
obtained from fitting Model (2) with the boxcoxmix package [21] using the
analysis data set. In addition, the respective log-likelihood and AICbm values
(evaluated at the optimal λ values) are shown for varying numbers of mass points K.
Following [21], the information criterion was defined as
AICbm = −2 log(L) + 2 · (p + 2K). Hence the AIC values in the fourth column
cannot be directly compared to the AIC values presented in Fig. 2
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Fig. 4 Distribution of residuals. Residual diagnostics for Model (6) with transformation parameter λ = 1 (left column) and optimal transformation
parameter λ = 0.45 (right column). Note that λ = 1 corresponds to a model with untransformed response. Panels A and B present normal
quantile-quantile plots of the estimated residuals that were obtained from fitting Model (6) to the analysis data set. Panels C and D contain plots of
estimated residuals vs. fitted values (fitted values include random effect terms)

without further covariables, the estimated mean age-of-
onset was 66.93 (±7.56) years and for the model with
covariables the estimated median age-of-onset was 67.21
(±6.49) years. This is in line with previously reported
results, e.g. Li et al. [26] estimated the prevalence of GA
in people under 64 years to range between 0.1% and 0.2%,
depending on the country.

Estimation of GA size on the original scale
To obtain the distribution of GA size on the original
scale, we sampled 10,000 times from the empirical

distribution of the estimated residuals (obtained from
Model (6)) and added these values to the fitted trans-
formed GA size values fλ(y) before applying a reverse
Box-Cox transformation. The back-transformed expected
GA size values are shown in Fig. 7.
The rootmean squared difference between the observed

GA size and the modeled GA size was 1.10mm2, imply-
ing that estimated expected GA size values deviated by
ca. 1mm2 on average from the true GA size values. The
respective mean squared differences for alternative values
of the transformation parameter λ are shown in Fig. 8.

Table 3 Analysis of risk factors in the analysis data set

Variable Estimate 95% CI p-value

time [in years] 0.42 (0.36, 0.50) < 0.0001

time x (hyperchol.= no) 0.11 (0.06, 0.17) < 0.0001

time x (hypertension = no) -0.09 (-0.17 ,-0.03) 0.0004

Variance Term Estimate

Eye:Patient γi 1.832

Patient ζj 4.032

Residuals ε 0.422

The table presents the coefficient estimates and bootstrap 95% confidence intervals that were obtained from fitting Model (6) with transformed response (λ = 0.45) to an
imputed version of the analysis data set. The model parameter μ� , which reflects the mean disease age at study entry, was estimated to be μ̂� = 4.74 (95% CI [3.41, 4.83]).
P-values were obtained using the R package lmerTest [25]
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Fig. 5 Analysis of risk factors in the analysis data set. The plot shows
the coefficient estimates (red dots) that were obtained from fitting
Model (6) with transformed response (λ = 0.45) to an imputed
version of the analysis data set. Bootstrap 95% confidence intervals
are indicated by blue lines. For further details see Table 3

As can be seen here, the λ, that lead to a minimal dif-
ference on the original scale, was slightly larger than the
optimal λ = 0.45 obtained by AIC-based methods.
However, the variation in the average distances between
observed and predicted values was rather small (minimal
distance 1.05mm2 at λ = 0.55, 1.06mm2 at λ = 0.50, and
1.10mm2 at λ = 0.45).

Prediction of next observation In clinical context, a
prediction of the next observation of a patient already
included in a clinical trial might be of interest. For each
observed eye, for which values of more than three visits
were present, we predicted the last observation. To this
purpose we fitted a model to a training data set exclud-
ing the last observation while performance was measured
on the last observation. The root mean squared difference
between observed atrophy sizes and the mean predicted
atrophy sizes was

√
avg(( ¯̂y − y)2) = 1.67mm2.

Discussion
Despite a high prevalence and extensive research efforts,
there are currently no effective standard treatment

Fig. 6 Age-of-onset estimation. Boxplots of the observed ages at
baseline (orange) and the modeled ages of disease onset (Models (3)
and (6), blue) of the eyes in the analysis data set

Fig. 7 Agreement between the estimated expected GA size values
and the measured GA size values modeled distributions show one
boxplot per observation and were generated by sampling from the
residual distribution of Model (6), followed by a back-transformation
of zijt + εu to the original scale. The orange line indicates a perfect fit

options for GA. It is therefore essential to develop accu-
rate models for disease progression that enable resear-
chers to efficiently plan and design clinical trials.
In this article, we presented a comprehensive framework

for modeling the course of GA size progression in lon-
gitudinal observational studies. Our modeling approach
was derived from a linear enlargement model using trans-
formed GA size as response variable. As shown in the
Results section, the resulting model can be embedded
in the class of linear mixed-effects models [27], allowing
for the incorporation of risk factors, confounding vari-
ables, and measurements taken repeatedly from the same
patients and eyes. Since the assumption of linear enlarge-
ment imposes numerous restrictions on themodel param-
eters, it is necessary to adapt standard (unrestricted)
mixed-effects modeling approaches to the specific struc-
ture of the proposedmodel. To this purpose, we developed

Fig. 8 Root mean squared deviation between modeled response and
observed values for different transformation parameters. Deviation
was measured by avg(( ¯̂y − y)2). Here, the back-transformed estimate

was defined by ŷ = −1
(ŷ(λ) + ε̂) (if

−1
existed), where

−1
was the

inverse Box-Cox transformation, and ¯̂y was its mean (computed from
sampling 10,000 times from the fitted residuals). For λ = 0.45, the
deviation was 1.10mm2 and a minimal squared deviation was
reached at λ = 0.55 with a deviation of 1.05mm2
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an algorithm for GA size modeling that can be imple-
mented using readily available software for fitting linear
mixed-effects models.
To obtain the best transformation of GA size, we con-

ducted a systematic search within the class of Box-Cox
transformation models that included both parametric and
non-parametric approaches. Our experiments yielded an
optimal transformation that was close to the square-root
function, thereby justifying earlier modeling strategies
that assumed linear trajectories of square-root trans-
formed GA size over time [18]. Of note, the square-root
transformation has a straightforward interpretation in
terms of a linear enlargement of the atrophy radius [15].
A convenient feature of the proposed modeling

approach is that it yields estimates of the disease age of
the eyes at study entry. This is important because patients
can only be included in trials when the disease has already
manifested. When applied to the analysis data set consist-
ing of patients included in the FAM-study, disease age at
study entry was estimated to range between 3.5 and 13.4
years (Model (6)). These estimates are in line with esti-
mated prevalence values reported in the literature [4], but
the resulting ages of disease onset were smaller than previ-
ously modeled ages using data partly from the same study
[28].
Since the proposed modeling approach employs a trans-

formed response variable, care has to be taken when
making predictions of future values of atrophy size. As
argued in the Results section, predictions with a naive
back-transformation may show a bias due to the non-
linearity of the square-root function. To address this issue,
we proposed a sampling approach that allows for drawing
valid conclusions and making undistorted predictions of
GA size on its original scale. In the analysis data set, esti-
mated expected GA size values derived from the proposed
model deviated 1.10mm2 on average from the respective
observed values.
Generally, the model proposed here allows for perform-

ing statistical hypothesis tests on a set of risk factors sus-
pected to accelerate or slow down GA size enlargement.
This strategy was illustrated in the Results section, where
an analysis of a GA patient sample of the FAM study iden-
tified significant interaction effects between hypercholes-
terolemia, hypertension and time. Although a number of
studies have shown a link between cardiovascular risk fac-
tors and AMD, the role of hypertension, atherosclerosis,
high BMI, diabetes mellitus, higher plasma fibrinogen and
hyperlipidaemia remain equivocal owing to inconsistent
findings (reviewed in [29]). High blood pressure is shown
to be associated with lower choroidal blood flow and dis-
turbed vascular homeostasis [30]. Since perfusion deficits
in the choriocapillaris, the innermost layer of the choroid,
are associated with future GA progression [31], an asso-

ciate between hypertension and increasedGA progression
appears biologically plausible. Regarding the association
of hypercholesterinemia and decreased GA progression,
the biological plausibility remains elusive. The majority
of previous studies did not find any relationship between
systemic cholesterol levels and progression to early AMD,
GA or nAMD (reviewed in [29]), although two studies
found an association between serum cholesterol on the
development of late stage AMD [32, 33]. Interestingly,
one of these studies reported that serum cholesterol lev-
els have a protective effect on the development of nAMD,
while they are a risk factor for the development of GA
[32]. These observations apparently are in contrast to our
results; however, there is evidence that different mecha-
nisms may be involved in driving GA enlargement than
those increasing the risk of de novo GA development [6].
Further validation of the risk factors, especially on an
external data set, is necessary
While it has been established that so-called nascent GA

progresses to manifest GA [34], the trajectory of early
GA – prior to the minimum lesion size requirement for
clinical trials (e.g., 2.5mm2) – is poorly understood. The
information derived by this modeling strategy can be used
to design future intervention studies, for example regard-
ing the stratification of patient groups and the definition
of inclusion criteria. Of note, the proposed modeling
approach is not restricted to established epidemiological
covariables like hypertension but may also incorporate
novel markers of disease progression such as patient-
reported outcome measures [35], digital biomarkers, and
machine-learning-based scores derived from structural
imaging data [36]. The proposed model constitutes a flex-
ible framework to systematically investigate the transition
from intermediate to late AMD in large observational
studies such as theMACUSTAR study (ClinicalTrials.gov:
NCT03349801) [37].

Conclusions
We have provided a comprehensive framework for mod-
elling the trajectories of uni- or bilateral Ga size progres-
sion in longitudinal observational studies. Our analysis
shows that a square-root transformation of atropy size is
recommended before model fitting. The proposed mod-
elling approach allows for the estimation of age-of-onset,
identification of risk factors and prediction of future GA
size. The risk factors analyzed here require further valida-
tion in an external study population.
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