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1. Introduction

This dissertation is dedicated to overcoming missing data problems in ex-post survey

harmonization. Although ex-post survey harmonization projects have become more

common in the social sciences in recent years, methodological research on this topic is

still relatively rare.

The present introductory chapter is organized as follows: In the first section, I provide a

general introduction to ex-post survey harmonization, and in the second section, I give

an overview of missing data problems in this field. I then further elucidate the motivation

for the dissertation’s specific topics and provide a summary of the main chapters. The

dissertation’s main body consists of four chapters, each of which presents a study exploring

solutions for missing data problems not only in ex-post survey harmonization but also in

related research fields. The study presented in Chapter 2 deals with multiple imputation

approaches for discrete-time survival analysis. Chapter 3 presents a study examining

multiple imputation approaches to handling systematically missing partner variables.

The study presented in Chapter 4 is on the topic of sensitivity analysis in the case of

unobserved confounders. And finally, the study in Chapter 5 is on the topic of weighting

pooled survey data. The last chapter concludes the dissertation with a discussion of the

results, scientific contributions, and limitations of the aforementioned studies, plus a

broader outlook on the issue of study heterogeneity.
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1. Introduction

1.1. Ex-post survey harmonization

Comparing populations or specific social groups across time and space is an important

research approach in the social sciences (Friedrichs and Nonnenmacher 2010). However,

studying how certain aspects of the collective environment – such as socioeconomic

conditions, the laws in force, institutions, or values – influence individuals’ characteristics

is possible only with high-quality data spanning the time and space of interest. In many

cases, these requirements regarding time, space, or analytical power cannot be fulfilled

by a single survey. Rather, data from different surveys must be combined into a single

pooled data set and prepared for analysis. This is referred to as survey harmonization

(Dubrow and Tomescu-Dubrow 2015; Hussong et al. 2013; Granda et al. 2010), of which

there are two types: ex-ante and ex-post (Wolf et al. 2016). The main difference between

the two types is that ex-ante harmonization is part of the survey design; thus, the pooling

of data is anticipated before data collection. By contrast, ex-post harmonization is done

on pre-existing, already collected data; these data were not originally intended to be

combined.

In this dissertation, I present methodological research that I conducted for the field of

ex-post survey harmonization. As a rule, ex-post survey harmonization is not simply a

matter of combining individual data sets into one pooled data set. Rather, it requires, for

example, thorough documentation of the differences between and the peculiarities of the

individual data sets. This enables secondary users of the harmonized data set to model

differences in their analyses. Another important part of ex-post survey harmonization

is variable harmonization – that is, the process of making (latent) variables measured

with different instruments comparable – for example, by means of equating or simpler

methods, such as linear stretching (Singh 2020).

Although these processes require great effort, ex-post survey harmonization projects have

become more popular in the social sciences over the last few years. The substantive

2



1. Introduction

fields in which these projects have been conducted show the wide applicability and

new popularity of the approach: IPUMS, the Integrated Public Use Microdata Series,

harmonizes census and survey data from around the world; HaSpaD harmonizes and

synthesizes partnership histories from different German surveys; ONBound focuses on

combining individual-level data on national and religious identities from 20 international

and national surveys as well as contextual data on included countries; and SDR, the

Survey Data Recycling project, has harmonized measures of social capital, well-being,

and political participation from several hundred national surveys all over the world.

The aforementioned projects provide broad spatial and temporal data coverage in their

respective fields. Other projects focus on the study of rare subpopulations. They include,

for example, the International Ethnic and Immigrant Minorities’ Survey Data Network

(ethmig survey data), which harmonizes survey data on the integration of ethnic and

migrant minorities, and InGRID-2, a project aimed inter alia at analyzing vulnerable

and hard-to-reach groups in the labor market through ex-post survey harmonization.

These six projects point to the advantages and possibilities of ex-post survey harmo-

nization. Three particular benefits of this approach stand out: First, through the reuse,

recycling, and combination of data (Law 2006; Slomczynski and Tomescu-Dubrow 2018),

the robustness and reliability of research results can be increased. Second, through the

increase in sample size (Wang et al. 2016), ex-post survey data harmonization allows

the study of smaller subpopulations. And finally, third, ex-post survey harmonization

enables the bridging (Singh 2020) of previous data gaps as far as the temporal and spatial

dimensions are concerned. Quite literally, the whole is more than the sum of its parts.

Regarding the increased robustness and reliability, ex-post survey harmonization is an

important part of a larger movement to further advance secondary data analysis (Law

2006; Slomczynski and Tomescu-Dubrow 2018). Current research is often focused on

producing innovative but singular research results instead of replications or re-analyses;

3



1. Introduction

cumulative knowledge growth is difficult under such conditions (Ioannidis 2005; Abbott

2007; Freese 2007; Wagner and Weiß 2014). However, a crucial part of modern statistics

is to develop models that work well (under realistic violations of assumptions), improve

inferential stability, and allow robust inference (Gelman and Vehtari 2021). Regarding

inferential stability, ex-post survey harmonization allows more robust scientific results by

testing them in several studies at once and achieving greater statistical power. Through

multi-level modeling, researchers can incorporate information from different studies and

reflect the heterogeneity of data sources simultaneously.

Ex-post survey harmonization is closely related to individual participant data (IPD)

meta-analysis – that is, the statistical analysis of raw data from multiple scientific studies

(Stewart and Tierney 2002; Stewart et al. 2012; Debray et al. 2015). One of the main

differences between the two terms is their use in different scientific fields. While the term

“ex-post survey harmonization” is used mainly in sociology and cross-cultural research

(Wolf et al. 2016), the term “IPD meta-analysis” originated and is more common in

medicine and psychology (Curran and Hussong 2009; Stewart et al. 2012). Many ex-post

survey harmonization projects (e.g., IPUMS, ONBound, and SDR) focus on providing

documentation and harmonization code or already harmonized data, thereby allowing

other secondary users to conduct their own analyses with the harmonized data. This is

less common in the field of IPD meta-analysis.

IPD meta-analyses have an established place in the so-called “evidence pyramid,” which

ranks research results according to their reliability, see also Figure 1.1. With the rise

of evidence-based medicine, the evidence level assigned to specific study designs has

changed since the pyramid was first introduced (Murad et al. 2016; Shaneyfelt 2016).

However, because of their strong reliability, systematic reviews and meta-analyses are

usually placed at the top of the pyramid. The assignment of the highest evidence level to

meta-analyses (or ex-post survey harmonization) has been challenged by some authors,

4
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Meta-

Analyses

Systematic
Reviews

Randomized controlled
trials

Non-randomized controlled trials, 
cohort studies, observational studies

Case studies, expert opinions

Figure (1.1) Evidence pyramid. Own depiction modeled after the “traditional” evidence
pyramid in Murad et al. (2016).

who have expressed concern that researchers might be comparing apples and oranges

due to the possibly great heterogeneity of the studies included in their meta-analyses

(Paul and Leibovici 2014). I will return to this important concern and limitation in the

concluding chapter.

As mentioned above, besides allowing a critical look at existing research findings, har-

monized data sets also have a second potential benefit, namely, increased sample size,

which can open up new research avenues. For example, harmonized data sets can enable

researchers to conduct studies on specific or rare subpopulations, such as people with

a less common ethnicity (e.g., the ethmigsurveydata project), vulnerable groups in the

labor market (e.g., InGRID2), or people with a specific sexual orientation (e.g., HaSpaD).

General social surveys usually have too few cases for these groups to obtain reliable,

precise estimates. By combining data from several survey programs, researchers can

achieve adequate sample sizes, even for rare subpopulations (Wang et al. 2016).

The third important benefit of ex-post survey harmonization is its bridging function –

5



1. Introduction

that is, the fact that it can help to bridge gaps in temporal (or spatial) coverage. Because

survey programs may have started too late or ended too early to cover all the years to be

analyzed, or may not cover all the countries to be analyzed, the ex-post harmonization of

data from several surveys may be required. The resulting harmonized data set spans the

entire desired temporal or geographical space (see, e.g., the HaSpaD, IPUMS, ONBound,

and SDR projects referenced above).

Having sketched the advantages of ex-post survey harmonization, I will now describe in

general the missing data problems that can arise in this process and then provide more

details on the exact methodological problems and solutions addressed in this dissertation.

1.2. Various flavors of missing data

One of the challenges researchers face in ex-post survey harmonization projects is one

of the biggest challenges for survey researchers in general, namely, missing data. As

Little and Rubin (2002, 4) put it: “Missing data are unobserved values that would be

meaningful for analysis if observed; in other words, a missing value hides a meaningful

value.” Carpenter and Kenward (2013) noted that the ubiquity of missing data, and

the losses and problems it poses for analysis and inferences, have given rise to extensive

statistical literature since the 1950s. These problems are also the central topic of this

dissertation, mainly in the context of ex-post survey harmonization.

It is useful to distinguish between different types of data missingness. All data sets

consist of units, each of which provides information on a series of items. For example,

in a cross-sectional personal survey, individuals are the relevant units, and items are

the individuals’ answers to the questions in the questionnaire. In a household survey,

the units are households, and the items are answers to questions about the household

and its members. In survey harmonization and IPD meta-analysis, researchers speak of

item nonresponse or partially or sporadically missing data when data for some units are
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missing for some items (Resche-Rigon and White 2018). The missing data then create a

pattern in the data set that resembles a Swiss cheese. Variables that are missing for all

units in one or more surveys are called systematically missing variables (Burgess et al.

2013; Resche-Rigon et al. 2013). If all items are missing for a unit, this is described as

unit nonresponse. This dissertation offers solutions to missing data problems that belong

to these three different types of missingness. To better explain the motivation and also

the need for my dissertation, I will give a brief overview of the problematic consequences

of the various missing data types before moving on to the specific missing data problems

addressed.

1.2.1. Item nonresponse: Sporadically missing data

The first case of missing data that will be covered is sporadically missing data or item

nonresponse. The consequences of missing data for analysis and inference were first

laid out in a groundbreaking paper by Rubin (1976). In most software packages, the

default approach to handling item nonresponse is to restrict the analysis to complete

observations. Depending on the missingness pattern, the resulting information loss can

be substantial. Even more importantly, however, the resulting subset of complete cases

may no longer represent the target population (Carpenter and Kenward 2013).

Rubin (1976) also introduced a classification of missing data mechanisms that allows us

to better understand the consequences of missing data for inference. He divided missing

data mechanisms into three categories. If the missingness is independent of both observed

and unobserved data, the observed data will still represent the target population. The

missing data are then called missing completely at random (MCAR).

If, given the observed data, the probability of data being missing is independent of the

unobserved data, we speak of data missing at random (MAR), and the analysis of the

complete cases will likely be biased. Under MAR, it is generally possible to conduct a

7
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valid analysis that does not require the explicit inclusion of a model for the missingness

mechanism (assumption of ignorability). Modern approaches to dealing with missing

data, such as multiple imputation, generally start from the assumption of ignorability

(Carpenter and Kenward 2013).

If data are neither MAR nor MCAR – that is, if the chance of an observation being

missing is dependent on the value itself – even given the observed data – this is referred to

as data missing not at random (MNAR, Rubin 1976) or not missing at random (NMAR).

Strategies to handle data that are MNAR rely on finding more data about the reason

for missingness or on performing sensitivity analyses. I will focus in this dissertation

on data that are MCAR or MAR – that is, missing data that fulfill the assumption of

ignorability.

Item nonresponse (i.e., sporadically missing data) can be a significant problem in the

analysis of data from a single survey. This problem does not simply vanish if data

from multiple surveys are pooled during ex-post survey harmonization. The tools used

to handle sporadically missing data in pooled data sets are in principle the same as

those for handling a data set from a single survey with a multi-level structure (see

Resche-Rigon and White 2018). Therefore, I will now briefly introduce two of the most

important methods for dealing with item nonresponse, namely, multiple imputation (MI)

and maximum likelihood estimation (ML, Little and Rubin 2002; Schafer 1997).1 These

methods lead to unbiased estimates when assumptions are met and to variance estimates

that account for increased variability due to missing data.

The MI approach consists of three main stages: first, an imputation step in which missing

values are replaced with multiple sets of values to complete the data; second, a data

analysis step, in which standard analyses are applied to each completed data set; third,

a pooling step, in which the obtained parameters are pooled and combined, usually

1Other principled methods are fully Bayesian methods (Clayton et al. 1998) and methods that model
the missingness mechanism (Kenward 1998).

8
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using Rubin’s rules (Rubin 1987). The goal of MI is not to impute values that are as

close as possible to the missing values but rather to impute in a way that leads to valid

statistical inference (Carpenter and Kenward 2013). The closest competitor to multiple

imputation is maximum likelihood estimation (ML). In ML, dealing with the missing

data and estimating parameters and standard errors are all done in a single step (Schafer

1997; Allison 2002; Little and Rubin 2002). A growing body of literature has dealt

with differences in the results and the advantages and disadvantages of both approaches.

However, in many applications, they lead to similar results (Schafer and Graham 2002).

1.2.2. Unit nonresponse: Completely missing data for a unit

Another of the most ubiquitous missing data problems in survey research is unit nonre-

sponse. Like high item nonresponse rates, high unit nonresponse rates can lead to issues

regarding the precision of estimates and potential nonresponse bias. Due to failed contact

attempts or refusals of target units, it is almost impossible and practically unfeasible

to reach and motivate all selected target units in a survey. During the last decades,

nonresponse rates have risen, and participation rates have dwindled in most countries

(Curtin et al. 2005; Singer 2006; De Leeuw and Hox 2018). Although the response

rate often serves as a proxy for possible nonresponse bias, it is only one of two factors

that influence the magnitude of nonresponse bias. The other one is the correlation

between participation and the target variable. Whether one understands the division

into respondents and non-respondents as a deterministic one or employs a stochastic

model of survey participation, the nonresponse rate does not automatically determine

the magnitude of the nonresponse bias (Kalton and Maligalig 1991; Valliant et al. 2013).

There are several other methods to assess the risk of nonresponse bias (Wagner 2012).

Standard methods include comparing survey estimates with estimates obtained from

official statistics, such as, for example, the Microcensus in Germany (Blohm and Koch

9



1. Introduction

2015). For reasons of availability, these comparisons are often limited to sociodemo-

graphic variables. Other possibilities include comparisons between respondents and

non-respondents regarding data such as paradata that are available for both groups

(Kreuter et al. 2010).

If survey providers or researchers conclude that nonresponse bias due to unit nonresponse

is a potential problem, methods to correct this bias are available, most prominently

different weighting approaches, which I will briefly cover in the following. The different

methods of adjusting for unit nonresponse through weighting can be divided into two

main groups: (1) weighting class/propensity score adjustments (Kalton and Maligalig

1991; Little and Vartivarian 2003, 2005) and (2) post-stratification or raking (Deville

and Särndal 1992; Kott 2009).

In weighting class or propensity score adjustment, variables are used that are available

for both respondents and non-respondents. In weighting class adjustments, weighting

classes or cells are formed from predicted response probabilities. Ideally, the variables

used to predict the response probabilities are highly correlated to responding and to the

variables used in substantive research. In propensity score adjustments, the inverse of

the respondent’s predicted propensity score is used for weighting (Kalton and Maligalig

1991; Little and Vartivarian 2003, 2005; Valliant et al. 2013).

On the other hand, post-stratification and raking use auxiliary data from official

sources, for example, censuses, administrative records, or published statistics. In

post-stratification, weighting classes, also called post-strata, are formed by crossing

all categories of the auxiliary variables. The goal is to construct weights that restore the

class-specific population counts in the weighted estimates. If there are many important

auxiliary variables available, the adjustment cells may create too many variables. In that

case, iterative raking adjusts the weight for each unit until the distribution of the sample

matches the population distribution for the auxiliary variables. In addition, it only

10
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requires knowing the marginal proportions for each auxiliary variable used for weighting

(Deville and Särndal 1992; Kott 2009; Valliant et al. 2013).

Many survey providers offer survey weights to researchers. Most include post-stratification

or raking weights for the correction of possible nonresponse bias. As most survey programs

select the units to be surveyed with varying probabilities, they also provide design weights

or weights combined from design and post-stratification weights. Bias resulting from unit

nonresponse may not only affect analyses with single data sets but also analyses with

pooled data sets, and appropriate weighting steps may be necessary.

1.2.3. Systematically missing data: Completely missing data for a

variable

Before moving on to the motivation for this dissertation and a brief summary of the

main chapters, I will discuss the last type of missing data – systematically missing data –

which occurs when a variable is not observed at all for one or more surveys (Resche-Rigon

et al. 2013) or when measurements differ between surveys. In this case, the missingness

resembles that due to item nonresponse, except that it is prevalent in specific subsets of

the combined data set. Such gaps are easiest to fill if there is at least one survey that

covers all the measurements or variables that exist in the surveys and are systematically

missing for another survey. Score transformation from one instrument to the other can

then be done through linear stretching or linear or equipercentile equating (Singh 2020).

Other options are multi-level multiple imputation approaches that allow to model the

heterogeneity between studies and use all available albeit only partially observed variables

(Jolani et al. 2015; Jolani 2017).

A second problem with systematically missing data occurs in projects where a variable

to be included is not measured in any survey. This can be due to different reasons. For

example, the variable may be of low interest to most researchers or survey providers,

11
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or it could be hard to measure or observe (e.g., sensitive information). Regardless

of the reason for the missingness, systematically missing data can lead to substantial

problems in causal inference. If a confounder is completely missing, the assumption of

unconfoundedness in causal inference is violated. This means that the probability of

treatment depends on the potential outcomes. And when the pre-treatment set is not rich

enough to remove systematic biases between treatment and control units, the causal claim

is not sustainable. In practice, it is impossible to test the adequateness of the assumption

of unconfoundedness. If there is reason to believe that the unconfoundedness assumption

might be violated, the main analysis can be supported or called into question through

supporting and supplementary analysis. One possibility is to drop the unconfoundedness

assumption and replace it with other assumptions about the confoundedness of the

causal claim (Imbens and Rubin 2015). Most of the time, rather than dropping the

unconfoundedness assumption altogether, it is relaxed, leading to a range of plausible

causal estimates of interest instead of single-point estimates.

1.3. Why this dissertation?

In the first part of this introductory chapter, I explained the importance of ex-post survey

harmonization. Subsequently, I sketched three different types of missing data that are

potentially problematic, both for research with single data sets and harmonized data sets.

These possible problematic effects of missing data point to the need for methodological

research aimed at resolving these issues. This dissertation aims to offer solutions for the

missing data problems that ex-post survey harmonization projects face. In the following,

I will situate my dissertation and its scientific merit within this dual framework – ex-post

survey harmonization and missing data – and, where appropriate, outline its relevance

for other fields of sociology. An overview is given in Table 1.1.

As shown by the wide range of exemplary ex-post survey harmonization projects referenced
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Table (1.1) Overview of the research areas that this dissertation contributes to.

Analyses with harmonized Analyses with harmonized

data sets or single data sets

Analyses of
pooled data
with survey
weights

Analyses
under mid
to high
study hetero-
geneity

Discrete
time
survival
analyses

Analyses
with data
from
multi-
actor
studies

Causal
inference
with unob-
served con-
founders

Missing
data flavor

Item nonre-
sponse

Chapter 2

Unit nonre-
sponse

Chapter 5

Systematically
missing vari-
ables

Chapter 3 Chapter 3 Chapter 4,
Chapter 3

Note:
Chapter 2 – Multiple Imputation of Partially Observed Covariates in Discrete-Time Survival
Analysis
Chapter 3 – Systematically Missing Partner Variables and Multiple Imputation Strategies: A
Case Study With German Relationship Data
Chapter 4 – TippingSens: An R Shiny Application to Facilitate Sensitivity Analysis for Causal
Inference Under Confounding
Chapter 5 – Better Together? Regression Analysis of Complex Survey Data After Ex-Post
Harmonization

in Section 1.1. above (e.g., HaSpaD, IPUMS, ONBound, and SDR), researchers can

conduct ex-post survey harmonization projects in very different substantive fields. The

specific nature and urgency of the missing data problems mentioned above will differ

across substantive areas. The ex-post survey harmonization project that has influenced

this dissertation most is HaSpaD (Harmonizing and Synthesizing Partnership Histories

From Different Research Data Infrastructures), which is funded by the German Research

Foundation (DFG). That project focuses on separation factors in marriages and other

partnerships over time. The methodological problems with missing data and the applied

exemplary analyses in Chapters 2, 3, and 5 of this dissertation are thus rooted in this

sociological subfield.

For example, Chapter 2 deals with sporadically missing data/item nonresponse in covari-
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ates for discrete-time survival analysis models (DTSAM). These models are employed

in family sociology to study relationship events, such as divorce. However, they are

also used to address completely different research questions where time is recorded in

a discrete manner. As the term ”survival” analysis suggests, the event to be studied

could also be a patient’s death during a medical study. The study presented in Chapter

2 is thus also highly relevant for quite distant substantive fields that are nonetheless

connected through similar analytical models such as, in the present case, DTSAMs.

Chapter 3 is also deeply rooted in ex-post survey data harmonization in partnership

research. It deals with systematically missing data in multi-actor surveys – specifically,

with systematically missing variables for the partners of anchor respondents. This is an

important question because data from secondary respondents are often not as extensive

as those from anchor respondents, thereby hampering studies of hetero- and homophily

between anchor and partner respondents, for example. The research question addressed

in Chapter 3 is whether data from other studies (so-called bridging studies) can help

with the imputation of systematically missing data for partner variables. In one section

of the chapter, I also briefly examine the more fundamental question of whether study

heterogeneity prevents the transfer of correlations observed in other studies.

Chapter 4 addresses a research question related to systematically missing variables and

the subsequent possible violation of the unconfoundedness assumption. It presents an R

Shiny (Chang et al. 2020) web application that I wrote to allow the simple execution

of sensitivity analyses and the visualization of the results of these analyses. Again, this

is a very common problem in other studies of causal relationships, and it can also be a

problem in ex-post survey harmonization projects. The research question addressed in

Chapter 5 is relevant for ex-post survey harmonization: How should unit nonresponse

and survey weighting be dealt with after pooling and harmonizing data sets? Two

prominent possibilities arise from the literature on IPD meta-analysis (Burke et al.
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2017): The first possibility is to analyze the data from the individual surveys separately

and then to combine the estimate in a standard meta-analysis; the second possibility

is to pool the data sets and then to analyze the combined data set while modeling

the heterogeneity in the combined data set. Although Burke et al. (2017) offered a

comparison of advantages and disadvantages of IPD meta-analyses for experimental data

in psychology and medicine, the two options have not been compared for survey data,

much less for survey data with unequal sampling or inclusion probabilities. However,

from the results of the study presented in Chapter 5, I will be able to close this gap

with regard to ex-post survey harmonization and to recommend the second option, as

it avoids the problematic assumption of known variances that comes with a standard

meta-analysis.

In summary, the aim of this dissertation is to contribute to methodological research in

ex-post survey harmonization (especially in family sociology) and to the more general

methodological literature. Before moving on to the first study on multiple imputation

of covariates in discrete-time survival analysis, extended summaries of the four main

chapters are given in the next section.

1.4. Extended summary of chapters

In the following, each main chapter/study is presented with an extended summary.

Study 1 (Chapter 2): Multiple Imputation of Partially Observed Covariates in

Discrete-Time Survival Analysis In Chapter 2, I examine a sporadically missing data

problem in the case of discrete-time survival analysis (relevant both for the analysis of

single and harmonized data sets with item nonresponse). Many phenomena in the social

and medical sciences can be described as events – that is, qualitative changes that occur at

a particular point in time. Typical research questions focus on whether, when, and under
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what circumstances events occur. The practical analysis of discrete-time survival data

can be challenged by missing data in one or more covariates. The negative consequences

of such missing data range from precision losses to bias. In this chapter, I will use the

popular multiple imputation (MI) approach to circumvent these unwanted effects of

missing data. With MI, it is generally crucial to include the outcome information in the

imputation model for covariates of the substantive model. This is not straightforward in

the case of discrete-time survival models for three reasons. First, the outcome is only

partially observed because not all units experience the event – that is, the time-to-event

data are censored. Second, there is not usually one outcome variable but two: the

indicator of whether an event has happened and the variable in which the last observation

is recorded. Third, the imputing researcher has to decide whether to impute while the

data set is still in person-oriented format or after transformation into person-period

format. In person-period format, which is also used for substantive analysis, there are

multiple records for each person, one for each period observed.

In the literature, there is little guidance on how to incorporate the observed outcome infor-

mation into the imputation model of missing covariates in discrete-time survival analysis

for either single data sets or multiple combined data sets. Indeed, to my knowledge, the

study presented in Chapter 2 is the first to investigate this problem systematically. Dif-

ferent approaches using fully conditional specification multiple imputation (FCS Buuren

et al. 2006) and the newer substantive-model compatible fully conditional specification

multiple imputation (SMC-FCS Bartlett et al. 2015). These approaches vary in their

complexity and in the data format used during imputation. I compare the methods using

Monte Carlo simulations and provide a practical example using data from the German

Family Panel (pairfam). A compatible imputation model for SMC-FCS MI with data in

person-period format proves to be the key to imputations with good performance results

under different simulation conditions.
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Study 2 (Chapter 3): Systematically Missing Partner Variables and Multiple

Imputation Strategies: A Case Study With German Relationship Data The study

presented in Chapter 3 employs multiple imputation, not to tackle a sporadically missing

data problem but rather to handle systematically missing data – that is, a variable

missing for all units in a survey. I examine the particular case of systematically missing

information on partners, a problem that can arise in multi-actor surveys. Multi-actor

surveys collect information on persons who maintain a significant connection with each

other, for example, by including the partner of an originally sampled anchor respondent

as a so-called secondary respondent for relationship research (Kalmijn and Liefbroer

2010).

However, due to monetary and time restrictions in data collection, specific variables are

often recorded only for anchor respondents but not for their partners. The variable for

partners is thus systematically missing (Resche-Rigon et al. 2013), which gives rise to

serious problems, for example, for studies researching homophily or heterophily between

partners.

Systematically missing data are common in various settings, for example, after changes

in measurement instruments in repeated surveys and in the context of ex-post survey

harmonization if one or more surveys did not include the specific variable. Using MI

techniques to impute the missing variables is a common approach in both cases (Schenker

and Parker 2003; Resche-Rigon and White 2018).

I examine whether and how multiple imputation can be used when data on secondary

respondents are systematically missing. I begin by reviewing previous research on

systematically missing data and giving an overview of the critical differences in the

pattern of these data. Building on this literature review, I outline MI approaches to

handling systematically missing data from secondary respondents and illustrate these

approaches by means of a simulation with data from the German Socio-Economic Panel
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(Goebel et al. 2019), pairfam – The German Family Panel (Brüderl et al. 2017), and

SHARE, the Survey of Health, Ageing, and Retirement in Europe (Börsch-Supan et al.

2013; Börsch-Supan 2020). I will use the two latter ones as so-called bridging studies

(Parker et al. 2004) in the simulation.

The results of the simulation show that imputation under the assumption of conditional

independence for the anchor and partner variables leads to a strong bias toward zero in

the estimated partial correlation between anchor and partner. Bridging studies similar

to the original study in sampling and measurement can be used for the estimation

of the partial correlation and lead to estimates with less bias after MI. However, the

heterogeneity between studies may hinder the use of bridging studies. To obtain a

better preliminary assessment of this problem, I take a short look at study heterogeneity

regarding partial correlations between the three included surveys. As the handling of

study heterogeneity in meta-analyses and (ex-post) survey harmonization is also a very

important problem (DerSimonian and Laird 1986; Higgins 2003; Kontopantelis et al.

2013; Veroniki et al. 2016; Borenstein et al. 2017), this chapter also offers a contribution

to this area of research.

Study 3 (Chapter 4): TippingSens: An R Shiny Application to Facilitate Sensi-

tivity Analysis for Causal Inference Under Confounding Like the previous study, the

study presented in Chapter 4 addresses the issue of systematically missing data. However,

it deals with the case where an important confounder has not been observed for any

respondent in a survey (or in any of the surveys, in the case of ex-post survey harmoniza-

tion). Most strategies for causal inference based on quasi-experimental or observational

data critically rely on the assumption of unconfoundedness. If this assumption is suspect,

sensitivity analyses are an important tool to evaluate the impact of confounding on

the analysis of interest. One of the earliest proposals for such a sensitivity analysis

was suggested by Rosenbaum and Rubin (1983). However, whereas obtaining estimates
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for the causal effect under specific assumptions regarding an unobserved confounder is

straightforward, conducting a full sensitivity analysis based on a range of parameter

settings is unwieldy when, as in the case of Rosenbaum and Rubin (1983), simple forking

tables are used.

To tackle the multiple parameter problem of Rosenbaum and Rubin’s approach, I

developed an interactive R Shiny (Chang et al. 2020) application called TippingSens,

which visualizes the impact of various parameter settings on the estimated causal effect.

Borrowing from the literature on tipping point analysis, this flexible app facilitates

manipulating all parameters simultaneously.

After presenting an overview of possible sensitivity analyses, I demonstrate the usefulness

of the app by conducting a sensitivity analysis for a quasi-experiment measuring the effect

of vocational training programs on unemployed men, with heavy alcohol consumption as

a possible unobserved confounder. A step-by-step introduction to the app and a vignette

using medical data from Rosenbaum and Rubin (1983) are provided in the Appendix.

Study 4 (Chapter 5): Better Together? Regression Analysis of Complex Survey

Data After Ex-post Survey Harmonization In Chapter 5, I present the fourth study

conducted within the framework of this dissertation. It deals with missingness in the

form of unit nonresponse. Specifically, I address the pooling of complex survey data

with their accompanying survey weights in the context of (ex-post) survey harmonization

in sociology, and I investigate how to conduct a regression analysis of pooled complex

survey data after ex-post survey harmonization (Granda et al. 2010). The meta-analysis

literature suggests two different approaches to the regression analysis of pooled raw

data. The first approach entails combining estimated regression coefficients from the

single data sets (so-called two-stage approach); the second entails estimating a regression

on the combined data sets (so-called one-stage approach). Although there have been

comparisons and evaluations of the two general methods of conducting meta-analyses
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with raw data (Burke et al. 2017), there have been no comparisons or evaluations for the

case of survey-weighted data or regressions.

This chapter builds bridges between the fields of survey harmonization, survey statistics,

and meta-analysis, making research results and approaches from one area useful to

the other. Its main contributions are threefold. First, I present to the ex-post survey

harmonization community two approaches from the meta-analysis literature – one-stage

and two-stage meta-analysis for individual participant data (IPD). Second, I study the

performance of these two approaches through using a Monte Carlo simulation. I show

that the distribution of survey weights in the respective data set plays a role when these

two meta-analytical approaches are used. Unless the coefficient of variance (i.e., the ratio

of the standard deviation to the mean) for the survey weights is small, the assumption

of known within-study variances for two-stage analysis is problematic and will result in

biased point estimates. And finally, third, the difference between the two approaches

is demonstrated exemplarily with a real-world example of same-sex couples and family

satisfaction in Germany.

Conclusion This dissertation concludes with a discussion of the results, scientific

contributions, and limitations of the studies presented in Chapters 2–5 and a broader

outlook on the issue of study heterogeneity.
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Börsch-Supan, A. (2020). Survey of Health, Ageing and Retirement in Europe (SHARE)

Wave 5. Release Version: 7.1.0. SHARE-ERIC. Data Set.
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fekte?, pages 469–497. VS Verlag für Sozialwissenschaften, Wiesbaden.

23

https://ethmigsurveydatahub.eu/


Bibliography

Gelman, A. and Vehtari, A. (2021). What Are the Most Important Statistical Ideas of

the Past 50 Years? arXiv 2012.00174.

Goebel, J., Grabka, M. M., Liebig, S., Kroh, M., Richter, D., Schröder, C., and Schupp, J.
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2. Multiple Imputation of Partially

Observed Covariates in

Discrete-Time Survival Analysis

2.1. Introduction

Many phenomena in the social and medical sciences can be characterized as events – that

is, qualitative changes that occur at some point in time. Typical research questions focus

on whether, when, and under what circumstances events occur. Examples of sociologically

relevant events are divorce or a job offer after a period of unemployment. When analyzing

such time-to-event (or survival time) data, one cannot rely on a simple linear regression

model, as the time-to-event is missing (censored) for parts of the population. For

example, some married people never experience divorce, and although everybody dies,

data collection will almost certainly not continue until this point for all observations.

Different analytical approaches have been developed to deal with the censoring problem.

They include, for example, Cox regression for continuous-time survival analysis (Cox

1972). Cox (1972) also extended the proportional hazard model for discrete-time survival

analysis, analyzing the conditional odds of an event occurring at a particular time point,

given survival up to that point. For discrete-time survival analysis, data must first be
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converted from the familiar person-oriented format (one row for each person/observational

unit) to a person-period format (one row for each period in which a person was observed).

One challenge that arises in the application of these survival models (and in other models)

is that often one or more covariates have missing data. Simplistic approaches, such as

listwise deletion (LD) and unconditional mean imputation, are still used in the social

sciences (e.g. Böttcher 2006; Cooke 2006; Arranz Becker and Lois 2010; Manning et al.

2016; Cooper et al. 2018; Stoddard and Veliz 2019). However, these approaches may be

highly inefficient or lead to severely biased variance estimates. Point estimates may also

be biased after listwise deletion if missingness depends on the outcome (Hughes et al.

2019).

Another approach to handling missing data is multiple imputation (Rubin 1987, 1996;

Schafer 1997; van Buuren et al. 1999). Multiple imputation leads to unbiased point

and variance estimates if certain conditions concerning the missing data mechanism and

the imputation model are met (Allison 2000). However, while there has been research

on how best to impute missing covariate values for Cox regressions (van Buuren et al.

1999; Clark and Altman 2003; White and Royston 2009; Keogh and Morris 2018), the

Cox cure model (Beesley et al. 2016) and the relative survival model (Nur et al. 2009),

the imputation of covariates in discrete-time survival analysis is still understudied. For

time-varying covariates, Murad et al. (2019) showed that multiple imputation approaches

using information from the previous and current time points seem sufficient in most

situations. However, in discrete-time survival analysis, not only time-varying covariates

but also time-invariant covariates are used. This article contributes to the literature by

exploring how to specify a suitable imputation model for partially missing time-invariant

covariates in discrete-time survival analysis.

This is not an easy or straightforward task. Kenward and Carpenter (2007, 207) shows

that including outcome information in the imputation model for partially observed
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covariates is crucial for unbiased estimates. However, with discrete-time survival models,

the two outcome variables (event and time-to-event) are not fully observed due to

censoring. Nor is it clear in which format the imputation procedure should be carried out:

with data in person format or person-period format? And how should the relationship

between the time-to-event variable and the covariates be modeled for imputation?

These are relevant issues, as discrete-time survival analysis is widely used in the social

sciences, especially in family sociology (see, e.g., Barber 2001; Schoen et al. 2002; Cooke

2006; Nomaguchi 2006; Arranz Becker and Lois 2013), and also in the medical sciences

(Murad et al. 2019).

The remainder of this article is organized as follows: In the next section, we introduce

the formalization of the discrete-time survival analysis model (DTSAM) proposed by

Singer and Willett (1993), we address person-oriented and person-period data set formats,

and we briefly discuss the negative consequences of, and ways of dealing with missing

covariate data. We then outline the method of multiple imputation and present several

possible imputation approaches that differ in terms of the data format used and the

specification of the imputation model. Following this, we conduct four simulations with

discrete-survival data and varying degrees of unobserved heterogeneity. Using data from

the German Family Panel (pairfam), we then provide an applied example with real-world

data. The article concludes with a discussion of results and further steps.

2.2. Discrete-time survival analysis model

2.2.1. The model

In this section, we introduce the formalization of a discrete-time survival analysis model

(DTSAM) proposed by Singer and Willett (1993).

The term discrete survival is used when the time-to-event can take only distinct values,
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for example, one, two, three, or more years/semesters/weeks. Occasionally, discrete

survival data are “truly discrete” (Kleinbaum and Klein 2012, 325); that is, the event

can occur only at distinct values of time (e.g., fertility modeling, particularly the time

from puberty to first childbirth). However, in most cases, discrete data are the result of

interval-censoring: Events might happen in a continuous range of time, but they were

observed only in grouped form instead of continuous-time data – for example, the year

of divorce is recorded but not the month and day (Kleinbaum and Klein 2012, 318).

Following Singer and Willett (1993, 163), let T be a discrete random variable that

indicates the time period j when the event occurs for a randomly selected individual

from the population. For example, T could be the time until divorce in a person’s first

marriage. Note that we focus here on non-repeatable events, and that event occurrence

is thus inherently conditional. For instance, a person can experience the divorce of their

first marriage only if he or she did not already experience it in any of the periods prior to

j. We aim to describe T by a conditional probability density function. The conditional

probability that an event will occur in each period given that it has not occurred earlier

is called the discrete-time hazard, hj.

Researchers are usually interested in whether the risk of event occurrence differs system-

atically between observations. For example, in a study of divorce risks, the risk might

depend on age at the beginning of a marriage or on differences in social status between

the spouses. For now, we examine time-invariant predictors. We have to distinguish

between different individuals i, each with their predictor values Xki for K (k = 1, ..., K)

predictors Xk.

We model the individual hazard hij as depending on periods Pj and predictors Xk through

a logit link (Cox 1972; Allison 1982; Singer and Willett 1993).
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The model to be estimated is that proposed by Singer and Willett (2003, 317):

loge

(
hij

1− hij

)
=(α1P1ij + α2P2ij + ...+ αJPJij)+ (2.1)

(β1X1ij + β2X2ij + ...+ βKXKij). (2.2)

This model contains no single stand-alone intercept but rather a set of alpha parameters

[α1, α2, ..., αJ ], each of which acts as an intercept for a specific time period. The βs

indicate how much the logit-hazards shift with a unit shift in the parameters – for

example, how much an additional year in age difference between partners shifts the logit

of the hazard of divorce.

2.2.2. The data: Transformations and the person-period format

Having established our model, we take a closer look at our data and the data format

needed for a DTSAM. Data are typically available in a person-oriented format, with one

row (record) for each observational unit (i.e., person). Apart from the covariates, Xk,

there are three possible outcome variables. First, there is the variable T , that is, the

time-to-event. However, in most applications, we would almost certainly have a lot of

missing data in T due to censoring. Usually, therefore, instead of the variable T , the

variable Y – the last period in which a unit was observed – is used. This variable is

observed regardless of whether the event occurred or censoring happened. We also add

a dichotomous event indicator, E, set to one if the event occurred and to zero if the

observation is censored.

To estimate a DTSAM (our substantive model), the person-oriented data set must be

converted into a person-period format (Singer and Willett 1993, 172). In person-period

format (see Table 2.1), there is a separate row for each period in which a unit was

observed. Apart from the covariates, we usually have a variable indicating the observed

34



2. Multiple Imputation of Partially Observed Covariates in Discrete-Time Survival Analysis

Table (2.1) Exemplary data set in person-period (PP) format

Obs X1 X2 X3 X4 X5 P E Y
1 9,3 3 female rural 6 1 0 4
1 9,3 3 female rural 6 2 0 4
1 9,3 3 female rural 6 3 0 4
1 9,3 3 female rural 6 4 1 4
2 4,1 2 male urban 3 1 0 6
2 4,1 2 male urban 3 2 0 6
2 4,1 2 male urban 3 3 0 6
2 4,1 2 male urban 3 4 0 6
2 4,1 2 male urban 3 5 0 6
2 4,1 2 male urban 3 6 0 6
3 2,1 4 male urban 4 1 1 1
... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ...
n ... ... ... ... ... ... ... ...
n ... ... ... ... ... ... ... ...

Note: Although the last period in which a unit was observed, Y , is not usually included, we
need it for certain imputation approaches. However, it is used only for imputation, not for
analysis. X1–X5 are time-invariant variables.

period, P , and an event indicator, E. The event indicator is set to one only if the event

occurred for this unit in this specific period. Although the last period in which a unit

was observed, Y , is not usually included separately in person-period format, we will need

it for certain imputation approaches. Y as an added variable in person-period format is

exclusively used for imputation, not for analysis.

The dichotomous event indicator, E, is treated as a collection of independent values with

a hypothesized logistic dependence on predictors (Singer and Willett 1993, 174). This

model implicitly asserts that the variables exhaust all the sources of individual variation

in the hazard rate. For example, the model implies that the variation in hazards is

due only to differences in the independent variables and period, and that the model

is correctly specified. The survival model literature describes these models as having

no unobserved heterogeneity (Allison 1982, 82). The omission of a critical predictor of

the outcome from the model is equivalent to mixing hazard profiles for the different

populations defined by the discarded predictor values. The pooled hazard profile does
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not have to look like any member of the general population. As an example, assume

that all members of the population have a flat risk profile. Still, the height of the risk

profile differs between members. Over time, members with a high risk drop out of the

population. If we do not include the predictor that shifts the members’ risk, the aggregate

profile will show a risk profile that decreases with time (Singer and Willett 1993, 185).

Building a model that exhausts all sources of individual variation is practically not

feasible. We not only have to worry about possible confounders missing from our model,

we also have to worry about all direct predictors of survival. However, even in the

absence of important predictors, parameters can still be interpreted as an average across

population hazard profiles (Xue and Brookmeyer 1996). For example, if we include

obesity as a risk factor for diabetes in our model, and there is unobserved heterogeneity,

we would estimate the log odds ratio for all people with obesity versus those without. If

there were no unobserved heterogeneity, we could additionally interpret the regression

coefficient as the log odds ratio for an individual before versus after developing obesity.

Apart from complicating the interpretation of factors, Allison (1982, 83) also noted

that in case of unobserved heterogeneity, “one would expect this dependence among the

observations to lead to inefficient coefficient estimates and standard errors that are biased

downward.” As unobserved heterogeneity is not entirely avoidable, we will generate the

data sets in our simulations with varying degrees of unobserved heterogeneity. However,

before testing the different multiple imputation approaches, we take a closer look at the

implications of missing data for discrete-time survival analysis.

2.2.3. Implications of missing data for discrete-time survival analysis

Surveys are often subject to missing data, and we have to decide how to treat partially

observed covariates in discrete-time survival analysis. Note that, in this article, we are

looking only at missing data in the covariates, not in the time-to-event variable. Multiple
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imputation is not suited for missing data due to censoring in survival analysis (Allison

2010).

Before exploring different possible strategies for imputing partly missing covariates

in discrete-time survival analysis, we take a more general look at the implications of

missing data in regression analysis to demonstrate the need for a suitable multiple

imputation strategy. One way to deal with missing data in regression analysis is to

exclude incomplete observations. This is known as listwise deletion or complete case

analysis. One consequence of this approach is a possibly considerate loss of efficiency, or

information (Carpenter and Kenward 2013, 9) as only the observations with complete

records are used. In other words, even if only one of many covariates is missing, this leads

to the complete exclusion of the observation. This becomes especially problematic if the

aim is to keep unobserved heterogeneity down and include not only possible confounders

but also other essential predictors.

However, a loss of efficiency, or information, is only one side of the coin; the other is bias.

Table 2.2 gives an overview of the conditions under which logistic regression coefficients

will be biased after listwise deletion. Here, X1 and X2 are two independent variables,

Y is the dependent binary outcome variable. For now, only the variables on which the

completeness of a case depends (e.g., the outcome and X1) are of relevance, not the type

of missingness mechanism that is behind the nonresponse.

From Table 2.2, we can see that in the case of logistic regression – for example, the

DTSAM – the coefficient estimate of an independent variable X1 is biased only if the

completeness of an observation depends

1. on the binary outcome and

2. and on the covariate X1 itself.

Concerning bias, it does not make a difference for analysis results after listwise deletion

whether X1 is missing not at random (MNAR) dependent on X1 and the outcome, or

37



2. Multiple Imputation of Partially Observed Covariates in Discrete-Time Survival Analysis

Table (2.2) Bias in case of logistic regression using complete records. Adapted from
Carpenter and Kenward (2013, 32)

Mechanism Biased point estimates?
depends on Constant Coeff. X1 Coeff. X2

Y Yes No No
X1 No No No
X2 No No No
X1, X2 No No No
Y ,X1 Yes Yes No
Y ,X2 Yes No Yes
Y ,X1,X2 Yes Yes Yes

whether X2 is missing at random (MAR) dependent on X1 and the outcome (Carpenter

and Kenward 2013, 32).

Therefore, if it must be assumed that the estimated coefficient of our variable X1 will

be biased after listwise deletion, other approaches to handling missing data are needed.

Nevertheless, even if we are confident that our analysis will not be biased after listwise

deletion, we will lose information from incomplete cases. Thus, listwise deletion cannot

be an adequate solution in most cases, and we will look into multiple imputation as a

possible remedy for these unwanted effects of missing data.

2.3. Multiple imputation

2.3.1. Multiple imputation in general

One of the most popular approaches to tackle missing data is multiple imputation (Little

and Rubin 2002). MI allows for the analysis of incomplete data sets by substituting

missing values. Substitution is performed by imputing values of a variable based on other

variables, mostly those of the analysis model. In the analyses, these imputed values are

not treated the same as observed values, as this would lead to biased variance estimates.

Therefore, several values instead of just one are imputed for each missing value in order
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to avoid treating imputed values as observed. Each data set is then analyzed separately,

and estimates and variances are combined across imputations using rules developed by

Rubin (1987).

To impute missing values, we need models of their distribution. There are two main

approaches, joint modeling (JM) and fully conditional specification (FCS), also known

as multivariate imputation by chained equations or MICE (van Buuren 2007).1 Joint

modeling MI (Schafer 1997) draws missing values simultaneously for all incomplete

variables using a multivariate distribution. However, specifying such a joint model is

often challenging, for example, for categorical variables. By contrast, FCS divides the

problem into a series of univariate problems (van Buuren 2007). FCS involves specifying

a series of univariate models for the conditional distribution of each partially observed

variable, given all the other variables (White et al. 2011). It is more flexible than the joint

modeling approach because adequate regression models can be selected for every variable

(e.g., linear regression for continuous partially observed variables, logistic regression for

binary partially observed variables).

When specifying the imputation model, it is crucial to account for the substantive model

of interest – which is often also called the analytical model. The associations to be

examined in the substantive model must also be represented in the imputation model.

Otherwise, bias toward zero will be the likely consequence (Fay 1992). The imputation

and substantive models should be compatible. Compatible means that there exists a

joint model with conditionals corresponding to the imputation and substantive models

(see Bartlett et al. 2014 and for the related term of congeniality see Meng 1994). In

addition to JM and FCS, a variation of FCS that allows to easier specify a compatible

imputation model was developed by Bartlett et al. (2014). It is called substantive model

compatible fully conditional specification (SMC-FCS). SMC-FCS is used when it is hard

to find a compatible standard FCS imputation model because the substantive model, i.e.,

1FCS is known under a multitude of names, e.g., also as imputation by chained equations or “ice”.
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the model the researcher is interested in, is either non-linear (e.g., a Cox regression) or

contains non-linear (e.g., squared or interaction) terms. SMC-FCS can also be used for

models without non-linear terms. As with FCS, separate models are specified for the

partially observed variables. What differentiates SMC-FCS from regular FCS is that the

conditional distribution of a variable (given the other variables) is combined with the

specified substantive model to define an imputation model. This combination ensures

that the missing data are drawn from models compatible with the specified substantive

model.

2.3.2. Handling missing covariates values in case of a DTSAM as a

substantive model

Representing the associations in the substantive model of interest is not straightforward

in the case of a DTSAM and its complicated outcome structure. Generally, we have

two outcome variables: the event indicator, E, and the last period in which a unit was

observed, Y (either because the unit was subsequently censored or the event occurred

during that period). Moreover, it is not clear whether to impute in a person-oriented (P)

or person-period (PP) format. Imputing while the data set is still in a person-oriented

format would lead to imputed values that are identical for all observed periods. However,

it is not possible to specify a compatible imputation model in that case because the

substantive analysis model – a DTSAM – is estimated with the data set in person-period

format. Imputing with the data set in person-period format would, however, lead to

values for time-invariant variables that potentially differ between persons.

As there is no clear-cut FCS solution to this problem, we will explore several imputation

FCS approaches/approximations that differ in terms of (1) the data format used, (2) the

general imputation approach used, and (3) the imputation model specification. The data

format in which we impute has two possible formats: person-oriented and person-period
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format. We examine both the FCS and the SMC-FCS approaches. Our imputation

models differ in terms of whether we include variables for different periods or (censored)

survival times or whether we also treat the (uncensored) time-to-event, T, as a partially

observed covariate (Beesley et al. 2016) and impute conditional on this partially imputed

variable.

FCS specifications with data in person-oriented format

We begin with the imputation approaches in a person-oriented format (P), that is, before

converting the data to a person-period (PP) format. We present several approaches,

some of which are taken from the literature on MI with continuous survival (cure) data

(Beesley et al. 2016). They differ mainly in terms of the implemented conditioning on

the (censored) time-to-event. For all imputation models presented, we also condition on

the other covariates. Imputation is performed using the R (R Core Team 2019) package

mice (van Buuren 2007) with single level normal imputation.

Let Xk be one of K incomplete continuous time-invariant random variables (k = 1, ..., K)

and let X be X = (X1, ..., XK). Let X−k = (X1, ..., Xk−1, Xk+1, XK). Let Zm be one of

M complete variables (m = 1, ...,M) and let Z = (Z1, ..., ZM).

In the following, we will mainly discuss how to include the information included in the

event indicator, E, as well as the completely observed last-observed-period variable, Y ,

or the uncensored but incompletely observed time-to-event variable, T .

The first approach (FCS P Y + E) uses dummy variables Yj (j periods, j = 1, 2, ..., J)

for each possible period j. Let Y be Y = (Y1, ..., YJ). The aim is to allow for enough

flexibility in the relationship between Y and the other covariates.

The imputation model is:

Xk = [Y,E,X−k, Z]β + e, e ∼ N(0, Iσ2) (2.3)
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with persons as observational units.

This specification with dummy variables for each possible time point is flexible, but it

is possible only if the number of discrete-time points is not too large, the hazard is not

expected to be near zero in some periods, and the risk sets are sufficiently large for each

time point. Other specifications of the relationship between (censored) time-to-event are

possible in these cases. They include, for example, linear, quadratic, cubic, or higher-order

polynomials. It is also possible to use the logarithm of time (Klein et al. 2013) or step

functions for grouped periods. For our simulation, however, we do not simulate more

than 15 possible time points. Thus, we use dummy variables to keep the specification as

general as possible.

Another approach in the person-oriented format (FCS P log(T )) is to treat the time-to-

event, T , as a partially observed covariate (Beesley et al. 2016), and thus to impute it in

the same way as other partially observed covariates. We impute the partially observed

covariates conditional on the other covariates and the partly imputed time-to-event, T ,

and not on the last period a unit was observed, Y , and the event indicator, E.

The imputation model is thus

Xk = [log(T ), E,X−k, Z]β + e, e ∼ N(0, Iσ2) (2.4)

with persons as observational units.

FCS specifications with data in person-period format

It is also possible to impute after converting the data to a person-period (PP) format. Note

that persons will possibly receive varying imputed values for time-invariant covariates.

As in the approaches in the person-oriented (P) format, we always impute conditional on

all other covariates. Imputation is again done with mice in R.

For our first approach (FCS PP P + E) in person-period format, we impute conditional
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on the event indicator, E, and dummy variables Pj for every period j (j = 1, ..., J). Let

P be P = (P1, ..., PJ).

The imputation model is thus

Xk = [P,E,X−k, Z]β + e, e ∼ N(0, Iσ2), (2.5)

with periods within persons as single units.

However, we expect that we will lose important information, especially for the rows

belonging to the first few periods. If we do not include the last period in which a unit

was observed, Y , we do not directly condition on the censored survival time. Therefore,

we also try imputing conditional on the last period in which a unit was observed instead

of the current period. We use dummy variables Yj (FCS PP Y + E).

The imputation model is thus

Xk = [Y,E,X−k, Z]β + e, e ∼ N(0, Iσ2) (2.6)

with periods within persons as observational units.

SMC-FCS specifications with data in person-period format

After presenting several possible FCS approximations, we now examine the performance

of SMC-FCS in this setting. SMC-FCS has shown excellent results in different simulation

settings (Bartlett et al. 2014; Beesley et al. 2016). We explore how this approach fares

with a DTSAM as a substantive model. In contrast to the other imputation approaches,

we now have to include a substantive model.

When we include the substantive model (see Equation 2.2) using the R package smcfcs

(Bartlett and Keogh 2019) and impute in person-period format (SMC-FCS PP P +E), we

effectively condition our imputations on the current period, P , of the row aside from the
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other covariates and the event indicator, E. Therefore, the imputation model includes all

variables that are also part of the substantive model of interest, and all the data are in

the same format. However, the imputation model does not depict the clustered structure

of the observation, and it does not directly include the last period in which a unit was

observed, Y .

We also review another approximation (SMC-FCS PP Y + E). We regress the event

indicator, E, on the covariates, but we also include the last period a unit was observed,

Y . Although we recognize that this is a departure from the original SMC-FCS approach

concerning the data format, we think it is worthwhile to test this approximation. It also

allows modeling part of the clustering of periods within persons, possibly relevant in the

case of unobserved heterogeneity, which we model in three of the four simulations in our

simulation study (see next section).

2.4. Simulation study

2.4.1. Data-generating mechanisms

We now examine the performance of the imputation approaches in a series of four

simulations. We first present the details (data-generating mechanisms, the introduction

of missingness, performance measures) of the simulations and then discuss the results.

For all four simulations, we create five continuous covariates, Xk (k = 1, ..., 5), drawn from

a multivariate normal distribution with means of 0 and variances of 1. The covariates

are moderately correlated with each other (r = 0.1).

Concerning the generation of the survival times, we use the DTSAM model (see Equation

2.2), which will be estimated after the introduction of missingness and the subsequent

imputation. This yields (truly) discrete survival data that fulfill the assumption of

proportional odds for the DTSAM, the substantive model of interest. If we do not add
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a frailty term to the generation of survival times, the generated data also meet the

central DTSAM assumption of no unobserved heterogeneity. However, as several authors

have noted, the assumption of no unobserved heterogeneity is highly unrealistic (Allison

1982, 83). Therefore, no unobserved heterogeneity is assumed only in one of the four

simulations. In the other three simulations, we assume successively larger amounts of

unobserved heterogeneity. In all three cases, the frailty term is normally distributed,

with a mean of 0 and variance that increases between simulations (0.25, 1, and 4). We

use α = (−5.00,−4.72,−4.44, ...,−0.8) and β = (0.8, 2.2,−0.5, 0.3,−1.4) as parameter

vectors (see Equation 2.2). We simulate 15 possible time points; after the last time point,

all observations are censored. We also randomly censor 10 percent of all observations.

For each simulation scenario, we generate 1,000 simulated data sets to prevent the Monte

Carlo error from masking differences between methods, and we draw 1,000 samples with

2,000 persons each. Data set length in person-period format will vary.

2.4.2. Missingness

To introduce missing data in each of the simulations, we set 30 percent of the observations

for each covariate to missing with probabilities depending on the other covariates and

the censored survival time. Therefore, the completeness of an observation row depends

both on the outcome and all the covariates, which leads to biased coefficient estimates

after listwise deletion (LD).2

After introducing different possible imputation strategies and creating data sets with

missing observations, we are now able to examine the performance of the different

imputation approaches.

2We avoid perfect predictors and the accompanying computational problems (White et al. 2011, 394),
namely, that the complete cases include only failures or non-failures for a specific time point. We
avoid these problems by including 30 fail-safe observations (two for each possible time point, one
with event indicator one and one with event indicator zero) in all analyzed data sets used in the
simulations (full data sets, data sets with missing data, data sets with imputed values).
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2.4.3. Methods compared and performance measures

We perform MI of partially observed covariates in discrete-time survival analysis using the

imputation specifications described earlier in this article. For each simulation and method,

we create five imputed data sets. We then compute the mean coefficient, relative bias,

mean squared error (MSE), confidence interval (CI) length, and coverage for estimated

DTSAM parameters across 1,000 Monte Carlo repetitions for each imputation model

specification.

Performance is often evaluated only for regression point estimates and variance coefficients.

However, logistic regression estimates have come under scrutiny because they do not

behave like linear regression estimates. Logistic regression estimates are influenced

by unobserved heterogeneity – that is, omitted variables (Mood 2009, 67). To allow

comparisons between models with different covariate specifications, researchers use

average marginal effects (AME) to interpret substantive results. An AME is the average

effect of an independent variable on the predicted probability (Mood 2009, 75) – in case

of a DTSAM, the hazard. Due to the popularity of AMEs, we also provide a comparison

of the AME means for all approaches.

2.4.4. Simulation results

Figure 2.1 displays the bias for the estimates of β1 for no unobserved heterogeneity and

increasing unobserved heterogeneity with frailty term variance σ2 = 0.25, σ2 = 1 and

σ2 = 4, respectively.

We concentrate first on the imputation methods under no unobserved heterogeneity on

the left. The assumptions of no unobserved heterogeneity and proportional odds are thus

fulfilled for the analysis model with full data. As listwise deletion (LD) overestimates

the true coefficient, and the CI length and MSE are about double that of the full data,

there is room for improvement in terms of bias and efficiency. Turning to the different
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imputation methods and their performance, we notice profound differences. We register

the highest bias for the imputation approach FCS P log(T ), where we first imputed the

missing time-to-event, T , and used this variable (apart from the covariates) to impute

our covariates. As in the case of the Cox model, this approach is completely inadequate

(Beesley et al. 2016, 4711). The second and third-to-worst approaches are the two FCS

approaches in person-period format (5. FCS PP P +E and 6. FCS PP Y +E) with the

current period and the censored survival time, respectively, included in the imputation

models.

The FCS approach in person-oriented format using the information from the (censored)

survival time and the event indicator (3. FCS P Y + E) is a little better but still not

satisfying. This leaves us with the two SMC-FCS approaches (7. SMC-FCS PP Y + E

and 8. FCS PP P + E). The compatible model (with the period information) performs

better than the incompatible one with the censored time-to-event (T).

The same is true if we add unobserved heterogeneity to the data-generating process (frailty

term variance σ2 = 0.25 or σ2 = 1, σ2 = 4), even though the compatible model ignores

the clustered structure of the periods within persons. As the assumption of no unobserved

heterogeneity is thus not fulfilled – a very common violation – we explore the performance

of imputation approaches under this condition. With increasing heterogeneity, the logistic

regression coefficients are drawn toward zero by unobserved heterogeneity, that is, omitted

variables (Mood 2009). Nevertheless, the ranks of the different imputation approaches

in relative bias stay the same. The SMC-FCS approaches in person-period format fare

very well, whereas the other approaches do not perform sufficiently in terms of relative

bias. We can confirm the strong performance of the SMC-FCS approaches (7 and 8)

concerning MSE and coverage if we look at other performance measures. Whereas some

of the performance measures for FCS approaches perform as well as the compatible
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SMC-FCS approach in the case of high heterogeneity, they do not perform better than

the SMC-FCS approaches.

As AMEs are often used in the comparison of different DTSAM models (e.g., Wagner

et al. 2019, 84), we also include them in our performance evaluation. The first thing one

notices is that there is no longer any recognizable difference between the two SMC-FCS

approaches (7 and 8). We can conclude that the difference in coefficient performance is

due to fact that the SMC-FCS imputation that included the last period in which a unit

was observed (7), introduced too much unobserved heterogeneity into the imputed data

set. This, in turn, leads to coefficient estimates that are biased toward zero but leaves

the AMEs approximately unbiased.

From all that we have seen so far, the compatible SMC-FCS model outperforms or

performs at least as well as all other imputation models and is therefore recommended.

The currently most common approach, listwise deletion (LD), leads to high efficiency losses

and possibly high bias, and should therefore be avoided. The amount of heterogeneity

that can be modeled in a DTSAM will vary strongly with available variables, but the

compatible SMC-FCS performs well under all examined conditions.

Apart from genuinely discrete survival data, DTSAMs with a logistic link are often used

to analyze interval-censored survival data. Therefore, we base another scenario on the

continuous Weibull distribution for survival times and rounded variables in order to

create interval-censored survival times (Lee and Go 1997) Results are presented in table

form in Table A.1 in the Appendix.3 The most important take-away from this additional

simulation is that the conjugate SMC-FCS imputation model (8. SMC-FCS PP P + E)

again shows excellent properties in terms of (relative) bias, MSE, CI length, and coverage.

The FCS approaches in person-period format, however, do not perform well (high bias

and coverage near zero).

3The created data fulfill the criteria of proportional hazards. In the case of a DTSAM, our assumption
is, however, that the odds are proportional (it is also called the proportional odds model). If the
hazard probabilities are small (¡0.2), however, this represents no problem since hij ≈ hij/(1− hij).
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2.5. An applied example with the German Family Panel

pairfam

To provide an applied example under real-world data conditions, we now conduct an

example analysis from the field of relationship and family research using data from the

German Family Panel project called pairfam (Brüderl et al. 2017).

The 2008-launched pairfam panel (“Panel Analysis of Intimate Relationships and Family

Dynamics”) is a longitudinal study for research on relationships and families in Germany.

The data is collected from a nationwide random sample of the three birth cohorts 1971-73,

1981-83, 1991-93, and their partners, parents, and children. For our real-world example,

we used data from the data set biopart, which includes prospective and retrospective

information on the anchor’s relationships, including relationships, cohabitation, and

marriage history. We used the data set 8.0.0 (Brüderl et al. 2017), which includes

updated information from the survey waves 1-9 (for more details on the panel see Huinink

et al. 2011).

We use a simple substantive model from the field of relationship stability research.

Note that our goal here is not to estimate any causal models but rather to explore

how our imputation approaches fare with a real data set. Let us assume that we are

interested in the relationship between the probability that a couple i splits up and several

time-invariant independent variables.

We first include six indicators j, j = {1, 2, ..., 6}, for grouped periods, each representing

five years of a relationship and the last one all years after 25 years of a relationship.

These variables include the time point at which the relationship started (begin in years

since 1900), the age in years when the anchor person began the relationship (age), the

difference in ages of the two relationship partners (difference age), an indicator for

whether the partners are married (married) and an indicator for whether the parents
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separated during the anchor’s childhood (parents’ separation).

separated ∼
6∑
j=1

αjPj + β1begin + β2age + β3difference age

+ β4married + β5parents’ separation

(2.7)

We reduce the data set to the fully observed first-reported relationships of all anchors.

This leaves us with a sample of 2,173 relationships. Transforming the data set to the

relationship-year format leads to 26,554 rows (i.e., observed periods). For our data set

with missing data, we deleted 30 percent of the observations for three of the variables,

namely, age, begin, and parents’ separation. The values are missing at random (MAR) –

that is, missingness depends on the censored time to survival, whether the relationship

failed, whether the partners are married to each other, and the two respective other

variables with missing data. We then impute the missing values using the same approaches

we already tested in the simulations.

Examining the results in Figure 2.2, we notice that after listwise deletion, the coefficient

estimate for begin has a higher variance. We also see that after imputing with our various

approaches, the imputation approach FCS P log(T ) (4) again performs differently and

worse than the other imputation approaches; the coefficient of begin is way off; the 95%

confidence interval does not even come close to the interval of the full data. The FCS

approach in person-period format with period dummies (5. FCS PP P +E) also seems to

perform especially poorly: confidence intervals are very wide. The SMC-FCS approach

with a compatible imputation model (8. SMC-FCS PP P + E) performs adequately in

this real-world setting, as was also the case in the simulation.
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Figure (2.2) Selected estimated coefficients for a DTSAM of the separation of the first
fully observed reported relationships. Pairfam data set 8.0.0 with missing
data introduced by the authors. For the specification of the DTSAM see
Equation 2.7.

In sum, the findings resemble those found in the simulations. They show (1) that

some imputation approaches – for example, treating the time-to-event variable as partly

unobserved – are not advisable; (2) that imputing in person-period format with FCS

cannot be recommended; and (3) that SMC-FCS with a compatible imputation model

performs adequately.
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2.6. Discussion

Results

Like many other types of data analysis, the analysis of discrete-time survival data is often

challenged by missing data in one or more covariates. Negative consequences of such

missing data include efficiency losses and bias. A popular approach to circumventing

these consequences is MI. However, in MI, it is crucial to include outcome information

in the model for imputing partially observed covariates. Unfortunately, this is not

straightforward in the case of discrete-time survival data because (1) we usually have

a partially observed (left- or right-censored or both) outcome; (2) we do not have

just one outcome variable, but two (i.e., event and time-to-event); and (3) we have to

decide whether to impute while the data set is still in the person-oriented format or

after conversion to person-period format, especially if we are looking at time-invariant

variables.

In this article, we have tested different approaches for imputing missing covariates in

the DTSAM setting. For this purpose, we performed four simulations that differed in

the amount of unobserved heterogeneity. Some of the investigated methods are from the

literature on the imputation of time-constant variables for the Cox model (van Buuren

et al. 1999; White and Royston 2009; Clark and Altman 2003; Keogh and Morris 2018;

Beesley et al. 2016). We also took a closer look at SMC-FCS (Bartlett et al. 2014) and

its performance. We also provided an applied example using pairfam data (Brüderl et al.

2017).

Our findings lead us to agree with Beesley et al. (2016) that treating censored survival

times as partially unobserved and imputing other covariates depending on the multiply

imputed missing survival times yields unsatisfying results in all cases. Whereas Beesley

et al. (2016) observed this for the Cox (cure) model, we have confirmed it for discrete-time

survival analyses.
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Furthermore, the performance of imputation methods in person-period format with FCS

is disappointing. Apart from the inherent incoherence between the imputed values for

different times in the same person, coverage and relative bias are unsatisfying. The SMC-

FCS approach using a compatible imputation model performs best in our simulations

with and without unobserved heterogeneity and is therefore strongly recommended.

Limitations and future research

Note that the approach that fared best in our simulation study (i.e., the approach using

SMC-FCS with a compatible imputation model) is also suitable in principle for the

imputation of time-varying covariates. This is because imputation is done in person-

period format, and it is, therefore, possible to impute different values for different observed

periods of the same person. However, research to confirm adequate performance in the

case of time-varying covariates has yet to be undertaken.

Another open question is how to deal with time-varying effects of time-invariant and

time-varying covariates. Keogh and Morris (2018) have shown that a variation of the

SMC-FCS approach also performs sufficiently well in the case of time-varying covariates.

Again, an evaluation for discrete-time survival models has not yet been conducted.

Conclusions

We recommend using the SMC-FCS approach proposed by Bartlett et al. (2014) with a

compatible imputation model. This approach performed at least as well as – and usually

better than – the other (SMC-)FCS approaches we explored in this article. This is true in

the case in which the data set fulfilled the assumptions of a DTSAM. It is also true in the

case of varying degrees of unobserved heterogeneity of and interval-rounded survival data

with proportional hazards instead of proportional odds. The implementation of SMC-FCS

in Stata (Bartlett 2015) and in R (Bartlett and Keogh 2019) and the specification of

the substantive (analytical) model are easy to do. The SMC-FCS approach has already
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shown excellent performance in the case of included quadratic covariates and interaction

effects in linear and logistic regression as well as for the imputation of covariates in

Cox (cure) regressions (Bartlett et al. 2014; Bartlett and Taylor 2016; Beesley et al.

2016; Keogh and Morris 2018). In conclusion, we also recommend this approach for the

imputation of time-invariant covariates in discrete-time survival analysis.
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3. Systematically Missing Partner

Variables and Multiple Imputation

Strategies: A Case Study With

German Relationship Data

3.1. Introduction

Multi-actor studies collect information on persons who maintain a significant relationship

or connection with each other. For the analyses of couples or marriages, the anchor

respondent’s partner can be included as a so-called secondary respondent in a multi-actor

survey (Kalmijn and Liefbroer 2010; Dykstra et al. 2012; Kalmijn et al. 2018). However,

due to monetary and time restrictions in data collection, specific variables are commonly

recorded only for anchor respondents and not for their partners. Questionnaires for

secondary respondents may not include all items collected for anchors (Dykstra et al.

2012; Brüderl et al. 2017). Therefore, researchers who need to use the same variables

from anchors and partners for their analyses often face the problem of systematically

missing data (Resche-Rigon et al. 2013). In our case, the systematically missing data are

data that are missing for all secondary respondents.
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3. Systematically Missing Partner Variables

The problem of systematically missing data is not confined to the analysis of data

on primary and secondary respondents like anchors and their partners. Systematically

missing data can arise in various settings, for example, if there is a change in measurement

in repeated surveys (e.g., in official statistics like censuses). The old measurement is

missing after the change, and the new measurement is missing before the change (Parker

et al. 2004; Schenker and Raghunathan 2007). Systematically missing data can also be

present for analyses of pooled and harmonized surveys. In ex-post survey harmonization,

a variable can be considered systematically missing if the study in question does not

include the specific variable, but the other studies do. A popular solution for both cases

is using multiple imputation (MI) techniques to impute the missing variables (Schenker

and Parker 2003; Resche-Rigon and White 2016).

We will look into whether we can transfer the strategies employed in these related fields to

the case of missing partner variables. This paper explores if and how multiple imputation

can be used when information on partner respondents is systematically missing for a

partner variable. Since we cannot estimate the correlation between the systematically

missing partner variable and the corresponding anchor variable with the original data

set, we have to fall back on assumptions. We can draw two possible assumptions from

the literature in related fields. The first one is to assume that the partial correlation

between the systematically missing partner variable and its corresponding anchor variable

given other available variables is zero. This assumption is also called the assumption of

conditional independence. Another possibility is to estimate the correlation in another

study, i.e., a so-called bridging study (Parker et al. 2004). This approach requires the

assumption that these estimates from the bridging study are transferable to the original

study with the systematically missing partner variable. We will evaluate both strategies

to give insight into which assumption is more suitable for the imputation of systematically

missing partner variables. We want to note that due to the fact that these approaches
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are based on strong assumptions, they may not be suitable for main analyses but rather

for supplementary and sensitivity analyses. Sensitivity analyses allow us to study how

various sources of uncertainty contribute to the model’s overall uncertainty.

The paper is structured as follows: First, we give a brief overview of multiple imputation

(MI) principles for missing data. Second, we will review previous research on systematically

missing data, focusing on approaches that aim to resolve this problem through multiple

imputation. This encompasses the following areas: (ex-post) survey harmonization of

multiple surveys with a variable missing in one or multiple surveys completely, changes

in measurements for extended time series in official statistics, and split questionnaire

designs. We briefly introduce each area and summarize the critical differences in the

pattern of systematically missing data. Third, building on this literature, we outline

MI approaches for systematically missing data for partner respondents. We illustrate

the approaches through a simulation with data from the German Socio-Economic Panel

(Goebel et al. 2019), pairfam – The German Family Panel (Brüderl et al. 2017), and

the German sub-study of SHARE, the Survey of Health, Ageing and Retirement in

Europe (Börsch-Supan et al. 2013; Börsch-Supan 2020). We use the two latter ones

in our simulation as bridging studies. We chose these two as bridging studies for the

broad overlap in observed variables, and chose panel waves that were close in time to

the selected GSOEP wave. Still, we notice substantial study heterogeneity between the

studies, especially regarding the included age cohorts. Thus, we also take a broader look

at study heterogeneity between the three surveys to get a better preliminary evaluation

of this problem. We close with a discussion of limitations and the next steps.
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3.2. Literature overview: Systematically missing data in

related fields

We will start with an overview of different cases of systematically missing data. A visual

representation is given in Figure 3.1, a summary in tabular form in Table 3.1.

The term systematically missing data was coined for meta-analysis with raw data, also

called individual person data (IPD) meta-analysis (Resche-Rigon et al. 2013). In an IPD

meta-analysis, raw data from several studies are combined and then jointly analyzed. In

the social sciences, research projects combining, pooling, and harmonizing data are usually

not called IPD meta-analyses but instead described as ex-post survey harmonization

projects (Granda et al. 2010). Survey harmonization projects have become rather popular

in recent years; some current projects include CLOSER (2020), which harmonizes data

from longitudinal studies in the UK, HaSpaD (2020) combining German relationship

data from different surveys, or the Survey Data Recycling (SDR 2020) project focusing

on cross-national research on social capital and political participation. If an analysis

were to be conducted only with one data set with a systematically missing variable, it

would not be possible to include the systematically missing variable. For example, in

Figure 3.1 a, variable 1 is not observed for studies 5 and 6 but it is in all other studies.

They can serve as “bridges” to impute the data in Study 5 and 6. It is possible to

impute systematically missing variables through multi-level models while at the same

time modeling the heterogeneity between studies (Resche-Rigon et al. 2013; Jolani et al.

2015; Jolani 2017).

Systematically missing data can also occur in official statistics if measurements change

over time (Parker et al. 2004; Schenker and Raghunathan 2007), i.e., between waves of a

panel or for a time series (see Figure 3.1 b). The change in measurements then hinders

comparisons over time. However, both measurements can be included in a survey for a
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(a) Survey harmonization
(b) Official statistics with changing mea-

surements

(c) Split questionnaire/matrix design (d) Partner variables

Figure (3.1) Systematically missing data in case of:

limited period. This time period then serves as bridging study. The relationship between

both measurements can then be estimated and used for multiple imputation, allowing

the creation of a complete timeline for either of the measures.

A similar situation arises in split questionnaires, also called matrix design (see Figure 3.1

c), in which the questionnaire is split into several modules. Respondents are only asked

varying subsets of modules (see Figure 3.1 c). After data collection, missing components

can be imputed. Each split serves as a “bridging study” for other splits in the same

questionnaire. Split questionnaire design is used to reduce respondents’ burden and

survey costs (Rässler 2003). Bridging studies and split questionnaire designs have in

common that the researchers can typically control which variables are observed together

(see Raghunathan 2006 and Adigüzel and Wedel 2008 for more information regarding the

implementation of optimal matrix designs).
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Table (3.1) Comparison of different problems related to systematically missing data

Miss- Number of Heterogeneity Overlap between
ingness studies/subgroups between studies systematically
control missing variables

Survey No Usually high Potentially Depends on
harmonization (many studies) high included studies

Changes in Yes Low (few changes Low, but may Yes, if bridging
measurement in measurement increase in time study available
official statis-
tics

usually)

Split Yes Low to high Very low Yes, design is
questionnaire controlled by
design researcher

Anchor No Low (Two Low, potentially No, only through
and subgroups) high in regard external study
partner to bridging study
variables

The comparison of the different areas, in which systematically missing data appear, reveals

differences and similarities (see Figure 3.1 and Table 3.1). For example, the respondents’

grouping varies by year of survey in the case of bridging studies, by study in the case of

survey harmonization, and by matrix subset in split questionnaires. Another important

difference is the level of similarity between the study or the studies with systematically

missing data and the bridging study. Ideally, the external bridging study should be

as similar as possible to the original study with respect to the underlying population,

sampling, interview mode, and measurements. In the context of missing partner variables,

the bridging study and its data structure are used to extrapolate the relationship between

the anchor and the partner variable, similar to systematically missing data for different

official statistics measurements. In official statistics and split questionnaires, changes in

study designs present optimal imputation situations compared with survey harmonization

since there is control over measurements and sampling. And yet, Parker et al. (2004) and
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Schenker and Parker (2003) warn against blindly extrapolating relationships found in a

bridging study to official statistics studies years down the road since they can change

over time.

Comparing systematically missing information from partner respondents with other cases

of systematically missing data, we first notice that the group for which the data is missing

is that of the partners (see Figure 3.1 d). A subset in which the variables are observed for

both anchor and partners does not exist. Therefore, we need to make either additional

assumptions concerning the (conditional) dependence between observed and unobserved

variables or rely on an external data set, which can serve as a bridging study for multiple

imputation.

3.3. Motivational example: Life satisfaction of partners

in Germany

We will build our simulation on a simple example: the dependency of anchors’ and

partners’ life satisfaction. Similarities between partners can exist for many reasons, like

shared experiences, the influence of partners over one another, or homophily (Kenny and

la Voie 1985; Ledermann and Kenny 2012). Homophily (also called assortative mating)

is people’s tendency to seek out or be attracted to those who are similar to themselves

(Byrne 1971). Possible reasons for dissimilarities between partners include compensation

effects between partners, social competition, or task sharing. (Dis-) similarities between

partners have been studied too, such as heterogeneous couples with regard to social-

economic status (Edwards 1969; Kalmijn 1998; Skopek et al. 2011). For such analyses,

partner variables are often necessary as central predictors or critical confounding variables.

Regarding our simulation on life satisfaction, previous research has shown that persons’ life

satisfaction in a relationship is also affected by their partner’s characteristics (Dyrenforth
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et al. 2010; Gustavson et al. 2016). A specific example of such an influence would be

the regression coefficient of partner’s life satisfaction with anchor’s life satisfaction as an

outcome variable controlled by other variables such as socio-demographic characteristics

and the Big Five personality traits of anchors and partners. While these covariates are

available for anchors and partners, partner’s life satisfaction is systematically missing

in our example. Therefore, we test and evaluate different imputation strategies in the

case of systematically missing partner variables on this motivational research topic. We

will work with data from the German Socio-Economic Panel (Goebel et al. 2019), and,

as additional bridging studies, the German pairfam panel (Brüderl et al. 2017) as well

as the German sub-study of the Survey of Health, Ageing and Retirement in Europe

(Börsch-Supan et al. 2013; Börsch-Supan 2020). For more details on the data sets see

Section 3.5.1.

In the following, we will give an overview of multiple imputation and our strategies.

3.4. Imputation strategies for systematically missing

partner variables

3.4.1. Multiple imputation

One of the most popular approaches to tackling missing data is multiple imputation

(Little and Rubin 2002). Multiple imputation allows for the analysis of incomplete data

sets through substituting missing values. We replace them by “imputing” values of a

variable conditioned on other variables; in general, conditioned at least on the variables

of the substantial analysis model (Carpenter and Kenward 2013, 72). This procedure is

repeated several times, creating several data sets. Each data set is analyzed separately,

and estimates are combined across imputations using rules developed by Rubin (1987).

Using a single imputation approach instead of multiple imputations would lead to biased
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variance estimates.

To impute missing values, we need models specifying the distribution of the missing

values. There are two main approaches, the joint modeling (Schafer 1997) approach and

the fully conditional specification (van Buuren et al. 2006). Joint modeling (JM) means

drawing missing values simultaneously for all incomplete variables using a multivariate

distribution. Fully conditional specification (FCS) is known under a multitude of names,

e.g., as multiple imputation by chained equations, short mice or ice. In contrast to JM,

FCS “splits” the problem into a series of univariate problems (van Buuren 2007). FCS

involves specifying each partially observed variable’s conditional distribution through a

series of univariate models, given all the other variables (White et al. 2011). Imputation

under FCS is then done by iterating over the conditionally specified imputation models.

It is more flexible than the JM approach since we can select adequate regression models

for every variable (e.g., linear regression for continuous partially observed variables,

logistic regression for binary partially observed variables). An important weakness of

this approach is that the specified conditional densities can be incompatible. Thus, we

possibly do not know the joint distribution to which the imputation algorithm converges.

However, in practice, the approach’s actual performance has very often been good (van

Buuren 2007).

Due to its popularity and flexibility, we will use FCS to test the different approaches.

Since the aim of the article is to explore whether the use of bridging studies is a possible

remedy for systematically missing partner variables in general, we will not compare

different imputation packages. Instead, we will restrict ourselves to one of the most

popular ones (mice in R). However, the approaches tested can also be carried out with

other FCS imputation packages or transferred to joint modeling approaches. We move

on to the different imputation approaches for systematically missing partner variables.
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3.4.2. Multiple imputation for systematically missing partner

variables – Assumptions and bridging studies

In this article, we evaluate different multiple imputation approaches, which we will now

present. We first include the full SOEP data set (marked as 01. Full data set in the

results and figures) before deleting the partner variable for comparison and reference.

For a detailed description of the data set, see the following Section 3.5.1.

For the imputation approaches, we will start with the least complex ones and move

our way up to the possible inclusion of bridging studies in the imputation procedures.

A simple way to impute the missing data is to impute in long format, i.e., with the

information on anchors and partners in separate rows (Figure 3.2 a). However, this

imputation approach (02. MI in long format) ignores possible dependencies between

anchors and partners in a relationship. This will result in correlation and regression

point estimates for the anchor’s life satisfaction and the life satisfaction of the partner

that are strongly biased towards zero (see Section 3.6).

Imputing in wide format with one row for each relationship, i.e., the format required

for the target analysis (Figure 3.2 b), is not possible with standard FCS procedures.

Since we do not have any observations in the systematically missing partner variable,

the univariate imputation model cannot be estimated.

A possibility would be to first transform the data into the so-called pairwise format (Figure

3.2 c). The pairwise format is well known in family research since the popular actor-

partner interdependence models (APIM) require this data structure (Kenny and la Voie

1985; Kenny et al. 2006; Ledermann and Kenny 2012). APIMs measure bidirectional

effects in interpersonal relationships. To transform the data set from the wide format to

the pairwise format, we create a copy of the original data set with anchor and partner

allocation exchanged (see Figure 3.2 c).1 After restructuring, “current life satisfaction of

1The pairwise format that is used in APIMs is also sometimes called double entry format (Ledermann
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(a) Anchor and partner data in long format
(b) Anchor and partner data in wide for-

mat

(c) Anchor and partner data in pairwise
format

(d) Anchor and partner data with a bridg-
ing study added

Figure (3.2) Data format for different imputation approaches. The red line separates
anchor and partners, the blue line separates the additional bridging study
from the original data set.

partner” is filled, and “current life satisfaction of anchor” is empty for the copied data

set. This allows us to impute the missing partner life satisfaction conditional on all other

anchor and partner variables with a standard FCS procedure. However, while imputing,

we still implicitly assume the partial correlation between anchor’s and partner’s life

satisfaction given all other anchor and partner variables to be zero since both variables

are never observed together (see Figure 3.2 c).

Both imputation approaches that we have covered so far, MI in long (2.) or pairwise

format (3.) are thus built on the assumption of conditional independence. We assume

that the partial correlation between the systematically missing partner variable and its

corresponding anchor variable given other variables is zero. While the two imputation

approaches are relatively easy to implement, we will see whether this strong assumption

and Kenny 2015) and, while widely popular in dyadic analyses, is unusual in most other fields.
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holds in real-world settings.

Suppose we do not wish to assume conditional independence but instead suspect remaining

dependence between the two variables. In that case, we need to make reasonable

assumptions about the amount of dependence. External information as a “bridging

study” allows us to make such assumptions on the (conditional) dependence between the

anchor and the (systematically missing) partner variable. There are two ways to use the

information on anchor and partner respondents from bridging studies.

One way is to add the bridging study to the original data set after the ex-post survey

harmonization (see Figure 3.2 d). This allows the estimation of the relationship between

anchor and partner variables from the additional data set and, therefore, also reflects

the chosen assumptions (van Buuren 2017). The additional data will only be used for

imputation and deleted before the analysis, except in the case that the researcher wants

to use both data sets together as in ex-post survey harmonization/IPD meta-analysis.

A second possibility for using the imputation from bridging studies is to estimate a

regression of the variable systematically missing on the other variables (especially the

corresponding anchor variable) and use estimated parameters from the bridging study in

the imputation model.

We will use different artificially created and real-world bridging studies to exemplify

possible pitfalls and consequences of their usage. We first present a benchmark, i.e.,

an ideal bridging study. We only include such a bridging study (04. MI with an ideal

bridging study) to demonstrate a benchmark that other more realistic bridging studies

will have to measure up to. Our ideal bridging study consists of a new set of 1,000

drawn observations from the GSOEP panel with replacement. Measurements, target

populations, and sampling are the same for the original target data set with systematically

missing data. However, real-world bridging studies will often deviate from the original

data set, e.g., in the variables included or the measurements used or other characteristics
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of a study, such as the mode, the year in which the survey was conducted, or the sampling

and population. Ideally, the differences or changes are as small as possible (Schenker and

Parker 2003). But for systematically missing partner variables, it is very unlikely that

we have an ideal bridging study (with the same variables observed, measurement, target

population, etc.).

Naturally, we are not only interested in the possible information gains under ideal

conditions but also under real-world conditions. We will explore this topic both in the

simulation and in a more general exploration of study heterogeneity in Section 3.7.

We employ two different real-world external data sets as bridging studies for our exemplary

simulation: pairfam as well as the Survey of Health, Ageing, and Retirement in Europe

(SHARE). Even if only used as a bridging study and not for a “complete” survey

harmonization project, careful data preparation and harmonization is still necessary (see

Table A.7). As a reminder, these added bridging studies are used for imputation only

and not for analysis; consequently, they are deleted before the analysis step.

For both bridging studies, we evaluate two approaches:

1. Appending the additional bridging study to the original data set and then imputing

the systematically missing data (05. MI with SHARE added2 and 07. MI with

pairfam added)

2. Separately estimating the parameters for the imputation model of the systematically

missing variable and then using the obtained estimates to impute the values for

the systematically missing variable (06. MI with SHARE parameters and 08. MI

with pairfam parameters). We follow the same steps as in regular imputation by

the normal model as defined by Rubin (1987), except that we use the data from

the bridging study to estimate all parameters for the imputation model of the

2The Big Five personality traits are systematically missing for SHARE in the included wave. For 05.
MI with SHARE added, we only included the socio-demographic variables of anchors and partners as
predictors for the imputation of partners’ current life satisfaction.
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systematically missing variable. Apart from that, we follow the same steps as in

the regular mice.impute.norm-function (see Appendix A for the steps).3

3.5. Data and simulation

3.5.1. Data sets: GSOEP, SHARE and pairfam

We will exemplify the consequences of different possible imputation approaches with

data from the German Socio-Economic Panel (Goebel et al. 2019) and, as additional

bridging studies, the German pairfam panel (Brüderl et al. 2017) as well as the German

sub-study of the Survey of Health, Ageing and Retirement in Europe (Börsch-Supan

et al. 2013; Börsch-Supan 2020). All three studies are multi-actor surveys and include

self-reported information from the partner respondents; they collect similar data and

provide information on cohabiting couples in Germany around the year 2013. While

there is substantial overlap regarding several aspects of the study design – which is why

we chose pairfam and SHARE as bridging studies – the three studies have significant

differences. In the simulation, we will examine how these similarities and differences

allow or prevent their use as a bridging study.

The German Socio-Economic Panel is a longitudinal household survey of about 11,000

private households in Germany. We will use data from the wave “bd” (2013). We restricted

the data set to persons cohabiting with their partners. The study then encompasses

5584 relationships. Variables include information on household composition, employment,

3Since the later steps are not straightforward to implement, we will explain the implementation
of both approaches in R with mice. The R package mice does not allow us to specify point
coefficients for the imputation models directly as optional arguments to mice.impute.norm (Bayesian
linear regression/the normal model) or the function for imputations by predictive mean matching
mice.impute.pmm. However, it is possible to specify an imputation model with the built-in approach
for “passive imputation” usually used for transformed, combined, or recoded versions of variables.
This function can draw from the conditional predictive distribution of the missing partner variables
with the coefficients drawn from the coefficients posterior via the sampling distribution of the bridging
study parameters.
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occupation, health, and satisfaction indicators. Socio-demographics, psychological factors,

and life satisfaction were observed for both anchors and their partners. To evaluate

the different imputation approaches, we delete the information on the partners’ life

satisfaction, thus intentionally creating systematically missing partner information. The

data set’s richness allows us to examine different imputation approaches by comparing

their performance to the “gold standard” (the original data set).

Bridging studies employed in this article are the SHARE and pairfam surveys. SHARE

(Börsch-Supan et al. 2013) surveys about 140,000 individuals aged 50 or older, covering

27 European countries and Israel. With the younger cohorts missing from SHARE, we

already notice significant differences in comparison to GSOEP. We used data from the

fifth wave of the survey, as it was conducted the same year as the GSOEP, wave “bd”

(2013). We selected a subsample as a bridging study to increase the similarity between

the samples: we selected only persons in Germany living together with their partners.

The resulting SHARE bridging study then encompasses 1920 relationships. We only carry

out the multiple imputation procedure with the reduced variable set of socio-demographic

variables since the Big Five personality traits were not available for the fifth SHARE

wave.

The second study, the pairfam panel (Brüderl et al. 2017), offers data on both anchor

respondents and their partners (as well as other family members). We use data from

the second wave of the pairfam panel, conducted around the same time (2011) as the

selected GSOEP and SHARE waves: 2,192 cohabiting partnerships for which both anchor

and partner responded to the survey. By its own description, it is a “multi-disciplinary,

longitudinal study for researching partnership and family dynamics in Germany.” We use

it since it is a data set with rich information on both anchors and partners. A peculiarity

is its target population and sample: it consists of a nationwide random sample of about

12,000 persons from the three birth cohorts 1971-73, 1981-83, 1991-93, and their partners,
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parents, and children.

Before we move on to the different multiple imputation approaches, we take a look at the

differences between the data sets. The measurement of variables is not identical between

surveys. There are, for example, differences between pairfam and GSOEP. In the GSOEP,

the Big Five personality traits were surveyed through three items per Big Five trait

and on a 7-point scale instead of a 5-point scale. We harmonized the GSOEP Big Five

variables by shrinking them linearly to a 5-point scale (Singh 2020). For the mapping of

all variables used as predictors to a common scale, see Table A.7 in the Appendix. Apart

from the Big Five personality factors, we harmonized variables for anchor’s and partner’s

sex, age, health status in the past four weeks, indicators for being employed and being

in education, as well as the number of biological children. The variable life satisfaction

(systematically missing for partners) was measured in all surveys on an 11-point scale

with the same alignment and the same question text.

3.5.2. Simulation conditions

We now briefly cover the simulation parameters and the settings.

For each simulation run, we randomly select 1,000 observations with replacement from

the GSOEP cohabiting relationships from the survey year 2013. Life satisfaction for

the partner respondent is deleted before testing all MI approaches. We use all available

data for the bridging studies, i.e., data from 1,920 relationships from SHARE and 2,192

relationships from pairfam. We use 1,000 repetitions to compare all approaches.

We will start by examining the estimates of the correlation coefficient between anchor’s

and partner’s life satisfaction to get an impression of the amount of dependence that

can be recovered with simple MI approaches based on the assumption of conditional

independence. As we will see, this assumption is problematic for the estimation of the

correlation coefficient.
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The next section will then further demonstrate the inappropriateness of the conditional

independence assumption. Our second target analysis is a regression of anchor’s life

satisfaction on partner’s life satisfaction as well as socio-demographics and the Big Five

personality traits for the anchors and partners. In the target analysis, the information

on anchor and partners is not used in long format (where all anchors and partners are

in separate rows, see Figure 3.2 a), but in wide format, i.e., there is one row for each

relationship with anchor and partner information in separate variables (see Figure 3.2 b).

For all simulation runs and methods tested, every missing value is imputed five times

(m = 5), and the number of iterations is set to 10. We checked convergence plots for

every method and found no problems. We then use standard analysis for each of the

m = 5 imputed data sets, enabling us to calculate the imputed data estimate and its

estimated variance using Rubin’s rules (Rubin 1976). We use the package mice (Version

3.5.0) for R (Version 3.5.1).

3.6. Results

We now give an overview of the results of the simulation. We will first present the

results for the estimates of the correlation between anchor’s and partner’s life satisfaction

and, subsequently, the estimates of the regression coefficients.4 We examine both point

estimates and standard errors. Point estimates are presented in violinplots (Hintze and

Nelson 1998), a visualization technique developed from boxplot and kernel density plots

showing the distribution of data across several levels of a categorical variable. This allows

us to compare these distributions easily. Standard errors are presented as boxplots.

4We also included simulation results for the mean and standard deviation of partner’s life satisfaction
in the Appendix.
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3.6.1. Correlation results

We first look at the estimated raw correlation coefficients between the anchor respondent

and the partner respondent’s current life satisfaction. We compare the results after MI

in long format with the results from the full data sets (before the artificial deletion of

the partner’s life satisfaction values). We notice that after MI in long format (2.) the

estimated point coefficients for the correlation between the anchor’s and partner’s current

life satisfaction are strongly biased towards zero (see Figure 3.3). The results are biased

since with MI in long format (see the data format in Figure 3.2 a), the dependency

between anchors and partners is not properly taken into account.

The bias towards zero for the estimated correlation coefficient is also prevalent after MI in

pairwise format (3.). While information from both anchors and partners are now included

in the imputation model with the data in pairwise format, the implicit assumption of

conditional independence still leads to biased estimates and is not appropriate. This

problem has also been noticed in other contexts related to systematically missing data,

such as record linkage (Thibaudeau 1993; Winkler 1989). It is recommended to incorporate

more suitable assumptions about the conditional dependence between the two variables

than conditional independence (Bosch and Gaffert 2017).

To get an idea of what can be achieved with a bridging study, we include an ideal bridging

study with high observation numbers and no differences in measurements, variables, or

sampling. The point estimates are unbiased after MI with a bridging study consisting of

another sample of 1,000 observations from the GSOEP (4.). Standard errors are higher

than for the full data set due to the loss of information from missing data (Carpenter

and Kenward 2013, 54).

We now move on to the real-world bridging studies (5. to 8.). While we still underestimate

the regression coefficient after MI when using the information in either pairfam or SHARE,

the estimates are much less biased than under the assumption of conditional independence.
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Figure (3.3) Left: Violinplot (Hintze and Nelson 1998) of estimated correlation coef-
ficients between anchor’s current life satisfaction and partner’s current
life satisfaction. Right: Boxplot of standard errors of the correlation
between anchor’s satisfaction with current life and partner’s satisfaction
with current life. Estimates are from 500 simulation repetitions for each
method.

While bridging studies can provide the information required in the imputation model,

researchers should be aware that they exchange the assumption of conditional indepen-

dence for another assumption: that relationships observed in one study are transferable

to another, i.e., that heterogeneity between studies is not too large. One assumption is

not necessarily more appropriate than the other and does not always lead to a lower bias.

In Section 3.7, we take a closer look at study heterogeneity and how much estimates vary

between studies in practice.

The differences between appending the bridging studies pairfam and SHARE to the
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original data set (5. and 7.) and using the sampling distribution of the estimates from

the bridging studies for the imputation model (6. and 8.) are minor here. Practical

considerations may be more important in making the difference for one option over

another. For example, if only aggregate data, i.e., estimated regression coefficients, are

available as information, it can be easier to use the parameters. Suppose the bridging

study and the original data set are to be analyzed in an IPD meta-analysis. In that case,

there is little reason to first estimate the parameters for the imputation model separately,

and both data sets can be used together for the imputation.

3.6.2. Regression coefficient results

In this section, we focus on the partial correlation between the anchor’s current life satis-

faction and the partner’s current life satisfaction. We conduct two separate simulations:

• Simulation 1: The variables in the analysis model are the same as in the imputation

model (both socio-demographic and Big Five personality trait variables apart from

partner’s life satisfaction are included as predictors). The dependent variable is

the life satisfaction of the partner. Results are reported in Figure 3.4.

• Simulation 2: The analysis model only includes socio-demographic variables. The

imputation model still consists of the same variables as before (both the socio-

demographic and Big Five personality traits variables). The imputation model is

now richer than the analysis model. Auxiliary variables are used for imputation for

two reasons: If the auxiliary variables are good predictors of missing values, they

will help recover missing information. Plus, if they are also good predictors of the

missingness, they may even correct bias (Carpenter and Kenward 2013). Results

are reported in Figure 3.5.
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Figure (3.4) Simulation 1 (dependent variable of the target analysis: anchor’s life satis-
faction, independent variables: socio-demographic variables and Big Five
personality traits for anchors and partners plus partner’s life satisfaction).
Left: Violinplot of estimated regression coefficients of partner’s satisfaction
with current life. Right: Boxplot of standard errors. Estimates are from
500 simulation repetitions for each method.

When looking at the results from the first simulation, where the set of variables included

in the imputation and analysis is identical, we immediately notice that the density of the

estimated point coefficients after both MI in long format (2.) and MI in pairwise format

(3.) are centered around zero and, therefore, heavily biased (Figure 3.4). When we

impute the data in long format, we neglect the fact that anchor and partner’s variables

are correlated with each other. Similarly, when we assume conditional independence
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between an anchor and partner variable pair during imputation with the data in pairwise

format, we will receive analysis results that show this independence after imputation.

Regarding bridging studies, the ideal bridging study performs well (4. in Figure 3.4).

SHARE as a bridging study, either with the data set added (5. and 7.) or with the use

of parameters (6. and 8.), leads to estimated regression coefficients close to those of the

full data set. The use of pairfam data (either as added data set or using the parameters

estimated from that data set) leads to bias towards zero for the point estimate, but less

so than after MI in long format and MI in pairwise format.

In our case, there is thus no big difference between adding a bridging study and using

parameters that were estimated separately from the bridging study before imputing. One

has to be very careful about the generalizability of these results. Results could differ

more substantially if the overlap in variables between the bridging study and the original

study is smaller, or if relationships between variables differ more strongly between studies

and there is also a high level of sporadically missing data in the original study. It is

advisable to test both approaches to get an idea of the stability of results. We also

recommend to look at several studies or a meta-analysis than just one study to get a

better understanding of the heterogeneity of effects between studies.

Summarizing the results of the first simulation, we find that the assumption of conditional

independence leads to non-optimal results. As we suspected, the assumption of conditional

independence is not appropriate. Using bridging studies (or their parameters) leads

to better results in regard to lower bias. However, the two bridging studies perform

differently. These differences could result from the strong differences in target population

between the original data set and the respective bridging study. We will take a closer

look at what can be expected in terms of the magnitude of study heterogeneity in Section

3.7.
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Figure (3.5) Simulation 2 (dependent variable: anchor’s satisfaction with current life, in-
dependent variables: only socio-demographic variables, Big Five excluded).
Left: Violinplot of estimated regression coefficients of partner’s satisfaction
with current life. Right: Boxplot of standard errors. Estimates from 500
simulation repetitions for each method.

Before turning to study heterogeneity, we report the second simulation results, in which

we did not include the Big Five personality traits in the analysis model. We still include

them as auxiliary variables (Enders 2017) in the imputation model when possible (so for

all approaches except for SHARE since they were not available in the respective wave).

Our imputation model for 02.–04. and 07./08. is thus richer than the analysis model.

The results for the second simulation strongly resemble the results of the first simulation
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(Figure 3.4 and Figure 3.5 for the second). The point estimates after MI in long format

and MI in pairwise format are again biased downwards in the second simulation. They

are, however, not centered around zero anymore. This is because the analysis model

does not include all variables from the imputation model. These additional/auxiliary

variables are correlated with anchor’s and partner’s current life satisfaction, and as a

result, the regression coefficient of partner’s life satisfaction is not zero. Similar to the

first simulation, MI with pairfam and now also SHARE leads to the underestimation of

the point coefficients. Again, the bias is not as substantial as after MI in pairwise format

or after MI in long format.

From our previous simulation and analyses, we can draw several conclusions. The

assumption of conditional independence is not suited for the imputation of partner

variables in our case since it leads to a substantial underestimation of the correlation

between anchor and partner variables.5

Ideal bridging studies have a sufficiently high number of observations and are similar

to the original study. Usually, regression coefficients are assumed to be more robust

than means, shares, or variables. After using a bridging study for MI, results have

nevertheless to be treated carefully and with the possibility in mind that the studies

could be too heterogeneous. Our last section will look at a bigger set of estimated

regression coefficients between anchor and partner variables and how they differ between

the surveys. This will give a better insight into how much heterogeneity is to be expected

in practice.

5We want to note that estimates like the mean and the standard error of the partner variable can be
imputed without an additional bridging study in our case. Since there is no systematic difference
between anchors and partners in our case, both mean and standard error do not differ systematically
between anchors and partners in the full data set and after MI in pairwise format (see Appendix
Figure A.1).
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3.7. Study heterogeneity

We have seen that study heterogeneity can hinder the use of bridging studies. But how

much study heterogeneity can we expect for other research questions of data sets? This

question cannot be answered once and for all but will depend on the variables selected,

the target population, sampling, modes, and other study characteristics. However, there

are some possibilities to assess study heterogeneity regarding the regression coefficients.

For example, meta-analyses or systematic reviews can be the first source to check whether

study heterogeneity is likely to affect correlations or regression estimates in the respective

research field.

To better understand the possible effects of study heterogeneity for the use of bridging

studies in MI, a series of regression estimates for the relationship between the different

anchor and partner variables in the pairfam, GSOEP, and SHARE data sets are shown

in Figure 3.6. We restricted all data sets to anchors cohabiting with their partner and

for whom data on partners is available.

For every anchor variable as the outcome variable, i.e., for every estimate displayed, a

separate model was estimated. The estimated regression coefficient for every partner

variable (always with the corresponding anchor variable as the dependent variable)

is displayed. For Figure 3.6 a) all other socio-demographic and Big Five personality

traits variables for both anchor and partner are always included as predictors, i.e., are

conditioned on. For Figure 3.6 b all other socio-demographic variables for both anchor

and partner are included as predictors. While regression estimates do vary between

surveys (and often significantly), they are, in general, of the same direction and of similar

magnitude between surveys. These results demonstrate the possibility of the (careful)

use of bridging studies, at least in supplementary and sensitivity studies.
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Figure (3.6) Point estimates of partner variables. Shown is always the regression
estimate for the partner variable corresponding to the current outcome
(anchor) variable. Bars show the 95%-confidence interval.
(a) Socio-demographic and Big Five variables for both anchor and partner
are included as predictors.
(b) Socio-demographic variables for both anchor and partner are included
as predictors.
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However, a notable exception is the partner’s age, where the estimated regression

coefficients differ substantially between the surveys. Remarkably, the heterogeneity is

largest for these characteristics since the three studies differ in their sampling, especially

regarding the age cohorts (GSOEP surveys the general population aged 16 and older,

SHARE only includes anchors aged 50 or older, and pairfam surveys only anchors from

the birth cohorts 1971-73, 1981-83, 1991-93). Thus, the assumption of transferability is

not always unproblematic and not to be made without care, even if most estimates of

dependency are quite stable in our case.

3.8. Discussion

This chapter explored if and how multiple imputation can be used when information on

partner respondents is systematically missing for some variables. We used a motivational

example from partnership research to exemplify the potentials as well as the pitfalls of

multiple imputation and bridging studies.

In our motivational example, we used the German Socio-Economic Panel (GSOEP),

in which the variables of interest, partners’ and anchors’ life satisfaction, were initially

observed. By deleting all information on partners’ life satisfaction, we artificially created

a situation of systematically missing data in partner variables. We used different multiple

imputation approaches to impute the missing information for partners’ life satisfaction,

with and without the use of bridging studies. We tested two different imputation

approaches without additional bridging studies. The first option was to impute while

the data set is in long format, i.e., providing the information on anchors and partners

in separate rows. Missing values are then imputed depending on the partner’s observed

value but not depending on the values of the respective anchor respondent in the

relationship. This led to serious underestimation of the interdependence of anchor and

partner respondents’ life satisfaction. The second option was to impute with the data in
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pairwise format (observation units are relationships and anchor and partner’s information

are combined in one row), thus assuming conditional independence between partners’ and

anchors’ life satisfaction, given all other observed anchor and partner variables. However,

the results showed that this assumption is still unrealistic in our case.

Based on methods in related fields like survey harmonization, measurement changes in

official statistics, and split questionnaire design, we explore the use of bridging studies

to impute systematically missing variables (Schenker and Parker 2003; Schenker and

Raghunathan 2007; Resche-Rigon and White 2016).

We started with an “ideal” bridging study to demonstrate the best-case scenario, another

subsample randomly drawn from the GSOEP data that we used for the simulation. To

simulate a more realistic situation, we additionally chose different studies to serve as

bridging studies – SHARE (Börsch-Supan et al. 2013; Börsch-Supan 2020) and pairfam

(Brüderl et al. 2017).

We noticed that the results using bridging studies are better in terms of bias than the

two approaches based on the conditional independence assumptions. However, we also

see that using bridging studies to impute systematically missing variables is also based on

the (strong) assumption, that study heterogeneity is not too great to hinder the transfer

of relationships between studies. The use of bridging studies may be more appropriate

to explore what-if scenarios, for example, as supplementary or sensitivity analysis.

Our study also highlights that there are two ways of using the information from bridging

studies for imputation. One is to append the bridging study (only) to the data set with

the missing data for imputation, and the other is to separately estimate the parameters

of the imputation model for the systematically missing variable and use them in the

imputation.

The differences between the two ways to employ bridging studies (added data set vs.

the use of parameters estimated from the bridging study) were minor in our example.
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However, we want to mention two crucial differences between the two approaches and not

deny that they could have bigger consequences in other circumstances. If we impute with

the data set added to the original data set, the imputation models for the sporadically

missing variables will by default also be estimated with information from the combined

data set. Thus, the bridging study will also influence the imputation of the sporadically

missing variables and then, in turn, also the imputation of the systematically missing

variable. First estimating the imputation model parameters and using them as part of

the passive imputation routine in mice avoids this problem. However, users should also

note the downside of the passive imputation approach; the parameters of the imputation

model of the systematically missing variable are not updated every iteration; they remain

fixed. An area for future research would be to use the information as (informative) prior

in the imputation; this way, it would be possible to update the parameters. However, it

is not possible to specify priors for the imputation model in mice at the moment.

Another question to be further investigated is that of studies’ heterogeneity and the

robustness of research results over different studies and measurements. We saw in Section

3.7 that correlations between variables could vary between studies. This problem has

become much more visible in recent years with increased research synthesis efforts and

the replication crisis. These efforts are connected to our article in two ways. First,

meta-analyses or literature reviews can inform us how stable the correlation between two

variables is between studies. Second, if available, we can also use the meta-analytical

results to impute the systematically missing information. In that sense, we point towards

the need for more vigorous research synthesis efforts to consolidate knowledge about

isolated research questions, and make them fruitful for other related research areas.
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Schumann, N., Thönnissen, C., Wetzel, M., and Wilhelm, B. (2017). The German

Family Panel (pairfam). Technical Report ZA5678 Data File Version 8.0.0, GESIS

Data Archive, Cologne.

Byrne, D. E. (1971). The Attraction Paradigm, volume 462. Academic Press.
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4. TippingSens: An R Shiny

Application to Facilitate Sensitivity

Analysis for Causal Inference Under

Confounding

4.1. Introduction

Questions of interest in the applied sciences are often questions of causality rather

than description or association. The gold standard for estimating causal effects are

randomized experiments. With experiments, researchers have full control over the

treatment assignment process, substantially facilitating the estimation of causal effects.

However, while in the medical sciences, experimental designs are widely used; they are

often not feasible or unethical in epidemiological, sociological, or economic research.

Instead, empirical research is usually based on pre-existing, observational data. When

attempting to make causal claims from observational data, researchers have to make strong

assumptions. Arguably the most controversial of these assumptions is the requirement

that the assignment to the treatment is unconfounded, i.e., given all the information

available in the collected data, the probability of receiving the treatment does not depend
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on the (potential) outcomes of interest (selection on observables). The unconfoundedness

assumption implies that adjusting for differences in observed variables removes biases

in causal estimates based on a direct comparison between treated and control groups

(Imbens 2003, 126).

The unconfoundedness assumption is not always realistic, and it can never be tested based

on the observed data. A possible way to proceed if the unconfoundedness assumption

is suspect is to conduct sensitivity analyses under various assumptions regarding the

confounding mechanism.

While intuitive in theory, conducting sensitivity analyses in practice is often difficult.

Flexible approaches based on the idea of partial information (Manski 1990), which try to

incorporate the uncertainty about the assignment mechanism directly, are usually not

helpful in practice since the level of uncertainty about the actual causal effect will often

become so large that no meaningful conclusions can be drawn based on the collected data.

Thus, specific assumptions need to be postulated about the properties of the confounding

variable or the assignment process. Turning these assumptions into parameters can be

challenging in practice. In this chapter, we will focus on a sensitivity analysis approach

proposed by Rosenbaum and Rubin (1983), which achieves this difficult task for the

particular case of a binary confounding variable.

Despite limiting the range of scenarios in which the sensitivity analysis can be used, binary

confounding variables seem plausible in many applications. For example, when analyzing

health care records, it might be realistic to assume that the treatment assignment depends

on specific health conditions such as obesity or certain blood test results, which are not

available in the database for confidentiality reasons. Since treatment guidelines are often

based on threshold rules (if the blood pressure is lower than x, prescribe dose y, else

prescribe dose z), the confounding variable can be considered binary. Another example,

which we use to illustrate the functionality of the app in Section 4.5, are confounding
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variables in the context of assignment to labor market programs. Assignment decisions

will be affected by factors such as alcohol abuse or poor personal hygiene, which are

observable for the case manager deciding about the treatment assignment but are not

recorded in the database used when evaluating the effectiveness of various labor market

programs.

Even in the simple case of a single binary confounding variable, Rosenbaum-Rubin

sensitivity analyses can be cumbersome since four different parameters need to be

specified (see Section 4.4.1 for details), and the impact on the analysis of interest needs

to be evaluated for varying parameter combinations. Rosenbaum and Rubin (1983) work

with forking tables to present the results of their sensitivity analysis. However, tables

are not suited to explore a broader range of parameter sets since the resulting tables will

quickly become very large and complicated to read. For example, evaluating five different

values for each of the four parameters would already result in a table with 54 = 625 table

cells.

We postulate that this is one of the main reasons why other strategies, such as the sensi-

tivity analysis proposed by Rosenbaum (1995) or Manski’s partial information approach,

are often preferred in practice. However, their main advantage – less assumptions about

the confounding variables – is also their main problem: without additional assumptions,

the plausible range for the causal effect often becomes so wide that no practical rec-

ommendations can be given based on the findings. If (partial) information about the

confounders is available, the Rosenbaum-Rubin approach offers a flexible tool to integrate

this information, helping to narrow the range of plausible values for the causal effect.

Strategies to address the high dimensional table problem of the Rosenbaum-Rubin

approach have been suggested in the literature. For example, Imbens (2003) suggests

looking at the relationships in the observed data and picking the most extreme values

as informed guesses for the unobserved parameters. The underlying assumption is that
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if the study was carefully designed, it seems unlikely that confounders exist that show

higher correlations with the outcome or the treatment indicator than any of the observed

correlations. Still, researchers are usually not interested in only one set of (extreme)

assumptions but try to evaluate how robust their findings are under a whole range of

plausible assumptions. After all, if the correct parameters were known, no sensitivity

analysis would be required.

To address this problem, we developed an interactive R Shiny app called TippingSens

that simplifies conducting Rosenbaum-Rubin sensitivity analyses for a large number

of parameter sets. Our app enables researchers to gain quick insights regarding the

robustness of their findings and to publish comprehensible visualizations of their sensi-

tivity analysis. We tackle the four-dimensional parameter space through the interactive

component of our app. The TippingSens app is freely available on the R Shiny server

https://tippingsens.shinyapps.io/TSApp/.

The remainder of the chapter is organized as follows: In Section 4.2, we give a brief

introduction to causal inference with observational data and the problems resulting

from self-selection into treatment. Different approaches to sensitivity analysis which

are used to examine the robustness of the unconfoundedness assumption are presented

in Section 4.3. Section 4.4 focuses on the technical details of the sensitivity approach

developed by Rosenbaum and Rubin (1983) and introduces our new visualization tool

TippingSens. Section 4.5 offers a practical illustration of the TippingSens app examining

the robustness of an analysis by Bernhard (2016), which estimates treatment effects of

vocational training programs on unemployed men in Germany. The chapter concludes

with a discussion of the limitations of the approach and some suggestions for future

research. A step-by-step guide how to invoke the TippingSens app with data from

Rosenbaum and Rubin (1983) is provided in the Appendix A.3.
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4.2. Rubin’s Causal Model and the assumption of

unconfoundedness

4.2.1. The Rubin Causal Model

Throughout this article, we will discuss causal inference based on the potential outcomes

framework developed by Rubin (1974).1 Let Yi be the outcome of interest for unit

i, i = 1, . . . , N . Let Wi be an indicator which treatment unit i received. In many

applications Wi is binary, i.e., Wi = 1 if unit i receives the treatment, and Wi = 0

otherwise. Under this assumption, the potential outcomes framework defines Yi(1) as

the potential outcome for unit i, if unit i received the treatment, and Yi(0) defines the

potential outcome if the unit did not receive the treatment. The individual (additive)

treatment effect τi can then be computed as τi = Yi(1) − Yi(0). However, only one

of the two potential outcomes will be observed. The other one will be the ex-post

counterfactual, which can never be observed. This is the well-known fundamental problem

of causal inference (Holland 1986). Thus, the individual treatment effect can never be

observed directly. To be able to draw causal conclusions at least at an aggregate level,

further assumptions are required. Besides the stable unit value treatment assumption

(SUTVA), which requires that the outcome of unit i does not depend on whether unit

j receives the treatment and that there is no unobserved variability in the treatment,

a common assumption in the context of causal inference is the assumption of a regular

assignment mechanism. An assignment mechanism is called regular if the assignment

is individualistic, probabilistic, and unconfounded. The first two components require

that the probability of assignment to the different treatments for unit i only depends on

its characteristics and not on the characteristics of the other units. Furthermore, the

probability of receiving any of the treatments must be strictly positive for all units. The

1For a different perspective on this topic see Pearl et al. (2016).
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unconfoundedness assumption states that the probability of assignment does not depend

on the outcomes of interest given the observed characteristics available in the data. For

example, in the case of a quasi-experimental medical drug test, the treatment assignment

must not depend on the (expected) survival rates after conditioning on the observed

covariates.

Since for randomized experiments, the assignment mechanism is under the control of

the researcher, the assumption of a regular assignment mechanism is typically valid

for carefully designed experiments. Furthermore, since units generally are randomly

assigned to the different treatment groups independent of their characteristics, differences

before the treatment are only by chance, and the treatment is called exogenous. This

further simplifies the analysis, since average treatment effects can be estimated by directly

comparing the average outcomes in the different treatment groups.

4.2.2. Quasi-experiments and the assumption of unconfoundedness

In quasi-experiments, assignment to the treatment is no longer under the control of

the researcher. Without random assignment, subjects in different groups might not be

comparable at the baseline, that is, before treatment. This is because the composition

of different treatment groups could result from a selective process. Quasi-experimental

evaluations typically impose comparability at the baseline by homogenizing treatment

groups on observed characteristics, for example, through propensity score matching.

However, even though various options exist to adjust for differences at the baseline,

most adjustment methods assume that the assignment mechanism is regular. While

the assignment will often be individualistic and probabilistic, the unconfoundedness

assumption is more controversial. This assumption is not verifiable based on the observed

data, and differences in unobserved covariates between treated and controls may remain.

Bias may arise if the outcome and the unobserved characteristics are correlated.
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To address this problem, researchers can evaluate the sensitivity of the results regarding

the unconfoundedness assumption. Through simulations, it is possible to explore which

properties the unmeasured covariate(s) need to have to substantially change the results

and conclusions of the study.

Sensitivity analyses are strongly related to the study of treatment effect robustness after

dropping one or more of the observed covariates (Heckman 1989; Smith and Todd 2001;

Lechner and Wunsch 2013). Nevertheless, Imbens (2003, 126) stresses one of the main

differences between sensitivity analysis and the study of treatment effect robustness:

The attraction of the sensitivity analysis is that it is more directly relevant:

one is not interested in what would have happened in the absence of covariates

observed, but in biases that are the result of not observing all relevant

covariates.

4.3. Sensitivity analysis in the context of causal

inference

The general idea of a sensitivity analysis was first proposed by Cornfield et al. (1959)

to defend the plausibility of a causal effect of cigarette smoking on lung cancer. The

authors demonstrated that the lack of such a relationship was only possible through the

existence of an unmeasured confounder with an unrealistically high association with lung

cancer and smoking habits. Building on these ideas, several strategies for evaluating the

sensitivity of the confoundedness assumption have been proposed in the literature. These

strategies can be loosely grouped into three categories based on the assumptions they

require.

Perhaps the most radical approach is to drop the assumption of exogenity/unconfoundedness

completely, specifying a range of plausible values for the estimated treatment effect, which
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accounts for the additional uncertainty regarding the unknown assignment mechanism

(Manski 1990). While this approach is attractive from a theoretical perspective as it

requires no untestable assumptions, it also strictly limits the information that can be

obtained from observational data. In practice, the uncertainty in the estimated causal

effect is typically large, i.e., the uncertainty bounds that define the interval in which the

true causal effect might fall are very wide. Thus, the findings often cannot provide useful

information, for example, to guide decisions in an evidence-based policy setting.

Since the so-called Manski bounds are often not very informative, the other two general

approaches specify limited departures from the unconfoundedness assumption instead of

dropping the assumption of exogenity/unconfoundedness completely. The approaches

differ regarding the parameters that need to be specified by the user. The first approach

only requires specifying the association between the unobserved confounder(s) and the

treatment assignment. The second approach is limited to one confounder and additionally

specifies the association between this confounder and the outcome.

Two early proponents of these two approaches are Rosenbaum (1995) (R95) and Rosen-

baum and Rubin (1983) (RR83). R95 defines the association between the unobserved

confounders and the treatment assignment indirectly by setting a threshold parameter,

which specifies the maximum difference between the estimated treatment propensity based

on the observable data and the true propensity. The researcher still takes a Manski-style

approach regarding the associations between the hidden confounder and the potential

outcomes. The RR83 approach additionally requires to explicitly specify the relationship

between the confounder and the potential outcomes and assumes that confounding is

limited to a single binary variable. Furthermore, both approaches implicitly assume that

the relationships between the unobserved confounder(s) and the treatment does not vary

as a function of the observed data (RR83 requires a similar assumption regarding the

confounder and the outcome in the two treatment groups).
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Other approaches for sensitivity analysis proposed in the literature can mostly be classified

as belonging to one of these three types. For example, Manski and Pepper (2000, 2009)

extend the approach of Manski (1990), and applications are discussed in Blundell et al.

(2007), Kang (2011), and Hof (2014) among others. Gastwirth et al. (1998), Rosenbaum

(2010), and Rosenbaum (2018) discuss several extensions of R95 for specific settings.

Practical applications of the strategy are discussed in Rosenbaum (1999), Rosenbaum

(2003), Rosenbaum (2007), Rosenbaum (2010), Kitahata et al. (2009), Zubizarreta et al.

(2013), and Rosenbaum (2018), and software implementations are available in Stata

(Gangl 2004; Becker and Caliendo 2007) and R (Keele 2010; Rosenbaum 2014). Extensions

of the ideas of RR83 are presented for example in Harding (2003), Greenland (1996), and

VanderWeele and Arah (2011). Applications are discussed in Imbens (2003) and Ichino

et al. (2008).

Comparing the RR83 and R95 approaches, a major advantage of R95 is that less

assumptions regarding the confounding variable are required. However, not surprisingly,

the uncertainty bounds for the treatment effect will be wider, limiting the conclusions

that can be drawn. If additional information is available, which allows limiting the range

of plausible values for the correlation between the outcome and the potential confounder,

RR83 allows tightening the uncertainty bounds. Since extreme cases, such as perfect

positive or negative correlation, can typically be ruled out, RR83 can often be helpful in

practical settings.

A downside of RR83 is the required assumption that the confounder is univariate and

binary. Still, as discussed in the introduction and as illustrated in the application

in Section 4.5, this assumption can be plausible in many circumstances (see also Liu

et al. 2013, who point out that the binary confounder can be seen as a combination of

unobserved confounders). As Imbens and Rubin (2015) illustrate, under this assumption,

the approaches of Manski (1990) and R95 can be seen as special cases of RR83, fixing
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some of the parameters at extreme values. Thus, under the assumption of a binary

confounder, RR83 offers more flexibility to evaluate the impacts on the estimated causal

effect under various assumptions regarding the relationship between the confounder and

the outcome.

As pointed out above, we believe that the main reason for the popularity of the approaches

akin to R95 is their simplicity. Since only one parameter needs to be specified, visualizing

the impact of various assumptions about this parameter is straightforward. RR83-type

approaches require monitoring several parameters simultaneously. While calculating

the uncertainty bounds is still straightforward when fixing the parameters at specific

(extreme) values as done in Imbens (2003) and Liu et al. (2013), evaluating the impacts

under various assumptions can be cumbersome. However, this will be a common scenario

in practice. For example, in the labor market context it seems prudent to assume that

alcohol abuse has a negative impact on both, the probability of receiving the treatment,

i.e., the probability of being assigned to a labor market program, and on the outcome,

i.e., on the probability of finding a job. It is exactly in such a situation, where RR83

offers an advantage over R95. Even if the exact relationship between alcohol abuse and

the outcome might be unknown, the knowledge that the correlation will most likely be

negative can be used in the RR83 approach to narrow the uncertainty regarding the

causal effect of the labor market program compared to R95.

However, monitoring the impact over a whole range of parameter settings can be difficult

with RR83. Simplifying the sensitivity analysis for such a scenario through useful

visualization tools was the main motivation for developing the TippingSens app. Before

we describe the app in more detail and illustrate its features in an application, we briefly

review the details of the RR83 approach in the next section.
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4.4. The Rosenbaum-Rubin sensitivity analysis and the

TippingSens App

4.4.1. Technical details

The Rosenbaum-Rubin sensitivity analysis assumes that the unconfoundedness assump-

tion holds given an additional unobserved binary covariate Ui:

Wi ⊥⊥ (Yi(0), Yi(1))|Xi;Ui,

where Xi denotes the vector of observed covariates. To evaluate the impact of this

unobserved covariate on the analysis of interest, we can postulate parametric models for

the marginal distribution of the unobserved covariate U , the conditional distribution of

the treatment W given U and X, and the conditional distributions of the two potential

outcomes Y (w), w ∈ {0, 1}, given U and X. In the following, we drop the observed

variables X to avoid clutter. The formulae provided below can easily be extended to

include observed variables (see, e.g., Imbens 2003, 127) or more complex models.

Given that Ui is binary, we specify

q = Pr(Ui = 1) = 1− Pr(Ui = 0).

The probability of receiving the treatment given Ui is modeled using a logistic regression

Pr(Wi = 1|Ui = u) =
exp(γ0 + γ1 · u)

1 + exp(γ0 + γ1 · u)
.

Similarly, a logistic relationship is assumed between the binary outcome and Ui in both
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treatment groups:

Pr(Yi(1) = 1|Ui = u) =
exp(α0 + α1 · u)

1 + exp(α0 + α1 · u)

and

Pr(Yi(0) = 1|Ui = u) =
exp(β0 + β1 · u)

1 + exp(β0 + β1 · u)
.

The parameter q as well as the parameters γ1, β1, and α1 are sensitivity parameters. It

is not the goal to estimate these parameters from the data set. Instead the researcher

can postulate plausible ranges for them, gained from the literature or previous analyses.

Conditional on the specified values for (q, γ1, α1, β1), the remaining parameters (γ0, α0, β0)

can be estimated through maximum likelihood. Once all parameters are estimated,

standard statistics such as the average treatment effect τ can be calculated accounting

for the unobserved confounder U (see for example Imbens and Rubin 2015, 502 for

details). Imbens (2003, 128) notes that the sensitivity parameters α1, β1, and γ1 are

difficult to interpret directly as they refer to log odds ratios. Exponentiating simplifies

the interpretation, e.g., when eα1 = 2 the odds for Y = 1 in the treatment group double

under u = 1 compared to u = 0.

4.4.2. The TippingSens app as a visualization tool

The sensitivity analysis approach developed by Rosenbaum and Rubin (1983) is an

excellent way to examine specific violations of the unconfoundedness assumption. However,

in most practical settings, the true values for the different parameters are unknown,

and researchers are interested in evaluating the robustness of their findings under a

whole range of plausible assumptions regarding the associations between the unobserved

variable and the outcome or the treatment assignment. The number of simulated possible

treatment effects rises quickly with the number of chosen values for the four different
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parameters and examination of results through tables becomes very cumbersome.

The interactive R shiny app called TippingSens, which we introduce in this chapter

greatly simplifies conducting sensitivity analysis in this situation. It visualizes the impacts

of various assumptions regarding the unknown parameters on the estimated average

treatment effect. Thus, the app can be a handy tool to evaluate under which conditions

the analytic conclusions would change. Snapshots of the visualization can be downloaded

and integrated into any research output to offer easily comprehensible robustness checks

of the research findings.

With the TippingSens app, it is possible to specify ranges for all parameters. The app

requires a two-column matrix containing the binary treatment indicator value and the

binary outcome of interest value for all units. Note that the app assumes that the data

are already balanced regarding the observed covariates, that is, any steps for achieving

balance, such as matching or trimming, need to be conducted before using the app.

Once the data have been loaded, one can freely choose which two of the four parameters

should be treated as fixed and specify the values for these parameters. Drop-down menus

and sliders allow changing the settings interactively. The drop-down menus specify

which parameters should be treated as fixed, and which parameters should be displayed

on which axis. The sliders are a convenient tool for adjusting the values for the fixed

parameters as well as for specifying the range of values considered for the free parameters.

We acknowledge that it would also be possible to fix only one parameter and present

the results in a three-dimensional plot. However, we feel that this would sacrifice the

intuitiveness of the visualization. The design of the output grid was inspired by the

tipping point analysis of Liublinska and Rubin (2014) for missing data sensitivity. The

Appendix also contains a step-by-step illustration on how to invoke the app.

We will demonstrate the use of the TippingSens App in the next section with an example.

The app is available at https://tippingsens.shinyapps.io/TSApp/, and the code be-
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hind the app can be accessed at https://github.com/CaroHaensch/TippingSensApp.

4.5. A practical example: Sensitivity analysis for a

quasi-experimental evaluation of a German

vocational training program for the unemployed

To illustrate the usefulness of the TippingSens app, we use a quasi-experimental evaluation

of vocational training for unemployed in Germany conducted by Bernhard (2016). Another

example based on the data used in Rosenbaum and Rubin (1983) is given in the Appendix.

Quasi-experimental labor market program evaluations like the one in Bernhard (2016)

typically include socio-demographics, information on labor market histories, and regional

characteristics to control for the selectivity regarding the assignment to the treatment

(see also Lechner 1999 or Heckman et al. 1998). But they typically cannot incorporate

personality traits, skills, preferences, attitudes, or social networks since this information

is not available. However, these variables can still influence the job prospects (Bayer

et al. 2008; Heckman et al. 2006; Mueller and Plug 2006; Pannenberg 2010). They may

also be a key driver of selection into training (Heckman et al. 1997). Estimates of causal

effects using only the observed data can be biased in this situation since the unobserved

variables are correlated with both, the outcome of interest as well as the treatment

assignment. Thus, sensitivity analyses should be conducted to evaluate how strong these

correlations need to be to change the research findings.

4.5.1. Study details

The study of Bernhard (2016) uses the Integrated Employment Biographies (IEB)

of the Institute for Employment Research in Germany (Dorner et al. 2010). The

IEB is a large administrative database integrating five different sources of information
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collected by the Federal Employment Agency in Germany through different administrative

procedures: the Employment History, the Benefit Recipient History, the Participants-in-

Measures History, the Unemployment Benefit II Recipient History, and the Jobseeker

History. It contains socio-demographic characteristics and individual daily information

on employment, unemployment, benefit receipt, and participation in programs of active

labor market policy for the universe of German employees and unemployed.

Based on these data, the treatment group was defined as the total inflow of unemployed

welfare recipients into vocational training within a three-months-period in 2005. The

control group consisted of a 20% random sample of unemployed welfare recipients a day

before this three-months-period. The controls did not enter vocational training within

this three-months-period, but they could start vocational training afterward to avoid

conditioning on future events (Fredriksson and Johansson 2008).

The following observable information was used to model the assignment into treatment:

individual socio-demographic characteristics (age, migration background, disability, qual-

ification), characteristics of the household (single/partner, children), individual labor

market history over the last five years (e.g., duration of employment, characteristics of

the previous job such as wage, full-/part-time position, time in unemployment since last

employment), labor market history of the partner, and local labor market characteristics

(Rüb and Werner 2007). The data were stratified by several socio-demographic char-

acteristics such as gender, age group, migration, and background. Separate propensity

score models for the treatment assignment were estimated for each stratum. Within

each stratum, the final model was obtained using a stepwise selection procedure. Caliper

matching based on the estimated propensity scores was used to get the final data set

(see Bernhard 2016 for further details on the matching procedure).

For more than eight years after the (hypothetic) start of the training, labor market

outcomes of participants, and the matched control group were compared on three
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dimensions: share of welfare recipients, share of employees, and average monthly real

wage. As common with matching approaches for causal inference, the study estimated

the average treatment effect on the treated (ATET) and not the average treatment effect

(ATE). Focusing on the ATET was useful in this context since it allowed to evaluate the

effects on those for whom the program was intended (Heckman et al. 1997). However,

the switch from ATE to ATET affects the interpretation of the sensitivity parameters as

we will discuss below.

The overall results of Bernhard (2016) closely resemble previous findings not only for

German data but also in an international context: The beginning of vocational training

is an investment phase. During training, the search intensity for new jobs decreases, and

employment prospects and wages of training participants are lower in comparison to

non-participants. This fact is known as Ashenfelter’s dip (Ashenfelter 1978). However,

after a few months, positive effects of training on employment prospects, wages, and

further welfare receipts can be observed, and these effects persist for up to eight and a half

years after the training started. These results are in line with other quasi-experimental

evaluations that find positive impacts of training on employment outcomes (Card et al.

2010).

In our illustrative application of the TippingSens app, we will focus on men in West

Germany. Our outcome of interest will be the employment status (employed vs. unem-

ployed) over time. For the subgroup of men in West Germany, this outcome follows the

overall trend described above. Assuming no confounding, unemployed West German

men have a nine percentage points higher chance to be employed two years after starting

a vocational training compared to West German men that did not participate in the

training program.
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4.5.2. Sensitivity analysis with the TippingSens application

Specifying the required parameters and information for the TippingSens app is straight-

forward. Assuming the matching procedures described above resulted in a well-balanced

data set regarding the observed characteristics, we only need two vectors from the

matched data: the binary treatment indicator and the binary outcome indicator (see

the Appendix for details regarding how to set up the app). In our case, the percentage

of men in Western Germany that have found a job two years after starting vocational

training is 0.46 for the treatment group (those who participated in vocational training)

and 0.37 for the control group (those who did not participate in vocational training).

We conduct a Rosenbaum-Rubin sensitivity analysis because we are concerned about bias

from unobservables. When evaluating vocational programs, such unobserved variables

could be health conditions like alcoholism, obesity, or other factors. These variables are

not recorded in the administrative data, but since the placement officer at the labor

market agency might observe some of them, they might not only correlate with future

job perspectives but might also affect the probability of attending vocational training.

We will concentrate on alcoholism as an example here.

We need to think about four sensitivity parameters, i.e., we have to think about the

association between alcoholism and participation in the training program (γ), between

alcoholism and employment after two years in the treatment group (α) and in the control

(β) group, and we need an estimate for the prevalence of heavy alcohol drinking (q).

As mentioned previously, we do not estimate or extract the sensitivity parameters from

the data. Instead, we use other sources of information to narrow down the range of

plausible values for the parameters. A literature review reveals that a majority of studies

suggest that heavy alcohol consumption has negative effects on employment probabilities

in Western industrialized states (Popovici and French 2016; Mullahy and Sindelar 1996).

A reanalysis by Terza (2002) controlling for endogeneity found a strong negative effect
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on the probability of being employed in the US. MacDonald and Shields (2004) used

data from the Health Survey of England and found heavy alcohol drinking negatively

associated with the likelihood of employment, Johansson et al. (2007) obtained similar

results for Finland. Devaux and Sassi (2015) estimate that heavy drinking has a strong

negative effect on employment in men (white-collar men, OR: 0.54 [0.29; 1.00]). We

will take these findings as a reference and use it for the sensitivity parameters α1 and

β1. We assume that both parameters have an upper bound of zero since based on

the literature it seems implausible that alcoholism will have a positive effect on job

perspectives irrespective of whether a unit belongs to the treatment or the control group.

Next, we need to define a plausible range for the parameter q. If we were interested in

the ATE, the parameter would represent the prevalence of alcoholism among men in

West Germany. However, given that the study focuses on the ATET, the interpretation

of q changes. It is now the prevalence of alcoholism among individuals with observable

characteristics similar to those of the treatment group. Given that the treatment group

might be a selective subset of the population (for example, all of them are unemployed

at the start of the training program), it is more difficult to narrow down the range of

plausible values for q. To specify an appropriate range for q, we use a literature review

of unemployment and substance use by Henkel (2011). He puts the percentage at 14 %

for unemployed German men, but estimates vary across studies and measurements. We

will examine a range of possible values from 2.0% to 18 %.

Defining a suitable range for γ1 is most difficult since there are no studies – at least to

our knowledge – that investigate how alcohol abuse influences the probability of being

assigned to a labor market program. We will thus evaluate a wide range of values for γ1.

To visualize the results from the Rosenbaum-Rubin sensitivity analysis, the app requires

to fix two of the parameters at specific values, while plausible ranges can be specified for

the remaining parameters. It is up to the user to decide which of the four parameters to
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fix.

We start our evaluation with the setting that appears to be most plausible concerning

the literature. We set q = 0.14 and α1 = log(0.54) = −0.62. We note that by fixing α1 at

−0.62 we implicitly assume that the odds ratio of getting a job for heavy drinkers for the

treated is the same as for the general population of unemployed German men. We will

evaluate the impacts of loosening this assumption below. Given that we expect negative

effects of alcoholism on employment perspectives, and that it seems prudent to assume

that alcoholism also has negative effects on the probability of receiving the treatment,

we can fix the upper bound for the range of plausible values for the other parameters at

zero. Defining meaningful lower bounds is more difficult. In our illustrative application,

we set the lower bound for γ1 to −3, implying that we believe that the odds ratio of

being assigned to the training program will not be less than 0.05 for individuals with a

drinking problem relative to individuals without drinking problems.

For the parameter β1, we set the lower bound to −1.31. We choose this value, as we

assume that the odds ratio of getting a job for individuals with a drinking problem in

the control group will never be less than half the odds ratio for those participating in the

training program (solving expβ1 / expα1 ≥ 0.5 for β1 gives β1 ≥ −1.31). The output of

the app based on our data and the parameter settings are depicted in Figure 4.1. Lighter

colored tiles imply smaller treatment effects. When assuming that the odds ratio of

employment for heavy drinkers is about 0.75 (β1 = −0.29) in the control group, and that

the odds ratio for treatment assignment given alcoholism is about 0.72 (γ1 = −0.33),

while the prevalence rate of alcoholism among individuals with observable characteristics

similar to those in the treatment group is 0.14, the treatment effect of vocational training

drops from 0.09 in the analysis based on the unconfoundedness assumption to 0.086

(black box in Figure 4.1). The stronger the negative effect of alcoholism on the outcome

for the matched controls and on the treatment assignment, the more important becomes
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Figure (4.1) Sensitivity analysis for the evaluation of vocational training by Bernhard
(2016). The gray box contains the treatment effect assuming the following
values for the sensitivity parameters: α1 = −0.62, β1 = −1.31, γ1 = −3,
q = 0.14. The black box contains the treatment effect assuming the
following values for the sensitivity parameters: α1 = −0.62, β1 = −0.29,
γ1 = −0.33, q = 0.14.

the unobserved covariate in explaining differences between treatment and control group

leading to smaller estimated treatment effects. We note that even under the most extreme

setting considered in Figure 4.1 (γ = −3, β = −1.31) the estimated treatment effect

remains positive (gray box in Figure 4.1). Thus, the results of the analysis based on the

unconfoundedness assumption seems to be quite stable.

With the TippingSens plot, we can also examine the estimated treatment effects in other

settings. We can, for example, take a closer look at the effects of different percentages of
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Figure (4.2) Sensitivity analysis for the evaluation of vocational training by Bernhard
(2016). The black box contains the treatment effect assuming the following
values for the sensitivity parameters: α1 = β1 = −0.62, γ1 ∈ [−3, 0], q = 0.
The gray box contains the treatment effect assuming the following values
for the sensitivity parameters: α1 = β1 = −0.62, γ1 = −3, q = 0.18.

individuals with a drinking problem in our subpopulation of interest. We switch axes

in the app and receive a plot with γ on the vertical axis and q on the horizontal axis.

We fix α1 and β1 at -0.62 implicitly assuming that the odds ratio of employment given

alcohol abuse is the same in both treatment groups. The results are depicted in Figure

4.2. If we assume there are no men with drinking problems, the unobserved covariate

should have no effect. This is confirmed in the first column of Figure 4.2 (where q = 0),

showing a constant estimated treatment effect of 0.09, which is the estimated treatment

effect based on the unconfoundedness assumption (black box in Figure 4.2). Moving

117



4. TippingSens R Shiny Application

Figure (4.3) Sensitivity Analysis of the evaluation of vocational training by Bernhard
(2016). Odds ratios regarding alcoholism do not differ by more than a
factor of two between the treatment and the matched control group in the
area highlighted by black lines.

to higher percentages for q we can see that the treatment effect diminishes. When q is

close to zero (or one), treatment and control groups are still well balanced regarding the

unobserved variable q, just because there are not enough subjects with u = 1 (or u = 0)

that can be selected into either group. Thus, the effects of changing γ are small for small

values of q. This changes as q increases. More variation in the outcome is now attributed

to the unobserved covariate. Still, the treatment effect does not drop below 0.046 for the

considered settings (gray box in Figure 4.2).

We can also explore which conditions would be necessary to alter the sign of the estimated

treatment effect based on the unconfoundedness assumption. Imbens and Rubin (2015,
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506) remark that there is a trade-off between the different parameter: more extreme

values for γ1 do not require quite as extreme value for α1 and β1 to see the same shift

in the estimated treatment effect. We thus choose rather extreme values for the fixed

parameters. In Figure 4.3, we fix q at 20% and γ1 at -3, which means that the odds for

treatment are about twenty times higher for German men without drinking problems

compared to subjects with drinking problems. But even with such a strong selection

mechanism, the estimated treatment effect only changes its sign if α1 and β1 get very

small (blue tiles indicate negative treatment effects). If we also take into account that

it seems unrealistic that the odds ratios differ by more than a factor of two between

the treatment and the matched control group, the range of admissible values for the

combination of the two parameters is limited further. Admissible value combinations

that would lead to a negative treatment effect are highlighted by black lines in Figure

4.3. The figure shows that the values for both parameters would need to be smaller than

-1.33 (odds ratio less than 0.26) to change the sign of the estimated treatment effect.

This is a much smaller odds ratio than the odds ratio of 0.54 found by Devaux and Sassi

(2015). Thus, to obtain a negative treatment effect, we would need to assume that the

target population for the training program is a highly selective group, for which the odds

ratio of finding a job for heavy drinkers is much smaller, and for which the prevalence of

alcoholism is much higher than in the reference population. We can conclude that the

findings in Bernhard (2016) are robust to the assumption that alcoholism is an unobserved

confounder, which influences both the probability of assignment to the training program

and the probability of being employed two years after baseline.

4.6. Discussion

The sensitivity analysis proposed by Rosenbaum and Rubin (1983) allows flexible modeling

of the violation of the unconfoundedness assumption through four different parameters.
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In their initial illustrative application, Rosenbaum and Rubin worked with forking tables

to convey their idea and their results. The table format forced the authors to evaluate

only a limited set of combinations for the parameters. With the R Shiny app introduced

in this chapter, we simplify the sensitivity analysis by creating interactive visualizations

instead. Since it is typically unrealistic to assume that exact values are known for

all four sensitivity parameters, the possibility of specifying ranges of plausible values

for the parameters is a major advantage of the app compared to previously proposed

solutions, such as using the most extreme relationships found in the observed data.

With the app, the estimated treatment effects are visualized over the two-dimensional

space spanned by the range of plausible values for the free parameters. Color coding

helps to identify the relationships between the different parameters and the treatment

effect. It is up to the user to decide which parameters should be held fixed, and which

intervals should be considered for the free parameters. Once the data are loaded, all

settings can be changed easily: parameters can be exchanged between the axes or from

being fixed to being free, and vice versa, ranges of plausible values can be adjusted

independently, and the values of the fixed parameters can be modified using separate

sliders for each of the parameters (see also the step-by-step illustration in the Appendix).

The interactive flexibility of the app also provides quick insights which (possibly extreme)

sets of parameter combinations would be required to substantially change the research

findings derived under the unconfoundedness assumption.

The illustrative application based on a quasi-experimental evaluation of vocational

training in Germany discussed in Section 4.5 highlights the benefits of the TippingSens

app. Evaluating different plausible scenarios regarding the association between the

confounder and the outcome and the treatment, we found that the substantial findings in

Bernhard (2016) are robust regarding the effects of alcoholism as a possible confounder.

Of course, the evaluation has important limitations. It only focuses on one confounder.
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Other health problems might also have negative effects on both the outcome and the

treatment assignment. Thus, it would not be appropriate to conclude based on this

limited sensitivity analysis that the findings in Bernhard (2016) are robust to any form

of confounding. However, the application illustrates the basic idea. Similar sensitivity

analyses could be conducted for other health parameters in practice.

Still, it must be noted that the applicability of the app is limited by the requirements of

the Rosenbaum-Rubin sensitivity analysis: both, the outcome, as well as the unobserved

confounder, have to be univariate and binary. While it has been argued that this

framework might still apply in contexts with more than one confounder (Liu et al. 2013),

the assumption of a binary confounder might be too restrictive in other contexts. For

example, with continuous confounders, it seems more realistic to assume that the effect

of the confounder changes (non-)linearly with the value of the confounder instead of

assuming only a single change in the effect at a certain threshold value. Whether the

app could be extended to allow obtaining useful insights in this more general context

beyond the Rosenbaum-Rubin approach would be an interesting area for future research.
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5. Better Together? Regression

Analysis of Complex Survey Data

After Ex-post Survey Harmonization

5.1. Introduction

What can researchers do if information from a single data source is insufficient to

investigate a particular research question? An increasing number of researchers then pool,

harmonize, and analyze survey data from different survey providers for their research

questions (SDR 2020; IPUMS 2020; CLOSER 2020; MAELSTROM 2020; MTUS 2020).

They are then able to study heterogeneity between groups over a long period, pick up

subtle differences between populations, or examine smaller subgroups.

In this context, harmonization refers to procedures aimed at improving the comparability

of different surveys and measures (Granda et al. 2010, 315). Both ex-ante and ex-post

harmonization have a strong tradition in cross-cultural surveys. Ex-ante harmonization

refers to harmonization during survey design and before data collection. Ex-post harmo-

nization to harmonization after data collection. While the harmonization of variables is

already a complex task (Granda et al. 2010, 331), the analysis of complex survey data

after variable harmonization is not necessarily easier.
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Surveys in the social sciences often rely on complex sampling designs, i.e., sample members

do not have an equal selection probability. They are widely used in the social sciences,

and ex-post harmonization projects will most likely also include surveys with complex

sampling designs. Ignoring the complex sampling design can lead to biased population

inferences in population means as well as regression coefficients (DuMouchel and Duncan

1983; Pfeffermann and Sverchkov 2009; Solon et al. 2013). For regression models that

are widely used in quantitative sociological research, analysts often try to account for

the sampling design through additional predictors. With ex-post survey harmonization,

this often becomes impossible since it could require the analyst to harmonize many other

predictors. Besides, these predictors might not be observed for several of the surveys,

creating severe missing data problems. Another possible limitation would be that the

variables related to the sampling design are not suitable for the analysis due to their

associations with focus variables (Lumley 2010, 105).

There is, however, a second option to account for the complex sampling design: it

is possible to estimate a survey-weighted regression. In this article, we explore this

second option in the context of harmonized complex survey data and compare different

approaches for regression analyses of survey data after ex-post harmonization and how to

incorporate survey weights and survey weighting.

The idea of combining or pooling data has also surfaced in areas other than sociology

and cross-cultural studies. The terms to describe the general idea of combining data

differ widely between disciplines and even projects, terms used include, for example,

individual person data (IPD) meta-analysis (MA) in medicine and psychology mainly

(Riley et al. 2010; Burke et al. 2017), mega-analysis (Boedhoe et al. 2019) or just merely

describing the strategy as “pooling raw data” (Korn and Graubard 1999). The IPD

MA literature, in particular, proposes two general approaches for the regression analysis

of pooled raw data: (1) synthesizing regression coefficients estimated from the single
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data sets (two-stage approach) or (2) estimating a regression on the combined data sets

(one-stage approach). This article will study which method is more suited for the analysis

of complex survey data after ex-post harmonization.

This article pioneers in bridging the gap between survey harmonization, survey statistics,

and meta-analysis, making research results and approaches from one area useful to the

other. In particular, we add to the literature in the following ways: (1) We introduce two

approaches from the IPD-meta-analytical literature for dealing with ex-post harmonized

complex survey data, i.e., one-stage and two-stage IPD meta-analysis (see Burke et al. 2017

for an overview). More importantly, we study the performance of these two approaches

in the context of ex-post survey harmonization. (2) We can show that the distribution

of survey weights in the respective data set will play an important role when applying

these two meta-analytical approaches. We demonstrate that unless the coefficient of

variance for the survey weights is small, the assumption of known within-study variances

for two-stage analysis is problematic and can result in biased point estimates. (3) Finally,

we add a real-world example further illustrating the findings of the simulation.

5.2. Regression analysis of complex survey-based data

after harmonization

5.2.1. Overview and literature review

We will draw on two different analysis approaches developed for individual participant

data (IPD) meta-analysis (MA) in the following, one-stage and two-stage meta-analysis.

These distinct ways of conducting an IPD MA have emerged over the last few years.

The more common approach, which is also closer to a more classical (aggregate person

data) meta-analysis, is the so-called two-stage approach. Meta-analysts first analyze

each of the k = 1, . . . , K studies separately to obtain study-specific effect sizes. Then,

130



5. Better Together?

they combine the K independent effect sizes by calculating a weighted (often inverse

error-variance-based) average. The second approach is the so-called one-stage IPD MA

approach. Here the combined data is analyzed simultaneously. This flexible approach

requires different modeling decisions like the possible inclusion of separate intercepts for

different surveys or the addition of random intercepts or slopes. These one-stage analyses

with random effects are examples of hierarchical or multi-level models (Simmonds et al.

2005).

Regarding the comparability of these two approaches, one-stage and two-stage approaches

often lead to similar estimates of treatment effects (Olkin and Sampson 1998; Stewart

et al. 2012). However, one-stage analyses improve the power of detecting effects for

continuous and binary data (Lambert et al. 2002; Simmonds et al. 2005). Burke et al.

(2017) give an overview of previous results and a list of ten key reasons why one-stage

and two-stage approaches may lead to different results in practice. We will add another

reason to that list, connected to the variances of survey weights (see Section 5.3.2).

Few authors have tackled the topic of combining complex survey data from an (ex-post)

survey harmonization or (IPD) meta-analytical perspective. Roberts and Binder (2009)

briefly discuss the two main meta-analytical approaches – one-stage and two-stage meta-

analysis – in the context of survey data. They stress to either frame the research question

in a design-based or model-based way. Korn and Graubard (1999) suggest methods

to adjust survey weights when pooling surveys with different numbers of observations.

Besides, survey methodologists and statisticians have combined data from surveys though

they generally do not refer to it as meta-analysis. For instance, Leslie Kish focused on

combining data from rolling or periodic samples and non-overlapping probability samples

from the same population (Kish 1979; Kish and Verma 1986; Kish 1994, 1999).

We, however, use surveys that were not designed to be analyzed together in the first

place. Prospectively planned pooled analyses such as extensive international cross-
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cultural studies are usually not called meta-analyses, although they also are a method

for summarizing the evidence. Joye et al. (2019) discuss the pooling and weighting of

surveys in the context of harmonized cross-cultural studies.

Following Kish, statisticians have tackled different types and aspects of pooling data.

While Cochran (2007) and Fuller and Burmeister (1972) concentrated on combining

sub-populations, Kalton and Anderson (1986) and Skinner and Rao (1996) among others

worked on the topic of multiple frames for the same target population. Lohr and

Raghunathan (2017) and Fox (2011) provide overviews over other related topics like

dual-frame problems, statistical matching, combining survey data with data from other

surveys, small-area-estimation or re-weighting data with several samples.

5.2.2. Two-stage IPD meta-analytical approaches

As a next step, we take a closer look at the two analytical options for combining complex

survey data after survey harmonization. We start with two-stage meta-analysis. Suppose

each study k (k = 1, ..., K), that we want to include into our analysis, has nk observations

i (i = 1, . . . , nk). We are interested in the effect of a single independent variable on the

dependent variable. A simple approach would be to estimate regression models in each

study separately and then, in the second stage, to combine the estimates obtained in the

first stage (Burke et al. 2017, 856).

If we follow this approach, we estimate regression coefficients for every survey. We can

either estimate a weighted or an unweighted estimate (DuMouchel and Duncan 1983).

After estimating the regression coefficients for the different surveys, we reach the second

stage of the two-stage analysis (Burke et al. 2017, 857). In this stage, we combine the

regression coefficients, similar to a classical meta-analysis. If we assume between-study

homogeneity, each survey point estimate’s weight depends solely on its estimate’s variance

(a so-called fixed-effect model).
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In some cases, it may be reasonable to assume that a common effect exists (for example,

medical studies using the same treatment for a very similar group of patients and using

the same outcome measures) and estimating a fixed-effect (FE) model. However, such

an assumption of homogeneity can rarely be made for most studies (Viechtbauer 2007),

especially in the social sciences. Studies are likely to have systematic differences, e.g., the

measurements used for the independent and dependent variable (Elliott et al. 2018, 3).

We then speak of study heterogeneity. If study heterogeneity is present, random-effects

(RE) models are considered more appropriate for the second stage of the analysis. The

underlying assumption is that there is not one common effect for all the studies, but

instead, one assumes a distribution of effects across studies.

When calculating the combined RE estimate, we again take an inverse-variance weighting

approach, but we now incorporate an estimate of the between study-variance τ̂ 2 (Boren-

stein et al. 2009, section 2). There are many methods of estimating τ̂ 2, for example, the

method of moments estimator of DerSimonian and Laird (1986, 2015), also called DL

estimator. For continuous outcomes, Veroniki et al. (2016, 55) advocate using REML

estimation as a preferable alternative to the DL estimator, which we also use in our

simulations.

5.2.3. One-stage IPD meta-analytical approaches

When conducting a one-stage analysis, we first combine surveys and then analyze the

combined data set. An abundance of modeling options characterizes the one-stage (IPD

meta-analytical) approach. For all included predictors, separate fixed or random study

effects can be included.

We start with the simplest model, a one-stage model without separate fixed or random

study effects. Let us still assume we have K(k = 1, ..., K) studies for the IPD MA with

nk (i = 1, . . . , nk) observations each. We are interested in the effect of the independent
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variable X on the dependent variable Y .

1. One-stage model without separate fixed study effects (linear model):

yik = α + βxik + eik, eik ∼ N(0, σ2) (5.1)

Here we treat the data as if they came from one extensive survey. We do not

model study heterogeneity. However, it is generally not recommended to treat the

combined studies as one big survey, ignoring the clustered structure. Researchers

instead include fixed or random study effects to model the clustering.

2. One-stage model with separate fixed study effects:

Adding a separate fixed intercept term αk per study allows for different survey

means in the dependent variable (when controlling for the independent variable(s))

and the clustering of observations in studies (Burke et al. 2017, 859).

yik = αk + βxik + eik, eik ∼ N(0, σ2) (5.2)

It is also possible to allow varying slopes for the surveys by adding interaction

effects of survey indicators and independent variables.

3. One-stage model with one or more random study effects:

The separate fixed study effects for the intercept can also be replaced with a random

effect, e.g., when one is interested in the baseline intercept α or in a measure of

between-study heterogeneity (Burke et al. 2017, 859). Another advantage is that

we reduce the number of parameters compared to the fixed effects model (instead

of estimating a fixed effect for each survey, we only estimate two parameters α and

τ 2
α). One should note that the inclusion of random effects demands a sufficiently
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high number of included surveys (Snijders and Bosker 1993).

yik = αk + βxik + eik, eik ∼ N(0, σ2) and αk ∼ N(α, τ 2
α) (5.3)

As in the fixed effect case, it is possible to add random study effects for the

independent variables, i.e., random slopes. The random slope model allows the

explanatory variable to vary between studies. Readers should be aware that the

inclusion of weights into multi-level models like the RE one-stage model here is still

a research question that is not entirely resolved (see Asparouhov 2006 and Carle

2009).

5.2.4. Survey weights and the use of weights in regression analysis

Since we are studying the analysis of pooled complex data with survey weights, we now

briefly introduce the three types of survey weights most widely used in practice. The

weights are design weights, nonresponse weights, and post-stratification weights.

Design weights are common when observations are drawn dependent on the primary

sampling unit (PSU). In the case of stratified random sampling, the entire population

is divided into homogeneous groups, which are called strata s. If the stratum size

in the sample is not proportional to the stratum size in the population, we speak of

disproportionate sampling. In the case of disproportionate sampling, design weights for

design-based inference are often provided and used. Calculation of the design weight for

an observation i is simple enough; we use the inverse of the probability pi,selection to be

selected (Horvitz and Thompson 1952 and Lumley 2010, 4): wi = (pi,selection)−1.

Nonresponse weights are closely related to sampling weights. Units are weighted by the

inverse of their response propensities pi,response (Little and Vartivarian 2003). pi,response

can be estimated if researchers have information about respondents and non-respondents

as in the European Social Survey (Blom 2009, 29). Interviewers were asked to record
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variables such as sex and approximate age, or the house’s appearance (litter, graffiti, etc.)

for respondents and non-respondents. This allows practitioners to estimate response

propensities for respondents and, through these, to calculate nonresponse weights (Blom

2009; Kreuter et al. 2010; Krueger and West 2014). Nonresponse weights and design

weights are often combined. One then calculates the combined inclusion probability

pi,inclusion, this is the product of selection probability pi,selection and response propensity

pi,response : wi = (pi,inclusion)−1 = (pi,selection · pi,response)−1.

Many surveys (Little and Vartivarian 2005, 161) do not provide design weights or

nonresponse weights but instead or additionally post-stratification or raking weights.

Post-stratification weights are used to adjust the sample to known population totals

(Lumley 2010, 136). Post-stratification is also called cell weighting or adjustment

weighting. This weighting approach can be considered when the distribution of auxiliary

variables (e.g., sex, age groups) is known in the population and differs from those in

the sample. For example, if we have one additional dichotomized covariate U , the

calculation would be as follows: Using the sample proportion props and the population

proportion propp of this covariate, we can calculate the weights by taking the inverse

of the probability pi(Ui = 1) = props·n
propp·N or pi(Ui = 0) = (1−props)·n

(1−propp)·N respectively (Little

1993, 1001). Weights also often go through several stages of weighting (design weighting

should always precede post-stratification). Post-stratification grows more complicated

with the number of post-stratification variables. If the joint distribution of the variables

is not known but only the marginal distributions, it is necessary to use alternative closely

related techniques like raking (Deville and Särndal 1992).

Survey-weighted regression analysis – Hybrid models

We will now cover the topic of survey-weighted regression. We will briefly examine survey-

weighted regressions with just one data set in this section. We then move on to the case

with pooled complex survey data in the next section. For the moment, we concentrate on
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(b) Exemplary data setting with different
slopes per strata. Points with the same
color belong to the same strata.

Figure (5.1)

three simple cases: (1) a simple linear regression meeting the Gauss-Markov assumptions

and observations drawn with exogenous sampling, i.e., independent from the error term,

(2) a simple linear regression where we are faced with endogenous sampling, also called

selection on unobservables or informative sampling, and (3) a linear heterogeneity of

effects model where data points have different sampling probabilities depending on the

groups. While in the first case, the use of weights is usually discouraged, it can be

beneficial in the second and third case.

Case 1: We start with a simple linear regression meeting the Gauss-Markov assumptions

and exogenous sampling. We are interested in the regression of a variable Y on X. For

the moment, we only have data from one survey. Let us assume that the population from

which this survey was drawn has different strata s, and the population units have had

differing sampling probabilities depending on the strata s. The coefficient β is the same

in all strata. The error term has a normal distribution with mean 0 and variance σ2, e,

and the strata are independent. Since the sampling is only dependent on the strata, it is

also independent of the error term e and exogenous. Like the sampling probabilities, the

means of X may differ per strata (see Figure 5.1 a).

The reader should note that the Gauss-Markov (GM) assumptions are still met. The
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GM assumptions only concern the set of error terms (Verbeek 2004, 15): the error terms

have to have mean zero, they must be homoscedastic, and distinct error terms must be

uncorrelated. Since the GM assumptions are met, there is no reason to prefer the weighted

estimate to the ordinary unweighted estimate. As an example, the unweighted OLS

estimate β̂ is already approximately unbiased and has minimum variance among all linear

approximately unbiased estimators (DuMouchel and Duncan 1983, 536). This is true

even though the means of a variable X differ per strata, and the sampling probabilities

differ. While the weighted coefficients are also approximately unbiased, they are not

the best linear approximately unbiased estimates (BLUE), whereas the OLS estimates

are (Verbeek 2004, 16-17). Let us now move on to cases where weights are needed for

approximately unbiased estimates.

Case 2: Again, we want to estimate a simple linear regression of Y on X. However, this

time the sampling is endogenous/informative, e.g., depending on the error term. Error

terms cannot be observed. For this reason, endogenous sampling is also called selection

on unobservables. Estimates not weighted for the endogenous sampling are biased (Solon

et al. 2013, 15).

A classic example of endogenous sampling is oversampling, which depends on the outcome

variable and, therefore, the error term. For example, a researcher attempts to estimate a

regression model of family income on years of education. If high-income families with a low

number of schooling years were oversampled compared to middle and low-income families

with the same number of years, then the error term is correlated with the sampling

probabilities, and the regression estimates will be biased. We have visualized this situation

in Figure 5.2 a. Less transparent colors represent higher sampling probabilities. One can

easily see that the regression line estimated without weights will have a higher intercept

than the population regression line in red. Plus, in the case of heterogeneous variance

for the error term, endogenous sampling can shift the slope estimate as well (see Figure
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(a) Exemplary data setting with heterogeneous
Y. Less transparent colors represent higher
sampling probabilities. The red solid line
is the regression line of Y on X in the
population. The dashed purple line is the
estimated unweighted regression line for a
sample drawn with unequal sampling prob-
abilities.
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(b) Exemplary data with different endogenous
sampling probabilities. Less transparent
colors represent higher sampling probabili-
ties. The red solid line is the regression line
of Y on X in the population. The dashed
purple line is the estimated unweighted re-
gression line for a sample drawn with un-
equal sampling probabilities.

Figure (5.2)

5.2 b).

In the case of endogenous sampling, one needs to use inverse-probability weights to

achieve consistent estimates (Solon et al. 2013, 17). One can also transform this case

into an example of endogenous nonresponse. If the high-income families have a higher

response propensity than middle and low-income families with the same number of

schooling years, we would need nonresponse weights to achieve approximately unbiased

estimates.

However, we have to note that estimating nonresponse or post-stratification weights

correcting for all the bias is highly unrealistic. The bias reduction depends on two

associations: (1) on the correlation between the response propensity and the response

propensities predictors and (2) on the correlation between the error term and the response

propensities predictors (Little and Vartivarian 2003). Unfortunately, these correlations

are often not very high (Kreuter et al. 2010, 405).

We return to the endogenous nonresponse example, where high-income families with a
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low number of years of schooling are responding less often than others with the same

number of years. If we regress income on education without weighting, the error term

will be correlated with the response propensity. This leads to biased regression estimates.

If we want to correct this bias through post-stratification, we need one or more variables

correlated with the error term and the response propensity. E.g., let us assume that

families with higher income tend to live in bigger cities than families with the same

number of years of schooling but lower income. Then, we could use the size of the city as

a post-stratification variable. Bias reduction would depend on the correlation between

the error term of the regression and city size, as well as the association between inclusion

probability and city size. However, both correlations will often be small in practical

applications.

Case 3: Last but not least, there are linear heterogeneity of effects models where data

points have different sampling probabilities depending on the groups (see Figure 5.1 b).

It is not possible to give general recommendations for which estimate, unweighted β̂ or

weighted β̂w, to use when assuming a model with heterogeneous coefficients. Neither

β̂ nor β̂w are generally approximately unbiased estimates of the average coefficient β̄

(DuMouchel and Duncan 1983, 537). Solon et al. (2013, 19) show that there are two

reasons why the unweighted estimate does not identify the average population effect

β̄. The first is easy to understand. Let us assume that children’s effect on partnership

quality is more negative in urban areas than in rural areas. If we oversample rural

areas, we would not expect the unweighted estimate of the average coefficient to be the

same as the average population effect. This is the first source of bias in the case of an

unweighted estimate. However, Solon et al. (2013, 20) provide another reason why the

OLS estimate is not consistent. Extreme values of the independent variables can have a

considerable influence on the estimates. Therefore, the unweighted average also depends

on the difference in the within-strata variance of the independent variables. The weights
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deal with the first source of bias but not the second. If the within-variances are equal in

all strata, WLS is thus consistent, and OLS is not. As Solon et al. (2013, 20) notice, this

is the “knife-edge special case” and not true in general. They recommend comparing

weighted and unweighted estimates to get an idea of possible bias.

Adding additional covariates to the model would be another possibility to account for

nonresponse or oversampling and remove bias (Pfeffermann and Sverchkov 2009, 461).

This approach would correspond to the classical model-based approach for inference

by Fisher (1922). However, the covariates might not be available in some cases, but

only the weights (Solon et al. 2013, 15–17). The inclusion of additional covariates might

complicate the interpretation of focus model parameters (Sterba 2009, 727), for an

example see Pfeffermann and Sverchkov (2009, 463). Also, in the case of harmonized

surveys, conditioning on observed selection/nonresponse variables will be complicated

since they are likely to differ between surveys. Therefore, we strongly prefer hybrid

models that are primarily model-based and account for disproportionate selection through

weighting instead of conditioning on all complex sampling features (see Sterba 2009 for a

comparison of the model-based, design-based, and hybrid framework).

Conclusion

Out of the three cases we covered – (1) a simple linear regression meeting the Gauss-

Markov assumptions and with exogenous sampling, (2) a simple linear regression where

we are faced with endogenous sampling, and (3) a linear heterogeneity of effects model

with different sampling probabilities depending on strata – we need to use survey-weighted

regressions in the latter two. In the first case, survey weighting only leads to an inflation

of the variance of the regression coefficients. However, whether a study falls under (1) is

usually uncertain, and it is, therefore, advisable to compare weighted and unweighted

estimates.
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Survey-weighted regression analysis – The meta-analytical case

Moving on to combined and harmonized data sets, it is easy to see that the need for

survey weighting in the case of endogenous sampling and heterogeneity of effects models

(or a combination of these problems) does not simply vanish in the meta-analytical case.

To make this explicit, let us remember that each data set is first analyzed separately in

two-stage meta-analytical models. If these models’ unweighted coefficients are biased,

the combined coefficient will be biased, too (except in the unlikely case in which these

biases cancel each other out).

For practical applications, this still leaves us wondering if we even need to use survey

weights due to nonresponse or effect heterogeneity. Bollen et al. (2016) provides a

review of various diagnostic tests used to determine if survey weights are necessary for

regression analysis. These tests can be divided into two groups: the first group of tests

examines the difference between weighted and unweighted regression coefficients; the

second one whether, conditional on the independent variable, the dependent variable,

and the weights are correlated (DuMouchel and Duncan 1983; Fuller 2009; Pfeffermann

1993; Asparouhov and Muthen 2007). However, one should note that these tests were

developed for OLS/WLS regression with a single data set.

Plus, it is uncertain and unlikely that all the surveys fall into the case of exogenous

sampling and no effect heterogeneity. This problem is especially pressing with real

complex surveys. Surveys can have multiple aspects of over-sampling across various

stages, or it is unclear whether the outcome variables are exogenous. Therefore, we

recommend comparing weighted and unweighted estimates in all cases to get an idea of

possible bias.
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5.3. A comparison of one-stage and two-stage

approaches in case of pooled complex survey data

5.3.1. Introduction to the simulation design

We will now further explore the use of survey weights in the context of regression analysis

of complex survey data after ex-post harmonization. We look at two questions that

arise when conducting a regression analysis with weighted observations after pooling: Do

survey-weighted one-stage and two-stage analysis perform differently? And is it possible

to include random effects into the survey-weighted analysis, especially if we have to

assume study heterogeneity?

When evaluating the performance of different analytical approaches, researchers, in

general, look at the bias, the variance, the root mean square error (RMSE), and the

coverage of these approaches. While bias, variance, and RMSE should be as small as

possible, coverage should be around 0.95 in the case of standard 95%-confidence intervals.

In our case, it is cumbersome to derive these four measures analytically for our multitude

of approaches. Therefore, we turn to Monte Carlo simulations to calculate estimates

of bias, variance, RMSE, and coverage (Cov.). We take care to model data settings of

particular interest to all disciplines that work with non-experimental survey/observational

data. We focused on relatively simple simulation scenarios to attribute any differences

in performance to the different meta-analytical approaches. Simulated surveys are

homogeneous, except for Simulation Nr. 3 and 4 in section 5.3.3. An overview of the

data settings, the implemented sampling procedures, and the meta-analytical approaches

we used are given in Tables 5.1 and 5.2.
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5. Better Together?

5.3.2. Methodological decisions and differences between

one-stage/two-stage meta-analysis

State of the Art

In the following, we shift our focus away from the more general questions ‘When do we

have to weight and which weights should we use?’ to more specific questions. We are

interested in differences between the two general approaches – one-stage vs. two-stage

analysis. We have already summed up the known differences between one-stage and

two-stage approaches in section 5.2.3.

We will now add another new reason why a one-stage meta-analysis might outperform

a two-stage analysis in practice. We will demonstrate in our next simulation that with

a moderately high coefficient of variation for the weights, the assumption of known

within-study variances is highly problematic and can result in biased point estimates.

Simulation and Results

In the first two simulations, we use two different heterogeneity of slope models for data

generation. While the sampling is endogenous for both of them, we change the range

of sampling probabilities, therefore changing the weights’ variance. In Simulation Nr. 1

(see Table 5.1), the coefficient of variation CV for the weights amounts to approx. 0.76.

This CV value is not unrealistic; it corresponds to the coefficient of variation for the

weights in the second wave of the German family survey ‘Familiensurvey’ (Deutsches

Jugendinstitut (DJI) 2003). The coefficient of variation CV for the weights in Simulation

Nr. 2 is smaller; it is only half this size. This difference leads to differences in the

performance of one-stage and two-stage meta-analyses. The weighted two-stage slope

estimates are biased in case of a high CV (Simulation 1), whereas the weighted one-stage

estimates are approximately unbiased (see Figure 5.3). The two-stage results will only be

approximately unbiased when – all other things being equal – we have low variance in

the weights (Simulation 2, not shown separately here).
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Figure (5.3) Density plot of slope point estimates. 1000 Monte Carlo repetitions. For
simulation setting see Simulation Nr. 1 in Table 5.1.

To understand the mechanism behind this non-intuitive result, we look at the distribution

of the survey-weighted error terms from several surveys when the coefficient of variation

for the weights is high; we see that some of the surveys have bumps at negative values of

the error term (see Figure 5.4 a).

This happens when observations with low inclusion probability are included. Since

these observations have very high inverse-probability weights, they also increase the

variance estimate. Simultaneously, point estimates are lower in these cases since the

highly influential observations drag the point estimate down. If we now weight the point

estimates by their variance estimates in the second stage, the point estimates which are

smaller and have larger variance estimates get a lower (meta-analytical) weight than the

larger point estimates with smaller variance estimates (see Figure 5.4 b). Therefore, we

overestimate the coefficient in our two-stage meta-analysis. The extent of the bias will

depend on the correlation between the added variance due to the weights and the point

estimates. Providing corrections of the variance regarding the amount of variance that is

due to weighting is difficult. If we used our knowledge that the variance before weighting

is equal for all surveys in our simulation, we could get an approximately unbiased estimate.

Still, we can not know the distribution between the two variance sources with certainty
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(a) Kernel ‘density’ plot of weighted error terms
for five different surveys. The area under
the curves sum up to the population size.
For simulation setting see Simulation Nr. 1
in Table 5.1.
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in Table 5.1.

Figure (5.4)

in real-world applications. Corrections are difficult to implement (Kish 1965; Le et al.

2002).

Instead of correcting the two-stage meta-analytical weights, we recommend using a

one-stage meta-analysis, especially in the case of a high coefficient of variation for the

weights. A high coefficient of variation for the weights can easily occur in the case of

post-stratification with many sparsely occupied cells. However, we acknowledge that

this might not always be possible, e.g., if researchers want to include information on

strata/primary sampling units into their model (Rabe-Hesketh and Skrondal 2006). This

would further complicate a one-stage meta-analytical model and is an important argument

in favor of two-stage models.

5.3.3. Study heterogeneity

We now take a closer look at study homogeneity/heterogeneity and introduce a trans-

formation needed in the case of survey-weighted one-stage meta-analyses with RE. We

speak of study homogeneity when all studies in a meta-analysis were undertaken in the

same way with the same measurement, target population, etc. However, we will seldom
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be able to assume study homogeneity. If this assumption is violated, e.g., the studies

used different measurements for the same construct, or the target population differs

slightly between surveys, we have to deal with and model so-called study heterogeneity

(Viechtbauer 2007).

Study heterogeneity is a problem since reflecting the heterogeneity of the studies in our

analysis may be complex and challenging. However, it is often crucial since variables

and target populations will somewhat differ between included surveys. A conventional

approach is to use a model with random effects for the surveys. This can be done

regardless of whether we estimate a one-stage or two-stage analysis. Estimating a two-

stage analysis with random effects or including a random effect in a one-stage analysis is

equivalent to assuming that the true coefficient is not the same for all studies. Instead,

the true coefficient has a distribution over surveys. Researchers often choose a normal

distribution for this distribution (Burke et al. 2017, 859).

Unfortunately, the use of random effects is tricky in the case of a weighted one-stage

analysis. It is known that weights cannot be used in their ‘raw’ form in weighted

multi-level/hierarchical analysis since the point and standard error estimates will be

biased (Asparouhov 2006, 442, 445). Asparouhov (2006), building on earlier work by

Pfeffermann et al. (1998), recommended two methods ‘A’ and ‘B’ (see Equation 5.4 and

5.5) for transforming the weights (Asparouhov 2006, 443).

Method ‘A’ scales the weights so that the transformed weights sum to the cluster sample

size (in our case the survey sample size nk):

w∗ik = wik

(
nk

Σiwik

)
. (5.4)

Method ‘B’ scales the weights so that the transformed weights sum to the effective sample

size:
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w∗ik = wik

(
Σiwik
Σiw2

ik

)
. (5.5)

‘A’ and ‘B’ become equivalent when cluster sizes and cluster sample sizes are constant

(Asparouhov 2006, 445). Method ‘A’ is better suited if we want to examine regression

coefficients, and method ‘B’ is recommended when we are interested in estimates of

heterogeneity (Carle 2009, 10).

Multi-level models that incorporate survey weights use a pseudo maximum likelihood

(PML) approach, and the weights w∗ik, transformed with either method ‘A’ or ‘B’

(Asparouhov 2006) are included then into the PML (see Rabe-Hesketh and Skrondal 2006,

806). Carle (2009) compares a variety of software programs and software implementations.

However, even Carle (2009, 3) and Asparouhov (2006) concede that the transformation

methods ‘A’ and ‘B’ are not ideal and recommend analyzing with both scaling methods

and then comparing the results.

Simulation and Results

We conducted the two simulations Nr. 3 and 4 to explore modeling study heterogeneity

and the inclusion of random effects in a weighted one-stage analysis. In Simulation

Nr. 3, we created 25 artificial populations, each with a different intercept. These finite

populations come from a theoretical super-population. Each finite population has five

strata. These five strata have different intercept components in the data generating model.

The sampling probability also differs by strata. We draw an equally sized survey from

each of the populations. What is crucial is that we now have study heterogeneity, which

has to be reflected in the meta-analytical model. So far, we only looked at homogeneous

studies (same population, same measurement, etc.). In this simulation, we compare the

weighted one-stage analysis, which does not model the study’s heterogeneity (no random

effect), and different one-stage analyses incorporating either a random intercept or a

random slope. Of course, we also compare the two transformation approaches (Method
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Table (5.3) Performance measures. For the simulation setting see Simulation Nr. 3 in
Table 5.1. Description of all analysis models in Table 5.2. SE=Empirical
standard error, RMSE= root-mean-square error, cov.= coverage.

Intercept estimate Slope estimate
Bias SE RMSE Cov. Bias SE RMSE Cov.

One-stage weighted 0.02 5.81 5.81 0.97 0.01 0.64 0.64 0.94
One-stage RE (int.) w. A 0.57 5.36 5.39 1.00 0.01 0.53 0.53 0.82
One-stage RE (int.) w. B 0.57 5.36 5.39 1.00 0.01 0.53 0.53 0.82

Table (5.4) Performance measures. For the simulation setting see Simulation Nr. 4 in
Table 5.1. Description of all analysis models in Table 5.2. SE=Empirical
standard error, RMSE= root-mean-square error, cov.= coverage.

Intercept estimate Slope estimate
Bias SE RMSE Cov. Bias SE RMSE Cov.

One-stage weighted 0.07 2.73 2.73 0.95 0.01 0.43 0.43 0.96
One-stage RE (int.) w. A 0.07 2.73 2.73 0.93 0.04 0.42 0.42 0.65
One-stage RE (int.) w. B 0.07 2.73 2.73 0.93 0.06 0.43 0.43 0.63
One-stage RE (slp.) w. A 0.05 2.01 2.01 0.89 0.08 0.33 0.34 1.00
One-stage RE (slp.) w. B 0.05 2.01 2.01 0.89 0.08 0.33 0.34 1.00

‘A’ and ‘B’).

Moving on to the results for the first simulation with heterogeneous intercepts between

studies (see Table 5.3), we see that the RMSE for the intercept (the intercept now differs

between super-populations) is slightly better for the weighted one-stage MA with RE

than without RE. The intercept coverage is above 0.95 for all weighted approaches.

However, the coverage is below 0.9 for the slope of the one-stage RE model (which does

not differ between super-populations). We could not find differences between the two

transformation methods for our case (Method ‘A’ and ‘B’, see Equation 5.4 and 5.5).

This was to be expected since our study sample sizes are constant.

Social-science researchers are often interested in estimating the influence of one variable

on another and are therefore often concentrating on slope estimates. Consequently, we

created another simulation (Nr. 5), where we again created 25 artificial populations but

now with a different slope per study instead of a different intercept.
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The results (see Table 5.4) are similar to the first simulation. When we include a random

effect for the slope into our meta-analysis, the coverage for the slope is very high but not

optimal for the common intercept. Including an RE for the intercept instead of a slope

RE does not solve the problem; the slope coverage is meager.

To sum up, we did not observe important differences between the two transformation

methods discussed by Carle (2009) and Asparouhov (2006). However, it is important

to note that if we have to include RE into the meta-analytical model due to study

heterogeneity, good results for the parameters affected by study heterogeneity go hand

in hand with less optimal results for homogeneous parameters. Both transformation do

not lead to optimal results.

5.4. A practical example: Same-sex couples and their

satisfaction with family life in Germany

We will conclude this chapter with a brief practical example conducting a small meta-

analysis with data from three German surveys, to further illustrate the methodological

issues we handled in the simulations.

In the following, we will look at the satisfaction with family relationships for people in a

same-sex relationship versus peoples in different-sex relationships. Previous research is not

conclusive on whether a person in same-sex relationships experiences family relationships

differently than other persons in relationships, and whether people in same-sex couples

potentially experience unique stressors regarding their family relationships (Cramer and

Roach 1988; Willoughby et al. 2008; Baiocco et al. 2014; Schneider et al. 2016; Lampis

et al. 2020).

Our example will use German survey data to examine the satisfaction with family

relationships for same-sex and opposite-sex couples from three German surveys. The data

152



5. Better Together?

sets used are the first wave of the pairfam panel, the second wave of the Generations and

Gender Survey, and the wave “ba” of the Socio-economic Panel (SOEP). The German

Family Panel pairfam (“Panel Analysis of Intimate Relationships and Family Dynamics”)

was launched in 2008 and is a multi-disciplinary, longitudinal study for researching

partnership and family dynamics in Germany (Brüderl et al. 2017). The Generations

and Gender Survey (GGS) is a longitudinal study intended to provide information

about the relationships between children and their parents and relationships in couples

(Ruckdeschel et al. 2006). The German Socio-Economic Panel (SOEP) is a longitudinal

panel that started in 1984 and includes questions on household composition, occupation,

employment, earnings, health, and life satisfaction (Wagner et al. 2007).

These surveys all included questions on (1) the sex of the current partner (which allowed

to identify people in same-sex and opposite-sex relationships) and (2) satisfaction with

family life (in case of the GGS they asked after the satisfaction with the relationship to

various family members whose average we took for the satisfaction with the family). The

surveys and panel waves were all conducted between 2008 and 2010.

We do not have direct information on the sexual orientation of respondents. However, as

already mentioned, we can infer who is living in a same-sex partnership since respondents

were asked for their partner’s sex. Concerning the legal situation in Germany, in 2008/2010

(and since 2001), same-sex couples could enter a civil partnership but not marriage. This

lasted until 2017, when marriage was also opened for same-sex couples in Germany.

Our target population is people in Germany older than the age of 15 that are either

married, in a civil partnership, or have been in a partnership for longer than six months

(LATs or in cohabitation). We will reflect the subgrouping (people in relationships) in

the variance estimation of the survey-weighted regression (West et al. 2008). We also

reflect the fact that while the original target populations of the three survey are largely

overlapping between the GGS (people in Germany aged 20-83) and SOEP (people in
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Table (5.5) One-stage and two-stage meta-analysis with data from from GGS wave
3, pairfam wave 1, SOEP wave “y” (In all three surveys subsamples were
taken: persons in partnerships).

One-stage model, weighted observations
GGS Intercept 8.41∗∗∗

(0.03)
pairfam Intercept 8.67∗∗∗

(0.03)
SOEP Intercept 7.85∗∗∗

(0.04)
Same-sex Partnership −0.81∗∗∗

(0.23)
Num. obs. 17579

Two-stage model (same-sex partnership estimate), weighted observations
Same-sex Partnership −0.40∗∗

(0.17)
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Germany older than 16), pairfam has a particular population (cohorts born 1971-73,

1981-83, and 1991-93, ergo 15-17, 25-27 and 35-37 years old).

We will mirror the various overlaps through composite factors that are also often used

in dual-frame surveys to correct for the overlap of the frames. We used the composite

factor proposed by Xia et al. (2010).

Concerning the two-stage analysis, in the first stage, we estimate simple linear regressions

of the family satisfaction regressed on the same-sex partnership indicator (and an

intercept) for each survey separately. We use a fixed-effect (meta-analytical) model for

the second stage (with the estimated regression coefficients from the first stage as effect

estimates) since the number of surveys is insufficient for random effects.

The one-stage analysis model has three separate intercepts for each of the three different

surveys and the same-sex partnership indicator as independent variables. We used the

survey package (Lumley 2016) for the weighted estimation of the one-stage model and

the first stage of the two-stage models.

The estimated (meta-analytical) coefficients can be seen in Table 5.5, the estimated
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coefficients for the three surveys in the first stage of the two-stage approach are available

in the Appendix (see Tables A.9, A.10 and A.11). We see quite a big difference between

the two estimates. The two-stage model is strongly driven towards zero by the estimate

from the GGS, which is not significantly different from zero. Since its standard error

is of the same order as those of SOEP and pairfam, it greatly influences the two-stage

model.1 Of course, survey weighting might not be the only source of differences between

the one-stage and two-stage estimates (see Burke et al. 2017). Factors that also (could)

influence the estimates are the clustering of estimates in surveys, the specification of

residual variances and the “unbalanced” samples (regarding the proportion of same-sex

couples). However, the example underlines the point made by Burke et al. (2017) that

one-stage and two-stage estimates can differ quite substantially and our point that survey

weights are a possible factor that leads to these differences.

5.5. Discussion

Results

The main research question of this article was when and how survey weighting should

be used in regression-based meta-analyses. We have answered several crucial questions

about the inclusion of survey weights in the regression analysis of complex surveys after

ex-post harmonization. We first covered when survey weights should be included in the

analysis. Survey weights are required for approximately unbiased estimates in the case of

endogenous sampling. They are also helpful in the heterogeneity of effects models when

strata differ not only in their sampling probability but also in their coefficients. However,

weights can also increase the variance of estimates.

Another crucial topic is the difference between the one-stage and two-stage approaches.

1The coefficient of variation is non-negligible, 77% for the GGS, for pairfam 85% and 106% for the
SOEP (after correcting for the overlap), so in a similar range or higher than in Section 5.3.2.
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Burke et al. (2017) gave ten general recommendations for using one-stage or two-stage

IPD meta-analyses and reasons why results may differ between the two methods. We

added another one to that list: If we have a medium to high coefficient of variation of

the survey weights, the assumption of known within-study variances cannot be upheld

for the two-stage meta-analytical approach. Two-stage meta-analytical estimates will be

biased.

Another point that we covered is the inclusion of random effects in a one-stage MA. Carle

(2009) and Asparouhov (2006) demonstrated that even the performance of RE models

with transformed weights is not always optimal. We confirmed this observation.

Implications

Researchers analyzing pooled complex survey data cannot brush aside the topic of survey

weights. They have to examine carefully what purpose the weights in their combined

surveys serve. Are they design weights used to correct for unequal sampling probabilities?

Then the researcher has to carefully check if effects are expected to differ between

sampling groups or if endogenous sampling might be a problem. If yes, observations have

to be weighted.

While weighting observations can lead to bias for two-stage point estimates in case

of high variance for the survey weights, one-stage analysis avoids this trap. However,

pooling complex survey data for one-stage analysis is not without its pitfalls. The

inclusion of random effects in a one-stage analysis to model study heterogeneity is

another critical issue. Using the scaling methods proposed by Asparouhov (2006) is

essential for computation in this case, but does not guarantee satisfying results.

Limitations and Future Research

The question of using weights will concern many analyses in the social sciences with

survey data. In our simulations, we explored linear regressions. More research has to be

conducted to check if conclusions drawn for linear models are also applicable to other
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models from the class of generalized linear models, e.g., logistic regressions. Another

interesting class of models would be survival models, e.g., proportional hazards models.

We also only briefly covered the topic of the inclusion of weights in a one-stage meta-

analysis with random effects. We were able to draw valuable lessons from the neighboring

field of weighted multi-level analysis. However, optimal scaling methods are not yet

available for weighted RE models like one-stage RE analysis (Asparouhov 2006; Carle

2009).

Last but not least, we only covered the use of survey weights to avoid bias. Weighting is,

however, also used in regressions to correct for heteroscedasticity and improve efficiency.

The use of weights to improve efficiency in meta-analyses is another open research

question.

Conclusions

This article has conducted the first explorations into the field of weighted analysis of

pooled complex survey data. We have identified several settings where survey weights

are needed to achieve approximately unbiased estimates. We also found differences

in performance between the two main (meta-)analytical approaches – one-stage and

two-stage analysis. In a two-stage analysis, bias can be introduced through the weighting

procedure. Fortunately, by avoiding the step of estimating point and variance estimates

for the single surveys, a weighted one-stage analysis remains approximately unbiased.

Even though we recommend using the one-stage analysis approach in the case of weighted

complex survey data, researchers should take care of necessary weights transformations

and model study heterogeneity appropriately.
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6. Conclusion and Discussion

My dissertation had two goals: first, to tackle several understudied missing data problems

that are important in ex-post survey harmonization; second, to demonstrate that these

problems and the solutions developed are not only applicable to this narrow field but are

also of value to adjacent methodological and substantive fields.

In the course of the studies conducted within the framework of this dissertation, I worked

on different missing data problems: I tackled sporadically missing data (item nonresponse)

and data that are systematically missing either for a unit (unit nonresponse) or a variable

(systematically missing data). Because I drew conclusions in the individual main chapters,

I will summarize the findings of the four studies only briefly here and discuss their role

for ex-post survey harmonization and other research fields.

The first study (Chapter 2) was on the challenges of imputing missing values in (time-

invariant) covariates for the discrete-time event model, which is popular in fields like

family research and survival analysis in medicine. The added difficulty in that case was

that the outcome is usually only partly observed due to censoring, and that it consists of

two variables – the event variable and the time-to-event data. In addition, researchers

have to decide whether to impute in person-oriented format or person-period format. I

tested different imputation approaches based on the popular packages mice and smcfcs.

SMC-FCS in person-period format performed best, both in Monte Carlo simulations

with various degrees of heterogeneity and in a real-world example with pairfam data. An

important limitation is that the tested MI approaches are not strictly compatible with
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6. Conclusion and Discussion

the analysis model, and although they perform excellently in part, it is still desirable to

implement a compatible imputation model. The next step to be done is to implement

this compatible imputation model in smcfcs (Bartlett and Keogh 2019) and compare it

with the simpler approximations.

Although the second study (Chapter 3) addressed a different type of missing data problem

– systematically missing partner variables – it was also tackled with the help of MI. It was

shown that with systematically missing partner variables, imputation approaches without

additional bridging studies and based on the assumption of (conditional) independence

do not perform adequately. These approaches lead to serious bias toward zero regarding

the interdependence of anchor and partner variables. Bridging studies can help to make

more appropriate assumptions regarding the strength of the interdependence. They are

also used in other contexts, for example, measurement changes in official statistics, survey

harmonization, or – implicitly – when using a matrix sampling design. An added difficulty

in the case of the multiple imputation of systematically missing partner variables is

the fact that heterogeneity between surveys hinders the transferability of relationships.

Statistical associations are, in general, more stable than measures of central tendency of

a single variable, such as, for example, mean values. Nevertheless, caution is warranted

when replacing the assumption of conditional independence with the transferability of

associations.

The third study (Chapter 4) dealt with a completely missing variable that could be

an important confounder for the analysis the researchers wish to conduct. Rosenbaum

and Rubin (1983) proposed a sensitivity analysis approach that allows the very flexible

modeling of the plausible violation of the unconfoundedness assumption with four

parameters. I developed an interactive R Shiny app named TippingSens, an easy-to-use

tool to examine the resulting bias from different combinations of parameters. Compared

with the tabular approach, it allows researchers to obtain an overview of the results for
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more parameter sets at the same time. Another advantage is that manipulating the values

used can provide quick insights into the sets of parameter combinations that would be

required to significantly alter the research conclusions derived under the unfoundedness

assumption.

The fourth study (Chapter 5) was on the topic of weighted regression analysis after ex-

post survey harmonization. Weighted regression analyses are usually employed to avoid

so-called analytical errors (West et al. 2016) and to obtain unbiased population-averaged

estimates. The need for this can arise both with a single data set and a pooled data

set. For pooled data sets, I found differences in performance between the two main

(meta-)analytical approaches – one-stage and two-stage analysis. In a two-stage analysis,

bias can occur due to the weighting process. However, a weighted one-step analysis

remains approximately unbiased.

This dissertation has produced the following results. First, it is clear that, despite

benefits such as potentially increased sample size and analytical power, ex-post survey

harmonization does not automatically avoid problems with missing data. High item

nonresponse rates can still lead to bias and increased variance in complete case analyses;

for completely missing variables, multiple imputation solutions must be found or sensitivity

analyses performed where necessary. Moreover, new questions arise, for example, in the

case of regression analyses with pooled survey data. My dissertation also demonstrates

that methodological research in the area of ex-post survey harmonization also produces

findings that are relevant to other areas. This applies, in particular, to the studies

presented in Chapters 2–4. Discrete-time event data analysis is used to analyze all

sorts of events and in many different fields – for example, in economics, the start of

a new job after a period of unemployment; in medicine, deaths; or in family studies,

the time to the birth of the first child. The SMC-FCS solution, which was shown to

perform best (Chapter 2), is thus also usable beyond ex-post survey harmonization in
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partnership research. In multi-actor surveys (see Chapter 3), not only anchors and their

partners are interviewed but also other persons with whom the anchors have an important

connection, such as children and parents. For these additional respondents, the problem

of systematically missing data on secondary respondents can also occur. The problem of

missing confounders (see Chapter 4) is not only important for ex-post harmonization in

the domain of family research. The proposed app for sensitivity analyses can also be

applied in quite different fields where the goal is to make causal claims (e.g., medicine,

economics, social sciences).

As limitations and further research steps have been addressed in detail in the conclusions

of each chapter, I will mention here one limitation that is perhaps the most crucial

question in research synthesis: Are we comparing apples with apples or apples with

oranges (Sharpe 1997)? At the core of this critical question regarding study heterogeneity

and comparability lie even more fundamental questions: Are study results generalizable

(Sears 1986; Coppock et al. 2018; Aronow and Samii 2016)? Are research claims true, or

are we looking at rotten apples (Ioannidis 2005)?

This limitation became most apparent in the study presented in Chapter 3, when I

had to assume that the partial correlation between anchor and partner respondents

was transferable between surveys. Moreover, the goal of weighting the different surveys

for the analysis of pooled survey data is to improve the comparability between surveys

and to allow inference with regard to a common target population. This dissertation

thus points to the need to explore study heterogeneity further and more generally,

especially in the field of social sciences. In medical science, systematic exploration of

heterogeneity between studies has already been conducted, comparing different medical

fields in their likely extent of study heterogeneity (Turner et al. 2012). In the social

sciences, explorations of study heterogeneity have been carried out, for example, between

probabilistic and non-probabilistic surveys or survey modes (Ansolabehere and Rivers
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2013; Ansolabehere and Schaffner 2014; Callegaro et al. 2014; Weinberg et al. 2014;

Coppock 2019). However, these studies (like our own brief excursion in Chapter 3) are

generally limited to a specific substantive field, such as election research, and to just a few

studies. Further research on the amount of heterogeneity to be expected in different fields

of social sciences, types of analyses, or populations/samples would be helpful in many

regards. Apart from helping to judge the appropriateness of the use of bridging studies or

the interpretation of measures of study heterogeneity in meta-analyses or ex-post survey

harmonization projects with only a few studies, it would also facilitate the assessment of

the importance of new substantive results and the identification of “rotten apples” in

research. However, while such an analysis is an important goal on the horizon, the first

step in that direction would be to provide a sufficient pool of meta-analyses and other

forms of research synthesis that allows such a comparison of study heterogeneity under

different circumstances, as Turner et al. (2012) did for the medical sciences. While there

have been numerous projects and efforts to synthesize research in the social sciences,

coverage comparable to that in medicine has not yet been achieved (see for example

Čehovin et al. 2018 for an overview in survey methodology).

Despite its limitations, this dissertation contributes to facilitating further research

(synthesis) by removing barriers erected by missing data. I conclude with a quote from

Meng (2000): “The topic of missing data is as old and as extensive as statistics itself – after

all, statistics is about knowing the unknown. [...] Much remains to be done, however.”

This dissertation has closed some gaps in the field of ex-post survey harmonization and

beyond, but much more remains to be done. Onward into the unknown!
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A. Appendix

A.1. Appendix for Chapter 2: Systematically Missing

Partner Variables and Multiple Imputation

Strategies: A Case Study with German

Relationship Data

A.1.1. Weibull survival times

For the scenario based on the Weibull distribution, we used the method by Bender

et al. (2005) for creating survival data. Bender et al. (2005) show how the cumulative

baseline hazard H0 can be inverted and individual-specific survival times be created by

the following formula (in case of the Weibull distribution):

T =

(
− log(U)

λexp(γ′x)

)1/v

. (A.1)

U is a variable following a uniform distribution on the interval from 0 to 1.

We choose as γ-parameter vector (0.8, 2.2,−0.5, 0.3,−1.4), as scale parameter λ = 0.001

and as shape parameter ν = 5. All survival times T > 15 are censored at period j = 15.

We rounded the survival times to whole numbers.
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Table (A.1) Evaluation measures for the coefficient β5 (log-odds scale) of X5. Simulation
with Weibull survival times

FCS/
SMC-FCS

Data
For-
mat

Included
Survival
Time
Vars

Bias Rel.
Bias

MSE Cov SE CI
len.

AME

1 Full data 0.00 -0.00 0.05 0.96 0.05 0.21 -0.10
2 Listwise deletion -0.08 0.07 0.13 0.86 0.09 0.37 -0.09

3 FCS P
∑
Yj + E 0.01 -0.01 0.07 0.92 0.07 0.26 -0.10

4 FCS P log(T ) 0.38 -0.32 0.39 0.00 0.06 0.25 -0.07

5 FCS PP
∑
Pj +

E
0.30 -0.25 0.30 0.00 0.06 0.22 -0.07

6 FCS PP
∑
Yj +

E
0.35 -0.29 0.35 0.00 0.06 0.22 -0.07

7 SMC-FCS PP
∑
Yj; E -0.05 0.05 0.08 0.86 0.06 0.25 -0.10

8 SMC-FCS PP
∑
Pj; E 0.02 -0.01 0.07 0.91 0.06 0.25 -0.09

A.1.2. Computational times

Table (A.2) Data set is the reduced pairfam data set described in Section 2.5.

Imputation
Package

Data
For-
mat

Included Survival Time Vari-
ables

Time in Seconds
for 5 Imputa-
tions

mice P log(T ) 2
mice P

∑
Yj + E 2

mice PP
∑
Pj + E 110

mice PP
∑
Yj + E 94

smcfcs PP
∑
Yj + E 65

smcfcs PP
∑
Pj + E 65

175



A
.1

.3
.

P
er

fo
rm

a
n

ce
m

ea
su

re
s

T
ab

le
(A

.3
)

P
er

fo
rm

an
ce

m
ea

su
re

s
fo

r
co

eff
ci

en
t
β

1
(f

or
X

1
).

S
im

u
la

ti
on

w
it

h
σ

=
0.

M
et

h
o
d

1.
F

D
2.

L
D

3.
F

C
S

P
4.

F
C

S
P

5.
F

C
S

P
P

6.
F

C
S

P
P

7.
sm

cf
cs

P
P

8.
sm

cf
cs

P
P

Y
+

E
lo

g(
T

)
P

+
E

Y
+

E
Y

+
E

P
+

E

M
ea

n
C

o
effi

ci
en

t
0.

82
5

0.
88

4
0.

71
6

0.
51

5
0.

63
0

0.
56

3
0.

76
5

0.
79

1
M

ea
n

C
o
effi

ci
en

t
-

M
C

E
rr

or
0.

00
1

0.
00

3
0.

00
2

0.
00

2
0.

00
1

0.
00

1
0.

00
2

0.
00

2

B
ia

s
0.

00
0

0.
05

9
-0

.1
09

-0
.3

10
-0

.1
95

-0
.2

62
-0

.0
60

-0
.0

34
B

ia
s-

M
C

E
rr

or
0.

00
1

0.
00

3
0.

00
2

0.
00

2
0.

00
1

0.
00

1
0.

00
2

0.
00

2

R
el

.B
ia

s
0.

00
0

0.
07

1
-0

.1
32

-0
.3

76
-0

.2
37

-0
.3

17
-0

.0
73

-0
.0

42
R

el
.B

ia
s-

M
C

E
rr

or
0.

00
2

0.
00

3
0.

00
2

0.
00

2
0.

00
2

0.
00

2
0.

00
2

0.
00

2

M
S
E

0.
04

4
0.

10
0

0.
12

2
0.

31
5

0.
20

1
0.

26
6

0.
08

2
0.

06
7

M
S
E

-
M

C
E

rr
or

0.
00

1
0.

00
3

0.
00

2
0.

00
2

0.
00

1
0.

00
1

0.
00

2
0.

00
2

C
ov

0.
95

3
0.

87
4

0.
51

8
0.

00
1

0.
03

2
0.

00
2

0.
76

4
0.

88
0

C
ov

-
M

C
E

rr
or

0.
00

7
0.

01
0

0.
01

6
0.

00
1

0.
00

6
0.

00
1

0.
01

3
0.

01
0

S
E

0.
04

5
0.

07
8

0.
05

9
0.

05
5

0.
05

0
0.

04
8

0.
05

3
0.

05
5

S
E

-
M

C
E

rr
or

0
0

0
0

0
0

0
0

M
ea

n
le

n
gt

h
C

I
0.

17
7

0.
30

5
0.

23
1

0.
21

7
0.

19
6

0.
18

7
0.

20
8

0.
21

6
M

ea
n

le
n
.

C
I

-
M

C
E

rr
or

0.
00

0
0.

00
1

0.
00

1
0.

00
1

0.
00

1
0.

00
1

0.
00

1
0.

00
1

A
M

E
0.

04
0

0.
03

2
0.

03
6

0.
02

8
0.

03
2

0.
02

9
0.

03
8

0.
03

8
A

M
E

-
M

C
E

rr
or

0
0

0
0

0
0

0
0



T
ab

le
(A

.4
)

P
er

fo
rm

an
ce

m
ea

su
re

s
fo

r
co

eff
ci

en
t
β

1
(f

or
X

1
).

S
im

u
la

ti
on

w
it

h
σ

=
0.

5.

M
et

h
o
d

1.
F

D
2.

L
D

3.
F

C
S

P
4.

F
C

S
P

5.
F

C
S

P
P

6.
F

C
S

P
P

7.
sm

cf
cs

P
P

8.
sm

cf
cs

P
P

Y
+

E
lo

g(
T

)
P

+
E

Y
+

E
Y

+
E

P
+

E

M
ea

n
C

o
effi

ci
en

t
0.

76
6

0.
81

8
0.

67
7

0.
49

3
0.

60
4

0.
54

3
0.

72
0

0.
73

9
M

ea
n

C
o
effi

ci
en

t
-

M
C

E
rr

or
0.

00
1

0.
00

2
0.

00
2

0.
00

2
0.

00
1

0.
00

1
0.

00
2

0.
00

2

B
ia

s
0.

00
0

0.
05

2
-0

.0
89

-0
.2

73
-0

.1
62

-0
.2

23
-0

.0
46

-0
.0

27
B

ia
s

-
M

C
E

rr
or

0.
00

1
0.

00
2

0.
00

2
0.

00
2

0.
00

1
0.

00
1

0.
00

2
0.

00
2

R
el

.B
ia

s
0.

00
0

0.
06

7
-0

.1
16

-0
.3

57
-0

.2
11

-0
.2

91
-0

.0
60

-0
.0

35
R

el
.B

ia
s

-
M

C
E

rr
or

0.
00

2
0.

00
3

0.
00

2
0.

00
2

0.
00

2
0.

00
2

0.
00

2
0.

00
2

M
S
E

0.
04

5
0.

09
3

0.
10

4
0.

27
8

0.
16

8
0.

22
7

0.
07

2
0.

06
4

M
S
E

-
M

C
E

rr
or

0.
00

1
0.

00
2

0.
00

2
0.

00
2

0.
00

1
0.

00
1

0.
00

2
0.

00
2

C
ov

0.
94

2
0.

89
7

0.
65

5
0.

00
3

0.
09

4
0.

00
5

0.
82

5
0.

89
2

C
ov

-
M

C
E

rr
or

0.
00

7
0.

01
0

0.
01

5
0.

00
2

0.
00

9
0.

00
2

0.
01

2
0.

01
0

S
E

0.
04

4
0.

07
6

0.
05

7
0.

05
5

0.
04

9
0.

04
7

0.
05

2
0.

05
3

S
E

-
M

C
E

rr
or

0
0

0
0

0
0

0
0

M
ea

n
le

n
gt

h
C

I
0.

17
3

0.
29

7
0.

22
4

0.
21

4
0.

19
2

0.
18

5
0.

20
3

0.
20

9
M

ea
n

le
n
.

C
I

-
M

C
E

rr
or

0.
00

0
0.

00
1

0.
00

1
0.

00
1

0.
00

1
0.

00
1

0.
00

1
0.

00
1

A
M

E
0.

03
7

0.
03

0
0.

03
4

0.
02

7
0.

03
1

0.
02

8
0.

03
6

0.
03

6
A

M
E

-
M

C
E

rr
or

0
0

0
0

0
0

0
0



T
ab

le
(A

.5
)

P
er

fo
rm

an
ce

m
ea

su
re

s
fo

r
co

eff
ci

en
t
β

1
(f

or
X

1
).

S
im

u
la

ti
on

w
it

h
σ

=
1.

M
et

h
o
d

1.
F

D
2.

L
D

3.
F

C
S

P
4.

F
C

S
P

5.
F

C
S

P
P

6.
F

C
S

P
P

7.
sm

cf
cs

P
P

8.
sm

cf
cs

P
P

Y
+

E
lo

g(
T

)
P

+
E

Y
+

E
Y

+
E

P
+

E

M
ea

n
C

o
effi

ci
en

t
0.

64
1

0.
68

3
0.

58
7

0.
43

7
0.

54
0

0.
49

1
0.

61
3

0.
62

2
M

ea
n

C
o
effi

ci
en

t
-

M
C

E
rr

or
0.

00
1

0.
00

2
0.

00
2

0.
00

1
0.

00
1

0.
00

1
0.

00
2

0.
00

2

B
ia

s
0.

00
0

0.
04

2
-0

.0
54

-0
.2

04
-0

.1
01

-0
.1

50
-0

.0
27

-0
.0

19
B

ia
s

-
M

C
E

rr
or

0.
00

1
0.

00
2

0.
00

2
0.

00
1

0.
00

1
0.

00
1

0.
00

2
0.

00
2

R
el

.B
ia

s
0.

00
0

0.
06

6
-0

.0
84

-0
.3

18
-0

.1
57

-0
.2

34
-0

.0
43

-0
.0

30
R

el
.B

ia
s

-
M

C
E

rr
or

0.
00

2
0.

00
4

0.
00

2
0.

00
2

0.
00

2
0.

00
2

0.
00

3
0.

00
3

M
S
E

0.
04

3
0.

08
6

0.
07

4
0.

20
8

0.
11

0
0.

15
6

0.
05

9
0.

06
0

M
S
E

-
M

C
E

rr
or

0.
00

1
0.

00
2

0.
00

2
0.

00
1

0.
00

1
0.

00
1

0.
00

2
0.

00
2

C
ov

0.
94

4
0.

90
2

0.
83

3
0.

01
3

0.
43

2
0.

08
7

0.
88

0
0.

88
0

C
ov

-
M

C
E

rr
or

0.
00

7
0.

00
9

0.
01

2
0.

00
4

0.
01

6
0.

00
9

0.
01

0
0.

01
0

S
E

0.
04

2
0.

07
2

0.
05

3
0.

05
1

0.
04

7
0.

04
6

0.
04

9
0.

05
0

S
E

-
M

C
E

rr
or

0
0

0
0

0
0

0
0

M
ea

n
le

n
gt

h
C

I
0.

16
4

0.
28

1
0.

20
9

0.
20

0
0.

18
6

0.
17

9
0.

19
1

0.
19

4
M

ea
n

le
n
.

C
I

-
M

C
E

rr
or

0.
00

0
0.

00
1

0.
00

1
0.

00
1

0.
00

1
0.

00
1

0.
00

1
0.

00
1

A
M

E
0.

03
3

0.
02

6
0.

03
0

0.
02

4
0.

02
8

0.
02

6
0.

03
2

0.
03

2
A

M
E

-
M

C
E

rr
or

0
0

0
0

0
0

0
0



T
ab

le
(A

.6
)

P
er

fo
rm

an
ce

m
ea

su
re

s
fo

r
co

eff
ci

en
t
β

1
(f

or
X

1
).

S
im

u
la

ti
on

w
it

h
σ

=
2.

M
et

h
o
d

1.
F

D
2.

L
D

3.
F

C
S

P
4.

F
C

S
P

5.
F

C
S

P
P

6.
F

C
S

P
P

7.
sm

cf
cs

P
P

8.
sm

cf
cs

P
P

Y
+

E
lo

g(
T

)
P

+
E

Y
+

E
Y

+
E

P
+

E

M
ea

n
C

o
effi

ci
en

t
0.

43
3

0.
47

3
0.

41
6

0.
32

1
0.

40
5

0.
37

8
0.

42
4

0.
42

6
M

ea
n

C
o
effi

ci
en

t
-

M
C

E
rr

or
0.

00
1

0.
00

2
0.

00
1

0.
00

1
0.

00
1

0.
00

1
0.

00
2

0.
00

2

B
ia

s
0.

00
0

0.
04

0
-0

.0
17

-0
.1

12
-0

.0
29

-0
.0

55
-0

.0
09

-0
.0

07
B

ia
s

-
M

C
E

rr
or

0.
00

1
0.

00
2

0.
00

1
0.

00
1

0.
00

1
0.

00
1

0.
00

2
0.

00
2

R
el

.B
ia

s
0.

00
0

0.
09

2
-0

.0
40

-0
.2

59
-0

.0
66

-0
.1

27
-0

.0
20

-0
.0

16
R

el
.B

ia
s

-
M

C
E

rr
or

0.
00

3
0.

00
5

0.
00

3
0.

00
3

0.
00

3
0.

00
3

0.
00

4
0.

00
4

M
S
E

0.
04

0
0.

08
4

0.
05

0
0.

11
8

0.
05

3
0.

06
9

0.
05

0
0.

05
1

M
S
E

-
M

C
E

rr
or

0.
00

1
0.

00
2

0.
00

1
0.

00
1

0.
00

1
0.

00
1

0.
00

2
0.

00
2

C
ov

0.
94

1
0.

88
0

0.
93

3
0.

26
3

0.
89

3
0.

74
9

0.
91

6
0.

91
0

C
ov

-
M

C
E

rr
or

0.
00

7
0.

01
0

0.
00

8
0.

01
4

0.
01

0
0.

01
4

0.
00

9
0.

00
9

S
E

0.
03

9
0.

06
7

0.
04

7
0.

04
5

0.
04

5
0.

04
3

0.
04

5
0.

04
5

S
E

-
M

C
E

rr
or

0
0

0
0

0
0

0
0

M
ea

n
le

n
gt

h
C

I
0.

15
1

0.
26

4
0.

18
5

0.
17

7
0.

17
5

0.
17

0
0.

17
6

0.
17

7
M

ea
n

le
n
gt

h
C

I
-

M
C

E
rr

or
0.

00
0

0.
00

1
0.

00
1

0.
00

1
0.

00
1

0.
00

0
0.

00
1

0.
00

1

A
M

E
0.

02
3

0.
01

8
0.

02
3

0.
01

8
0.

02
2

0.
02

1
0.

02
3

0.
02

3
A

M
E

-
M

C
E

rr
or

0
0

0
0

0
0

0
0



A. Appendix

A.2. Appendix for Chapter 3: Systematically Missing

Partner Variables and Multiple Imputation

Strategies: A Case Study With German

Relationship Data

A.2.1. Overview over harmonized data sets and the mapping of

values to the variables used for analysis

180



T
ab

le
(A

.7
)

O
v
e
rv

ie
w

o
v
e
r

h
a
rm

o
n
iz

e
d

d
a
ta

se
ts

a
n
d

th
e

m
a
p

p
in

g
o
f

v
a
lu

e
s

to
th

e
v
a
ri

a
b

le
s

u
se

d
fo

r
a
n

a
ly

si
s.

T
a
r
g
e
t

V
a
r
ia
b
le

n
a
m

e
O
r
ig
in

a
l
n
a
m

e
O
r
ig
in

a
l
v
a
r
ia
b
le

la
b
e
l

O
r
ig
in

a
l
v
a
lu

e
la
b
e
ls

O
r
ig
in

a
l
r
a
n
g
e

M
a
p
p
in

g

p
a
ir

fa
m

G S
O

E
P

S
H

A
R

E
p

a
ir

fa
m

G
S

O
E

P
S

H
A

R
E

p
a
ir

fa
m

G
S

O
E

P
S

H
A

R
E

p
.

G
.

S
.

p
.

G
.

S
.

L
if
e

sa
ti
s

fa
c
ti
o
n

sa
t6

sa
t6

b
d

p
:

b
d

p
1
5
8
0
1

a
c:

a
c0

1
2

L
if

e
sa

t-
is

fa
ct

io
n

(Q
u

.
3
2
3
)

C
u

rr
en

t
li
fe

sa
ti

s-
fa

ct
io

n

H
o
w

sa
ti

s-
fi

ed
w

it
h

li
fe

0
V

er
y

d
is

sa
ti

sfi
ed

,
1
0

V
er

y
S

a
ti

sfi
ed

0
Z

u
fr

ie
d

en
:

n
ie

d
ri

g
(S

a
ti

sf
a
ct

io
n

:
lo

w
)1

0
Z

u
fr

ie
d

en
:

H
o
ch

(S
a
ti

s-
fa

ct
io

n
:

h
ig

h
)

0
V

er
y

d
is

sa
ti

sfi
ed

,
1
0

V
er

y
S

a
ti

sfi
ed

[0
;

1
0
]

[0
;

1
0
]

[0
;

1
0
]

I(
)

I(
)

I(
)

G
e
n
e
r
a

te
d

se
x

se
x

g
en

se
x

g
en

b
d

p
:

b
d

p
1
3
4
0
1d
b

:
d

n
0
4
2

G
en

er
a

te
d

se
x

a
n

ch
o
r

S
ex

M
a
le

o
r

fe
-

m
a
le

1
M

a
le

,
2

F
em

a
le

1
M

a
le

,
2

F
em

a
le

1
M

a
le

,
2

F
em

a
le

[0
,

1
]

[0
,

1
]

[0
,

1
]

I(
)

I(
)

I(
)

A
g
e

a
g
e

a
g
e

b
d

p
:

b
d

p
1
3
4
0
3

d
b

:
d

n
0
0
3

A
g
e

a
n

-
ch

o
r

Y
ea

r
o
f

b
ir

th
Y

ea
r

o
f

b
ir

th
[1

5
-1

9
,

2
5
-2

9
,

3
5
-3

9
]

fo
r

a
n

ch
o
rs

[1
9
1
0
,

1
9
9
7
]

[1
9
1
2
,

1
9
8
2
]

[1
5
-

3
9
]

[1
9
1
0
,

1
9
9
7
]

[1
9
1
2
,

1
9
8
2
]

I(
)

f( 2
0
1
2
-

x
)

f( 2
0
1
2
-

x
)

H
e
a
lt
h

st
a
-

tu
s

h
lt

1
h

lt
1

b
d

p
:

b
d

p
1
1
0

p
h

:
p

h
0
0
3

H
ea

lt
h

st
a
tu

s
p

a
st

4
w

ee
k
s

(Q
u

.
3
2
1
)

C
u

rr
en

t
h

ea
lt

h
st

a
tu

s

H
ea

lt
h

in
g
en

er
a
l

1
B

a
d

,
2

N
o
t

so
g
o
o
d

,
3

S
a
ti

sf
a
ct

o
ry

,
4

G
o
o
d

,
5

V
er

y
G

o
o
d

1
S

eh
r

g
u

t
(V

er
y

g
o
o
d

),
2

G
u

t
(G

o
o
d

),
3

Z
u

fr
ie

d
en

st
el

le
n

d
(S

a
t-

is
fa

ct
o
ry

),
4

W
en

ig
er

g
u

t
(N

o
t

so
g
o
o
d

),
5

S
ch

le
ch

t
(B

a
d

)

1
E

x
ce

ll
en

t,
2

V
er

y
g
o
o
d

3
G

o
o
d

,
4

F
a
ir

,
5

P
o
o
r

[1
;

5
]

[1
;

5
]

[1
;

5
]

I(
)

f(
6
-

x
)

f(
6
-

x
)

W
o
r
k

in
g
/

N
o
n

w
o
r
k

in
g

lf
sr

ed
lf

s
b

d
p

g
en

:
lf

s1
3

ep
:

ep
0
0
5

L
a
b

o
r

fo
rc

e
st

a
tu

s

L
a
b

o
r

fo
rc

e
st

a
tu

s

C
u

rr
en

t
jo

b
si

tu
a
-

ti
o
n

1
n
w

,
ed

u
ca

ti
o
n

,
2

n
w

,
p

a
re

n
ta

l
le

a
v
e,

3
n
w

,
h

o
m

ew
o
rk

er
,

4
n
w

,
u
n

em
p

lo
y
ed

,
5

n
w

,
m

il
it

a
ry

se
rv

ic
e,

6
n
w

,
re

-
ti

re
d

,
7

n
w

,
o
th

er
,

8
w

,
v
o
ca

ti
o
n

a
l

tr
a
in

in
g
,

9
w

,
fu

ll
-

ti
m

e
em

p
lo

y
m

en
t,

1
0

w
,

p
a
rt

-t
im

e
em

p
lo

y
m

en
t,

1
1

w
,

m
a
rg

in
a
l

em
-

p
lo

y
m

en
t,

1
2

w
,

se
lf

-e
m

p
lo

y
ed

,
1
3

w
,

o
th

er

1
N

o
n

-w
o
rk

in
g
,

2
N

W
-

a
g
e

6
5

a
n

d
o
ld

er
,

3
N

W
in

-e
d

u
ca

ti
o
n

tr
a
in

-
in

g
,

4
N

W
m

a
te

rn
it

y
le

a
v
e,

5
N

W
m

il
it

a
ry

-
co

m
m

u
n

it
y

se
rv

ic
e,

6
N

W
u

n
em

p
lo

y
ed

,
8

N
W

u
n

em
p

lo
y
ed

,
9

N
W

b
u

t
w

o
rk

p
a
st

7
d

a
y
s,

1
0

b
u

t
re

g
.

S
ec

.
J
o
b

,
1
1

W
o
rk

-
in

g
,
1
2

W
o
rk

in
g

b
u

t
n

o
t

N
W

p
a
st

7
d

a
y
s

1
R

et
ir

ed
,

2
E

m
-

p
lo

y
ed

o
r

se
lf

-
em

p
lo

y
ed

(i
n

cl
u

d
in

g
w

o
rk

in
g

fo
r

fa
m

-
il
y

b
u

si
n

es
s)

,
3

U
n

em
p

lo
y
ed

,
4

P
er

-
m

a
n

en
tl

y
si

ck
o
r

d
is

a
b

le
d

,
5

H
o
m

e-
m

a
k
er

,
6

O
th

er

[1
;

, 1
3
]

[1
,

1
2
]

[1
,

6
]

(1
,

2
,

3
,

4
,

5
,

6
,

7
)=

0
,

(8
,

9
,

1
0
,

1
1
,

1
2
,

1
3
)=

1

(1
1
,

1
2
)=

1
,

(1
,

2
,

3
,

4
,

5
,

6
,

8
,

9
,

1
0
)=

1

2
=

1
,

(1
,

3
,

4
,

5
,

6
)=

0

In e
d
-

u
-

c
a
-

ti
o
n

in ed
u

ca
ti

o
n

lf
s

b
d

p
g
en

:
lf

s1
4

g
v is
ce

d
:

is
ce

d
1
9
9
7

r

L
a
b

o
r

fo
rc

e
st

a
tu

s

L
a
b

o
r

fo
rc

e
st

a
tu

s

IS
C

E
D

1
9
9
7

2
n
w

,
ed

u
ca

ti
o
n

,
2

n
w

,
p

a
re

n
ta

l
le

a
v
e,

3
n
w

,
h

o
m

ew
o
rk

er
,

4
n
w

,
u
n

em
p

lo
y
ed

,
5

n
w

,
m

il
it

a
ry

se
rv

ic
e,

6
n
w

,
re

-
ti

re
d

,
7

n
w

,
o
th

er
,

8
w

,
v
o
ca

ti
o
n

a
l

tr
a
in

in
g
,

9
w

,
fu

ll
-

ti
m

e
em

p
lo

y
m

en
t,

1
0

w
,

p
a
rt

-t
im

e
em

p
lo

y
m

en
t,

1
1

w
,

m
a
rg

in
a
l

em
-

p
lo

y
m

en
t,

1
2

w
,

se
lf

-e
m

p
lo

y
ed

,
1
3

w
,

o
th

er

2
N

o
n

-w
o
rk

in
g
,

2
N

W
-

a
g
e

6
5

a
n

d
o
ld

er
,

3
N

W
in

-e
d

u
ca

ti
o
n

tr
a
in

-
in

g
,

4
N

W
m

a
te

rn
it

y
le

a
v
e,

5
N

W
m

il
it

a
ry

-
co

m
m

u
n

it
y

se
rv

ic
e,

6
N

W
u

n
em

p
lo

y
ed

,
8

N
W

u
n

em
p

lo
y
ed

,
9

N
W

b
u

t
w

o
rk

p
a
st

7
d

a
y
s,

1
0

b
u

t
re

g
.

S
ec

.
J
o
b

,
1
1

W
o
rk

-
in

g
,
1
2

W
o
rk

in
g

b
u

t
n

o
t

N
W

p
a
st

7
d

a
y
s

1
IS

C
E

D
-9

7
co

d
e

1
,

2
IS

C
E

D
-9

7
co

d
e

2
,

3
IS

C
E

D
-9

7
co

d
e

3
,

4
IS

C
E

D
-9

7
co

d
e

4
,

5
IS

C
E

D
-9

7
co

d
e

5
,

6
IS

C
E

D
-9

7
co

d
e

6
,

9
5

S
ti

ll
in

sc
h

o
o
l,

9
7

O
th

er

[1
;

1
3
]

[1
,

1
2
]

[1
,

2
,

3
,

4
, 5
,

6
,

9
5
,

9
7
]

1
=

1
, c(
2
,

3
,

4
,

5
,

6
,

7
,

8
,

9
,

1
0
,

1
1
,

1
2
,

1
3
)=

0

3
=

1
,

(1
,

2
,

4
,

5
,

8
,

9
,

1
0
,

1
1
,

1
2
)=

0

9
5
=

1
,

(1
,

2
,

3
,

4
,

5
,

6
,

9
7
)=

0



N
u
m

b
e
r

o
f

k
id

s

n
k
id

s
n

k
id

s
b

io
b

ir
th

:
su

m
k
id

s,
b

io
b

ir
th

:
k
id

s
b

ir
th

d
a
y
s

ch
:

ch
0
0
1

N
u

m
b

er
o
f

a
ll

k
id

s
b

o
rn

u
n
ti

l
ti

m
e

o
f

in
te

rv
ie

w
,

Y
ea

r
o
f

b
ir

th
k
id

N
u

m
b

er
o
f

b
ir

th
s

in
to

ta
l

N
u

m
b

er
o
f

ch
il
-

d
re

n

[0
,

..
.]

[0
,

..
.]

[0
,

..
.]

[0
,

1
0
]

[0
,

1
7
]

[0
,

1
3
]

I(
)

f( su
m

k
id

s-
su

m
(

k
id

s
b

ir
th

d
a
y

>
2
0
1
2
))

I(
)

B
ig

F
iv
e
,

E
x
-

tr
a

v
e
r
si
o
n

ex
tr

a
v

ex
tr

a
v
b

d
p

:
b

d
p

1
5
1
1
2
,

b
d

p
:

b
d

p
1
5
1
0
2
,

b
d

p
:

b
d

p
1
5
1
0
8-

B
ig

F
iv

e,
E

x
tr

a
v
er

si
o
n

It
em

fo
r

sh
o
rt

it
em

sk
a
la

B
ig

F
iv

e
ex

tr
a

v
er

si
o
n

-
1

N
ie

d
ri

g
,

5
H

o
ch

1
,

T
ri

ff
t

ü
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ü
b

er
h

a
u

p
t

n
ic

h
t

zu
(D

o
es

n
o
t

a
p

-
p

ly
a
t

a
ll
),

7
T

ri
ff

t
v
o
ll

zu
(D

o
es

fu
ll
y

a
p

p
ly

)

-
[1

,
5
]

[1
,

7
]

-
I(

)
((

8
-

b
d

p
1
5
1
0
7
)+

b
d

p
1
5
1
1
1
+

b
d

p
1
5
1
0
1
)*

5
/
2
1

-

B
ig

F
iv
e
,

O
p
e
n

n
e
ss

o
p

en
n

es
s

o
p

en
n

es
s

b
d

p
:

b
d

p
1
5
1
1
4
,

b
d

p
:

b
d

p
1
5
1
0
4
,

b
d

p
:

b
d

p
1
5
1
0
9-

B
ig

F
iv

e,
O

p
en

n
es

s

It
em

fo
r

sh
o
rt

it
em

sk
a
la

B
ig

F
iv

e
o
p

en
n

es
s

-
5

N
ie

d
ri

g
,

5
H

o
ch

1
,

T
ri

ff
t

ü
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A. Appendix

A.2.2. Steps of imputation when using parameters from an external

bridging study

Imputation of the systematically missing variable y by the normal model by an adaptation

of the method defined by (Rubin 1987, 167) and used in the package mice.

ybridge is a vector of values for the systematically missing variable from the original data

set, which were however observed in the bridging study. Xbridge is the matrix of values

for the independent variables in the bridging study. Xsysmis is the matrix of values for

the independent variables in the original study.

1. Calculate the cross-product matrix S = X ′bridgeXbridge from the additional bridging

study

2. Calculate V = (S + diag(S)κ)−1, with some small ridge parameter κ.

3. Calculate regression weights β̂ = V X ′bridgeybridge from the bridging study.

4. Draw a random variable ġ ∼ χ2
v with v = n1 − q.

5. Calculate σ̇2 = (ybridge −Xbridgeβ̂)′(ybridge −Xbridgeβ̂)/ġ from the bridging study

6. Draw q independent N(0, 1) variates in vector ż1.

7. Calculate V 1/2 by Cholesky decomposition.

8. Calculate β̇ = β̂ + σ̇ż1V
1/2.

9. Draw n0 independent N(0, 1) variates in vector ż2.

10. Calculate the n0 values yimp = Xsysmisβ̇ + ż2σ̇ with the data from the original data

set with systematically missing values.
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A.2.3. Univariate simulation results
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Figure (A.1) Mean and standard deviation values for the variable partner’s life satisfac-
tion
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A.3. Appendix for Chapter 4: TippingSens: An R Shiny

Application to Facilitate Sensitivity Analysis for

Causal Inference Under Confounding

A.3.1. A step-by-step guide for the TippingSens R shiny application

In their illustrative application, Rosenbaum and Rubin worked with forking tables to

convey their idea for a sensitivity analysis regarding an unobserved binary confounder.

This approach is only helpful if a very limited set of plausible values needs to be evaluated

per parameter (Rosenbaum and Rubin choose two values for α1, β1, and γ1 and three

values for q). More parameter sets would result in complex and hard-to-read tables.

The app simplifies comparisons by creating visualizations instead of tables, which also

allows looking into more possible parameter combinations. We borrow ideas from the

plot design developed by Liublinska and Rubin (2014) and adapt it for our purpose

for the implementation. Liublinska and Rubin (2014) developed tipping point plots

to visualize how different assumptions about missing data affect statistics, such as the

average treatment effect. Assuming a binary outcome, their plot’s two axes represent

the number of positive outcomes among the missing cases for the treatment and the

control group, respectively. The plot is divided into tiles, and the statistic of interest is

computed for each tile.

We adopt this design to plot the results of a Rosenbaum-Rubin sensitivity analysis.

Since the sensitivity analysis depends on four parameters instead of the two parameters

considered in Liublinska and Rubin (2014), we choose an interactive display, an R shiny

app. The app allows selecting two of the four parameters for the axes. The values

for the other two parameters are fixed at user-specified values when generating the

plot. Drop-down menus allow manipulating which parameters are displayed on the
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axes. Sliders help to adjust the constant values for the fixed parameters and specify

the range for the parameters displayed on the axes. The plot is updated automatically

each time any of the specifications is adjusted. The TippingSens app is available at

https://tippingsens.shinyapps.io/TSApp/.

The general setup

The default setup when loading the app is displayed in Figure A.2. The panel, which will

eventually display the sensitivity plots (Panel 1 in Figure A.2), contains a brief summary

regarding the interpretation of the different sensitivity parameters. A first sensitivity plot

is created as soon as the user interacts with any menu or slider. Default data for this first

plot are based on the illustrative example in Rosenbaum and Rubin (1983). In addition

to Panel 1, we have a panel containing two drop-down menus to choose the sensitivity

parameters printed on the axes (Panel 2). We also have two sliders to set the range

limits for the parameters on the axes (Panel 3) and two sliders for the fixed sensitivity

parameters (Panel 4). The user can upload data in Panel 5. The last drop-down menu

in Panel 6 offers two different color fillings for the plot.
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A. Appendix

Figure (A.2) Default appearance of the TippingSens app before interacting with any
menu/slider. Red numbers added by the authors.

A.3.2. Using the app

To illustrate how to interact with the app, we use data from the illustrative example in

Rosenbaum and Rubin (1983). The authors use data from a clinical study investigating

the effects of two different treatments (coronary artery bypass surgery or medical therapy)
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on symptomatic relief from coronary artery disease. Of the 1515 patients contained in the

study, 590 received surgery, while 925 underwent medical treatment. The outcome variable

in the study is an indicator of improvement six months after cardiac catheterization (1

= improvement, 0 = no improvement). This data set is also used as a default if no other

data are provided.

Uploading the data

Note that the app assumes that the data are well balanced, i.e., any steps to ensure the

balance between the treatment group and control group regarding the observed covariates

have been performed before loading the app. Under this assumption, the only information

required is the data on the outcome and the treatment indicator. The TippingSens app

expects that this information is provided in the form of a csv-file containing two columns:

one labeled “Treatment” and the other labeled “Outcome”. Commas, semicolons, or tabs

can be used as column separators, and points or commas can be used as decimal separators,

but the selected separators need to be specified in the data upload panel (see Panel 5 in

Figure A.2). An example, how the csv-file would look like for the data from Rosenbaum

and Rubin (1983) is depicted in Figure A.3 (following the notation in the original article,

surgery is coded as 1, and medical treatment is coded as 0). The data are also available

at https://osf.io/35wvf/?view_only=d7950bfd15314e75ad12db9f4f751bd7.

The csv-file containing the data can be uploaded by clicking on the browse button and

selecting the file from the appropriate folder.

Adjusting the parameters

Once the data from the (quasi-)experiment are uploaded, researchers have to think about

appropriate sensitivity parameters. In their illustration, Rosenbaum and Rubin used

three different values for the sensitivity parameter q: 0.1, 0.5, and 0.9. They also assumed

that an unobserved variable could double or half the odds of a recovery in the treatment

(surgery) and the control (medical therapy) group. Doubling the odds of recovery in the
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A. Appendix

Figure (A.3) Example of input data for the app in csv format containing two columns
labeled “Outcome” and “Treatment”.

treatment group is equivalent to eα1 = 2, therefore the sensitivity parameter needs to

be α1 = ln(2) = 0.693. Reducing the odds by half is equivalent to eα1 = 1/2, therefore

α1 = ln(1/2) = −0.693. Finally, they assumed that the unobserved variable could double

or triple the odds of getting the treatment.

To compare the results from the app with those of Rosenbaum and Rubin (1983),we keep

α1 and β1 as the parameters to be displayed on the axes and change q and γ1 from their

default values to q = 0.5 and γ1 = 0.69 (the app only allows two decimal places). We also

limit the ranges for α1 and β1 to [−0.69, 0.69] to allow for a direct comparison with the

results presented Table 2 from Rosenbaum and Rubin (1983). The selected parameter

settings are displayed in Figure A.4. The app generates a sensitivity plot, as displayed in

Figure A.5. The plot can also be downloaded as a png-file to allow easy integration into
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Figure (A.4) Parameter settings used to generate output displayed in Figure A.5.

technical reports or research papers.

We can compare the TippingSens plot with the table from Rosenbaum and Rubin by

subtracting the probability in the row labeled “M” (for medical treatment) from the

probability in the row labeled “S” (for surgery) in Table A.8. Corresponding effect sizes

are marked by letters a, b, c and d in Table A.8 and Figure A.6.

A final feature of the app, which we do not illustrate further, is the option to change the

color filling (see Panel 6 in Figure A.2). When choosing range, the largest value will be

orange, and the smallest value will be white, when choosing zerotomax negative values

will be blue, positive values will be orange, and values near zero will be white (see Figure

3 in the main text for an illustration of the latter setting).

A.3.3. Limitations of the app

To ensure that the handling of the app is intuitive, we deliberately limited the flexibility
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Figure (A.5) Output generated by the TippingSens app based on data from Rosenbaum
and Rubin (1983). These data are also the default data used for the app.

of the parameter settings:

• The maximum range for the parameters α1, β1, and γ1 is [-10;10] (the range for q

is naturally bounded between 0 and 1).

• Parameter values can only be specified up to the second decimal point.

• Two of the four parameters need to be fixed.

We feel that these limitations are necessary to ensure that useful and easily interpretable

output can be generated with just a few clicks once the data have been uploaded. At the

same time, we tried to strike a balance between user friendliness and broad applicability.

For example, there is an inherent trade-off between the bounds for the parameters and
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Table (A.8) Upper half of original table containing sensitivity analysis results from
Rosenbaum and Rubin (1983), Table 2, page 216. Results for exp(α) = 3
omitted. Parameters α, δ0, δ1 in the notation of Rosenbaum and Rubin are
γ1, β1, α1 in the notation used in this paper. Red letters correspond to the
results in Figure A.6 and were added by the authors.

Effect of u=1 vs
u=0 on treatment
assignment z

Effect of u=1 vs
u=0 on response
under M

Effect of u=1 vs
u=0 on response
under S

Fraction of patients with u=0: π

0.1 0.5 0.9

Doubles the odds Halves the odds of Halves the odds of S 0.67 S 0.68 S 0.68

of surgery improvement improvement M 0.36 M 0.35 M 0.36

exp(α) = 2 exp(δ0) = 1
2

exp(δ1) = 1
2

b

Doubles the odds of S 0.66 S 0.65 S 0.66

improvement M 0.36 M 0.35 M 0.36

exp(δ1) = 2 d

Doubles the odds of Halves the odds of S 0.67 S 0.68 S 0.68

improvement improvement M 0.36 M 0.37 M 0.36

exp(δ0) = 2 exp(δ1) = 1
2

a

Doubles the odds of S 0.66 S 0.65 S 0.66

improvement M 0.36 M 0.37 M 0.36

exp(δ1) = 2 c

the granularity that can be offered when specifying the values for the fixed parameters.

Large bounds on the sliders will allow picking from a very wide range of plausible values.

However, it will be more difficult to fix the parameters in specific settings. We feel that

fixing the bounds at [-10;10] offers a good compromise. The bounds imply that the

assumed odds-ratios are bounded roughly between 4.55 · 10−5 and 22,000. We believe

that these bounds are sufficiently extreme for most practical purposes. At the same time,

the bounds ensure that the users can conveniently pick any value between the bounds

in incremental steps of 0.01 (users can click on the button of the slider and use the up

and down arrow on the keyboard for fine-tuning). Of course, it would also have been

possible to let the user specify the values of the fixed parameters directly. However, the

interactive property of the app would have been lost. We believe that it is one of the

attractive features of the app that the researchers can use the sliders to directly evaluate
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Figure (A.6) Output from the TippingSens app with data taken from Rosenbaum and
Rubin (1983). Red letters correspond to the results in Figure A.8 and
were added by the authors.

how increasing or decreasing the values of the fixed parameters impacts the estimated

treatment effect.
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A.4. Appendix for Chapter 5: Better Together?

Regression Analysis of Complex Survey Data After

Ex-post Harmonization

Table (A.9) Data taken from pairfam wave 1, subsample filter: people in partnerships.
Subsampling was accounted for in the estimation.

(Intercept) 8.67∗∗∗

(0.03)

Same-sex Partnership −1.00∗∗

(0.35)

Num. obs. 7229

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table (A.10) Data taken from GGS wave 2, subsample filter: people in partnerships.
Subsampling was accounted for in the estimation.

(Intercept) 8.39∗∗∗

(0.03)

Same-sex Partnership 0.10

(0.26)

Num. obs. 2686

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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A. Appendix

Table (A.11) Data taken from SOEP wave “y”, subsample filter: people in partnerships.
Subsampling was accounted for in the estimation.

(Intercept) 7.85∗∗∗

(0.04)

Same-sex Partnership −0.73∗

(0.35)

Num. obs. 7664

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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The software code for this dissertation is available at the Open Science Framework:

https://osf.io/hy6j9/?view_only=c03d26c445264d469bab45fd4cb67a99.
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