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Abstract

The thesis explores the relationship between public transport connectivity and their
corresponding rental prices in different parts of the city. Creating a regression model
with these factors tests whether an area’s good connectivity by transit also means
higher rental prices in the surrounding apartments. In order to accomplish this, we
create the definition of a station’s reachability as the percentage of stations one can
reach within ten minutes. The resulting models indeed indicate a positive influence
of apartments’ rental prices on the area’s reachability. Furthermore, we test if the
river Isar, which runs through Munich, negatively influences the city’s connectivity.
This is tested by comparing transit speeds of connections crossing the Isar with
the ones that stay on just one side, by creating a regression model containing Isar
information, and by clustering the city. While the results indicate that the river does
play a modest role in Munich’s public transport system, it cannot be shown to be
a strongly negative influence on transit connection durations. Finally, the transit
network is transferred into graph form to use graph-theoretical notions of node
importance, called centrality, to characterize the station’s importance in the network.
These centrality measures are then compared to rental price information and the
previously defined reachability, showing generally positive correlations between
these values.
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1 Introduction

Public transportation networks allow us to travel around in big cities relatively
quickly and inexpensively, thus creating an option for the masses to travel without
needing a car. Consequently, many people use these networks regularly, as is the
case in Munich, where the city’s public transit conveyed more than 600 million
passengers in 2019 [18].

As such, it becomes an essential factor for regular users, how well one is con-
nected by public transport, which might also play an instrumental part in the search
for an apartment. Consequently, apartments in well-connected areas might demand
higher rents, thus creating a positive relationship between rent and reachability in a
city. Testing this belief will be a major part of this thesis.

Another part of the thesis will explore the river Isar’s role regarding transit
connections. Since it runs from south to north through Munich, it might take more
time to use transit connections crossing the Isar than the ones staying within one
side.

Finally, we will explore Munich’s public transportation network from a graph-
theoretical perspective, where we explore different centrality measures of stations
around the city.
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2 Data Description

In this chapter, we will describe the data used in the thesis and explain their origins.
Munich’s public transport information, spatial information, and rental prices are
the three different kinds of data.

2.1 Public Transport Data

The most important data for the analysis were accurate connection information for
the public transport system in Munich. The Münchner Verkehrsgesellschaft (MVG;
Munich Transport Company) is the company responsible for operating public
transport in Munich [18] and can therefore be seen as the authoritative source for
correct transport information in the city. Detailed transport information from each
station to any other station within the MVG network can be queried on their website
mvg.de.

The required inputs are the start and destination station, the date and time of the
desired connection, and options to exclude certain products (U-Bahn, S-Bahn, tram,
bus) in the route planning. For the analysis, we queried the connections for March
15th, 2021, at 8:00 am without excluding any product. The output of each query
consists of several route options the user could take to get to the destination. These
options can differ regarding their starting time, the used products, and the route
duration. Each route option contains information about the used products and their
label, e.g., U1 for the subway line 1, start and end times plus information about
required changes and wait times. The transit duration is not given to us directly
but is only conveyed by displaying start and end times by hour and minute. A
connection leaving the station at 10:00:00 o’Clock and arriving at the next station
at 10:00:59, a duration of 59 seconds, is presented in our data as leaving at 10:00
and arriving at 10:00; thus, the duration time is zero minutes. On the other hand,
connections leaving at 10:00:59 and arriving at 10:02:00, a connection time of 61
seconds, are shown as leaving at 10:00 and arriving at 10:02, suggesting a two-
minute ride. Throughout several stops, this naturally averages out, but since we
are often dealing with one connection at a time, this potentially presents a problem,
especially when dealing with graphs in Chapter 5, where an edge weight of zero

https://www.mvg.de/
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might indicate the absence of a connection. Consequently, all connections with the
same start and end time are given the transit duration of half a minute instead of
zero minutes.

Getting a complete picture of the MVG network within the city of Munich now
requires querying all connection combinations. Since the number of stations is
constantly changing and this analysis does not cover the whole MVG area, just the
city of Munich, it was impossible to find a definitive, up-to-date list of the city’s
public transport stations. In order to get all or as many stations as possible, three
different methods were combined. First, we scraped all station names listed on
mux.de. For all these station names, we queried the MVG API to receive more
information about the station, such as the offered products and coordinates per
station. Each station has an MVG internal ID, and most stations queried from
mux.de were well within the ID range from 1 to 5000. By querying the MVG API for
all stations with IDs from 1 to 10,000, some more stations could be found, although
most are either not in use anymore or used MVG internally only, such as depot
facilities. Lastly, when querying all station combinations, we checked for each
station on the way from station A to station B, whether that station is present in
our database of known stations, and would add stations that were not. Using these
methods, we were able to get information about 1095 public transport stations in
Munich. In Figure 2.1 all these stations are mapped with the outline of the city of
Munich. The popup over the Universität station shows the station name, its products,
and the borough/sub-borough of the station.

The number of scraped connections is 10952 = 1, 199, 025. Out of these connections, some

station combinations did not return any results. Querying connections to the Langwieder
See from Marienplatz for example, returned some results while the other way round did not

return any. In this case, the reason is the special nature of the Langwieder See station, which

is only served in summer on days with fair weather [16]. Such special cases occur quite

rarely, which causes 1240 possible connections to be missing and leaves us with 1, 197, 785

connections. With the goal in mind to cause the least possible strain on the MVG website,

we spread out the data scrape over several weeks and only queried for the lightweight JSON
formatted version of the data. All acquired data was transferred to a PostgreSQL database

for efficient storage and further analysis.

Since there are several routes for each connection, we picked the route per connection

with the shortest total duration for further analysis. In case of a tie, the one with the earlier

start time was used.

https://www.mux.de/
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FIGURE 2.1: Public Transport Stations in Munich

2.2 Geographical Data

Further geographical data for the city of Munich was acquired from openstreetmap.org [22].

Isar coordinates were used to assign each station to one side of the river, such that we gain

information on whether connections cross the Isar. Furthermore, this allowed calculating the

straight distance to the closest Isar location from each station. For mapping and calculating

geographical data, the open-source PostgreSQL extension PostGIS was used.

The city of Munich is divided into 25 boroughs (Bezirke) and 108 sub-boroughs (Bezirk-

steile) [17]. The coordinates for these boroughs and the outline of Munich were also acquired

from the same OpenStreetMap dataset, which allowed the assignment of each station to a

borough and sub-borough.

The straight-line distances between all stations, calculated using their coordinates, are

sometimes far off from the actually traveled distances between stations. Therefore the

data was extended by retrieving the distances between stations using the car, bicycle, and

footway. This data was provided by the openrouteservice.org API [21].

https://www.openstreetmap.org
https://openrouteservice.org/
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FIGURE 2.2:
25 Boroughs

FIGURE 2.3:
108 Sub-Boroughs

2.3 Rental Data

Rental data for apartments in Munich consists of two different datasets, data acquired by

scraping immobilienscout24.de in March and May 2021 and data from a rent index analysis

(Mietspiegel) for the city of Munich conducted in 2018 [15], which was provided to us by

LMU’s department for statistics. For that analysis, the authors acquired a representative

sample of rental object information in Munich by getting the information from actual tenants

throughout the city. The most relevant information from both data sets includes net prices,

square meters per apartment, and location information. For the Immobilienscout24 data, only

apartments with precise locations were considered, resulting in 2606 rental objects. The

Mietspiegel data assigns each apartment the coordinates of the center of their neighborhood

(Stadtviertel), and all 3024 rental objects were used in the analysis.

One significant difference between the datasets is that the Mietspiegel data uses prices

from existing rental contracts, whereas the Immobilienscout24 data uses proposed rental

prices that may or may not result in actual rental contracts. Another drawback from the

Immobilienscout24 data is the possibility that relatively cheap apartments are not listed on

the website for a long time before the apartment is rented out, while expensive apartments

may stay on the website for quite some time. These factors could lead to generally higher

prices in the dataset than in reality.

On the other hand, the Mietspiegel rental contracts tend to be cheaper the older the rental

contract is, as seen in Figure 2.4, where the rental time is plotted against the rental price per

square meter. Figure 2.5 depicts a histogram of rental times, which shows that a significant

number of apartments (1154) have a rental contract older than a decade, which contrasts

starkly with the potentially new contracts from the Immobilienscout24 data.

When comparing the net rental price of the Mietspiegel and Immobilienscout24 datasets in

Figure 2.6, it becomes clear how differently priced the apartments are. The median net rent

of 21.59 Euros per square meter for the Immobilienscout24 apartments is almost twice the

median net rent per square meter of 11.74 Euros from the Mietspiegel data and the highest

https://www.immobilienscout24.de/
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FIGURE 2.4:
Rental Price vs. Time

FIGURE 2.5:
Rental Time

prices in the Immobilienscout24 data range up to almost 80 Euros, while not a single one in

the Mietspiegel dataset reaches the 30 Euro mark. When comparing the living space of the

apartments in the datasets, we notice the higher median value of 73.5 square meters for the

Mietspiegel apartments compared to 58 square meters in the other dataset.

FIGURE 2.6:
Net Rent Comparison

FIGURE 2.7: Living
Space Comparison

Because of the fundamentally different characteristics of the two datasets, the data was

never mixed and always used separately in the forthcoming analysis.

Figure 2.8 depicts all apartments from the Mietspiegel dataset and Figure 2.9 all apart-

ments from the Immobilienscout24 dataset, colored by their respective rental price per square

meter, grouped into their respective four rental price quartiles. For the Mietspiegel map, we
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FIGURE 2.8: Map of Mietspiegel Rental Prices

FIGURE 2.9: Map of Immobilienscout24 Rental Prices

had to apply a small jitter for each observation, slightly changing the position of the data

points to increase visibility since the coordinates in this dataset are not precise. Instead,

several apartments in the dataset are clustered together into the same close-by location.

Both maps show how the number of apartments decreases the closer one gets to the city
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boundaries and how a large number of apartments in the city center are mostly colored

red and orange, suggesting rent higher than the median rental prices in their respective

datasets. One structural difference between the maps is that there is a significant amount

of apartments priced in the third and fourth quartile at the outskirts of Munich in the

Mietspiegel dataset, while that trend is less noticeable in the Immobilienscout24 dataset. This

fact can be noticed as well when aggregating the data on the sub-borough level, as depicted

in Figures 2.12 and 2.13, where the median rental price per square meter is shown for both

datasets. The white, missing sub-boroughs indicate that there are no apartments in the

dataset located in these sub-boroughs.

FIGURE 2.10:
Median Rental Price per

Borough:
Mietspiegel

FIGURE 2.11:
Median Rental Price per

Borough:
Immobilienscout24

FIGURE 2.12:
Median Rental Price per

Sub-Borough:
Mietspiegel

FIGURE 2.13:
Median Rental Price per

Sub-Borough:
Immobilienscout24

Since the Mietspiegel dataset contains a significant amount of old contracts, the question

occurs if there are different trends regarding the rental price distribution throughout the
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city when only considering more recent contracts. However, when only considering newer

contracts of the Mietspiegel dataset, the ones with lengths of less than ten years, the same

general trends can be seen as in the full dataset and the corresponding maps are depicted in

Figures A.1, A.2 and A.3 in Appendix A.
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3 Reachability Analysis

This chapter will illustrate the concept of a reachability analysis and apply it to the existing

data. First, we will define reachability and descriptively apply it to the city’s stations

and aggregate them by borough and sub-borough. Afterward, regression models will

describe the relationship between rental prices and reachability from the Mietspiegel and

Immobilienscout24 datasets.

3.1 Introduction

When considering reachability, we are generally interested in the number of stations one

can reach starting from any station in a network [2]. For a public transportation network,

each station is ideally reachable from any other station. The interesting aspect becomes the

number of stations one can travel to within a given time period.

A quick visual understanding of a station’s connectedness can be given by considering

Figure 3.1. Pictured is the outline of Munich in black, the Isar in blue, and all the MVG

stations as circles in a color range from green to orange to red, indicating the time needed

to get to them from the start station. The start station Universität is indicated by the big

triangle.

Generally, the further away we get from the start station, the longer the travel time, until

it takes more than forty minutes, where stations are colored red. However, some stations

are quite far away but are still reachable quickly, such as the Brudermühlstraße station, the

most southern dark green circle on the map. Because of the direct connection by subway, it

is still a short ride between the stations. Other stations with a seemingly short geographical

distance to the Universität station, on the other hand, are colored yellow or even orange,

signaling relatively long rides. These examples amplify the notion of the analysis that

travel times are considered in the form of public transportation durations instead of spatial

distances. For defining reachability concretely, we need to set a specific threshold, and in

this thesis, we will pick one of 10 minutes.

With an n× n matrix, n as the number of stations in the public transportation network,

and nij as the shortest travel time in minutes from station i to station j by public transport,

we can formalize reachability of a station i as:

Reachabilityi =
1
n

n

∑
j=1

1{nij≤10} (3.1)



Chapter 3. Reachability Analysis 11

FIGURE 3.1: Reachability Universität

Informally we can say that the reachability of a station is defined as the percentage of all

stations in the public transportation network one can travel to in ten minutes or less. Thus,

the dark green circles represent the stations considered in our reachability definition, the

ones reachable in up to ten minutes. In total, 93 stations are reachable within ten minutes

starting from Universität, resulting in a reachability of 8.5% for this station.

A station’s reachability can be seen as a proxy for its attractiveness as a location to live

within the city under the assumption that high reachability is desirable and thus correlated

with high rents and high demand for living around such stations. People would therefore

pay more for the ability to travel to lots of stations quickly.

3.2 Descriptive Analysis

In order to get an overview of reachability for stations, boroughs, and sub-boroughs, we

will descriptively analyze their reachability values, which will later allow us to analyze the

data inferentially.

3.2.1 Reachability by Station

The reachability for all stations can be obtained in the same manner as the calculation for

the Universität station we have just seen. The result is depicted in Figure 3.2, where each dot
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represents a station. In order to get a better overview of the reachability distribution, the

stations are colored according to groups of percentiles, where the red dots are stations with

reachability in the first quartile, the blue dots with values in the second and third quartile,

thus representing the middle 50% of the data. The fourth quartile is further divided in pink

dots in the 99th percentile to show the biggest outliers in the data, and stations in green,

representing the rest of the fourth quartile. Furthermore, the dots’ sizes are proportional

to their respective reachabilities. Generally, stations close to the city limits tend to have

the worst reachability, although not exclusively, as one can notice some red stations very

close to the city center. Stations in the fourth quartile are distributed throughout the city but

are most commonly found close to the city center, where most of the stations in the 99th

percentile are located as well. These ten stations in pink with the highest reachability scores

are listed in Table 3.1. The central station is achieving the highest reachability of fourteen

percent, while the other notable station is Scheidplatz, being located comparatively far away

from the city center in the north, while still being one of the top ten stations at 9.3%.

FIGURE 3.2: Station Reachability

In Figures 3.3 and 3.4 the reachability distribution for all stations is depicted in the form

of a boxplot on the right and a histogram on the left. We can see a right-skewed distribution,

where most stations have reachability scores of one to five percent, while the values range

up to fourteen percent for the central station. The boxplot amplifies the notion that the top

reachability stations are quite the outliers, achieving reachability scores of almost six times

the median value of 2.3%.
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Station Reachability (%)
Hauptbahnhof (S, U, Bus, Tram) 14.0
Sendlinger Tor 11.8
Odeonsplatz 10.6
Ostbahnhof 10.6
Marienplatz 10.4
Fraunhoferstraße 9.5
Karlsplatz (Stachus) 9.4
Scheidplatz 9.3
Innsbrucker Ring 9.2
Karl-Preis-Platz 9.1

TABLE 3.1: Stations with the highest Reachability

FIGURE 3.3:
Reachability by Station:

Histogram

FIGURE 3.4:
Reachability by Station:

Boxplot

3.2.2 Reachability by Borough & Sub-Borough

Reachability can also be aggregated on different levels. When considering the attractiveness

of an apartment location in a city, it might not just be of interest how well the station closest

to the apartment is connected with the rest of the city. When assuming that most people

spend lots of time in their own neighborhoods, it might be of interest how well the boroughs

are connected in general and how they compare with each other. Such an aggregation is

depicted in Figure 3.5 on the borough level and in Figure 3.6 on the sub-borough level. The

reachability is considered for every station within these boroughs or sub-boroughs, and the

aggregated median value is then used as reachability for these subsections of Munich. The

color-scales in the graphics are divided by quartile, where red boroughs and sub-boroughs

are in their corresponding first quartile regarding all median reachability values of the (sub-

)boroughs, the orange ones in the second quartile, lime-green in the third, and dark-green
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in the fourth quartile. The results generally show worse reachability the further away the

area is from the city center. There are some peculiarities, however. For instance, there is

one white-colored sub-borough, Schönfeldvorstadt, where there are no stations. Furthermore,

some sub-boroughs are quite close to the city center but are seemingly poorly connected

by public transport, two of them right along the Isar, the Maximilianeum and Dreimühlen
sub-boroughs. The opposite, where the area is far away but well connected, also occurs

in sub-boroughs such as Aubing-Süd in the west and Neuperlach in the south-eastern part

with median reachability measures of 2.7 and 3.1 percent respectively. Hence, the stations in

Aubing-Süd have median reachability of 2.7%, which, per our reachability definition 3.1, is

the percentage of stations reachable within 10 minutes.

The sub-borough and borough with the best reachability are the Hackenviertel sub-

borough and the Maxvorstadt borough, both areas in the heart of Munich, with reachability

values of 11.8% and 3.9%.

In contrast, the sub-boroughs and boroughs with the most limited reachability, Fürstenried-
West and Feldmoching-Hasenbergl, have values of 0.9% and 1.5%, respectively.

FIGURE 3.5:
Reachability

Boroughs

FIGURE 3.6:
Reachability

Sub-Boroughs

3.3 Reachability & Rental Prices

After exploring reachability properties around the city, it remains to be explored how rental

prices relate to reachability. Generally, one would assume that high rental prices per square

meter are associated with a good location within a city. Consequently, a good location in the

city could be well-connected, allowing the resident to travel around the city quickly, making

rental prices a proxy for reachability.
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3.3.1 Generalized Linear Models (GLMs)

Linear models are appropriate for regression analysis with continuous and approximately

normally distributed response variables [8]. However, in many applications, the response is

not a continuous variable but rather binary, categorical, or a count variable. When thinking

about the reachability of a station, we can imagine it as a binary variable, where every other

station can either be reached within ten minutes or not. In GLMs, the distribution of the

response is assumed to belong to a single family of distributions known as the exponential

family, which includes the normal, Bernoulli, binomial, and Poisson distributions. A trans-

formation of the mean response is then linearly related to the covariates via an appropriate

link function.

In logistic regression, the predictor could be a continuous variable that can take on values

over the entire real line, whereas the response is a probability and is therefore constrained to

fall between 0 and 1. Here, the link function is called logit function ηi = log( p
1−p ). We can

see that the logit function transforms a variable constrained to [0, 1] to a variable that can

take values over the entire real line. The link function makes the response compatible with

the predictor variables, and hence it is possible to make it a linear function of the predictors

plus a random component.

Thus, our model will generally look as follows:

g(reachability) = log
(

reachability
1− reachability

)
= η = β0 + β1x1 + ... + βkxk. (3.2)

Overall, for distributions of the exponential family with b as an arbitrary function, φ as

an arbitrary scale parameter and θ as the canonical parameter of the distribution, we have

[8]:

a) E(Yi) = b′(θi) = µi = h(ηi) = h(x′i β), with h as invertable response function,

b) x′i β = ηi = g(µi), with g = h−1 as link function,

c) Var(Yi) = φb′′(θi)

As a criterium for model fit, we can use the deviance, which compares the maximum of

the log-likelihood of the estimated model with the log-likelihood of the perfect model. With

li( f it) as the fitted model’s log-likelihood of group i and li( f ull) as the saturated model’s

log-likelihood, we get the deviance as [8]

D = −2
G

∑
i=1
{li( f it)− li( f ull)}

For a more comparable measure, we can use Deviance Explained, calculated as

Dexplained = 1−
Dpred

Dnull
,

with Dpred as the estimated deviance of the model and Dnull as the model’s null-deviance.

Concretely, with

η = β0 + β1 · rentsqm,
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we can now express the function in an exponential form by transforming it with the expo-

nential function, resulting in

reachability
1− reachability

= exp(β0) · exp(β1 · rentsqm)

An increase of rent per square meter by one unit, one Euro, in this case, results, ceteris

paribus, in an increase of the reachability odds by the factor exp(β1).

3.3.2 Reachability Analysis by Apartment

Now, we will conduct the analysis based on the Mietspiegel and Immobilienscout24 datasets.

For the moment, however, we still have disjunct datasets of reachability per station and

rental prices per apartment. We have several options to connect them, such as aggregation

per borough and per sub-borough, but first, we will assign each apartment the station with

the maximum reachability within a 500-meter radius. The purpose behind this approach

is that the station with the maximum reachability within an apartment’s walking distance

is probably one of the most frequented ones to get around the city. Out of the 3024 rental

objects in the Mietspiegel dataset, sixteen did not have stations within that radius and were

assigned reachability 0, whereas each of the 2606 Immobilienscout24 apartments had a station

in the 500-meter radius.

With g as log-likelihood function, our simple model then looks like this:

g
( ̂reachability

)
= β̂0 + β̂1 · rentsqm (3.3)

Dependent variable:

reachability
Mietspiegel Mietspiegel Immobilienscout24

Full Data Contr. Len. < 10 yrs

rentsqm 0.019∗∗∗ 0.031∗∗∗ 0.013∗∗∗

(0.001) (0.001) (0.001)

Intercept −3.281∗∗∗ −3.487∗∗∗ −3.764∗∗∗

(0.010) (0.015) (0.012)

Observations 3,024 1,865 2,606
Deviance Explained 1.37% 3.19% 2.46%

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

TABLE 3.2: Regression by Apartment Summary

Table 3.2 shows the regression results in the left column with β̂0 = −3.281 and β̂1 =

0.019, meaning that c.p. an increase of rental price per square meter by one Euro increases
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FIGURE 3.7:
Regression Mietspiegel:

Full Data

FIGURE 3.8:
Regression Mietspiegel:

New Contracts

the reachability odds by factor exp(0.019) = 1.02. While this suggests a positive relationship

between rent and reachability and both intercept and the rentsqm variable are significant at

the 5% level, the explained deviance lies at just 1.37%. In Figure 3.7 the scatter plot of rental

price and reachability is depicted with the corresponding regression line, showing that the

data is very noisy and does not seem to follow a clear linear trend, with the regression line

consequently not being a great fit on the data.

FIGURE 3.9: Regression Immobilienscout24

We have established before how the Mietspiegel dataset contains many apartments with

old contracts and have seen lower prices with older contracts, introducing heterogeneity into

the data. When conducting the same regression as before on apartments with contracts that

are less than ten years old, the explanatory power of the model can be slightly improved,

increasing the explained deviance to 3.19%, while keeping the covariables statistically

significant. The exact output of the corresponding results can be seen in the middle column
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in Table 3.2 and the scatter plot with the regression line is shown in Figure 3.8. For the

dataset with these new contracts, the number of observations is reduced to 1864, and the

median price per square meter increases to 12.81 Euros, while the median living space stays

the same at 73 square meters. The price increase can be noticed when comparing the scatter

plots again, where the cloud of observations seems slightly shifted to the right for the new

contracts, amplifying how many cheaper apartments are not present in the reduced dataset

anymore.

As before with the Mietspiegel dataset, we can conduct the corresponding analysis with

the Immobilienscout24 data.

Table 3.2 shows the regression results, where we can see a positive relationship between

rent and reachability, although the model’s explanatory power is relatively weak, as indi-

cated by the explained deviance value of 2.46%. These values are in line with the results

from the Mietspiegel dataset, seen in Table 3.2. The scatter plot depicted in Figure 3.9 with the

corresponding regression line further indicates very noisy data with no clear linear trend.

3.3.3 Reachability Analysis by Borough

When aggregating the data by borough, we get 25 median rental prices per square meter

and median reachability scores in percent, based on the observations throughout Munich.

The highest median price for the full Mietspiegel dataset is in the Altstadt-Lehel borough

and the lowest in Feldmoching-Hasenbergl at 14.2 and 10.2 Euros respectively. The number

of apartments per borough in the dataset ranges from 29 in Allach-Untermenzing to 235

in Neuhausen-Nymphenburg. For the data where only apartments with rental durations of

less than ten years are considered, the number of rental objects per borough varies from

22 apartments in the Allach-Untermenzing borough to 156 in Neuhausen-Nymphenburg. The

lowest median rent per square meter can also be found in Allach-Untermenzing at 11.5 Euros,

and the highest once again in Altstadt-Lehel at 15.1 Euros.

In the Immobilienscout24 dataset, the number of apartments per borough ranges from 39

in Schwanthalerhöhe to 231 in Bogenhausen.

The lowest median reachability is assigned to Feldmoching-Hasenbergl at 1.5% stations

reached within 10 minutes, whereas 3.9% can be reached in the same time starting from

Maxvorstadt and the borough with highest median rent at 25.9 Euros is Altstadt-Lehel, as

in the Mietspiegel data, and the one with the lowest is Trudering-Riem at 18.2 Euros per

square meter. The borough with the lowest median rent in the Immobilienscout24 dataset

is consequently higher than the lowest one in the Mietspiegel data, highlighting again how

different the nominal prices are between them.

Since we now deal with reachability percentages of grouped data, we have to account

for possible overdispersion. We can incorporate it using the quasibinomial family instead

of the binomial one and keeping the logit as the link function, weighted by the number of

apartments per borough. This way, the additional dispersion parameter is estimated to scale

the standard errors.
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Now we get the following model for the median reachability per borough.

g
( ̂median_reachability_borough

)
= β̂0 + β̂1 ·median_rentsqm_borough (3.4)

In Table 3.3 the regression results are shown, with the full Mietspiegel data in the left

column, the results for observations with new contracts in the middle one and for Immo-
bilienscout24 data in the right one. Both variables, rentsqm and the intercept are statistically

significant at the 5% level. For the full data, a rent per square meter increase of one Euro

means that the proportion of reachable stations to the ones not reachable increases by the fac-

tor exp(0.190) = 1.21, while the proportion increases by the factor exp(0.221) = 1.25 for the

apartments with a contract length of fewer than ten years and by the factor exp(0.079) = 1.08

for the Immobilienscout24 data. In Figure 3.10 and Figure 3.11, we can see the higher price

for apartments with rental lengths of less than ten years compared to the entire data set

on the left. The scatter plot on the left looks more noisy, reflecting the lower deviance

explained from the model, than the one on the right, where the predicted values, indicated

by the regression line, seem to be a better fit for the data compared to the model with the

entire dataset. Figure 3.12 depicts the scatter plot and the corresponding regression line for

Immobilienscout24 data, showing a clear positive trend between rent and reachability, which

is also expressed by the highest deviance explained value of 52.2%.

Overall, there seems to be a clear trend between higher rental prices and higher median

reachability per borough.

Dependent variable:

reachability
Mietspiegel Mietspiegel Immobilienscout24

Full Data Contr. Len. < 10 yrs

rentsqm 0.190∗∗ 0.221∗∗∗ 0.079∗∗∗

(0.070) (0.054) (0.016)

Intercept −5.880∗∗∗ −6.511∗∗∗ −5.378∗∗∗

(0.828) (0.699) (0.353)

Observations 25 25 25
Deviance Explained 27.9% 44.3% 52.2%

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

TABLE 3.3: Regression by Borough Summary
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FIGURE 3.10:
Regression Mietspiegel

By Borough
(Full Data)

FIGURE 3.11:
Regression Mietspiegel

By Borough
(New Contracts)

FIGURE 3.12: Regression Immobilienscout24 by Borough

3.3.4 Reachability Analysis by Sub-Borough

After aggregating the data by borough, we can do the same on the sub-borough level,

resulting in median rental prices and median reachability scores for the 105 sub-boroughs in

which the Mietspiegel dataset has rental objects. Hence, three of the sub-boroughs do not have

any apartments within their borders. The number of apartments per borough now ranges

from just one in Biederstein, Freiham, Graggenau and Ludwigsfeld to 106 in Nymphenburg. The

median rental prices per square meter now range from 8.1 Euros in Blumenau to 15.7 Euros

in Hackenviertel for the whole dataset. When limiting the observations to apartments with
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rental duration fewer than ten years, the most expensive sub-borough stays the Hackenviertel,
now at 17.8 Euros, while the cheapest one is Am Hart at 8.1 Euros. Five of the sub-boroughs

now have only one apartment within their borders, while the most populous one in regards

to the number of apartments is now Obergiesing at 72. Additionally, Biederstein has no

apartments in the reduced dataset and is therefore excluded in the analysis of new contracts.

The Immobilienscout24 dataset has apartments in 106 of the 108 sub-boroughs, with the

highest median rent of 29.8 Euros of 17 apartments in Englischer Garten Süd and the lowest

price of 15.3 Euros in Oberwiesenfeld for just one apartment.

There is one sub-borough in the city with no public transport stations, Schönfeldvorstadt,
where the median reachability was consequently set to 0%. The one with the lowest median

reachability apart from this area is Fürstenried-West with a value of 0.85%, while the highest

median reachability of 11.8% can be found in the most expensive sub-borough Hackenviertel.
As before, we will use a GLM with the quasibinomial family and the logit as the link

function, weighted by the number of apartments per sub-borough, resulting in the following

model.

g
( ̂median_reachability_sub_borough

)
= β̂0 + β̂1 ·median_rentsqm_sub_borough (3.5)

Dependent variable:

reachability
Mietspiegel Mietspiegel Immobilienscout24

Full Data Contr. Len. < 10 yrs (3)

rentsqm 0.124∗∗∗ 0.160∗∗∗ 0.073∗∗∗

(0.031) (0.025) (0.013)

Intercept −5.060∗∗∗ −5.679∗∗∗ −5.193∗∗∗

(0.367) (0.336) (0.287)

Observations 105 104 106
Deviance Explained 15.4% 28.5% 26.8%

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

TABLE 3.4: Regression by Sub-Borough Summary

We can see the regression results in Table 3.4, with the full Mietspiegel data in the left col-

umn, the results for observations with new contracts in the middle and the Immobilienscout24
results in the right one. Both variables, rentsqm and the intercept are statistically significant

at the 5% level. For the full dataset with any contract length, a rent per square meter increase

of one Euro means that, on average, the proportion of reachable stations to the ones not

reachable is increased by the factor exp(0.124) = 1.13, while the proportion increases by

the factor exp(0.160) = 1.17 for the apartments with a contract length fewer than ten years

and by factor exp(0.073) = 1.08 for Immobilienscout24 data. Figures 3.13 and 3.14 show once
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FIGURE 3.13:
Regression Mietspiegel

By Sub-Borough
(Full Data)

FIGURE 3.14:
Regression Mietspiegel

By Sub-Borough
(New Contracts)

FIGURE 3.15: Regression Immobilienscout24 by Sub-Borough

again the higher price for Mietspiegel apartments with rental lengths of less than ten years

compared to the full data set on the left. These Figures and Figure 3.15 show the positive

trends between rent and reachability in all datasets. As before, when grouping the data by

borough, the explained deviance is higher for the model with the reduced dataset at 28.5%

compared to the 15.4% explained deviance for the Mietspiegel model fitted on the entire

dataset, whereas the Immobilienscout24 has the second-highest deviance explained at 26.8%.

We have now seen the same general trend for both datasets for different aggregations.

The explanatory power of the full Mietspiegel dataset could be improved by reducing the

data to more recent rental contracts and was afterward comparable to the one from the
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Immobilienscout24 data. Thus, we can conclude there to be a significant trend between

the rental price per square meter and the reachability of stations near the corresponding

apartments, confirming our initial hypothesis of increased reachability for areas with higher

rental prices.

3.3.5 Rent to Reachability Ratio

After exploring the relationship between reachability and (sub-)boroughs, it remains to be

explored which parts of Munich have good reachability but relatively low rent and vice

versa, the expensive ones that do not allow for good reachability. With that goal in mind,

we will look at the median rental price per square meter per (sub-)borough and divide it

by its median reachability score in percent, giving us a price per reachability percentage. A

small ratio means consequently that the reachability can be bought relatively cheaply, while

a high ratio means that the borough is expensive for the reachability it offers.

FIGURE 3.16:
Rent-Reach. Ratio

By Borough:
Mietspiegel (Full)

FIGURE 3.17:
Rent-Reach. Ratio

By Borough:
Immobilienscout24

Figures 3.16 and 3.17 depict these rent to reachability ratios for boroughs and from the

full Mietspiegel data and Immobilienscout24. We can see that the ratio is generally the smallest

in the city center, indicating relatively low rental prices for the reachability one gets. While

the boroughs for both datasets are not always in the same quartiles regarding the rent to

reachability ratio, there are no stark differences between them.

Figures 3.18 and 3.19 show the ratios for the sub-boroughs and the same datasets as

before. Once again, the smallest ratios are found around the city center, indicating that

the high price is made up for by good reachability. Noticeably different from that trend in

both datasets are the green colored sub-boroughs Aubing-Süd in the east, Obersendling in

the south, and Gartenstadt Trudering in the west; all sub-boroughs far away from the city

center but having rent to reachability scores greater than the median. On the other hand,
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FIGURE 3.18:
Rent-Reach. Ratio
By Sub-Borough:
Mietspiegel (Full)

FIGURE 3.19:
Rent-Reach. Ratio
By Sub-Borough:

Immobilienscout24

the centrally located Englischer Garten sub-borough directly west of the Isar has high rents

relative to the offered connectedness, being in the third and fourth quartile in the datasets.

Overall, the datasets are in general agreement regarding the rent to reachability quartile

for most sub-boroughs, with some exceptions of greater differences, such as the Freimann
sub-borough, which is dark-green colored for the Mietspiegel data, indicating a ratio in the

first quartile. At the same time, it is colored orange for Immobilienscout24, signaling the

sub-borough to have a ratio above the median for the data.

The same general trends of the Mietspiegel data are visible as well when reducing the

data to the new contracts, which can be seen in the Appendix A in figures A.4 and A.5.
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4 Isar as a Potential Barrier for Public
Transportation Reachability

In this chapter, we will explore the role the river Isar plays regarding public transport

reachability. As it runs straight through the city, our initial hypothesis states, that the river

could act as a barrier for public transport reachability, resulting in slower connections when

crossing the river compared to connections that run on just one side of it. For that purpose,

we will first explore the average public transport speeds and compare the ones running

across the river to the ones that are not. Afterward, a regression model for the duration of

public transport connections is constructed, with the goal of improving the model by using

Isar related information. Finally, we will cluster the stations in the city and explore the role

the Isar could play in the resulting clusterings.

4.1 Speed of Transportation Methods

Depending on the method of transportation, one moves at different speeds through the

city. Naturally, the speed is slower when walking from station to station than taking the

subway connection. Between the other transportation products, the speed difference is

less clear and therefore worth exploring. The data for the exact distances traveled between

stations is not available here, so we need to approximate the average speeds of the different

products. The data we do have are distances between all stations traveled by foot, bike, car,

and straight-line distances. In this case, only connections without changes are considered.

Connections with wait times or changing transportation methods are therefore excluded. In

cases with several direct connections between two stations, only the fastest option will be

considered, which leaves us with a total of 33,922 direct connections. Naturally, the straight-

line distances are the shortest, which translates to the slowest approximated average speeds.

Car distances are generally the longest distances and lead to the fastest approximated speeds

overall.

The boxplots comparing the four different distances are displayed in Figure 4.1. Calcu-

lating the speed based on the bicycle distances leads to a middle ground between the fast

speeds of the car distances and the slow ones of the footway distances. Hence, it is a good

compromise between the two, and we will conduct our analysis based on the speeds that

we get when calculating the distances between stations based on the way one would take by

bicycle. For consistency reasons, this distance will be applied to all the public transportation
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FIGURE 4.1: Speed Comparison by Distance Calculation Method

methods, even though the straight-line distances might be a better approximation for the

subway and the car distances might be the best approximation for the bus routes.

Displayed in Figure 4.2 are the average speeds of the different public transportation

methods based on the bicycle distances, ordered by their median speed, generally resulting

in three different speed categories. The slowest one is walking, followed by the bus and

tram as second speed category and the transportation methods U-Bahn, Bahn and S-Bahn as

the fastest methods. These three categories in the same ordering result independent of the

distance method used. We have official information regarding their average speeds about

three of the transport options. The U-Bahn’s average speed is 34.8 km/h officially, compared

to the calculated average speed of 39.8 km/h; the tram’s actual speed is 18.5 km/h and 20.2

km/h calculated with the bike distances, while the average official bus speed is 17.9 km/h,

while the speed we calculated is 17.5 km/h [18]. Although we have these official speeds, we

still do not have information about speeds for connections crossing the river compared to

the ones that do not and we will therefore continue to use the calculated speeds. While there

is some deviation from the official speeds, the estimates seem to be in the right ballpark,

enabling us to continue this analysis.

Around 75% of all stations in Munich serve busses, and consequently, around the same

percentage of all direct connections are bus rides. This result is not surprising since it is the

most flexible option, and bus stops and connections can be added or removed with relative

ease, while the other transportation methods will have to invest into new infrastructure

quite heavily before creating new connections and stations. However, this flexibility is

limited when crossing a river since crossing one of only a few bridges is required to do so.

In this case, the ability of the U-Bahn and S-Bahn to ride underground seems like the natural



Chapter 4. Isar as a Potential Barrier for Public Transportation Reachability 27

FIGURE 4.2:
Average Transportation Speed:

Bicycle Distances

way to efficiently cross the river, and the question arises if there are, in fact, fewer bus rides

crossing the river relative to the bus rides that stay on just one side. The result is captured

in Figure 4.3 via a bar plot with two groups, where green bars represent direct connections

that do not cross the Isar, whereas the blue bars signal that the direct connections have

crossed the Isar. There are 3567 such direct connections that cross the river and 30,355 direct

connections staying on the same side relative to the Isar.

The y-axis signals the percentage of connections for each product within their group that

has been made with the product. For example, only around one percent of all connections

that cross the Isar are made by foot, whereas 6.5% of connections that stay on the same side

relative to the Isar are footway connections. As we can see, there are noticeable differences

for all the products. 78% of connections that do not cross the Isar are busses, but only 52%

of those that do cross it are bus connections, which seems to go in line with our theory that

the bus flexibility could be better suited for connections staying within the same side. The

inverse trend for footway and bus connections can be observed for the other products. Their

share increases drastically for Isar crossing connections and especially the U-Bahn (5% vs.

22%), and S-Bahn (1% vs. 10%) products are used vastly more for the direct connections

which lead across the river.

When comparing the average speeds of connections within an Isar side and the ones

crossing the Isar in Figure 4.4, we can see that the opposite of our initial hypothesis seems

to be true. Average speeds for Isar crossing connections are actually higher than the ones

staying within one side.

In order to statistically test the rather vague Isar hypothesis, we need to formulate a
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FIGURE 4.3:
Share of Direct Connections:
By Product and Isar Position

FIGURE 4.4:
Average Transportation Speeds

in Relation to Isar

concrete null hypothesis. First, it is defined as the thesis stating that the average speed of all

connections crossing the Isar is greater or equal to the average speed of all connections not

crossing the Isar.



Chapter 4. Isar as a Potential Barrier for Public Transportation Reachability 29

H0 : visar_crossed − visar_not_crossed ≥ 0

vs.

H1 : visar_crossed − visar_not_crossed < 0

(4.1)

When conducting the corresponding Welch two sample t-test, as shown in Table 4.1, the

null hypothesis cannot be rejected at the 5% level.

Welch Two Sample t-test
x: visar_crossed
y: visar_not_crossed
alt. hypothesis: true difference in means is less than 0

t df p-value 95 percent conf. interval mean of x mean of y
17.168 4550.3 1 [-Inf, 3.41] 22.22 19.11

TABLE 4.1: t-test Transportation Speed and the Isar

However, this was to be expected, since the box plots in 4.4 already indicated a higher
average speed for the Isar crossing connections. One main reason for the increased speeds

is the predominant usage of the fast subways instead of busses when crossing the river, as

seen before in Figure 4.2.

Accordingly, we can conduct another test with a slightly modified null hypothesis where

the connections are filtered to the ones using only the subway (U-Bahn).

H0 : visar_crossed_subway − visar_not_crossed_subway ≥ 0

vs.

H1 : visar_crossed_subway − visar_not_crossed_subway < 0

(4.2)

When conducting the Welch t-test with the filtered data and the new null hypothesis, it

is now possible to reject the null hypothesis at the α = 0.05 level with p− value < 2.2e− 16.

The exact results are shown in 4.2.

Welch Two Sample t-test
x: visar_crossed_subway
y: visar_not_crossed_subway
alt. hypothesis: true difference in means is less than 0

t df p-value 95 percent conf. interval mean of x mean of y
-16.112 2369.9 < 2.2e-16 [-Inf, -5.78] 35.49 41.93

TABLE 4.2: t-test Subway Speed and the Isar
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Interestingly, these test results do not only occur when filtering on the subway product,

but also when filtering on any single product - S-Bahn, Tram, Bus, Bahn and also Footway.

Hence, the seemingly clear trend from before where public transportation seemed faster

when crossing the Isar reverses completely when looking at the individual product level.

What we have here is an example of Simpson’s paradox, in which a trend for several combined

groups of data disappears or reverses when split into their respective groups [26].

Since all public transportation methods in Munich are faster on average when not

crossing the Isar, it can therefore be stated, that the Isar is actually a barrier for public

transportation reachability. By aptly using the fast subway more frequently in transport

planning, this fact is almost made irrelevant however.

4.2 Modeling Public Transportation Ride Times

After confirming differences in the average product speeds related to the Isar, we can now

model the duration of the shortest connection between all stations. Hence, we now also

consider connections again where changes are necessary, resulting in 1, 197, 785 observa-

tions. First, we will construct a base model with the distance between stations as the only

independent variable. This is where the relationship between the variables seems to be the

most clear - longer distances between stations generally mean longer ride times. We will

use bicycle distances between stations again, along with the ride time in minutes of the

shortest connections between all stations. Figure 4.5 shows the relationship between these

variables in a scatter plot with hexagonal binning, which divides the space into hexagons,

counts the number of observations in each hexagon and plots these hexagons color coded

by the number of observations in each one. From these hexagons and the density plots

on the top and on the right, we can see how most MVG connections lie in the light blue

area from about zero to 20, 000 meters with a ride time of less than an hour. The light

blue area seems to appear close to a logarithmic or square root function and allows us to

linearize the relationship by log- or square root transformation. As we can see in Figure

4.5, the distributions are not heavily skewed and the less aggressive transformation variant

square root might be the better fit. While in this case, log transforming both variables would

actually achieve a slightly better model fit than the square root as measured by the R2 metric,

residual analysis shows, that the homoscedasiticy assumption is hurt severely and that the

residuals deviate from the normal distribution. Since the linear regression assumptions are

fulfilled (see Figure A.6 in Appendix A ) for the model with the square root transformed

independent variable and its fit is almost as good as the log-log transformed one, we can go

along with it from here on. Consequently, our linear regression model takes on the following

form.

̂duration_mvg = β̂0 + β̂1 ·
√

distance_bike. (4.3)
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FIGURE 4.5: Distance vs. MVG Ride Time

Table 4.3 shows the regression results where β1 is estimated as 0.435, which in the

context of the square root transformed independent variable means, that the duration is

c.p. increased by 0.435 for an increase of the bike distance’s square root by one meter. Note

however, that the intercept is negative and connections with a bike distance of less than 214

meters will be predicted as having negative ride times. As only 0.01% of all connections’

start and end stations are separated by less than 214 meters, we will be going on with the

model regardless. Both, the intercept and the distance are statistically significant at the

5% level and the model shows an R2 value of 0.726, indicating that 72.6% of the variance

in the data can be explained by the model. When plotting the regression line onto the

untransformed data in Figure 4.6, we can see how the model follows the data nicely.

After we have established a solid base model, we can now add variables related to the

Isar, to check if they contain information that can improve it. One of the simplest ones we

can add is the binary variable same_isar_side, indicating whether the start and end stations

of a connection are on the same side of the Isar or not.

̂duration_mvg = β̂0 + β̂1 ·
√

distance_bike + β̂2 · same_isar_side, (4.4)

In order to test whether the new variable is improving the model in a meaningful way,

we conduct the analysis of variance (ANOVA) for the models to test if the more complex

model has significantly reduced residual sum of squares (RSS) compared to the simpler

model. For this purpose, the F-test is used, where the null hypothesis states, that the models

do not differ significantly in the amount of variance they explain [8]. In Table 4.4 we can

see the result of the ANOVA for the base model and the one with the added Isar variable.

As the p-value for the F-test is smaller than 0.05 we can reject the null hypothesis at this
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Dependent variable:

duration_mvg

distance_bike 0.435∗∗∗

(0.0002)

Intercept −6.284∗∗∗

(0.025)

Observations 1,197,785
R2 0.726
Adjusted R2 0.726
Residual Std. Error 6.845 (df = 1197783)
F Statistic 3,171,729.000∗∗∗ (df = 1; 1197783)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

TABLE 4.3: Linear Regression: Distance vs. MVG Duration

FIGURE 4.6: Distance vs. Time:
Base Model

Res.Df RSS Df Sum of Sq F Pr(>F)
1 1197783 56127391
2 1197782 56023607 1 103785 2219 0.0000

TABLE 4.4: ANOVA output for models 4.3 & 4.4

level and conclude, that the same_isar_side variable significantly improves the model. In

Table 4.7 the exact regression outputs for all models are shown. As with the the average
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speed of all products before, the model suggests that the ride times are generally longer, if

the connection stays within one side of the Isar, although this difference is ceteris paribus

only 0.668 minutes. While the added variable is statistically significant at the 5% level, the

adjusted R2 value increases only slightly from 0.726 to 0.7264.

̂duration_mvgi = β̂0 + β̂1 ·
√

distance_bikei+

β̂2 · same_isar_side+

β̂3 · isar_dist_start + β̂4 · isar_dist_end,

(4.5)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 1197782 56023607
2 1197780 54673872 2 1349735 14785 0.0000

TABLE 4.5: ANOVA output for models 4.4 & 4.5

The next variables we can add to the model are the distance in meters to the Isar from the

start and end station respectively. The idea here is that being far away from the Isar at the

beginning or end of a connection signals that the station is either far east or far west, where

reachability is generally worse at the city limits, and consequently, the ride times would be

longer. The ANOVA 4.5 shows how those variables improve the explanatory power of the

model; in Table 4.7 the coefficients are positive and indicate increased average ride times

the further away from the Isar a connection starts and ends. However, the same_side_isar
variable is now negative, but reduced to being close to zero.

̂duration_mvg = β̂0 + β̂1 ·
√

distance_bikei+

β̂2 · same_isar_side + β̂3 · isar_dist_start + β̂4 · isar_dist_end+

β̂5 · (same_side_isar : isar_dist_start) +

β̂6 · (same_side_isar : isar_dist_end)

(4.6)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 1197780 54673872
2 1197778 54083846 2 590026 6534 0.0000

TABLE 4.6: ANOVA output for models 4.5 & 4.6

When being far away from the Isar when starting and ending the connection, it matters

a lot whether both stations are on the same side of the Isar or not. If they are, it is further

indication that both stations are near each other while being on different sides of the river

would indicate higher ride times. That is why we add interaction terms between the binary

isar side variable and the distances to the isar for start and end stations, resulting in our
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final model 4.6. The ANOVA once again confirms model improvement by adding these

variables and the regression output Table 4.7 shows an increased R2 value of 0.736 and all

variables being statistically significant at the 5% level. For same_side_isar = 0, the model is

reduced to

̂duration_mvg = −6.397 + 0.434 ·
√

dist_bike+

0.00006 · isar_dist_start− 0.00007 · isar_dist_end.
(4.7)

While these Isar distance variables are statistically significant, their coefficients are quite

small, even a distance of 15, 000 meters from the start station to the Isar, the maximum value

in the dataset, would increase the ride time in the model by merely 0.9 minutes, while the

same distance between the end station and the Isar would decrease the ride time by only 1.05

minutes. Hence, the distances variables can only influence the ride times by about a minute

in each direction. Consequently, when crossing the Isar the model is basically reduced back

to the base model, where the square root transformed distance between stations is the most

influential variable.

When same_side_isar = 1 on the other hand, we can simplify the full model as

̂duration_mvg = −6.397− 2.792 + 0.434 ·
√

dist_bike+

(0.00006 + 0.0004) · isar_dist_start + (−0.00007 + 0.0003) · isar_dist_end =

−9.189 + 0.437 ·
√

dist_bike + 0.00064 · isar_dist_start + 0.00027 · isar_dist_end

(4.8)

Compared to the Isar crossing connections, the average ride times are now generally

reduced by 2.792 minutes, while the distance is increased by 0.0004 minutes for every meter

the start station is away from the Isar and is further increased by 0.0003 minutes for every

meter the end station is away from the Isar. This results in the fact, that ride times seem to

be reduced compared to Isar crossing connections, as long as start and end station are not

far away from the Isar. However, one explanation for these reduced ride times when not too

far from the Isar could be the generally better connected stations near the city center.

Overall, we have seen how adding information regarding the Isar could help improve

modeling the public transport ride times and that connections that do not cross the Isar have

reduced ride times, as long as their start and end station distances to the Isar are not too big.
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Dependent variable:

duration_mvg

Model 4.3 Model 4.4 Model 4.5 Model 4.6

sqrt(dist_bike) 0.435∗∗∗ 0.441∗∗∗ 0.420∗∗∗ 0.434∗∗∗

(0.0002) (0.0003) (0.0003) (0.0003)

same_side_isar 0.668∗∗∗ −0.098∗∗∗ −2.792∗∗∗

(0.014) (0.015) (0.028)

isar_dist_start 0.0003∗∗∗ 0.00006∗∗∗

(0.00000) (0.00000)

isar_dist_end 0.0002∗∗∗ −0.00007∗∗∗

(0.00000) (0.00000)

same_side_isar:
isar_dist_start 0.0004∗∗∗

(0.00000)

same_side_isar:
isar_dist_end 0.0003∗∗∗

(0.00000)

Intercept −6.283∗∗∗ −7.237∗∗∗ −6.942∗∗∗ −6.397∗∗∗

(0.025) (0.032) (0.031) (0.032)

Observations 1,197,785 1,197,785 1,197,785 1,197,785
Adjusted R2 0.726 0.726 0.733 0.736
F Statistic 3,171,729∗∗∗ 1,589,911∗∗∗ 821,971∗∗∗ 556,136∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

TABLE 4.7: Comparison of MVG duration regression models
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4.3 Cluster Analysis

After conducting statistical tests and regression analysis, another method for figuring out

the Isar’s influence is using unsupervised methods. More specifically, clustering methods

can be used to create station partitions within the city based on the ride times between them.

The general goal of clustering is identifying structures or clusters solely based on the

unlabeled observations xi ∈ Rn. Observations within a cluster are then supposed to be as

similar as possible to each other, while elements in different clusters should be as dissimilar

as possible. As such, intra-cluster similarity should be high and inter-cluster similarity low

for the resulting clusters. The resulting partitions are also called a clustering [14].

4.4 Clustering Evaluation

When such clusterings are created, one needs to be able to compare different results to

decide which ones are the best fitting outcomes for the current scenario and there are many

methods trying to solve this problem. Depending on the problem, it is possible to create a

single quality score resulting purely from the outcome data, called internal evaluation. In

other scenarios there exists a ground truth, where one can compare the resulting cluster

assignments to the actual classifications of the objects, which is called external evaluation [9].

Other situations demand expert intervention, calling on a person familiar with the subject

matter to judge the situation. In our case, we will look at one external method, the adjusted
Rand Index in order to compare the resulting clusterings to the western and eastern Isar sides

in Munich.

4.4.1 Adjusted Rand Index

The Rand Index measures similarity of different clusterings by comparing all possible obser-

vation pairs between them, where the number of observations n needs to be the same in

both clusterings. Hence, (n
2) comparisons are made and for each of these comparisons of

clusterings C1 and C2, one of four results is possible:

• a: same cluster in C1, same cluster in C2

• b: same cluster in C1, different cluster in C2

• c: differenct cluster in C1, same cluster in C2

• d: different cluster in C1, different cluster in C2

Therefore, the clusterings agree in a and d, and when dividing the number of matching

assignments with all comparisons, we get the Rand Index (RI) as [23]:

RI =
a + d

a + b + c + d
=

a + d
(n

2)
(4.9)
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As such, RI ∈ [0, 1], where RI = 0 means there are no agreements and RI = 1 signals

perfect agreement between the clusterings. However, one would expect some agreements

by chance alone, which is why the adjusted Rand Index (ARI) can used as an alternative.

It adjusts the Rand Index by considering the expected number of agreements by chance,

making the expected value of the ARI 0 and giving it a range of ARI ∈ [−1, 1] [13]. For clus-

tering similarities worse than the expected number of agreements, the ARI can consequently

now become negative as well.

The comparisons are done the same way as before for the Rand Index. Formally, the

adjusted Rand Index is then calculated as follows [24]:

ARI =
(n

2)(a + d)− [(a + b)(a + c) + (c + d)(b + d)]

(n
2)

2 − [(a + b)(a + c) + (c + d)(b + d)]
(4.10)

It is common to use the (Adjusted) Rand Index to compare a clustering to an existing

classification, a ground truth, in order to judge the clustering algorithm. In our case, we are

interested in finding out, whether the stations are clustered into a partition east and west of

the Isar. Consequently, we will be using the classification of east and west of the river as our

ground truth when using the ARI in this section.

4.5 Cluster Analysis Algorithms

A multitude of different cluster algorithms exist, and two popular approaches are hierarchical
and k-Means clustering which we will explore in detail now.

4.5.1 Hierarchical Clustering

Generally, there are two types of hierarchical clustering, the agglomerative and the divisive

variant. The divisive one starts in the situation, where all observations are clustered together

and this single cluster is split up step by step until each observation is its own single cluster.

The agglomerative variant, the one we will be using, starts with each observation being its

own cluster and clusters are merged together until all observations are assigned to the same

cluster.

Hence, in each step we want to merge the observations that are the most similar. This

similarity is quantified by a metric and in our case we choose the Euclidean distance, defined

as

d(a, b) = ‖a− b‖2 =
√

∑
i
(ai − bi)2,

where a and b are single observations from the dataset [14].

When comparing the distance between sets of observations, we need to use a linkage
function, which defines pairwise comparisons between the observations from the two clusters

being compared. Once again, several options are possible, such as taking the minimum
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or maximum distance between observations of the clusters. We will be using the average

distance between all observations. Therefore, the distance between two clusters A and B
is the average of all Euclidean distances d(a, b) between pairs of observations a ∈ A and

b ∈ B. Formally, we can describe the average linkage function as [11]

dAverageLinkage(A, B) =
1

|A| · |B| ∑
a∈A

∑
b∈B

d(a, b)

Algorithm 1 Hierarchical Clustering [14]

1. Begin with n observations and a distance measure of all the (n
2) = n(n− 1)/2

pairwise distances and treat each observation as its own cluster.

2. for i = n, n− 1, . . . , 2:

(a) Examine all pairwise inter-cluster distances among the i clusters and
identify the pair of clusters that is the most similar, hence, the one with
the smallest inter-cluster distance as calculated by the chosen linkage
function. Merge these two clusters.

(b) Compute the new pairwise inter-cluster distances among the i − 1 re-
maining clusters.

As we can see, the number of clusters ranges from the number of observations n to just

one cluster and it is up to the practitioner to choose the final number of clusters one deems

to be right for the situation.

FIGURE 4.7: Hierarchical Clustering of MVG Network
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Applied to our MVG dataset, we use the 1095× 1095 distance matrix as input, with nij

as shortest distance between stations i and j. As we are mainly interested in noticing any

effects the Isar might have, we will choose the number of clusters as 2, testing whether the

city is divided into two parts along the riverside. The result is shown in Figure 4.7, where

all stations are colored by the cluster they were assigned. Overall, there seems to occur an

east-west separation and the Isar line is the boundary between clusters in the north and the

south. The orange colored cluster traverses across the river through the city center however

and there are many stations being clustered in the eastern part of the city. When assuming

the separation of the city along the Isar line as ground truth, we get an adjusted Rand Index

of 0.655, while a score of 1 would indicate a perfect match to the ground truth.

4.5.2 k-Means Clustering

The basic idea of k-Means clustering is finding k different clusters, where the observations

within the clusters should be as similar as possible and the observations between clusters

should be as dissimilar as possible. Each cluster has a cluster representative, usually calcu-

lated as the center of the cluster, and the Euclidean distances between these representatives

and the observations are calculated to determine similarity to each cluster. The formal

goal then becomes finding a clustering C with k clusters and cluster representatives x̄r, that

minimizes the overall distance from the observations to the cluster representatives [12]:

min
C

k

∑
r=1

∑
xi∈Cr

‖xi − x̄r‖2 (4.11)

Several algorithms exist to find possible solutions, one of them is the following.

Algorithm 2 k-Means Algorithm [10]

1. Initialization: Choose k arbitrary representatives

2. Repeat

(a) Assign each observation to the cluster with the nearest representative as
measured by Euclidean distances

(b) For each cluster r, calculate the new cluster centroids (representatives) as
xr =

1
‖Cr‖ ∑xi∈Cr xi

(c) STOP, if cluster representatives do not change or a previously defined
number of iterations n is achieved

Figure 4.8 shows an example of k-Means with k = 2. The final result depends on the

randomly picked initial cluster representatives, while the procedure generally only finds

local optima [14]. For that reason it is customary to repeat the algorithm many times with

changing initializations, picking the result that minimizes equation 4.11.
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FIGURE 4.8: k-Means Clustering Example [25]

When applying the procedure to our MVG dataset and its 1095× 1095 distance matrix

as before, and choosing k = 2, we get the result shown in Figure 4.9.

FIGURE 4.9: k-Means Clustering of MVG Network
(2 Clusters)

Now, we notice how the city is cut into two along the Isar, although several stations close

to the Isar still belong to the cluster on the other side of the river. However, the adjusted

Rand Index is 0.888 now when considering the perfect separation of stations along the Isar

as ground truth, indicating a very good match between the clusterings.

Overall, we now have a result for hierarchical clustering, where the Isar’s role is rather

minor and a k-Means result with near perfect separation along the Isar, indicating how the

river might play a role regarding public transport, but its influence is not strongly noticeable

for every clustering algorithm.

When choosing other cluster numbers k, we often do not achieve clusterings where the

Isar has a noticeable influence. For k = 5, for instance, shown in Figure 4.10, the result

is closer to the hierarchical cluster result from before regarding the Isar separation. Now

it seems like the city seems to be clustered in a northern, eastern, southern, western and
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central part, although the central cluster stretches out deeply into each of the four other

clusters.

FIGURE 4.10: k-Means Clustering of MVG Network
(5 Clusters)

In summary, we have now seen differing speeds of public transit when crossing the

Isar, could achieve an improved regression model for the transit connections and were able

to show a clustering separating the city in two across the Isar. While the overall speeds

of each single product is slower when crossing the Isar, this is compensated by using

faster products overall when crossing it. The final regression model showed an increased

connection duration when being close to the Isar at the beginning or end of the connection,

when crossing it, but this trend reversed when being rather far away at the end or the

beginning of the journey. Overall this leads to the conclusion, that the Isar does play a minor

role in Munich’s public transportation system. It cannot be clearly shown, that it acts as a

strongly negative influence or barrier for public transport connectivity, however.
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5 Graph Analysis

It is possible to describe a public transportation network as a graph, allowing the usage

of several established algorithms to determine how central the stations are within the

transportation network. For this purpose, we will first describe the basic notions of graphs

and how the public transit network can be seen as one. Afterward, several centrality

measures will be introduced to quantify the location quality of stations within the network.

5.1 Introduction to Graph Theory

In its simplest form, a network can be structurally described by a graph where we write

G = (V, E), with V as a set of vertices or nodes and E ⊆ {{x, y}|x, y ∈ V, x 6= y} as the set

of edges connecting the vertices. The order of these vertices is irrelevant in this case, and we

get an undirected simple graph. The number of nodes |V| is also called order and the number of

edges |E| the size of a graph. The distance d(u, v) between two nodes u and v is the number

of edges in a shortest path connecting them [27]. Not allowed in this simple graph are, per

definition, several distinct vertices between edges. Figure 5.1 shows an example of such a

simple graph with an order of four and the size of three.

FIGURE 5.1: Simple Graph

When the order of nodes is important in a connection, one can use the directed simple

graph, also called digraph. The set of edges is then defined as E ⊆ {(x, y)|(x, y) ∈ V2, x 6= y},
where the set of edges now consists of an ordered pair of vertices instead of the unordered

pair before.

Notice that now the distance d(u, v) between two vertices might be defined in one

direction, while the other direction d(v, u) would describe the distance of a path that does

not exist and is therefore not defined. Additionally, it is possible to assign weights to edges,

called edge weights ωe, resulting in a weighted graph. This weight is typically given by a

weight function ω : E → R and the distance between two vertices is now defined as the

sum of these edge weights in the shortest path connecting them [27].
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Apart from representing a graph visually by drawing nodes as circles and the edges

between them as lines, it is also common to store them in an adjacency matrix [7]. For this

purpose, we assume that the nodes of a graph are numbered 1,2,...,|V| in some arbitrary

manner. The resulting adjacency matrix representation of a simple graph then consists of a

|V| × |V|matrix A = (aij), such that

aij =

1, (i, j) ∈ E

0, otherwise

Figure 5.2 depicts such a transformation from the visual graph to the adjacency matrix.

Each node now has an arbitrarily assigned number, and the matrix displays the presence of

edges between these vertices with binary values.

FIGURE 5.2: Graph Adjacency Matrix

This definition can also be adapted to weighted graphs. For the weighted graph G =

(V, E) with the edge function ω, instead of storing binary values in the adjacency matrix,

we can use the weight ω(u, v) of the edge (u, v) ∈ E as the entry in row u and column v.

For non-existing edges NULL values or 0 and ∞ are typically used as matrix entries.

In Figure 5.3, a weighted digraph is shown in visual form on the left and matrix form on

the right. The edge weights are noted next to their corresponding edge and emphasize that

the edge length does not necessarily correlate with the edge weights but can be arbitrarily

chosen for a fitting visual representation. While the simple graph’s adjacency matrix is

symmetric, this is not necessarily the case anymore for digraphs.

The concepts above can now be directly applied to Munich’s public transportation

network by using the definition of a weighted digraph. Each station is a node, direct

connections are the edges in the graph, and the ride time between the stations constitutes

the edge weight. Notice how it is common that several connections are going from station A

to station B in a public transportation timetable and how that violates the definition of a

weighted digraph where only one edge with the same tail and head is allowed. Since slower

alternatives are usually not an option when route planning, we will only consider the fastest

option between all stations going forward, and in case of a tie between two connections, a

random one will be picked.
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FIGURE 5.3: Weighted Digraph Adjacency Matrix

Almost all direct connections in the data are symmetric in the network. When we go

from station A to station B, where no further stop lies between these two stations, it is

usually possible to go back the same way in about the same amount of time.

However, some graph algorithms and centrality measures are not clearly defined for

undirected graphs [19]. For that reason, the transportation network will be transformed

into a graph in a simplified form. An undirected, weighted graph will be used, where the

weights between the nodes are the average ride durations between the stations. Footway

connections were only considered if they were five minutes or less, and no other connection

was faster. The resulting graph is of order 1095, size 1768, and is displayed in Figure 5.4.

The stations as nodes are represented as circles, and the connections as edges are the

lines between these nodes. The edges are color-coded by product, and it can be observed

that most connections are served by busses. We can also see how the footway option,

colored in green, is widespread in the city center and how the western part of Munich is

more frequently connected by (S-)Bahn connections instead of the subway.

5.2 Centrality Measures

Centrality Measures try to quantify the importance of nodes in a graph. Like the reachability

concept, high centrality measures of nodes could express a good location of the surrounding

area. However, there are different approaches to determining this importance, and depend-

ing on the graph and the researcher’s current interests, nodes can be of drastically different

relevance. Hence, there are several different centrality measures, and we want to introduce

some of them and apply them to our public transportation network.

5.2.1 Degree Centrality

Probably the most intuitive centrality measure is the degree centrality, which is based on

the concept of the graph-theoretical degree. The degree deg(v) of a node v is the number of

edges that are incident to the node v [5]. Applied to the example in Table 5.5, nodes 1, and 4
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FIGURE 5.4: Public Transport Network as a Graph

have a degree of deg(1) = deg(4) = 1, while node 3 has two edges and therefore deg(3) = 2

and node 2 has no edges and deg(2) = 0.

FIGURE 5.5: Degree Example

Now, a node’s degree centrality is the same as its degree, CDeg(v) = deg(v). Since the

degree is an absolute number that can vary drastically depending on the graph order and

its structure, it can be more intuitive analyzing the normalized degree centrality by dividing

a node’s degree by the maximum possible degree in the graph, n− 1, where n is the number

of nodes in the graph.

CNormDeg(v) =
deg(v)
n− 1

(5.1)

Going forward, we will be using both versions intermittently. Applied to Munich’s

transportation network, stations with direct connections to several different stations will
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have high degree centrality measures while other stations, such as the last station of a sub-

way connection line, will have low centrality. However, duration times are not considered,

and each edge is considered to be equally important when calculating the degree centrality.

FIGURE 5.6: Degree Centrality

Nonetheless, when considering the stations with the highest degree centrality values,

shown in Table 5.1, one can see how these are one of the main hubs in Munich, such as the

central station with a degree centrality of 14, while the the average degree of all stations

is 3.2. Concretely, the table displays the stations with a degree in the top percentile in the

dataset. These stations are colored pink in Figure 5.6. Note that the central station is split

into four distinct stations in the MVG network, Hauptbahnhof (S, U, Bus, Tram), München
Hbf, Hauptbahnhof Süd and Hauptbahnhof Nord where each of these is located in or around

the central station. In Table 5.1, we can see how two of these four stations are in the list of

stations with the highest degree values.

On the other end of the spectrum, we can see some red, tiny points in Figure 5.6 especially

at the city boundaries, where stations only have one direct connection to another station

and therefore a degree of 1.



Chapter 5. Graph Analysis 47

Station Degree (Normalized)
Hauptbahnhof (S, U, Bus, Tram) 14 (0.0128)
Pasing 14 (0.0128)
Ostbahnhof 13 (0.0119)
Harras 13 (0.0119)
Heimeranplatz 13 (0.0119)
München Hbf 12 (0.011)
Moosach 12 (0.011)
Marienplatz 11 (0.0101)
Isartor 11 (0.0101)
Berg am Laim 11 (0.0101)

TABLE 5.1: Stations with the highest Degree Centrality

5.2.2 Betweenness Centrality

Another intuitive measure is the betweenness centrality. It quantifies the number of times a

node acts as a bridge along the shortest path between two other nodes. Formally, between-

ness is defined as [4]

CBetweenness(v) = ∑
i 6=n 6=j

σij(v)
σij

, (5.2)

σij as number of shortest paths from node i to node j,
σij(v) as number of those paths which pass through v.

These shortest paths are found by using algorithms such as Breadth-First Search or

Dijkstra’s algorithm [7]. The edge weights are thus incorporated into the betweenness

measure by applying these algorithms on the weighted instead of the unweighted graph.

For easier comparisons, it is once again convenient to normalize the centrality measure

by multiplying the factor 2
(n−1)(n−2) with the betweenness measures.

In Figure 5.7 the normalized betweenness centrality for all stations in the MVG network

is displayed. Each circle represents a station’s betweenness, and the circle’s size is pro-

portional to the station’s betweenness. It becomes apparent quickly how only a couple of

stations have a considerable betweenness measure. In fact, only 187 out of the 1095 stations

have a measure above 0.01 and only 12 have one above 0.1. Hence, big hubs are given

disproportionally much importance in this measure.

In Table 5.3 all stations with a betweenness measure in the top percentile are displayed,

which are the 11 pink-colored circles in Figure 5.7. We can immediately see how these

stations resemble the stations with the highest degrees. All of these stations have in common

that they serve several different products, such as U-Bahn, Bahn, S-Bahn, trams, and busses

at just one station. These stations are big hubs within the network. Consequently, they get a

considerable share of the betweenness centrality measure. The two stations with the highest

betweenness values, the München Hbf (Munich central station) and the Ostbahnhof (Munich

East station) are the connections west and east of the Isar river, where lots of connections

are arriving before or after crossing the river.
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FIGURE 5.7: Betweenness Centrality

Many red-colored stations, the ones with betweenness below 0.1, are single-purpose bus

stations, where no other products are used. Generally, the high betweenness stations seem

clustered around the city center and especially along the S-Bahn line called Stammstrecke
[1] going from Pasing in the west to Ostbahnhof in the east. Additionally, several other

stations with relatively high betweenness are spread around the city, such as Feldmoching up

north, Siemenswerke in the south, and Trudering in the east.

Station Normalized Betweenness
München Hbf 0.410
Ostbahnhof 0.397
Pasing 0.370
Laim 0.276
Moosach 0.236
Harras 0.222
Donnersbergerbrücke 0.183
Leuchtenbergring 0.177
Berg am Laim 0.127
Heimeranplatz 0.118
Siemenswerke 0.115

TABLE 5.2: Stations with the highest Betweenness Centrality
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Overall, the betweenness centrality measure seems to portray the most important sta-

tions in the network as accurately the junctions people will have to use to travel across the

efficiently.

5.2.3 Closeness Centrality

Another centrality measure is closeness, indicating how close a node is to all other nodes in

the network. Concretely, a node’s closeness is defined as its average distance to all other

nodes [20]:

CCloseness(v) =
1

∑n−1
v=1 d(v, u)

, (5.3)

where d(v, u) is the distance between nodes v and u. The Dijkstra Algorithm is used to

calculate the shortest distances with the edge weights as the distances between nodes. The

closeness is multiplied with the factor (N − 1) to get the normalized closeness.

FIGURE 5.8: Closeness Centrality

Consequently, a closeness value of 1 would mean that all other nodes in the network are

direct neighbors of a node. Figure 5.8 depicts the closeness measures for all stations and is

color-coded like the betweenness centrality, where the first quartile is red, the second and

third quantiles are orange, the fourth quartile up until the 99th percentile is green, and from
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Station Normalized Closeness
München Hbf 0.162
Pasing 0.160
Ostbahnhof 0.155
Donnersbergerbrücke 0.155
Laim 0.150
Heimeranplatz 0.148
Hauptbahnhof (S, U, Bus, Tram) 0.147
Karlsplatz (Stachus) 0.147
Hirschgarten 0.146
Elisenstraße 0.145
Hauptbahnhof Nord 0.144

TABLE 5.3: Stations with the highest Closeness Centrality

there, the stations are pink. Since the circle sizes are proportional to the stations’ closeness,

we can further differentiate their closeness.

As we can see by these circle sizes, the absolute difference with this centrality measure

is smaller between the highest and lowest values than the range we have seen before in the

betweenness measures. The closeness range goes from about 0.05 to 0.16. The stations with

the highest values, in the fourth quartile, are mainly clustered around the city center, and

other stations with high closeness measures mostly surround these points. This exemplifies

how different the ideas of betweenness and closeness actually are. For instance, being a

station close to the one with the highest centrality measure in the network is inevitably

going to lead to a high centrality measure as well in regards to closeness, while this is not

the case for betweenness. Consequently, centrality gives us more of an indicator for the

connectedness of whole neighborhoods while betweenness highlights the most important

stations in neighborhoods and their connectedness. An example of this difference can be

seen when considering the central station. Three of four stations considered as variants

of the central station (München Hbf, Hauptbahnhof (S, U, Bus, Tram), Hauptbahnhof Nord)

are within the top percentile of closeness and the fourth station, Hauptbahnhof Süd, lies

within the top two percentiles. In contrast, only one of the four stations, München Hbf, is

in the top betweenness percentile, Hauptbahnhof (S, U, Bus, Tram) and Hauptbahnhof Nord
are in the upper fifteen percentiles while Hauptbahnhof Süd is just slightly above the median

betweenness value.

5.2.4 Eigenvector Centrality

Eigenvector centrality computes node importance by considering the centrality of the

node’s neighbors. The eigenvector for a node v is the v-th element of the vector x defined by

the eigenvector equation:

Ax = λx,
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with A as the graph’s adjacency matrix and the eigenvalue λ [3]. Since A is a square matrix

and only contains non-negative values, the matrix has a unique largest real eigenvalue λ

and the corresponding eigenvector has strictly positive components per the Perron-Frobenius
Theorem [6].

FIGURE 5.9: Eigenvector Centrality

While the top stations with regards to their centrality measure were spread around

several locations in the city for betweenness and closeness values, the top percentile of

stations is now located in a small radius around the central station. This highlights how

stations need several direct neighbors with high centrality values to achieve high centrality

themselves. Hence, most stations with eigenvector centrality measures in the fourth quartile

are directly spread around the city center. The green cluster in the west around the Pasing
station is connected to the central station via train and S-Bahn as well, such that most of the

high centrality stations are within a short ride of the central station. While these stations

look rather far away from the city center, from a graph perspective they are closer than many

other points with a smaller spatial distance, highlighting once more that we are considering

ride times in minutes between stations as edge weights instead of distances in meters.

The top percentile of stations, displayed in Table 5.4, shows stations that have not yet

appeared as top centrality stations in the other measures, such as Schrannenhalle, Viktualien-
markt and Blumenstraße, all stations within a couple of minutes to Marienplatz, one of the

most famous and central places in Munich, which did not make an appearance in the top

stations with the other centrality measures.
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Station Eigenvector Centrality
Hauptbahnhof (S, U, Bus, Tram) 0.318
München Hbf 0.25
Hauptbahnhof Nord 0.249
Marienplatz 0.238
Schrannenhalle 0.236
Karlsplatz (Stachus) 0.225
Elisenstraße 0.209
Sendlinger Tor 0.207
Viktualienmarkt 0.203
Blumenstraße 0.2
Isartor 0.18

TABLE 5.4: Stations with the highest Eigenvector Centrality

The fact that most stations are assigned a centrality measure of close to zero can also

be seen in its strongly right-skewed histogram in Figure 5.11 and its boxplot in Figure 5.10,

where the median centrality value is as low as 0.00002, while the maximum eigenvector

centrality value is bigger than 0.3. With its interquartile range of just 0.0005 and its difference

between the maximum and minimum value of 0.317, 244 of the 1095 stations are considered

outliers in the boxplot.

FIGURE 5.10: Boxplot of Centrality Measures

We have now seen how four different methods of assigning node importance do so in

quite different ways and with differing results. From a real-life perspective, when deciding

which stations one would like to live around based on the described methods, the degree of
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FIGURE 5.11: Histogram of Centrality Measures

a station by itself is not an immediate strong indicator for a well-connected station. While

stations in the city center tend to have higher degree values, such a station would also be

possible far away from the city center and other attractive city locations, only connecting

several other stations at the city’s outskirts.

On the other hand, high betweenness measures directly imply a well-connected station

since many connections between other stations have their shortest ride time via that station.

Hence, the high betweenness of a station gives it the status of a hub in the network and

is therefore attractive when considering living locations. Since there are only a couple of

stations with extremely high betweenness compared to others, it is also a great way to

identify the major stations in a city.

This is not the case for eigenvector centrality, where the importance of the neighbors

of a node matter. The Blumenstraße station for instance, is in the top percentile of node

importance regarding eigenvector centrality by being close to two crucial stations, Sendlinger
Tor and Marienplatz, while not being a major hub itself. Like closeness, which considers the

distance to all other stations, eigenvector centrality is, therefore, more of an indicator for

being considered central within a city, with less importance being laid on the single station

itself but rather its surroundings.
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5.3 Relationship between Reachability, Centrality Mea-

sures & Rental Prices

After looking into different centrality measures, we can now compare them to the reachabil-

ity measure from chapter 3. While the reachability is not trying to describe the importance

of stations in the network per se, it is doing so indirectly by assigning high values to

well-connected stations and is thus comparable to the graph centrality measures.

Figure 5.12 depicts a pair plot of the centrality scores and reachability, the share of

all stations, a station can cover with its connections within ten minutes. All measures

generally range from 0 to 1, when considering the normalized centrality measures and

when considering reachability as a score between 0 and 1. For improved readability and

interpretability in the plot, however, the not-normalized degree centrality was used. We can

then see the highest positive correlation of 0.761 between reachability and the degree, while

there are also positive correlations between all other measures. In order to mitigate the issue

of the strongly right-skewed betweenness and eigenvector values, we use the log values of

these measures. For betweenness, 0-values were replaced by 10% of the second-smallest

value.

FIGURE 5.12: Relationship between
Reachability and Centrality Measures

Log values of Betweenness and Eig. Centrality

We notice in 5.12 how closeness and the log of the eigenvector centrality are now

strongly correlated with a correlation coefficient of 0.936, while the correlation of the non-

log transformed measures was significantly smaller at 0.373, which is depicted in Figure A.7
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in Appendix A. This high correlation could be a consequence of the previously mentioned

nature of these measures, where closeness and eigenvector centrality both value being

close to many other nodes in the network highly. As such, both measures contain similar

information about the network and are very strongly correlated. On the other hand, we can

see how the correlation between the log-betweenness and all other measures is reduced now,

apart from the log-eigenvector centrality. Generally, betweenness is the measure that seems

to be the least related to the others, as its focus is rewarding hubs instead of rewarding being

generally well connected.

Finally, we want to get a quick insight into how these graph measures relate to rental

prices. Hence, we will aggregate the data by borough and consider the median values of

rent, reachability, and centrality by borough. As rental dataset, we will use the Mietspiegel
dataset restricted on the contracts newer than ten years, but similar results occur for the full

data and the Immobilienscout24 data, as seen in the Appendix A in figures A.8 and A.9. Note,

that for these aggregated values only the eigenvector centrality was log-transformed.

FIGURE 5.13: Reachability, Centrality Measures & Rental Prices

Figure 5.13 then shows the pair plot of the median values of reachability, the centrality

measures, and the rental prices aggregated by borough. While we have seen strictly positive

correlations before, we now notice negative correlations of betweenness and all other values.

However, all other measures are still positively correlated, with the strongest relationship

still being the one between the log-transformed eigenvector centrality and closeness with a

correlation of 0.948. Regarding rental prices, the strongest relationships we see here is to the

degree centrality, with a value of 0.755, while the correlation with reachability is slightly
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less at 0.711. Similar trends can be observed when aggregating the data by sub-borough,

depicted in Figure A.10 in the Appendix A.

We have now seen how traditional graph centrality measures can describe the impor-

tance of public transportation stations within a city and how these measures are related

to existing rental prices. Hence, a similar regression analysis between centrality measures

and rental prices is possible. Additionally, the centrality scores help to quickly identify

essential stations in cities, giving potential new residents a good overview of central hubs

and well-connected neighborhoods.
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6 Summary & Outlook

We have now seen how rental price information for the same city can vary drastically

depending on the data gathering method. Nonetheless, we could use both datasets to

model reachability by public transport in Munich on the apartment level and aggregated by

borough and sub-borough. We have then seen Isar’s influence on Munich’s transit in the

form of different transport method speeds, by using Isar related information to improve the

connection duration regression model and by clustering the city into distinct parts. Finally,

we explored how the transit network can be displayed as a graph and how to quantify

station importance by using graph centrality measures.

Going forward, it will potentially be possible to use the presented reachability informa-

tion and the graph centrality measures to improve existing rental price models within cities.

Furthermore, the intuitive reachability could help new residents decide which locations in

a city are suitable for them when looking for apartments that are not only close to work

or school but generally well-connected. From the company’s perspective, one might be

interested in creating offices near stations that are big hubs, as indicated by the betweenness

centrality, or just ones with generally high reachability.
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A Appendix

FIGURE A.1: Map of Mietspiegel Rental Prices (New Contracts)

FIGURE A.2:
Median Rental Price per

Borough:
Mietspiegel (New Con-

tracts)

FIGURE A.3:
Median Rental Price per

Sub-Borough:
Mietspiegel (New Con-

tracts)
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FIGURE A.4:
Rent vs. Reachability

Ratio
By Borough:

Mietspiegel (New Con-
tracts)

FIGURE A.5:
Rent vs. Reachability

Ratio
By Sub-Borough:

Mietspiegel (New Con-
tracts)

FIGURE A.6: Residual Diagnostics for Distance vs. Transit Ride Time
Base Model
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FIGURE A.7: Relationship between
Reachability and Centrality Measures

FIGURE A.8: Reachability, Centrality Measures & Rental Prices
Immobilienscout24 Data
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FIGURE A.9: Reachability, Centrality Measures & Rental Prices
Mietspiegel Data

FIGURE A.10: Reachability, Centrality Measures & Rental Prices
Sub-Borough
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