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Abstract

Many derivative-free optimization methods rely on surrogate models. In this thesis, we

study the effect of such models’ specifications on the optimizers’ convergence. We focus

on the example of Gaussian processes as surrogate models in Bayesian optimization.

Here, we find the prior’s mean parameters to have the highest influence on convergence

among all prior components. In response to this result, we propose four generalizations

of Bayesian optimization that aim at rendering the method more robust towards prior

mean misspecification. Two of them, the generalized lower confidence bound and a

weighted maximum likelihood approach, outperform standard Bayesian optimization

for specific types of problems.
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1 Introduction

1.1 Scientific Motivation

“For this, indeed, is the main source of our ignorance – the fact that our knowledge

can be only finite, while our ignorance must necessarily be infinite.”

— Karl R. Popper [Popper, 2014]

Acetylsalicylic acid, marketed under the name aspirin, has been easing pain, curing

headaches and reducing fever since the beginning of the 20th century. It has been an

indispensable resource in modern societies since then. Its mechanism of action, however,

was not discovered until the end of the century, starting with findings by [Vane, 1971]

and extending to recent work by [Hawley et al., 2012].

In a thought-provoking essay in the New Yorker [Zittrain, 2019] argues that this ap-

proach to discovery, which he casually refers to as “answers first, explanations later”,

has become ubiquitous in machine learning (ML). He describes the modus operandi in

ML research as discovering what works without knowing why it works, and then putting

“that insight to use immediately, assuming that the underlying mechanism will be fig-

ured out later” [Zittrain, 2019]. The so-acquired burden of unexplained phenomena is

named “intellectual dept” by him. Unlike in medical and other scientific areas, Zit-

train argues, such theory-free advances are an intrinsic part of “statistical-correlation

engines” in machine learning. He paints a bleak picture of ML’s future: With a growing

number of unknown mechanisms in complex systems, “the number of tests required to

uncover untoward interactions must scale exponentially” [Zittrain, 2019].

Indeed, Zittrain brings up a painful subject for machine learning research. Interpreting

machine learning models was long considered a research niche. This is about to change,

some say, with causal inference being one of the main drivers [Peters et al., 2017]. Be

that as it may, we argue the lack of interpretation is not the mere cause for increasing

the intellectual credit line in machine learning, but also the hidden assumptions upon

which many models rely. While influential with regard to the model’s predictions, many

assumptions are hardly questioned, let alone empirically tested.

The thesis at hand will demonstrate the influence of unquestioned assumptions with

regard to the example of Bayesian optimization (BO), a popular stochastic derivative-
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1.1 Scientific Motivation

free optimization method for hyperparameter-tuning of machine learning models. As

a consequence, it will outline venues of how to make BO and other derivative-free

optimizers more robust towards altering their underlying assumptions. To accomplish

that, a representation of partial or no knowledge about the model specification is needed.

The fruitful framework of imprecise probabilities (IP) offers a way to do so for Gaussian

process (GP), a functional regression approach that is essential to BO.

By this means, we will account for a set of GPs as surrogate models and thus make the

optimizer more robust against their misspecification. Despite the fact that, in practice,

the model is often specified arbitrarily1, we will show that model choice can have a

great influence on the optimization’s convergence. One (if not the) founding father of

the method, Jonas Močkus, has proclaimed that “the development of some system of

a priori distributions suitable for different classes of the function f is probably the

most important problem in the application of [the] Bayesian approach to (...) global

optimization” [Močkus, 1975], cited after [Malkomes and Garnett, 2018].

From a philosophical point of view, such representations of non-informativeness are

reminiscent of the great Socratic paradox “I know that I know nothing”, handed down

in Plato’s Apology and translated by Cicero. Interestingly, recent research [Fine, 2008]

questions whether Socrates actually claimed knowledge about the unknown, such that

this knowledge is the only exception from his ignorance. Cicero’s inaccurate translation

(“I know that”), so the argument goes, clouded the view on what Plato actually deliv-

ered to posterity. His Greek original merely states that Socrates complained about the

absence of true wisdom, with no additional assertions of certainty about the former.

This intriguing footnote to ancient philosophy should make all statisticians sit up and

take notice. They are familiar with the age-old debate on how to represent uninfor-

mativeness in statistical models. The traditional Bayesian approach consists of the

formulation of so-called non-informative priors. However, they fail at describing a situ-

ation of real prior ignorance, as they describe a precise prior belief [Mangili, 2016, Page

154], i.e. produce a precise probability value for any A ⊆ Ω. Such priors thus often

reflect indifference between parameter values rather than ignorance [Augustin et al.,

2014, Page 158].2 To put it in a philosophical way, they precisely state knowledge

about the unknown, as in Cicero’s wrong translation (“I know that I know nothing”).3

1See default choices in popular libraries like spearmint (python) or mlrMBO (R).
2This concept is often referred to as the principle of indifference [Fischer, 2021]. For a comprehensive

discussion of ignorance and indifference, the interested reader is referred to [Norton, 2008].
3Note that the Bayesian framework quite well allows for modeling ignorance about ignorance by

means of hyperpriors, see section 5.2. Hyperpriors, however, again represent precise prior statements.
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1.1 Scientific Motivation

Seeking a statistical expression of Socrates’ real intention, we make the case for impre-

cise probabilities (IP). They allow for the original representation of ignorance. That

is, they can model uninformativeness without the necessity of making assured state-

ments on its precise nature, but only on its mere existence. The interested reader can

consult [Augustin et al., 2014] for a comprehensive introduction to IP.

But why, after all, is accounting for the unknown worth the methodological effort? The

answers read surprisingly simple: first and foremost, because the alternative would be

to make unjustified assumptions that result in false confidence, possibly wrong decisions

and – in Zittrain’s words – “intellectual dept”. In the case of stochastic derivative-free

optimizations methods such as BO this can slow down convergence, leading to sub-

optimal configurations of ML models for instance. Second, unexplained phenomena

and resulting situations of ignorance outnumber those where (not necessarily precise)

prior knowledge exists; see Popper’s quote above. Throughout the history of human

thought, accounting for the unknown has been an integral part of scientific considera-

tions. More than that, following [Popper, 1992], it is the driving force behind scientific

advancements. Popper refers to Xenophanes [Popper et al., 2013] and Socrates [Popper,

1991] as fallibilistic pioneers of his theory of critical rationalism and connects the dots

between falsification in modern science and the ancient acceptance of ignorance.4

It might appear surprising to account for ignorance in optimization of all things relevant

to ML. In his insightful introduction to machine learning, [Domingos, 2012] identifies

three key components of ML models: representation, evaluation and optimization. In-

terestingly, each of the former two, but not the latter, is regarded as a core area of

statistics. While ML practitioners turn to statisticians for advice on how to interpret

the hypothesis space (representation) or make the loss function more robust (evalua-

tion), optimization is apparently left to the numerically trained computer scientists.

Yet, many popular derivative-free (hyperparameter-)optimizers heavily rely on proba-

bilistic elements, be they advanced surrogate models or simple probability measures.

The thesis at hand will argue that in both cases, the flexibility of the optimization

path can be increased by relaxing the assumptions about the probabilistic elements by

means of Imprecise Probabilities (IP). Leaning on the famous quotation from [Manski,

2003], “The credibility of inference decreases with the strength of the assumptions

maintained”, it will be demonstrated that a relaxation of the assumptions can increase

4See also [Popper, 1987, page 52]: “Das Wissen im Sinne der Naturwissenschaft ist Vermutungswis-

sen; es ist ein kühnes Raten. So behält Sokrates recht, trotz Kants verständnisvoller Einschätzung der

Riesenleistung Newtons. Aber es ist ein Raten, das durch rationale Kritik diszipliniert wird.”
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1.2 Outline

some optimizers’ modeling capacity and hence their performance.

1.2 Outline

This thesis’ contributions are twofold. On the one hand, it explores venues of how to

render optimizers more robust with regard to their model specification (section 10).

On the other hand, it exploits the above described concept’s potential with respect to

the example of Bayesian optimization with Gaussian process by proposing four modi-

fications and benchmarking them to existing predominant methods. The mental ware-

house required for doing so, namely Bayesian optimization and Gaussian process, is

thoroughly revised (sections 2 and 3). The main problem of how to specify the GP’s

prior inside BO under ignorance is analyzed in simulation studies (section 4) and then

formally described (section 5), before turning to three attempts to solve it by means of

IP, that are motivated, tested and discussed (section 6). Related work is compared to

these proposals (section 7) and some possible extensions are briefly outlined (section

8). What is more, another method relying on likelihood estimation to render the prior

specification of GP in BO more robust is put forward, empirically analyzed and crit-

ically assessed (section 9). Finally, the thesis concludes with a brief but conceptually

overarching conclusion (section 11).
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2 Bayesian Optimization

2.1 Basic Procedure

Bayesian optimization (BO)5 is a popular method for optimizing functions that are

expensive to evaluate and lack analytical description. BO approximates the objective

function through a surrogate model (SM). In the case of real-valued covariates, Gaussian

process (GP) regression is the most popular model, while random forest (RF) [Breiman,

2001] is usually preferred for categorical and mixed parameter spaces. Some authors

like [Swersky et al., 2014][footnote 1] argue RF is also advantageous in case of many

data points. BO scalarizes the surrogate model’s mean and standard error estimates

to an acquisition function (AF), that incorporates the trade-off between exploration

(uncertainty reduction) and exploitation (mean optimization). The arguments of the

AF’s maxima6 are eventually proposed to be evaluated. Algorithm 1 describes the basic

procedure of Bayesian optimization applied on a problem of the sort: minx∈X Ψ(x),

where Ψ : X p → R,, X p a p-dimensional parameter space. Here and henceforth,

minimization is considered without loss of generality.

Algorithm 1 Bayesian Optimization

1: create an initial design D = {(x(i),Ψ(i))}i=1,...,ninit of size ninit

2: while termination criterion is not fulfilled do

3: train a surrogate model (SM) on data D

4: propose xnew that optimizes the acquisition function AF (SM(x))

5: evaluate Ψ on xnew

6: update D ← D ∪ (xnew,Ψ(xnew))

7: end while

8: return arg minx∈D Ψ(x) and respective Ψ(arg minx∈D Ψ(x))

Various termination criteria are conceivable with a pre-specified number of iterations

being one of the most popular choices. Notably, line 4 imposes a new optimization

problem, sometimes referred to as “auxiliary optimization”, e.g. in [Frazier, 2018].

5Also called efficient global optimization (EGO) or model-based optimization (MBO). While both

EGO and MBO were widespread names in the early years after [Jones et al., 1998] popularized the

method, Bayesian optimization has gained ground after the much-cited paper of [Snoek et al., 2012]

and is the most common name today.
6Without loss of generality. Notably, some software libraries internally minimize −AF (SM(x)).
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2.2 Acquisition functions

Compared to Ψ(x), however, AF (SM(x)) is analytically traceable. It is a deterministic

transformation of the surrogate model’s mean and standard error predictions, which are

given by line 3. Thus, evaluations are cheap and optima can be retrieved through naive

algorithms, such as grid search, random search or the slightly more advanced focus

search7, all of which simply evaluate a huge number of points that lie dense in X .

2.2 Acquisition functions

There exist several acquisition functions, among which expected improvement (EI) and

lower confidence bound (LCB) are the most popular. The most fundamental one is

probability of improvement (PI). Definitions 1, 2 and 3 are based on [Bischl et al.,

2014] as well as on [Hutter et al., 2018]. Definition 6 is based on [Cox and John, 1992].

Definition 1 (Probability of Improvement)

Let ψ(x) be the surrogate model and Ψmin the incumbent minimal function value. The

probability of improvement (PI) of x is

PI(x) = P(ψ(x) < Ψmin).

When using a Gaussian process (GP) as SM, as assumed in what follows, the PI

can be simplified. For each finite vector of function values Ψ(x) we assume Ψ(x) ∼
N (µ(x),Var(x)), where µ(x) is the mean function of Ψ at x and Var(x) is the variance

function at x. For our surrogate model ψ(x) it is ψ(x) ∼ N
(
µ̂(x), V̂ar(x)

)
, where

µ̂(x), V̂ar(x) are estimates from the posterior GP, see section 3. Since the variance

function is typically estimated by the variance of the mean prediction function µ̂(x),

we write V̂ar(x) = Var(µ̂(x)).8 This allows standardization of ψ(x) and Ψmin in PI(x)

as follows:

P(ψ(x) < Ψmin) = P

(
ψ(x)− µ̂(x)√

Var(µ̂(x))
<

Ψmin − µ̂(x)√
Var(µ̂(x))

)
= Φ

(
Ψmin − µ̂(x)√

Var(µ̂(x))

)
(1)

7Focus search iteratively shrinks the search space and applies random search, see [Bischl et al.,

2017, page 7].
8GPs have the nice property of intrinsically estimating the posterior variance of the prediction

function µ̂(x). In case of random forest (RF) as SM, additional bootstrap or jackknife-after-bootstrap

is needed for variance estimation. For instance, jackknife-after-bootstrap is used in the R package

mlrMBO [Bischl et al., 2017].
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2.2 Acquisition functions

As convention dictates, Φ denotes the standard normal distribution function. Since

Φ, Ψmin, µ̂(x) and
√

Var(µ̂(x)) are given in line 4 of algorithm 1, it can be seen that

PI(x) is indeed computationally cheap to evaluate. It requires nothing but a simple

function call with given arguments. Also note that the probability of improvement is

0 for already visited points, as for such points
√

Var(µ̂(x)) = 0 and Ψmin − µ̂(x) ≤ 0,

thus

Φ

(
Ψmin − µ̂(x)√

Var(µ̂(x))

)
= Φ(−∞) = 0. (2)

With the same line of reasoning it follows that for {x : Ψmin − µ̂(x) ≤ 0} the PI(x)

(counter-intuitively) decreases with
√

Var(µ̂(x)). This makes the PI a very exploitative

AF. For a detailed theoretical analysis of the acquisition functions’ impact on the trade-

off between exploration and exploitation the interested reader is referred to [Rahat,

2019]. The most widely used AF is expected improvement (EI), which is closely related

to PI.

Definition 2 (Expected Improvement)

Let ψ(x) be the surrogate model and Ψmin the incumbent minimal function value. The

expected improvement of x is

EI(x) = E(max{Ψmin − ψ(x), 0}).

This time, the improvement is bounded from below. Uncertainty estimates only enter if

mean estimates imply real improvement. This prohibits the negative effect of increasing

uncertainty for {x : Ψmin− µ̂(x) ≤ 0} and, thus, enforces exploration. EI was proposed

by [Močkus, 1975, Pages 1-2], disguised as a utility function in a decision problem that

captures the expected deviation from the extremum. It follows from this formulation

that a point proposed according to expected improvement is Bayes-optimal in a given

iteration. This early definition of BO with EI is very close to the modern formulation

in definition 2 and algorithm 1. However, it lacked the idea of surrogate modeling and

thus the simplifications that come with Gaussian processes (GPs). Namely, we can

express EI(x) in this case in closed form in a similar manner to equation 1:

EI(x) = (Ψmin − µ̂(x)) Φ

(
Ψmin − µ̂(x)√

Var(µ̂(x))

)
+
√

Var(µ̂(x)) φ

(
Ψmin − µ̂(x)√

Var(µ̂(x))

)
, (3)

which can be derived by partial integration from definition 2 and where φ(·) denotes

the standard normal density function. The attentive reader will notice again that EI
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2.2 Acquisition functions

equals 0 for points that have been visited already, just like in case of PI. What is more,

it can be seen that EI is a weighted sum of (standardized) mean and standard error

estimates, thus explicitly balancing exploitation and exploration. While this follows

naturally from the expected deviation from the extremum and the GP assumptions in

case of EI(x), the same trade-off can also be gracelessly encoded by a direct weighted

sum of µ̂(x) and
√

Var(x) with weight τ . The AF lower confidence bound (LCB) does

the latter.

Definition 3 (Lower Confidence Bound)

Let µ̂(x) and
√

Var(µ̂(x)) be the mean and standard error prediction functions of the

surrogate model. The lower confidence bound9 of x is

LCB(x) = −µ̂(x) + τ ·
√

Var(µ̂(x)).

Unlike in the case of EI and PI, the user can manually guide the exploration-exploitation

trade-off by setting τ . Notably, τ can also be scheduled, e.g. decreased over time.

The idea is to explore X first, then exploit wisely selected regions in detail later. This

gives rise to the so-called adaptive lower confidence bound (ALCB)10, initially proposed

by [Liu et al., 2012].

Definition 4 (Adaptive Lower Confidence Bound)

Let µ̂(x) and
√

Var(µ̂(x)) be the mean and standard error prediction functions of the

surrogate model. The adaptive lower confidence bound in iteration t ∈ {1, ..., T} is

ALCB(x)t = −µ̂(x) + τt ·
√

Var(µ̂(x)), τt ∈ {τ1, ..., τT},

where typically τ1 > τ2 > ... > τT .

The purely exploratory acquisition function standard error (SE) can also be regarded

as a special case of LCB since it substantively corresponds to LCB with τ →∞.

Definition 5 (Standard Error as AF)

The mere standard error prediction function
√

Var(µ̂(x)) can be used as acquisition

function (AF)

SE(x) =
√

Var(µ̂(x)).

9We are aware that in the context of Bayesian surrogate models such as GPs, credible confidence

bound would be the more appropriate wording, see e.g. [Benavoli et al., 2021]. However, as the SM can

be any statistical model in general, we abstain from sticking to the terminology of Bayesian inference

and remain general.
10Also called self-adaptive lower confidence bound.
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2.2 Acquisition functions

It is worth mentioning that LCB was proposed by [Cox and John, 1992] in a more

general way as statistical lower bound (SLB).

Definition 6 (Statistical Lower Bound)

Let µ̂(x) be the mean prediction function of the surrogate model and MSE(µ̂(x)) =

E[(µ̂(x)−Ψ(x))2] its mean squared error (MSE). The statistical lower bound (SLB) of

x is

SLB(x) = −µ̂(x) + υ ·
√

V̂ar(x) ·
√
MSE(µ̂(x)).

The rationale behind the SLB is to explore regions of the parameter space, where

the SM’s predictions have low goodness, be it systematic (the bias) or through vari-

ation (variance). It is only logical to use the classical goodness criterion of MSE.11

Nowadays rather unconventionally, [Cox and John, 1992] normalize the MSE as fol-

lows: MSE(µ̂(x)) = E[(µ̂(x) − Ψ(x))2] · σ−2, with σ−2 being the inverse variance of

the target Ψ that they estimate through maximum likelihood (ML). Presumably, the

idea behind this “normalization” (i.e. standardization) is to make the (estimated) MSE

comparable to other MSEs from different data sets. For instance, take estimators of

a species’ mean length for two data sets, the one comprising tadpoles, the other one

blue whales. To compare the two MSEs, it is desirable to standardize them since the

lengths of the two species differ by orders of magnitude. In the context of BO with a

single target function, however, standardization is not needed.12 We thus proceed with

the classical, unnormalized MSE(µ̂(x)) = E[(µ̂(x)−Ψ(x))2].

Notably, the lower confidence bound (LCB) can be regarded a special case of statistical

lower bound (SLB). This is elucidated by Theorem 1.

Theorem 1 (Relationship of LCB and SLB)

Lower confidence bound equals statistical confidence bound for unbiased µ̂(x) and τ =
υ√

Var(µ̂(x))
.

Proof 1 (Relationship of LCB and SLB)

Recall that we defined Var(µ̂(x)) as estimator for the variance function, i.e. V̂ar(x) =

Var(µ̂(x)) It then follows right from definitions 3 and 6:

11Furthermore, MSE corresponds to the decision-theoretic risk function with the popular quadratic

loss function.
12Multi-objective BO is only briefly touched upon in this thesis, see section 2.5.
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SLB(x) = −µ̂(x) + υ ·
√

V̂ar(x) ·
√
MSE(µ̂(x))

= −µ̂(x) + υ ·
√

Var(µ̂(x)) ·
√
MSE(µ̂(x))

= −µ̂(x) + υ ·
√

Var(µ̂(x)) ·
√

Var(µ̂(x)) + E[µ̂(x)−Ψ(x))]2

= −µ̂(x) + υ ·
√

Var(µ̂(x)) ·
√

Var(µ̂(x)), unbiased µ̂(x)

= −µ̂(x) + υ · Var(µ̂(x))

= −µ̂(x) + τ ·
√

Var(µ̂(x)) ⇐⇒ τ =
υ√

Var(µ̂(x))
, �

where the third equality uses the classical bias-variance-decomposition of the MSE:

Theorem 2 (Bias-Variance-Decomposition of MSE)

For the mean squared error (MSE) of an estimator µ̂(x) for Ψ(x) it holds:

MSE(µ̂(x)) = E[(µ̂(x)−Ψ(x))2] = Var(µ̂(x)) + E[µ̂(x)−Ψ(x))]2,

where E[µ̂(x)−Ψ(x))] is commonly refered to as Bias(µ̂(x)).

For the sake of completeness, a proof of Theorem 2 in the general case is provided in

section 2 of the appendix.

While the SLB is hardly used anymore, LCB has become one of the most popular

acquisition functions. As follows from theorem 1, using LCB corresponds to implicitly

assuming unbiased mean estimation. In section 5.1, we will see that this assumption

does not hold for a popular prior specification. We will address this issue in detail in

section 9, where an alternative prior specification approach is proposed. Beyond this

issue of implicitly assuming an unbiased mean prediction, we will generalize LCB (thus

also SLB) to account for model imprecision in section 6.

2.3 Acquisition Functions for Noisy Targets

In practice, target functions rarely behave like they do in analytical imagination. Eval-

uations of physical processes are often noisy. That is, the function has a stochastic

component. Multiple evaluations of one and the same point in X generally result

in different function values. The optimization problem changes from minx∈X Ψ(x) to

minx∈X Ψ(x) + ε, with ε ∼ N (0, σ2
ε ) for instance. There are multiple ways of how to

adapt acquisition functions to such scenarios. [Huang et al., 2006] propose the aug-

mented expected improvement (AEI).

Page 10



2.4 Convergence and Limitations

Definition 7 (Augmented Expected Improvement (AEI))

Assume a Gaussian process as surrogate model and a target function Ψ(x) + ε with ε ∼
N (0, σ2

ε ) . Leaning on definition 2 of expected improvement (EI) and its simplification

in case of Gaussian process, the augmented expected improvement (AEI) is defined as

AEI(x) = (Ψ∗min − µ̂(x)) Φ

(
Ψ∗min − µ̂(x))√

Var(µ̂(x))

)
+
√

Var(µ̂(x)) ×

φ

(
Ψ∗min − µ̂(x)√

Var(µ̂(x))

)
·

(
1− σ2

ε√
σ2
ε + Var(µ̂(x))

)
,

where Ψ∗min is the so-called effective best solution:

Ψ∗min := min
x∈X

{
µ̂(x)−

√
Var(µ̂(x))

}
.

The “effective best solution” makes the AF compute the expected improvement in

reference to the incumbent best possible value instead of the actual evaluated incumbent

best value. The alert reader might notice that in case of a noise-free target function,

AEI corresponds to EI with effective best solution Ψ∗min instead of Ψmin. This special

case of AEI will be used as a benchmark AF in section 6.6.

Similar to AEI, the expected quantile improvement (EQI) [Picheny et al., 2010] does

not use an actual observed Ψ value as reference point but a pre-specified quantile of

the posterior distribution of µ̂(x).

Definition 8 (Expected Quantile Improvement (EQI))

EQI(x) = (qmin − q(x)) Φ

(
qmin − q(x)√

Var(µ̂(x))

)
+
√

Var(µ̂(x)) · φ

(
qmin − q(x)√

Var(µ̂(x))

)
,

where qmin is the minimal quantile of the posterior GP and q(x) is the quantile of x.

Just like AEI, the EQI can be used for noise-free target functions as well, and will be

in section 6.6.

2.4 Convergence and Limitations

It can be proven that Bayesian optimization with EI converges to the global optimum

given that the prior specification of the SM is held constant across iterations [Vazquez
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and Bect, 2010] [Bull, 2011]. The latter is usually not the case in practice, see section 5,

rendering the result a rather theoretical consideration. This property cannot be proven

for LCB and PI. Yet, especially lower confidence bound was found a good alternative to

EI in some practical problems, see [Sun et al., 2021] for instance. Its popularity might

stem, among other things, from its simple interpretation, as it controls the trade-off

between exploration and exploitation directly through τ . On the other hand, τ can

reduce optimization performance if its choice is not suited to the problem. Determining

a good configuration can be computationally expensive [Berk et al., 2018].

Proposing points is a decision problem. From such a decision-theoretic point of view,

proposals under all aforementioned acquisition functions are Bayes-optimal. They result

from assigning probability weights on the state space Ω (parameter space X p) a priori.

This is nowadays done via the SM, which takes data into account and is thus not a real

Bayesian prior.13 [Močkus, 1975] used an actual prior and presumably thus coined the

term Bayesian optimization. Decisions are eventually based on maximizing a utility

function (the acquisition function (AF)). However, their Bayes-optimality is limited

to one iteration. Future information is not taken into account. This is why AFs like

expected improvement and lower confidence bound are sometimes referred to as myopic,

e.g. in [Wu and Frazier, 2019]. Intuitively, it could be beneficial to evaluate in regions of

the parameter space that are not expected to dominate the incumbent best point, but

could change the model’s predictions in a manner that helps speeding up convergence

in the long run. Keep in mind that by aiming at variance reduction EI, PI and LCB do

explore unknown regions. Yet, the rationale behind these explorations is purely based

on the incumbent mean and standard error predictions. Finding a non-myopic Bayes

optimal set of proposals is however NP-hard because the number of possible proposal

paths grows exponentially with the iterations. This myopia is the main limitation of

BO besides the prior specification problem, which will be dealt with in Section 5.

2.5 Extensions

Still, it seems desirable to take future evaluations into account. There are some AFs

that aim at doing so. Knowledge gradient [Frazier et al., 2009] and entropy search

[Hennig and Schuler, 2012] are both based on a “one step look ahead”-approach that

13This is why we consider model-based optimization (MBO) a more adequate name. However, as

explained above, Bayesian optimization (BO) is the more common term (and somehow honors the

pioneering work of [Močkus, 1975]). We will thus stick with the literature and call the method BO.
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2.5 Extensions

accounts for hypothetical changes of the SM in iteration t + 1 as a function of the

proposal in iteration t. A more recent approach called rollout [Yue and Kontar, 2020]

approximates the intractable optimization (of an AF comprising multiple iterations)

problem’s solution directly. The main downside of non-myopic BO is the computational

cost that comes with AFs that “look ahead”. That is, the charming idea of replacing

expensive evaluations by cheap ones of a SM is given up to some extent. The dilemma

between cheap evaluations and more farsighted algorithms is generally unresolvable. To

put it plainly and simply, you can’t have the cake and eat it.

To improve speed, several BO libraries allow for exploiting multicore infrastructures

by proposing multiple points per iteration in parallel. The R package mlrMBO [Bischl

et al., 2017], for instance, provides three distinct multi-point methods.14 Although they

proceed in different ways with regard to the acquisitions function(s), the general idea

is simply to evaluate multiple points at once. We will exploit multicore infrastructure

in prior-mean-robust BO in section 6.4 and 6.3, too.

A more deliberate extension is multi-objective15 optimization, where more than one

objective or criterion is optimized. See [Horn and Bischl, 2016] for a well-structured

overview. Typical applications comprise trade-offs such as between offspring quantity

and quality in evolutionary biology or between price and longevity of consumer products

or – more relevant to hyperparameter-tuning – between performance and interpretabil-

ity/sparsity of a machine learning model. For k objectives Ψ(x) = (Ψ(x)1, ...,Ψ(x)k)

the optimization problem is minx∈X Ψ(x), where Ψ : X p → IRk. Optima of such prob-

lems are characterized by the Pareto optimality, named after Vilfredo Pareto [Lopreato,

1973]. That is, optimal parameters are in the Pareto set and optimal targets constitute

the Pareto front.

Definition 9 (Pareto Set and Pareto Front)

Let x, x̃ ∈ X . The Pareto set is P = {x|@x̃ with x̃ � x}, where ”�” is the Pareto

domination: a � b⇔ ∀i ∈ {1, ..., k} : Ψ(a)i ≤ Ψ(b)i and ∃i ∈ {1, ..., k} : Ψ(a)i < Ψ(b)i.

The Pareto front is Ψ(P ), i.e. the image of P under Ψ.

A popular way to tackle such problems with Bayesian optimization is to avoid the

multi-objective nature of the task and scalarize Ψ : X → IRk to Ψs : X → IR by some

weighting procedure. The generic way, however, is to approximate the Pareto front by

proposing points according to k separately estimated surrogate models for data sets

(x,Ψ(x)1), ..., (x,Ψ(x)k). One then proceeds by either defining an acquisition function

14See Parallelization Tutorial for mlrMBO.
15Sometimes also referred to as multi-criteria optimization.
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2.6 Applications and History

a priori that scalarizes all surrogate models’ mean and standard error predictions or by

computing acquisition functions separately for all surrogate models and then scalarizing

k acquisition function values by the so-called hypervolume contribution (HC). The hy-

pervolume of points {a, b, c, d, e} ∈ X is defined as the set of points (pareto-)dominated

(see definition 9) by {a, b, c, d, e} and bounded above by some reference point r, see fig-

ure 1. The hypervolume contribution of a proposed point p then simply is the increase

in the hypervolume by adding p to {a, b, c, d, e}.

Figure 1: Hypervolume contribution (yellow) of point p, given a set S = {a, b, c, d, e} of points, a

reference point r and the corresponding hypervolume HV(S) (grey). Image credits: [Chen et al., 2020].

2.6 Applications and History

BO is a state-of-the-art method for optimizing black-box-functions. Its recent popular-

ity stems from machine learning, where it has become one of the predominant hyperpa-

rameter optimizers [Nguyen, 2019] after the seminal work of [Snoek et al., 2012]. Even

the popular reinforcement learning system AlphaGo from Google DeepMind, that beat

the first human in Go, had its hyperparameters tuned with BO [Chen et al., 2018].

Thanks to its simplicity and generality, BO has proven to be useful in various fields,

such as cognitive science [Shi et al., 2013], climate modeling [Abbas et al., 2014], drug

discovery [Pyzer-Knapp, 2018] or even more recently in COVID-19 detection [Awal

et al., 2021]. Another popular application is material science [Kotthoff, 2019] and en-

gineering [Frazier and Wang, 2016], where the algorithm was first applied on a broader

scale and enhanced by GPs as SMs [Jones et al., 1998].

It is important to distinguish between simulation-based and human-in-the-loop applica-

tions of BO. While the first deals with objective functions that can be evaluated as part

of the computational procedure, the latter requires interaction with the physical world,

e.g. a person setting up an experiment. In practice, however, the two domains are often
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more intertwined than one might think. For instance, it is common practice in various

fields to approximate the expensive true function by a (hyper-)surrogate model and

then treat this model as ground truth in BO, see [Hutter, 2009] for instance. Moreover,

there is a whole research area called multi-fidelity optimization that aims at combining

high-fidelity data (high quality but expensive) and low-fidelity data (often simulated,

low quality but cheap). See [Fernández-Godino et al., 2016] for a review of popular

multi-fidelity models and methods. Section 8.2 will discuss a possible enhancement of

low-fidelity optimization based on the concepts proposed in section 6.

The general idea to use decision-theoretical Bayes-criteria for optimizing unknown func-

tions dates back to the 1970s, when Jonas Močkus published a series of papers on

“Bayesian Methods For Seeking the Extremum” in Vilnius, Lithuania (at that time

Soviet Union). See [Močkus, 1975] for one of the enthralling initial works including

handwritten formulas or [Mockus et al., 1978] and [Močkus, 1989] for an overview.

Močkus in turn borrowed from some considerations about optimizing unknown func-

tions by [Kushner, 1962]. In an overview paper on BO, [Shahriari et al., 2015] even

argue the roots of the Bayesian rationale in optimization date back even further to the

1930s. They proclaim that [Thompson, 1933] has already discovered the explore-exploit

trade-off when “referring to the tension between selecting the best known treatment for

every future patient (the greedy strategy) and continuing the clinical trial for longer in

order to more confidently assess the quality of [...] treatments” [Shahriari et al., 2015]

in the context of clinical study designs. It remains questionable, however, how strongly

the explore-exploit trade-off is historically linked to BO, taking into account that it is

a part of various derivative-free optimizers’ rationales.

3 Gaussian Processes

As stated above, Gaussian process (GP) regressions16 are the most common surrogate

models in Bayesian optimization for continuous parameters. What is more, GP can also

be used for categorical variables requiring some transformations [Garrido-Merchán and

Hernández-Lobato, 2020]. For a comprehensive introduction to Gaussian processes, the

reader is referred to [Rasmussen, 2003]. The main idea of functional regression based

on GPs is to specify a Gaussian process a priori (a GP prior distribution), then observe

data and eventually receive a posterior distribution over functions, from which inference

is drawn, usually by mean and variance prediction. In most general terms, a GP is a

16Also called kriging.
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stochastic process, i.e. a set of random variables, any finite collection of which has a

joint normal distribution. Definition 10 specifies this as GP regression.

Definition 10 (Gaussian Process Regression)

A function f(x) is generated by a Gaussian process GP (m(x), k(x,x′)) if for any

finite set of data points {x1, ..., xn}, the associated vector of function values f =

(f(x1), ..., f(xn)) has a multivariate Gaussian distribution: f ∼ N (µ,Σ) .

Hence, GPs are fully specified by a mean function m(x) = E[f(x)] and a kernel17

kθ(x,x
′) = E

[(
f(x)− E[f(x)]

)(
f(x′)− E[f(x′)]

)]
such that f(x) ∼ GP (m(x), kθ(x,x

′))

[Rasmussen, 2003, page 13]. The mean function gives the trend of the functions drawn

from the GP and can be regarded as the best (constant, linear, quadratic, cubic etc.)

approximation of the GP-functions. The kernel, broadly speaking, determines how the

function behaves, e.g. its smoothness and periodicity. Any polynomial function is a

mean function. Any finitely positive semi-definite function (definition 11) is a kernel

function of a GP evaluated on a (finite) input vector.

Definition 11 (Finitely Positive Semi-Definite functions)

A function f : X × X → R is finitely positive semi-definite if it is symmetric (∀x, z ∈
X : f(x, z) = f(z,x)) and the matrix K formed by applying f to any finite subset of

X is positive semi-definite, i.e. for its quadratic form it holds xTKx ≥ 0 ∀x ∈ X .

A kernel is said to be isotropic if it is a function of the distance ‖x− x′‖, conditioned

on some norm, mostly the L2-Norm. Popular isotropic kernel families are linear kernels

k(x,x′) = σ2
b + σ2(x− c)(xT − c), (4)

polynomial kernels

k(x,x′) =
(
σ2
b + σ2(x− c)(xT − c)

)p
, (5)

Gaussian kernels

k(x,x′) = σ2 exp

(
−‖x− x

′‖2

2`2

)
, (6)

exponential kernels

17Also called covariance function or kernel function.
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k(x,x′) = σ2 · exp

(
−‖x− x

′‖
2`

)
, (7)

power-exponential kernels

k(x,x′) = σ2 · exp

(
−‖x− x

′‖
2`

)p
(8)

and Matérn-kernels

k(x,x′) = σ2

(
1 +

√
ν ∗ ‖x− x′‖

`
+
ν

3

(
‖x− x′‖

`

)ρ)
exp

(
−
√
ν · ‖x− x

′‖
`

)
, ν, ρ ∈ R.

(9)

In all kernels, σ2 is the variance that can be viewed as the average distance away from

the mean. In kernels with offset c, the base variance σ2
b additionally determines the

uncertainty around c. Parameter ` determines the smoothness of the GP. For isotropic

kernels, there even exists an exact mapping from ` to the expected number of up-

crossings at level 0 in the unit interval (with m(x) = 0, of course). Sometimes the

effect of the kernel on the GP is reduced to this smoothness parameter `.18 However,

as any finitely positive semi-definite function is a kernel, it can include various other

parameters and represent all possible covariance structures.

Conclusively, both mean and kernel function consist of a functional form and parame-

ters, both of which has to be specified beforehand. The effect of these four components

on the BO will be assessed in section 4.

It is important to note that Gaussian process inference given the data is in principle

a deterministic procedure. With a fully specified prior, the posterior distribution is a

function of the prior and the data, see definition 12. However, in practice, prior pa-

rameters are often estimated from data, see section 5. For the sake of computational

feasibility, sampling-based optimizers are used for this estimation. The latter makes GP

a stochastic model, just like random forest (RF), the other popular surrogate model

(SM) in BO. As stated above, BO is thus a stochastic optimizer that proposes differ-

ent points (in general) even with the exact same initial design, surrogate model and

acquisition function.19

18Also called kernel-bandwidth or length-scale parameter.
19Note that BO’s stochastic nature also stems from the infill optimization (random search, focus

search) to some extent.
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Definition 12 (Gaussian Process Predictive Posterior)

Assume m(x) = 0 for simplicity. Given a Gaussian process prior GP (m(x), k(x,x′)),

a design matrix of training data X and respective target values f as well as a design

matrix X∗ of test data, the posterior predictive distribution of f∗ on X∗ given the

already evaluated training values is

f∗|X∗,X,f ∼ N
(
Σ∗Σ−1f ,Σ∗∗ − (Σ∗)TΣ−1Σ∗

)
,

where Σ∗ is the kernel matrix for the covariances within the training data, Σ∗ is the

kernel matrix for the covariances between training and test data and Σ∗∗ the kernel

matrix within the test data [Rasmussen, 2003].

The statement in definition 12 follows from the fact that the conditional distribution

of a random variable on another random variable, both of which follow a multivariate

normal, is again multivariate normal. It can be nicely seen from the mean and ker-

nel function of the posterior predictive distribution that GP (without assuming noisy

evaluations) interpolates between training points:

f |X,f ∼ N
(
ΣΣ−1f ,Σ− (Σ)TΣ−1Σ

)
= N (f ,0) , (10)

since for predictions on training points Σ∗∗ = Σ∗ = Σ.

It should be added that this posterior predictive process is exactly the GP surrogate

model that we denoted as ψ(x) ∼ N
(
µ̂(x), V̂ar(x)

)
in section 2.2. Thus, µ̂(x) =

ΣΣ−1f and V̂ar(x) = Σ− (Σ)TΣ−1Σ.

4 Bayesian Sensitivity Analysis

The question arises quite naturally how sensitive Bayesian optimization is towards

the prior specification of the GP. It is a well-known fact that classical inference from

Gaussian processes is sensitive with regard to prior specification in case of small n.

The less data, the more the inference relies on the prior information. For Bayesian

methods this can be shown in general by expressing posterior statistics as weighted

sums of likelihood and prior contributions [Rüger, 2010] as well as in the concrete case

of GP [Handcock and Stein, 1993]. What is more, there exist detailed empirical studies

such as [Schmidt et al., 2008] that analyze the impact of prior mean function and kernel

on the posterior GP given various data sets.

Page 18



We investigate to what extent this translates to BO’s returned optima and convergence

rates. Analyzing the effect on optima and convergence rates is closely related yet

different. Both viewpoints have weaknesses: Focusing on the returned optima means

conditioning the analysis on the termination criterion; considering convergence rates

requires the optimizer to converge in computationally feasible time. Considering real

world applications, it gets even worse: Typically, global optima are and will remain

unknown, rendering convergence criteria unreliable. To avoid (at least the former two

of) these downsides, we analyze the mean optimization path (MOP).

Definition 13 (Mean Optimization Path)

Given R repetitions of Bayesian optimization applied on a test function Ψ(x) with

T iterations each, the best incumbent target value at Iteration t ∈ {1, ..., T} from

repetition r ∈ {1, ..., R} is Ψ(x∗)r,t. The mean optimization path (MOP) then is a

T -dimensional vector MOP with elements

MOPt =
1

R

R∑
r=1

Ψ(x∗)r,t.

MOP provides a meaningful analysis of optimization performance regardless of conver-

gence towards the optimal ground truth. Averaging is required since BO is a stochastic

optimizer. Hereinafter, MOP values of different prior specifications will be compared.

We condition our analysis on an initial design of size n = 10 due to computational

reasons throughout section 4.1, i.e. it is fixed for all R repetitions. Limitations of this

approach are discussed in section 4.4.

As pointed out in section 3, specifying a GP prior comes down to choosing a mean

function and a kernel. Both kernel and mean function are in turn determined by a

functional form (e.g. linear trend and Gaussian kernel) and its parameters (e.g. inter-

cept, slope, σ2 and `). Hence, we vary the GP prior with regard to the mean functional

form m(·) (section 4.1.1), the mean function parameters (section 4.1.2), the kernel func-

tional form k(·, ·) (section 4.1.3) and the kernel parameters (section 4.1.4). We run the

analysis on well-established synthetic test functions from the R package smoof [Bossek,

2017]. First, some exploratory graphical results are presented before turning to more

systematic results (section 4.2). Throughout the chapter, the R package mlrMBO that

builds on DiceKriging is used for BO and GP computations. All experiments were

computed on a high performance computing cluster using 20 64-bit-cores (linux gnu).

The experiments were conducted in R version 4.0.3 [R Core Team, 2020].
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4.1 Graphical Analysis

4.1 Graphical Analysis

Unlike a systematic analysis, the following graphical assessment of MOPs is of ex-

ploratory nature. It does not aim at showing that prior specification affects Bayesian

optimization on average, but that it can harm BO’s performance in some cases. We

will see in section 4.2 that the effect strongly depends on the objective function.

4.1.1 Mean Functional Form

The most common functional forms of the mean function are constant, linear, quadratic

and cubic trends. For analyzing their effect on the MOP given a target function, we

run R = 40 repetitions of Bayesian optimization per mean functional form with T = 20

iterations each. Since we are interested in the mean functional form’s ceteris paribus

effect, other hyperparameters of the optimization such as the GP’s kernel function

(Gaussian) and the AF (expected improvement) are not varied across repetitions. The

mean function and kernel parameters are estimated via maximum likelihood (as de-

scribed in section 5.1). For illustrative purposes, consider the multimodal and bivariate

carrom table (figure 2) and Giunta function (figure 3) from the smoof package as test

functions.

Figure 2: Carrom Table function Figure 3: Giunta function

Figures 4 and 5 visualize the mean optimization paths (with R = 40 and T = 20) of

BO applied on carrom table and Giunta function. In addition to the incumbent mean

best target values, their 0.95-confidence-intervals are depicted as error bars. The dotted

pink line represents the global optima.

Both carrom table and Giunta function have a globally good quadratic or cubic approx-

imation, see figures 2 and 3. (Notably, this appears to be orthogonal to the functions’
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4.1 Graphical Analysis

Figure 4: Effect of mean functional form on Bayesian optimization of carrom table function.

Figure 5: Effect of mean functional form on Bayesian optimization of Giunta function.

smoothness. Giunta function is much smoother than carrom table function.) It be-

comes evident that when dealing with such functions, trends of lower polynomial order

such as constants or linear functions slow down BO’s performance. Here, this can be

seen by the MOPs with constant mean function. Intuitively speaking, that is because

more explorations are needed for the SM to gain sufficient confidence if the prior ap-

pears not to be reliable. At a premature state of the optimization, both functions are

still optimized reasonably well by the GP with constant mean. In fact, for the Giunta

function’s optimization, the constant mean is even slightly advantageous in iterations 1

to 4. In the long run, however, the weak approximation of the SM with constant mean
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4.1 Graphical Analysis

prior prevents the BO from exploiting promising regions in detail. For the carrom table

function, this prior bias affects the incumbent best mean even in late iterations. The

algorithm apparently has proposed points from the four promising regions, as can bee

seen by comparing the vertical axis in figure 2 with the mean best target values in

figure 4. However, the constant mean prior deprives the optimizer of the flexibility to

dive further into these regions. The SM’s mean prediction overestimates the function

in these areas, which results in lower AF values, making them less “attractive”. Yet,

the overall effect of the mean functional form appears to be rather low in magnitude,

see figures 5 and 4 again.

4.1.2 Mean Function Parameters

The graphical analysis of the mean functions parameters’ effects on BO gives quite a

different picture. As can be seen in figures 6 and 8, the choice of the constant mean

value in the GP prior strongly influences the MOP values. This time, the functional

form (constant trend) remains unchanged, while its parameter is altered in the following

fashion: The mean of the function values are estimated from latin hypercube sampling

(LHS) (n = 400 for low dimensions with adaption in higher dimensions.20) This mean

estimate is then taken as baseline constant in the prior mean function (turquoise opti-

mization path in figures 6 and 8). To allow cross-functional comparison of the results,

these baseline means bm are then used to compute a vector of five different mean con-

stants (bm− 3bm, bm− 0.2bm, bm, bm + 0.2bm, bm+ 3bm)T . Again, everything else is

kept constant to allow for a ceteris paribus analysis.

While the effect on Bayesian optimization of carrom table function is negligible this

time, the Giunta function optimization is more strongly affected than by the mean

functional form, see figures 28 and 31 in the appendix. What is more, optimizations of

other functions are severely slowed down by inadequate choices of the constant mean

value, whereat “inadequate” does not necessarily mean “inaccurate”, as the following

graphical exploration will reveal.

The effect of the mean function parameter becomes especially evident in case of the

six-dimensional Schwefel function from the black-box optimization benchmark (BBOB)

database.

20We control for the curse of dimensionality (COD) by comparing mean estimates based on n = 400

with mean estimates based on n = 400p. Yet, in most cases estimates do not change severely.
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4.1 Graphical Analysis

f(x) = −1

6

6∑
d=1

[
xd sin

(√
|xd|
)]

+ c, (11)

where c is a constant and x a 6-dimensional vector with entries xd. Figure 6 shows that

big deviations from the unbiased mean estimate m(x) = 70000 speed up (prior mean

too high) or slow down (prior mean too low) the optimization paths.

Figure 6: Effect of mean function parameters on Bayesian optimization of six-dimensional Schwefel

function, see equation 11.

Figure 7: Bivariate Ackley function

A similar slowdown of the optimization caused by severe underestimation of the mean

can be observed in case of the bivariate and highly-multimodal Ackley function (figure
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4.1 Graphical Analysis

7). Unlike in case of Schwefel function, however, the optimization of the bivariate

Ackley function is not accelerated by a prior mean that is too high. A slightly higher

mean seems beneficial, but an extraordinary high mean of 80 performs worse (figure

8). As of now, the exact nature of the prior mean’s effect remains unclear. Its very

existence, however, appears beyond any doubt. The systematic assessment in section

4.2 will confirm this.

Figure 8: Effect of mean function parameters on Bayesian optimization of bivariate Ackley function.

4.1.3 Kernel Functional Form

We assess the influence of five popular kernel function families: Gaussian kernel, expo-

nential kernel, power exponential kernel and two Matérn-kernel families (ν = 3, ρ = 2

and ν = 5, ρ = 2). These kernels appear throughout the literature and are available per

default in mlrMBO. Mean function was set to m(x) = 0 and both the mean and kernel

functions’ parameters were estimated by maximum likelihood as described in section

5.1. Again, all other hyperparameters were kept constant. Figure 9 show MOP plots

for the Engvall test function. Figures 32 and 33 in the appendix show MOP plots for

two more test functions. As you can plainly see, the effect of the kernel functional form

is generally high. Section 4.2 will confirm this. While the exponential kernel guaran-

tees faster convergence in most of the functions we tested, such as the Bird function

(figure 33) and the Engvall function (figure 9), there are also functions, for which the

exponential kernel slowed down the optimization, see bivariate Ackley function in figure

32. This difference in performance caused by the kernel’s functional form cannot be at-

tributed to any specifics of the functions involved. For instance, it cannot be explained
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4.1 Graphical Analysis

by the functions’ smoothness since Ackley and Bird function are both heavily wiggly.21

Figure 9: Effect of kernel functional form on Bayesian optimization of Engvall function. Color palette

was altered to incorporate the non-ordinal nature of the attribute “kernel functional form”, except for

the two Matérn-kernels.

4.1.4 Kernel Function Parameters

For analyzing the kernel parameters’ effects, we restrict ourselves to the kernel-bandwidth

` that all popular kernel functional forms share and that determines the smoothness of

the prior GP. Leaning on the procedure for varying mean function parameters in sec-

tion 4.1.2, we estimate an “optimal” baseline `bm via maximum likelihood from n = 400

data points obtained by LHS. This `bm is then used to specify a vector of five different

kernel bandwidth values (`bm − 3`bm, `bm − 0.2`bm, `bm, `bm + 0.2`bm, `bm + 3`bm)T . The

mean function was set to m(x) = 0 and a Gaussian kernel was chosen as functional

form. Given that the functional form has a high impact on MOPs, this appears as a

rather drastic limitation. Thus, we run the same simulations for an exponential kernel

and a Matérn kernel (ν = 5, ρ = 2). The results do not differ, increasing our confidence

in them. For each kernel functional form, a varying ` has almost no impact on the

optimization path. The visualized MOPs all resemble figure 10.

21Compare the functions’ visualizations in figure 7 (Ackley) as well as figures 29 and 30 (Bird and

Engvall function) in the appendix.
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4.2 Results

Figure 10: Effect of kernel parameter ` on Bayesian optimization of Engvall function.

4.2 Results

In order to test the results of the exploratory graphical analysis, we proceed in a more

systematic way. 50 test functions from the smoof package are selected at random,

stratified across the parameter space dimensions 1, 2, 3, 4 and 7. For each of them, the

sensitivity analysis is conducted with regard to mean functional form and parameters

as well as with regard to kernel functional form and parameters, as described above in

sections 4.1.1 - 4.1.4. Diverging from the graphical analysis, this systematic assessment

is not conditioned on the initial design, i.e. it is randomly sampled anew for each of the

R = 40 BO repetitions. This way, we make sure the results do not depend on a specific

initial sample. Recall that we are interested in a systematic assessment now as opposed

to the graphical analysis, where our aim was to show that an influence is possible

in principle. Instead of visualizing the MOPs directly, we compute the accumulated

difference (AD) for each experiment, following definition 14.

Definition 14 (Accumulated Difference of Mean Optimization Paths)

Consider an experiment comparing S different prior specifications on a test function

with R repetitions per specification and T iterations per repetition. This results in

a T × S-matrix of MOPs as defined in definition 13 for iterations t ∈ {1, ..., T} and

prior specification s ∈ {1, ..., S} (e.g. constant, linear, quadratic etc. trend as mean
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4.2 Results

functional form) with entries :

MOPt,s =
1

R

R∑
r=1

Ψ(x∗)r,t,s.

The accumulated difference (AD) for this experiment is:

AD =
T∑
t=1

(
max
s
MOPt,s −min

s
MOPt,s

)

Note that the accumulated difference (AD) is proportional to the area between the

lowest and the highest graph in the visualizations of mean optimization paths, see figure

8 for instance. We use this measure to approximate the influence of prior variations

with regard to the different components mentioned above.

The accumulated differences for all the 50 randomly selected test functions can be found

in the appendix, table 5. The following table 1 shows the accumulated differences for

some of the 50 functions. As can be seen, the AD values vary strongly across functions,

compare AD values of the Bent-Cigar function with the ones of the Matyas or the

Brent function, for instance. This can be explained by different levels of difficulty of

the optimization problem, mainly influenced by modality (“How many local optima

are there that need to be explored?”) and smoothness (“How easy is it to interpolate

between data points?”). The Brent function, for instance, is relatively easy to optimize

due to its smoothness and uni-modality, see figure 11. Since BO converges quickly in

this case regardless of the prior specification, its influence is rather negligible.

Since we are interested in an overall, systematic assessment of the prior’s influence on

Bayesian optimization, we sum the AD values over the stratified sample of 50 functions,

see table 3. Glimpsing at table 1 again, however, reveals that this absolute sum is likely

driven by some hard-to-optimize functions with generally higher AD values or by the

scale of the functions’ target values.22 Thus, we standardize the AD values within each

function, i.e. divide each AD value by the mean AD of the respective function. Results

can be found in table 6 in the appendix. Table 3 shows the sums of the standardized AD

values. It becomes evident that the optimization is affected the most by the functional

form of the kernel and the mean parameters, while kernel parameters play a minor role.

The mean functional form plays an important role when considering the absolute effect

across all functions, while it is less important taking standardization into account.

22Note that AD and MOP as defined in definition 13 and 14 are not scale-invariant.
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4.2 Results

Test function mean mean kernel kernel

(Dimension of X ) functional form parameters functional form parameters

Ackley (1) 23 38 67 23

Alpine N. 1 (1) 2.8 1.8 2 1.2

Alpine N. 2 (1) 0.11 0.15 0.16 0.079

Cosine Mixture (1) 0.073 0.07 0.11 0.14

Hyper-Ellipsoid (2) 0.24 2 3.7 0.0012

Six-Hump Camel Back (2) 1.3 3.3 2.9 0.71

Giunta (2) 0.16 0.29 0.1 0.00018

Carrom Table (2) 71 71 81 0.2

Brent function (2) 0.44 0.47 13 4.4 ·10−5

Trecanni (2) 1.5 3.4 7 0

Matyas (2) 0.28 0.59 2.7 0

Hartmann (3) 3 4.8 5.3 0.82

Alpine N. 2 (3) 14 25 30 4.6

Sum of Different Squares (4) 0.37 1.4 0.32 0

Bent-Cigar (4) 3.6 ·109 2 ·1010 7 ·109 5.7 ·108

Deflected Corrugated Spring (7) 16 38 11 0

Sphere (7) 1.5 ·102 4.4 ·102 97 8.5

Table 1: Accumulated differences of MOP values for BO of selected test functions from smoof. Find

complete results in table 5 and 6 in the appendix.

Figure 11: Bivariate Brent function
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4.3 Discussion

mean kernel mean kernel

functional form functional form parameters parameters

1.8714 · 1016 1, 0876 · 1016 1, 0828 · 1016 3.5316 · 1015

Table 2: Sum of accumulated differences of all 50 MOPs per prior specification. Comparisons between

mean and kernel are more valid than between functional form and parameters.

mean kernel mean kernel

functional form functional form parameters parameters

42.49 68.20 77.91 11.40

Table 3: Sum of standardized accumulated differences of all 50 MOPs per prior specification. Com-

parisons between mean and kernel are more valid than between functional form and parameters.

4.3 Discussion

As expensive functions imply few data, it comes at no surprise that the GP’s predictions

in BO heavily depend on the prior. Our results suggest this translates to BO’s conver-

gence. It is more sensitive towards the functional form of the kernel than towards those

of the mean function. It is more sensitive towards the mean function’s parameters than

towards those of the kernel, which appear to play a negligible role in BO’s convergence.

The kernel functional form determines the general form and flexibility of the Gaussian

process and thus has a strong effect on the SM’s capacity to model the true functional

relationship. Its importance in BO then comes at no surprise. What is more interesting,

the mean parameters’ effect may not only stem from the modeling capacity but also from

the optimizational nature of the algorithm. While unintended in statistical modeling,

a systematic under- or overestimation may be beneficial when facing an optimization

problem, see also section 5.1 and 9. Further research on interpreting the effect of the

GP prior’s components on mean optimization paths is recommended.

4.4 Limitations

Albeit the random sample of 50 test functions was drawn from a wide range of estab-

lished benchmark functions in the smoof package, the analysis does by far not comprise
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4.4 Limitations

all possible objective functions, not to mention real-world optimization problems. Addi-

tionally, as mentioned above, the graphical analysis is conditioned on an initial sample.

This is not a severe limitation, since we use maximin latin hypercube sampling (LHS)

that maximizes the minimum distance between design points and thereby restricts the

influence of the initial sample. Anyhow, we did vary the initial design in the systematic

assessment. What weighs more, the presented findings regarding kernel and mean func-

tion parameters are influenced by the degree of variation, the latter being a subjective

choice. Statements comparing the influence of the functional form with the parameters

are thus to be treated with caution. Yet, the comparison between kernel and mean

function parameters is found valid, as both have been altered by the same factors.

Similar considerations hold for comparing mean and kernel functional form.

Furthermore, interaction effects between the four prior components were not completely

taken into account and partly left to further research. The reported AD values for mean

parameters and mean functional form were computed using a Gaussian kernel. Since

other kernels may interact differently with the mean function, the analysis was revisited

using a power exponential kernel as well as a Matérn kernel. As we observe only small

changes in AD values, the sensitivity analysis can be seen as relatively robust in this

regard. Noteworthy, we did not control for possible interaction effects in the other

direction, that is between mean functional form and parameters on the one hand with

the kernel on the other hand, because the former can be (and are per default in Dice

Kriging) estimated from the data. (This, of course, is not possible in case of the

kernel’s functional form.) Hence, we measured the overall effect of kernel parameters

and functional form conditioned on the best fit of the mean function.
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5 Prior Specification Problem

In the following, we will discuss two popular approaches to specifying the prior param-

eters, subsumed as θ in definition 15, of GP in BO. Within the scope of this thesis,

we assume the functional form of both mean function and kernel is given. [Duvenaud,

2014] and [Duvenaud et al., 2013] address the intriguing issue of how to specify the

functional form of the kernel in GP regression in general and [Malkomes and Garnett,

2018] for the case of GP inside BO, see section 7.

Definition 15 (Prior Parameter Vector)

Given functional forms m(·) and k(·, ·), a Gaussian process prior GP(mθ(x), kθ(x,x
′))

is fully specified by the parameter vector θ ∈ Rp, comprising parameters of both the

mean function and the kernel, i.e.

θ = [θm(x),1, ..., θm(x),pm , θk(x,x′),1, ..., θk(x,x′),pk ]
T ,

where pm is the number of mean function parameters, pk is number of kernel parameters

and pm + pk = p.

As BO deals with functions lacking analytical description, information about the func-

tion’s smoothness, mean, periodicity and the like is scarce a priori. Hence, specifying

the GP prior by expert knowledge is usually not an option. There are two popular ap-

proaches to this problem, maximum likelihood (ML) and integrated acquisition function

(IAF). Before turning to our proposed method in section 6, we will briefly discuss these

two commonly-received approaches and show their limitations. Figure 12 summarizes

all case differentiations mentioned above.

Prior Specification: GP(mθ(x), kθ(x,x
′))

mθ(x)

m(·) θ

ML IAF

kθ(x,x
′)

θ k(·, ·)

Figure 12: Summary of Section 5: The Prior Specification Problem.
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5.1 Maximum Likelihood Estimation

5.1 Maximum Likelihood Estimation

One option is to estimate θ from the data by maximum likelihood (ML): θ̂ML(Xt),

where Xt is the design matrix of iteration t, see definition 16. Just like estimating

the surrogate model violates the Bayesian paradigm of the optimization procedure, this

approach violates the Bayesian paradigm of GP, i.e. specifying a prior before seeing

the data. This “peeking at the data”, however, is quite popular in practice and even

the default method in many software libraries, e.g. in mlrMBO. Its popularity stems

from classical GP Regression, see the R package DiceKriging [Roustant et al., 2012],

where data is usually not sequentially augmented as in BO. Some implementations also

use partial ML estimation, e.g. only for the kernel parameters, while setting mean

function parameters in the actual Bayesian way a priori : [θk(x,x′),1, ..., θk(x,x′),pk ]
T =

[θ̂k(x,x′),1,ML, ..., θ̂k(x,x′),pk,ML]T and [θm(x),1, ..., θm(x),pm ]T = m,m ∈ Rpm . For example

m = 0.

Definition 16 (Maximum Likelihood Estimation of Prior Parameters)

Consider iteration t. Given n = ninit + t observations of covariates {x1, ...,xninit ,

xninit+1, ...,xninit+t} and the respective function values {Ψ(x1), ...,Ψ(xninit+1),Ψ(x1), ...,

Ψ(xninit+t)}, both subsumed as design matrix Xt, a normal density function f and the

resulting likelihood function L(θ|Xt) =
∏n

i=1 f(θ|xi,Ψ(xi)), the maximum likelihood

estimator for θ is

θ̂ML(Xt) = arg max
θ

L(θ|Xt).

Simply “plugging” ML-estimation into an optimization method like BO can result in a

(globally) biased θ̂ML(X). This is due to the optimizational nature of the process that

proposes data points in order to find an optimal parameter configuration: Xt entails

data points accumulated in certain regions that appear promising during optimization.

However, for the ML-estimator θ̂ML(X) to be unbiased, Xt is required to be drawn

independently (ind.) from an identical distribution (iden.). This is implicitly assumed

in definition 16 as follows:

L(θ|X)
ind.
=

n∏
i=1

`(θ|xi,Ψ(xi))
iden.
=

n∏
i=1

f(θ|xi,Ψ(xi)), (12)

where the assumption of identical distribution follows from the multivariate normal as-

sumption of the Gaussian process (definition 10) and the fact that normal distributions

are closed under marginalization.
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5.1 Maximum Likelihood Estimation

The assumption of independence can be violated, as figure 13 illustrates. It shows

the distribution of 10 proposed points from BO of a cosine mixture function with GP

as surrogate model and EI as acquisition function. Albeit exploring the parameter

space in three iterations, the BO has mainly focused on a promising local (and global)

optimum. For illustrative purposes, now assume pm = 1, a constant mean functional

trend. Then θm for the GP in iteration t is estimated by θ̂m ∈ θ̂ML(X). As more and

more points are proposed in the region of the global optima, θ̂m will be driven towards

the global optimum around 0. It is in regions far away from the optimum, however,

where θ̂m will then do some damage. In the SM in these less-explored regions the prior

will dominate the likelihood in the posterior leading to a systematic underestimation of

the true function. This, in turn, might make these regions more attractive as expressed

by the AF as a function of the mean estimates, which by this mean might affect the

optimization. Section 9 will address this hypothesis in detail.

Recall that EI is already rather exploratory compared to other acquisition functions.

Only with fully exploratory AFs, consider SE from definition 5 for instance, the bias

will disappear. Such an extreme form of BO, however, will hardly23 serve the prac-

titioner’s aim of optimization given a limited budget of evaluations. At least at first

sight, optimizing and understanding the unknown functional relationship through iid

samples appear to be incompatible objectives. Yet, section 9 will demonstrate that pro-

posals from optimization can be used to approximate an iid sample through a weighting

procedure.

Figure 13: Four initial data points and ten sequentially proposed data points (including the blue

triangle of the current iteration) by Bayesian optimization of cosine mixture function. Iter: Iteration.

Gap: Distance to global optimum. Image Credits: mlrMBO Documentation.

Notwithstanding the above, one could argue BO is an optimizer and thus simply has

23There are situations, where a fully exploratory AF can be advantageous though. See section 6.6

for a practical example.
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5.2 Integrated Acquisition Function

no need for an exact model of the true target function. That is, it can afford a globally

biased surrogate model as long as it approximates the target well locally in promising

regions. This viewpoint, however, is in stark contract to the explore-exploit rationale

behind Bayesian optimization. A globally biased surrogate model will translate to a

biased acquisition function (AF) through its mean estimates, as we have shown in

theorem 1 for the case of LCB. This can potentially lead to more explorations than

needed, which could slow down convergence. Section 9 will address this issue in detail.

5.2 Integrated Acquisition Function

Initially proposed by [Benassi et al., 2011] and popularized by [Snoek et al., 2012], the

integrated acquisition function (IAF) claims a “fully-Bayesian” treatment of θ. The

idea is to simply average over different specifications of θ in order to propose points

that are more robust towards θ, that is, that do not depend on a specific θ. This

“integrating out” of θ is done for the posterior. Thus, the integrated acquisition function

IAFt(x) corresponds to the posterior expectation value of AFt(x,θ) with regard to θ,

see definition 17.

Definition 17 (Integrated Acquisition Function)

Provided an acquisition function AFt and the design matrix Xt in iteration t and a

hyperprior p(θ), the integrated acquisition function accounts to

IAFt(x) =

∫
AFt(x,θ) p(θ|Xt) dθ,

where the posterior p(θ|Xt) is derived from Bayes’ Theorem, i.e. p(θ|Xt) = p(Xi|θ)p(θ)
p(Xi)

.

For the purpose of computational implementation, the integral
∫
AFt(x,θ)p(θ|Xt)dθ

can be approximated by Markov chain Monte Carlo (MCMC):

∫
AFt(x,θ) p(θ|Xt) dθ ≈

1

M

M∑
m=1

AFi(x,θm), (13)

where θm is drawn from p(θ|Xt) by means of MCMC. First thought to be computa-

tionally too expensive, [Snoek et al., 2012] showed that the MCMC-sampling is worth

the computational expense, as the resulting robust proposals x∗t = arg max IAFt(x)

speed up convergence. Their python library spearmint [Snoek et al., 2012] popularized

this approach widely. Under a decision-theoretic scope, the prior weights on the pa-

rameters from X d are extended to the prior parameter vector θ through the hyperprior
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p(θ). This certainly makes this approach “more Bayesian” than the ML-estimation

of θ. Yet, it is still far from “fully Bayesian”, rendering the nomenclature by [Snoek

et al., 2012] somewhat misleading. First, the surrogate model, i.e. the posterior GP, is

still estimated from Xt in the optimization procedure. Second, it remains arguable as

to what extent a hyperprior can be regarded as a “full” specification of the underlying

prior. Since prior information about the function to be optimized Ψ is scarce, this holds

for hyperprior information as well.

6 Prior-Mean-Robust Bayesian Optimization

6.1 Motivation

While a highly popular hyperparameter optimizer in machine learning [Nguyen, 2019],

BO itself – not without a dash of irony – heavily depends on its hyperparameters, namely

the GP prior specification. Bayesian sensitivity analysis (Section 4) has shown that

BO’s convergence is especially sensitive towards the kernel’s functional form and the

mean function’s parameters. In response to the latter, we propose three modifications

of BO (sections 6.3 to 6.5).

All modifications rely on the concept of imprecise Gaussian process (IGP), proposed

in [Mangili, 2015] and more generally in [Mangili, 2016]. The proposed implementa-

tions of prior-mean-robust Bayesian optimization all use IGP as surrogate model(s) –

be it explicitly or implicitly. The general idea of an IGP is to incorporate the model’s

imprecision regarding the choice of the prior’s mean function parameter, given a con-

stant mean function and a fully specified kernel, see definition 18. We will exploit

this to possibly yield Bayesian optimization algorithms that are more robust towards

misspecifications of the prior mean parameter.

The no free lunch theorem (NFL) [Wolpert and Macready, 1997] states that no (op-

timization) algorithm is universally better (that is, on all possible types of problems)

than any other. Leaning on this famous consideration, we will discuss two hypothe-

ses regarding prior-mean-robust BO hereinafter. First, our proposed method appears

to be designed to perform worse than classical BO on a very specific type of problem

but beat the method on related problems, while still being inferior to general-purpose

algorithms on most types of problems. This hypothesis is derived from the fact that

prior-mean-robust BO comprises a a bigger set of prior specifications than standard
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BO. Second, this kind of generalization could also lead to better performance on a very

specific type of functions, where the inherent imprecision of the function is increased,

e.g. due to unobserved covariates.

Figure 14: Visualization of the no free lunch theorem (NFL). Image Credits: Leon Fedden

In what follows, we first describe the concept of imprecise Gaussian processes and then

turn to our three proposed modifications, before experimental results are presented.

6.2 Imprecise Gaussian Processes

Definition 18 (Imprecise Gaussian Process)

Consider the case of univariate regression. Given a base kernel kθ(x, x
′) and a degree of

imprecision c, [Mangili, 2015, definition 2] defines a constant mean imprecise Gaussian

process (IGP) as a set of GP priors “near ignorance”.

Gc =

{
GP

(
Mh, kθ(x, x

′) +
1 +M

c

)
: h = ±1,M ≥ 0

}
(14)

It can be shown that c→ 0 yields the precise model [Mangili, 2015, page 189].

Note that the mean functional form (constant, hence pm = 1) as well as both kernel

functional form and its parameters do not vary in set Gc, but only the mean parameter

θm(x),1 = Mh ∈ (−∞,∞). Also note that the imprecise Gaussian process (IGP) (see

definition 18) is defined for univariate target functions only, i.e. p = 1 in X p. All

methods proposed below are thus restricted to this univariate case. For each prior

GP, a posterior GP can be inferred as described in section 3. This results in a set of

posteriors and a corresponding set of mean estimates, of which the upper and lower

mean estimates µ(x)c, µ(x)c can be derived analytically [Mangili, 2015], see definition

20 based on definition 19.

Definition 19 (Base Kernel Matrix)

Let kθ(x, x
′) be a base kernel. Analogous to definition 11, the finitely positive semi-
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6.2 Imprecise Gaussian Processes

definite matrix Kn is formed by applying kθ(x, x
′) on the training data

Kn = [kθ(xi, x
′
j)]ij.

We call Kn base kernel matrix.

Note that Kn is restricted only to be finitely positive semi-definite and not to have

diagonal elements of 1. In statistical terms, Kn is a covariance matrix and not neces-

sarily a correlation matrix. Hence, the variance Iσ2 is included, following the examples

in equations 4 to 9. Diverging from [Mangili, 2015], we only consider target functions

without explicit noise, thus no “nugget term” Iσ2
nugget needs to be included in Kn.

Definition 20 (Upper and Lower Mean Estimates of IGP)

Let x be a scalar input, whose f(x) is to be predicted. Then kx = [kθ(x, x1), ..., kθ(x, xn)]T

is the vector of covariances between x and the training data. Furthermore, define

sk = K−1
n 1n and Sk = 1

T
nK

−1
n 1n. Then [Mangili, 2015] shows that upper and lower

bounds of the posterior mean function for f(x) can be derived. If |sky
Sk
| ≤ 1 + c

Sk
, they

are:

µ(x) = kTxK
−1
n y + (1− kTx sk)

sTk
Sk
y + c

|1− kTx sk|
Sk

(15)

µ(x) = kTxK
−1
n y + (1− kTx sk)

sTk
Sk
y − c |1− k

T
x sk|

Sk
(16)

If |sky
Sk
| > 1 + c

Sk
:

µ(x) = kTxK
−1
n y + (1− kTx sk)

sTk
Sk
y + c

1− kTx sk
Sk

(17)

µ(x) = kTxK
−1
n y + (1− kTx sk)

sTk y

c+ Sk
(18)

Definition 21 (Variance Estimates of IGP)

The corresponding variance estimate of both µ(x) and µ(x) is

σ̂2
f(x) = kθ(x, x)− kTxK−1

n kx +
(1− kTx sk)2

Sk
(19)
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6.2 Imprecise Gaussian Processes

Definition 22 (Credible Intervals of IGP Prediction)

For α ∈ [0, 1] and zq the q-quantile of the standard normal distribution, the 1 − α

credible interval (CrI) of the mean estimate for f(x) is

CrIα = [f
x

= µ(x)− z1−α
2
· σ̂2

f(x), fx = µ(x)− z1−α
2
· σ̂2

f(x)].

[Mangili, 2015, Theorem 4] shows that CrIα = [f
x
, fx] satisfies P (f(x) < f

x
) ≤ α

2
and

P (f(x) > fx) ≤ α
2
.

Figure 15 visualizes upper and lower mean function estimates as well as corresponding

credible intervals of an imprecise Gaussian process trained on data generated by the

first “Alpine”-function f(x) = x · sin(x) + 0.1x from the package smoof. The prediction

function including credible intervals of a precise (classical) Gaussian process with hyper-

parameters estimated from the data through ML are also depicted. As can be seen by

comparing predictions in x ∈ [−10,−5] to x ∈ [4, 7] , the model imprecision µ(x)−µ(x)

is greater than the classical prediction uncertainty (credible interval of precise GP) in

the absence of data. Here, the prior dominates the data in the posterior. The opposite

holds in the abundance of data. Noteworthy, the credible intervals of µ(x) and µ(x) are

smaller than the CrI of the precise GP.

Figure 15: Upper and lower mean estimates of IGP and precise GP estimates from data generated

by first alpine function.
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6.3 Parallel Hedging

The most straight-forward way of rendering BO more robust towards misspecification

of the prior’s mean parameters is to deploy several BOs in parallel with µ(x)c, µ(x)c

for varying c as surrogate models. Algorithm 2 describes the procedure.

Algorithm 2 Prior-Mean-Robust Bayesian Optimization – Parallel Hedging

1: create an initial design D = {(x(i),Ψ(i))}i=1,...,ninit of size ninit

2: define budget K + 1 of (logical) Cores with S = K
2

+ 1 different (I)GP models with

varying c-values (one of which has c→ 0 for the precise model)

3: define budget B of total evaluations

4: for each k in K+1 do

5: for I = B
K+1

Iterations do

6: train a surrogate model (GP or µ(x)c, µ(x)c of IGPc) on data D

7: propose xnew that optimizes the acquisition function AF (SM(x))

8: evaluate Ψ on xnew

9: update D ← D ∪ (xnew,Ψ(xnew))

10: end for

11: save x∗ = arg minx∈D Ψ(x) and respective Ψ(x∗) as optima (x∗,Ψ(x∗))k

12: end for each

13: return mink{(x∗,Ψ(x∗))k : k ∈ {1, ..., K}}

In addition to the global minimum mink{(x∗,Ψ(x∗))k : k ∈ {1, ..., K}} across all BO

runs, parallel hedging can return all 2S + 1 optima from S imprecise surrogate models

and the precise model. The 2S additionally proposed optima can be regarded as a

hedge against getting stuck in a local optima in the regular process due to prior mean

function parameter misspecification.

In line 6 of algorithm 2, the SM is trained on the data of the respective iteration. Each

core uses a unique Gaussian process as surrogate model. That is, two IGPs are trained

independently for each c and due to the stochastic nature of GP training (see section

3) µ(x)c and µ(x)c can be asymmetric around µ̂(x) of the precise model. We opt for

this approach because its implementation is easier to integrate into the mlr and mlrMBO

framework. It is also used in the batch-wise speed-up method in section 6.4. Otherwise,

µ(x)c and µ(x)c would be computed in the same core reducing the budget of required

cores from K + 1 to S = K
2

+ 1. We leave this to further research. However, note that
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6.3 Parallel Hedging

additional cores (if available, of course) come at practically no extra computational cost

thanks to parallelization.

As mentioned above, IGP only varies the mean function parameter. The functional

forms of mean and kernel are set manually beforehand. (We use constant trend and

power-exponential kernel for our experiments in section 6.6.) The kernel parameters,

however, are estimated from the data. Diverging from [Mangili, 2015], we do not use

MAP but ML in order to avoid the necessity of specifying a hyperprior. DiceKriging’s

[Roustant et al., 2012] built-in ML-optimizers from the package rgenoud [Mebane, Jr.

and Sekhon, 2011] based on evolutionary algorithms are used to this end.

Given a limited budget of evaluations B, parallel hedging only beats classical BO if

one of the K + 1 BO runs fit the true underlying function so well and (or) speed

up convergence to such a degree that outweighs the B − B
K+1

evaluations each of the

K + 1 BO runs is short of compared to classical BO. This appears rather unlikely and

benchmarking results in section 6.7 will confirm this presumption. However, parallel

hedging BO has an intrinsic advantage over classical BO: It provides “out-of-the-bag”

sensitivity analysis. That is, one can tell from the distribution of {(x∗,Ψ(x∗))k : k ∈
{1, ..., K}} how sensitive the returned optimum is towards altering the GP prior.

What is more, parallel hedging might still be attractive from an efficiency point of

view; namely in case time for each evaluation rather is the limiting factor than the

budget of total evaluations B (e.g. in simulation-based applications of BO). In such

setups, parallel-hedging BO might only need a little more time due to the parallelization

overhead (caused by initializing parallel clusters or sessions) than BO, while the benefit

of the sensitivity analysis still holds. Our implementation of IGP predictions in R,

however, proved to be distinctly slower than the one of classical GP in DiceKriging

that is used in mlrMBO. Yet, for very time-consuming evaluations of the true function

(e.g. hyperparameter-tuning of huge nets in deep learning) this might be outweighed

by the evaluation time.

Generally, there is still room for improvement regarding the efficiency of the implemen-

tation. Readability was preferred over speed, as the overall aim was rather a proof

of concept than to write user-ready software. For instance, the IGP mean and stan-

dard error prediction could be implemented more efficiently by combining both into one

function. We leave this to further projects.
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6.4 Batch-Wise Speed-Up

Additionally, the budget of function evaluations can be divided into batches, after each

of which the parallelization is broken and the worst performing surrogate models are

thrown away. Both the remaining budget and the evaluated data is then distributed

among the remaining models to speed up convergence, see pseudo-code in algorithm

3. This strategy is called successive halving (SH) and is widely popular in machine

learning, see [Jamieson and Talwalkar, 2016] for instance. As an advantage over the

simple parallel hedging, this batch-wise implementation tries not to waste resources in

batches that do not approximate well the true underlying function.

Algorithm 3 Prior-Mean-Robust Bayesian Optimization – Batches

1: create an initial design D = {(x(i),Ψ(i))}i=1,...,ninit of size ninit

2: define initial budget K + 1 of (logical) Cores with S = K
2 + 1 different (I)GP models with

varying c-values (one of which has c→ 0 for the precise model)

3: define budget B of total evaluations and distribute among M batches and respective

number of Cores C ∈ NM with C = (K + 1, K+1
2 , K+1

4 , ...) indexed by m.

4: compute vector of iterations per (I)GP per batch I ∈ NM such that
∑M

m=1 Im · Cm ≤ B
5: for m in M batches do

6: for each Cm do

7: for Im Iterations do

8: train a surrogate model (GP or µ(x)c, µ(x)c of IGPc) on data D

9: propose xnew that optimizes the acquisition function AF (SM(x))

10: evaluate Ψ on xnew

11: store a surprise metric Sur(AF (IGPc(x
new)),Ψ(xnew))

12: update D ← D ∪ (xnew,Ψ(xnew))

13: end for

14: end for each

15: Throw away worst K
2 batches according to averaged Sur

16: Add evaluated D from thrown away batches to remaining ones

17: end for

18: return optimum from final batch {(x∗i ,mini Ψ(x∗)i ∈ D}

The surprise metric in line 11 can be specified flexibly in principle, the most natural

choice being the mean prediction error, which we opt for in the following. The metric

must, of course, lead to an ordinal structure on the models that allows sorting out the
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worst performing ones in line 15.

This batch-wise implementation of prior-mean-robust BO can also be thought of as

an attempt to cure the myopia of BO, recall section 2.4. Proposals are made not

only based on the acquisition function inside the sequential BO process, but also ac-

cording to a more far-sighted surprise metric that takes into account Im iterations per

batch m. However, unlike existing non-myopic BO versions such as Knowledge Gra-

dient [Frazier et al., 2009] and Entropy Search [Hennig and Schuler, 2012], batch-wise

prior-mean-robust BO looks backwards rather than ahead. Instead of accounting for

hypothetical changes of the SM in iteration t + 1 as a function of the proposal in iter-

ation t, batch-wise prior-mean-robust BO considers the performances of the surrogate

models’ performances in previous iterations.

6.5 Generalized Lower Confidence Bound

Inspired by multi-objective Bayesian optimization (section 2.5) one can think of an

IGP’s upper and lower mean and variance predictions as individual surrogate models for

different objective functions. As described in section 2.5, one approach to propose points

based on various surrogate models is to scalarize their predictions by an acquisition

function defined a priori. The herein proposed generalized lower confidence bound

(GLCB) is such an acquisition function. It generalizes the popular lower confidence

bound (LCB) LCB(x) = −µ(x)+τ ·
√
var(µ(x)) as described in definition 23 in section

2.2. The only difference to a multi-objective AF stems from the fact that the different

surrogate models are estimated with regard to one and the same (single-objective)

target function instead of multiple ones.

Definition 23 (Generalized Lower Confidence Bound (GLCB))

Let x ∈ X . As above, µ(x)c, µ(x)c are the upper/lower mean estimates of an IGP

with imprecision c and µ(x), var(µ(x)) are the mean and variance predictions of a

precise GP. The prior-mean-robust acquisition function generalized lower confidence

bound (GLCB) then is

GLCB(x) = −µ(x) + τ ·
√
var(µ(x)) + ρ · (µ(x)c − µ(x)c),

where τ > 0 controls the “mean vs. data uncertainty” trade-off (degree of risk aversion)

and ρ > 0 controls the “mean vs. model imprecision” trade-off (degree of ambiguity

aversion).
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Note that µ(x)c−µ(x)c simplifies to an expression only dependent on the kernel vector

between x and the training data kx = [kθ(x, x1), ..., kθ(x, xn)]T , the base kernel matrix

Kn and the degree of imprecision c, which follows from equations 17 and 18 in case

|sky
Sk
| > 1 + c

Sk
:

µ(x)− µ(x) = (1− kTx sk)
sTk
Sk
y + c

1− kTx sk
Sk

− (1− kTx sk)
sTk y

c+ Sk

= (1 – kTx sk)
(sTk
Sk
y + c

Sk
− sTk y

c+Sk

)
(20)

As can be seen by comparing equations 15 and 16, in case of |sky
Sk
| ≤ 1 + c

Sk
, the model

imprecision µ(x)c − µ(x)c even simplifies further:

µ(x)− µ(x) = 2c
|1− kTx sk|

Sk
(21)

In this case, the GLCB comes down to GLCB(x) = −µ(x) + τ ·
√
var(µ(x)) + 2 ·

ρc |1−k
T
x sk|
Sk

and the two hyperparameters ρ and c collapse to one.

In both cases, the surrogate models µ(x)c and µ(x)c do not have to be fully implemented.

Only Kn and kx = [kθ(x, x1), ..., kθ(x, xn)]T need to be computed. GLCB can thus

be plugged into standard BO as an alternative AF without further ado and much

computational cost. Algorithm 4 describes the procedure.
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Algorithm 4 Prior-Mean-Robust Bayesian Optimization – Generalized Lower Confi-

dence Bound (GLCB)

1: create an initial design D = {(x(i),Ψ(i))}i=1,...,ninit of size ninit

2: specify c and ρ

3: while termination criterion is not fulfilled do

4: train a precise GP on data D and obtain µ(x), var(µ(x))

5: compute Kn and kx = [kθ(x, x1), ..., kθ(x, xn)]T

6: if |sky
Sk
| > 1 + c

Sk
then

7: µ(x)c − µ(x)c = (1− kTx sk)
(sTk
Sk
y + c

Sk
− sTk y

c+Sk

)
8: else µ(x)c − µ(x)c = 2c |1−k

T
x sk|
Sk

9: compute GLCB(x) = −µ(x) + τ ·
√
var(µ(x)) + ρ · (µ(x)c − µ(x)c)

10: propose xnew that optimizes GLCB(x)

11: evaluate Ψ on xnew

12: update D ← D ∪ (xnew,Ψ(xnew))

13: end while

14: return arg minx∈D Ψ(x) and respective Ψmin

GLCB explicitly accounts for the surrogate model’s imprecision with regard to its prior

mean parameter during the optimization procedure. Just like LCB, the generalized

LCB balances optimization of µ(x) and reduction of uncertainty with regard to the

model’s prediction variation
√
var(µ(x)) through τ . What is more, GLCB aims at

reducing model imprecision caused by the prior specification, controllable by ρ. Ideally,

this would allow returning optima that are robust not only towards classical prediction

uncertainty but also towards imprecision of the specified model.

6.6 Experiments

All three aforementioned proposals have been implemented in R, see section B. Upper

as well as lower mean and standard error prediction functions were integrated into the

mlr framework as S3 objects. They could then be plugged into mlrMBO [Bischl et al.,

2017]. For parallelizations in algorithms 2 and 3, packages doParallel and foreach

were used. DiceKriging [Roustant et al., 2012] was used to estimate the precise GP

models.

The proposed methods have been tested on synthetic benchmark functions from the
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R packages smoof [Bossek, 2017] and soobench [Mersmann et al., 2020] as well as on

univariate target functions generated from three data sets. The first one describes the

quality of experimentally produced graphene, an allotrope of carbon with (potential)

use in semiconductors, smartphones and electric batteries [Wahab et al., 2020]. The

second one contains historical meteorological data from Los Angeles, measured from

January to December 1976 [Breiman and Friedman, 1985], while the third one com-

prises heartbeat time series from a cardiological study on heart arrhythmia (irregular

heartbeat) [Goldberger and Rigney, 1991], see data set descriptions below.

We compare the performance of parallel hedging prior-mean-robust BO and batch-wise

prior-mean-robust BO to classical BO with a budget of 90 evaluations and an initial

design of size n = 10 generated by latin hypercube sampling (LHS). The optimization

runs are repeated n = 40 or n = 60 times24 and the mean optimization path (MOP)

(see definition 13) including bootstrapped 0.95-confidence intervals are computed. The

popular (and default in many libraries) expected improvement (EI) (definition 2) is

deployed as acquisition function (AF) in all these set-ups. We use focus search (random

search with narrowing search space) with 200 evaluated points per iteration and two

maximal restarts as infill optimizer. Parallel hedging prior-mean-robust BO uses one

IGP with c = 50 resulting in 3 models with 90 evaluations each. Batch-wise prior-

mean-robust BO uses three IGPs with c = 1, 10, 100 resulting in 7 models in the first

batch, 4 in the second and 1 in the last batch with 6, 10, 18 evaluations per model per

batch. To ensure numerical stability of DiceKriging, a tiny noise (nugget) term has

been added to the data for the precise model.25

We also compare generalized lower confidence bound (GLCB) (definition 6.5) to its

classical counterpart lower confidence bound (LCB) (definition 3) as well as to other

well-established acquisition functions, namely expected improvement (EI) (definition

2), augmented expected improvement (AEI) (definition 7), expected quantile improve-

ment (EQI) (definition 8), adaptive lower confidence bound (ALCB) (definition 4) and

standard error (SE) (definition 5). Besides their popularity in various applications,

these AFs have been chosen for practical reasons – they are all fully implemented in

mlrMBO. For pairwise comparisons of GLCB to each of them, we observe n = 60 BO

runs with a budget of 90 evaluations and an initial design of 10 data points generated

by latin hypercube sampling (LHS) each. Focus search was used as infill optimizer with

1000 evaluations per round and 5 maximal restarts.

24n was adjusted to bring about more precise estimates.
25See respective Github issue.

Page 45

https://github.com/mlr-org/mlrMBO/issues/80


6.6 Experiments

All experiments were computed on a high performance computing cluster using 20 64-

bit-cores (linux gnu). The experiments were conducted in R version 4.0.3 [R Core Team,

2020].

6.6.1 Graphene Data

Figure 16: Producing graphene via laser irradiation. Image credits: [Kotthoff, 2019]

The graphene data set comprises n = 210 observations of an experimental manufac-

turing process of graphene. A polymide film, typically Kapton, is irradiated with laser

in a reaction chamber in order to trigger a chemical reaction that results in graphene,

see figure 16. The data set comprises four parameters that influence the manufacturing

process such as power and time of the laser irradiation, see table 4. The target variable

(to be maximized) is a measure for the quality of the induced graphene, ranging from

0.1 to 5.5.

feature min max type description

power 10 5555 real-valued power of the laser

time 500 20210 real-valued irradiation time

gas categorical gas used in the reaction chamber

(Nitrogen, Argon, Air)

pressure 0 1000 real-valued pressure in the reaction chamber

target quality 0.1 5.5 real-valued quality of induced graphene

Table 4: Graphene data set [Wahab et al., 2020].

In order to construct a univariate target function from the data set, a random forest

(RF) was trained on subsets of it (target quality and power as well as target quality and

time, see figure 17). The predictions of these RFs were then used as target functions

to be optimized in order to compare the proposed BO methods to existing ones on a

real-world problem.
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Figure 17: Univariate target functions estimated from graphene data.

6.6.2 Air Pressure Data

The second data set describes 13 meteorological variables measured 1976 in Los Angeles.

It is obtained from the R package mlbench [Breiman and Friedman, 1985]. We therefrom

select two variables, air pressure and humidity, and again train a RF on them. The air

pressure is measured as 500 millibar pressure height, that is the height, where the air

pressure reaches 500 millibar. As figure 18 shows, air pressure is used as target variable

and humidity as covariate.
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Figure 18: Air pressure as a function of humidity (RF).

6.6.3 Heartbeat Time Series

While both the graphene quality and the air pressure functions stem from multivariate

data sets, we also aim at optimizing a function from a genuine univariate data set.
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To this end, the heartbeat time series of two anonymous individuals from the publicly

available MIT-BIH arrhythmia database [Goldberger and Rigney, 1991] were included

in the analysis. A RF was fitted on the data, as figures 19 and 20 indicate.
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Figure 19: Heartbeat rate of individual 1 (RF).
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Figure 20: Heartbeat rate of individual 2 (RF).

6.6.4 Synthetic Functions

For the sake of completeness and comparability, we also benchmark the proposed meth-

ods against established synthetic test functions. While the above target functions (all

based on real-world data) are rather wiggly, most synthetic functions are of smooth

nature.

All available univariate functions from the R packages smoof and soobench have been

selected. Such ones with infinite domains or target values of 0 globally were removed,

ending up with 31 distinct univariate functions. Aiming at variability regarding multi-

modality and smoothness, we select six different target functions, see figure 21.
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Figure 21: Selected synthetic target functions

6.7 Results

We find that parallel hedging and batch-wise speed-up prior-mean-robust BO (respec-

tive plots have white background) fail to beat classical BO, while GLCB (with varying ρ

and c, dark plots) systematically finds better configurations than LCB on the graphene

data set. Moreover, GLCB surpasses several other acquisition functions, including the

popular AF expected improvement (EI), in late iterations. However, it does not out-

perform the extreme case of the purely exploratory AF standard error, i.e. LCB with

τ →∞. Additionally, GLCB is inferior to some AFs on other test functions, see section

6.7.2. Selected key findings are depicted below, while complete results can be found in

the appendix, see figures 34 to 51.

6.7.1 Parallel Hedging and Batch-Wise Speed Up

Figure 22 shows mean optimization paths (see definition 13) including 95%-confidence

intervals (CI) for parallel hedging and batch-wise speed-up prior-mean-robust BO com-

pared to classic BO on the graphene-time target function. It becomes evident that both

modifications – in spite of overlapping confidence intervals especially in late iterations

– cannot compete with the classic BO.
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Figure 22: Benchmarking results from graphene data: Batch-wise speed-up BO (left) and parallel

hedging BO (right) vs. classic BO (black).

A similar picture emerges when visualizing results from hedging and batch-wise speed up

on the synthetic functions, see figure 34 in the appendix. The parallel implementations

always lag behind classic BO with batch-wise speed-up performing better than parallel

hedging.

6.7.2 Generalized Lower Confidence Bound (GLCB)

Since preliminary results were more promising in case of GLCB, this proposal was

assessed in greater detail. In what follows, key results from graphene, air pressure and

heartbeat data as well as from synthetic functions (in this order) are presented.

Figure 23 depicts mean optimization paths (MOPs) of generalized lower confidence

bound (GLCB) compared to classic acquisition functions on the graphene-time target

function. MOPs are shown for three different GLCB settings: ρ = 1, c = 50 and

ρ = 1, c = 100 and ρ = 10, c = 100. Figure 23 shows that GLCB surpasses LCB (all

settings) and EI (ρ = 10, c = 100) in late iterations. GLCB was compared to four other

acquisition functions, outperforming three (AEI, ALCB and EQI) of them, see figures 35

and 36 in the appendix. As can be seen in figure 35, the highly exploratory AF standard

error (SE) (definition 5) detects configurations that are as good as (ρ = 10, c = 100) or

better than (ρ = 1, c = 50 and ρ = 1, c = 100) the ones found by GLCB. As introduced

in section 2.2, this AF uses the standard error as an exclusive criterion to propose

points, leading to a strategy of maximal exploration.
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Figure 23: Benchmarking results from graphene data: generalized lower confidence bound (GLCB)

vs. expected improvement (EI) and lower confidence bound (LCB). 60 runs per Acquisition Function

with 90 evaluations and initial sample size 10 each. Error bars represent 0.95-CI. GLCB-1-100 means

rho = 1 and c = 100. tau = 1 for all GLCBs.

Optimization of the second target function estimated from the graphene data (graphene

quality depending on laser power) reveals a slightly different picture shown by figures

37 and 38 in the appendix. While GLCB still surpasses LCB for all tested values of ρ

and c, it does not beat the popular EI. What is more, it is also surpassed by the rather

exploitative AF EQI, while still being superior to ALCB. Interestingly, GLCB beats SE

for small values of ρ and c.

On the air pressure data, however, GLCB remains unbeaten, performing as good as

most classic AFs, see figures 39 and 40 in the appendix. It outperforms LCB, ALCB

and AEI, while achieving similar results like SE, EQI and EI.

On the other hand, GLCB’s performance on the heartbeat time series is rather disap-
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pointing. Here, GLCB is only superior to AEI on both series. It achieves similar results

like SE and LCB and worse results than all remaining AFs (EI, ALCB, EQI). Figures

41-44 in the appendix reveal all the details.

For five of the six synthetic test functions, GLCB is inferior to classic AFs. It is only

on the drop-wave function that GLCB surpasses LCB and ALCB with sufficiently high

imprecision c. Figures 45-49 in the appendix depict comparisons of GLCB to EI and

LCB on Ackley, Alpine, Alpine-2, Chung-Reynolds and Weierstrass function (in this

order). Figures 50 and 51 provide a more detailed assessment of benchmarking results

on the drop-wave function.

6.8 Discussion

Parallel hedging and batch-wise prior-mean-robust BO do not converge faster than

classic BO on any of the test functions. For the latter method, this is not a severe

drawback, since it is primarily designed for providing more robust results. As mentioned

in section 6.3, parallel hedging provides an “out-of-the-bag” sensitivity analysis and

could be used to define a stopping criterion, see section 8. The batch-wise technique,

however, explicitly tries to translate accounting for model imprecision into performance

gains. The results show that it clearly misses this aim.

In the case of sequentially accounting for model imprecision in the form of the gener-

alized lower confidence bound (GLCB), results are more promising. GLCB appears to

be superior to classic AFs when confronted with multimodal and wiggly target func-

tions – that is, not with all of them. On the graphene-power-function (figures 37 and

38) it looses to EI and EQI. Yet, on the graphene-time-function, it converges faster

than or as fast as any other acquisition function in case of ρ = 10, c = 100. These

ambiguous results show how much more research is needed to understand the determi-

nants of optimization problems that can be solved more efficiently by accounting for

model imprecision. One such determinant could be the prominent steps of both the

graphene-time and the air pressure target function26. This, of course, needs further

investigation.

What is more, the results also shed some light on the two hypotheses derived from the no

free lunch theorem (NFL) in section 6.1. At least at first sight, they apparently support

the second hypothesis: Accounting for model imprecision makes the BO perform better

26stemming from scarce data in the random forest prediction.
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on a specific type of problem – of whatever nature, see above – rather than extending

the range of applicable problems. Albeit, we recommend more research to test the first

hypothesis, e.g. by assessing performance on functions that slightly deviate from an

“ideal” function.

Less surprisingly, the degenerated and purely exploratory variant of LCB named SE

competes with GLCB on many problems, with the notable exception of the graphene-

power function. With τ → ∞ in the classical LCB, the exploratory part is blown up

and appears to mimic the added exploratory part that aims at reduction of imprecision

in GLCB, given of course that model imprecision and data uncertainty are correlated.

The question of whether the latter always holds or not, should be addressed by further

research. A similar consideration applies to other acquisition functions: The more

exploratory they are, the more likely they compete with GLCB; see for example EI and

EQI on figures 35, 36, 37 and 38.

As mentioned above, GLCB competes with SE on the heartbeat time series data. In-

triguingly, these time series are the only native (unmodified) univariate data sets. The

model imprecision should thus be rather low due to the lack of unobserved covariates.27

Presumably, the problem requires some exploitation and an overall extremely high ex-

ploratory behavior may thus harm convergence. Consequently, this might be the reason

why LCB with τ → ∞ is inferior to GLCB with moderate c and ρ values, see figures

41-44 in the appendix. This interpretation is also in line with the fact that GLCB is

outperformed by other – more exploitative – AFs such as ALCB on the heartbeat time

series. What is more, it once again supports the above mentioned presumption that

model imprecision and classical data-related uncertainty correlate in some problems.

Another pattern from the results catches one’s attention immediately, namely the late

iterations, in which GLCB outperforms its competitors, with the exception of GLCB vs.

SE on the graphene-power function. Loosely speaking, accounting for model imprecision

apparently needs some time to play out its strengths. Only logically, the reduction of

model imprecision needs a few iterations to impact the model’s predictions that in

turn impact the algorithm’s proposals. This motivates an extension of our acquisition

function to more complex multivariate target functions, as they usually require a higher

budget of BO evaluations to be optimized. Recall that we restricted ourselves to the

univariate case due to the one-dimensional nature of the imprecise Gaussian process

(IGP) proposed by [Mangili, 2015]. The fruitful application of IGP in BO might initiate

27Needless to say, unobserved covariates can be and most certainly are still at play. However, their

impact can be assumed to be rather small on heartbeat time series of a few minutes.
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a more general formulation of IGP.

6.9 Limitations

It should be made clear again that the proposed BO modifications make the optimizer

robust only with regard to possible misspecification of the mean function parameter

given a constant trend. Albeit the Bayesian sensitivity analysis conducted in section 4

demonstrated their importance, the mean parameter is clearly not the only influential

component of the GP prior in BO. For instance, the functional form of the kernel also

plays a major role. The question of how to account for imprecision with regard to this

prior component is briefly discussed in section 7.

Apart from this, it is important to note that all proposed methods depend on a subjec-

tively specified degree of imprecision c. They do not account for any imaginable mean

parameter vector θm (the model would become vacuous). What is more, it may be dif-

ficult to interpret c and thus specify it in practical applications. Notwithstanding the

above, GLCB still offers more generality than a precise choice of the mean parameter.

As a matter of fact, it is easier to choose c than a precise θm.

7 Related Work

While there exists a vast amount of literature dealing with Bayesian optimization,

merely a handful of it is explicitly concerned with robustness, not to mention model

imprecision and robustness towards misspecification of the surrogate model.28

7.1 Robust Bayesian Optimization

In a very recent work [Makarova et al., 2021] address the issue of overfitting in tuning

hyperparameters of ML models by BO. As parameters are typically optimized with

regard to the training error, the (unknown) test error can increase with BO iterations

while the training error (of the best incumbent configuration) still monotonically de-

creases. The authors show that cross-validation can mitigate this, but comes at high

computational cost. As an alternative, they propose a regret-based stopping criterion

28The well-established field of robust optimization [Ben-Tal et al., 2009] deals with imprecise linear

programming, where an analytical description of the target function - unlike in case of BO - exists.
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loosely inspired by the popular regularization technique early stopping in deep learn-

ing (DL). Furthermore, [Makarova et al., 2021] present the first detailed investigation

of this overfitting behavior on three types of machine learning models (linear models,

boosting and random forests).

In statistics, quantile regression is a well-known alternative to mean regression. It is

more robust against outliers in the response measurements than the standard linear

model. [Moriconi et al., 2020] deploy quantile GP regression in BO. [Shah et al., 2014]

show that Student-t processes are more flexible than Gaussian processes as prior over

functions in a functional regression setting. They verify by simulation studies that

Student-t processes are superior to Gaussian ones as surrogate models in Bayesian op-

timization on a wide range of problems. [Kirschner et al., 2020] propose a modification

of Bayesian optimization that is robust towards distributional shifts of covariates, i.e.

situations where the training data is sampled from a different distribution than the

test data. [Nguyen et al., 2020] take a similar approach for the special case of Bayesian

quadrature optimization (BQO), where the expectation of an expensive black-box in-

tegrand taken over a known probability distribution is maximized.

7.2 Model Imprecision

The above mentioned approaches certainly render BO more robust towards false con-

fidence in its prediction due to unreliable data (underestimation of data uncertainty).

However, they do not account for model imprecision. That is, robustness towards

misspecification of the surrogate model is not taken into consideration. The python

library with the promising name RoBO (robust Bayesian optimization) is robust against

model misspecification only to the extent that the package provides implementations

of different surrogate models and acquisition functions [Klein et al., 2017, page 2].

As far as we know, there is only one clear exception: [Malkomes and Garnett, 2018] come

up with a simple, yet particularly thrilling idea: “Automating Bayesian optimization

with Bayesian optimization”. They suggest to optimize over a space of models in an

inner loop nested inside BO. Just like in the outer loop, BO is used as an optimizer

as proposed in [Malkomes et al., 2016]. The model space is defined by multiplication

and addition of base kernels, see [Duvenaud et al., 2013] and [Duvenaud, 2014]. In

other words, from the four components of the GP prior introduced in section 5 only

the functional form of the kernel is varied, which was found to be the second-most

influential component in the Bayesian sensitivity analysis conducted in section 4.
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As opposed to [Malkomes and Garnett, 2018], we vary the mean function’s parameter(s)

since they were found most influential in the Bayesian sensitivity analysis conducted

in section 4. To the best of our belief, this approach of prior-mean-robust Bayesian

optimization has not appeared in the literature so far.

8 Extensions of Prior-Mean-Robust Bayesian Opti-

mization

The thesis at hand opens several venues for future work. Based on considerations

throughout this thesis, especially in section 2 and 5, the concepts proposed in section

6 can be extended to address a variety of problems.

8.1 Early Stopping in Hyperparameter-Tuning

It is usually difficult to specify the number of BO iterations needed to find a sufficiently

optimal configuration beforehand. The work of [Makarova et al., 2021] on overfitting

in Bayesian optimization, see section 7, demonstrates the importance of theoretically

sound and computationally feasible stopping criteria in BO.

We argue that parallel hedging prior-mean-robust BO intrinsically provides a stopping

criterion that might fulfill these criteria. Recall from the pseudo code in algorithm

2 that parallel hedging BO provides “out-of-the-bag” sensitivity analysis. That is,

one can tell from the distribution of {(x∗,Ψ(x∗))k : k ∈ {1, ..., K}} – if accessible – at

iteration t how sensitive the returned optimum is towards altering the GP prior. Hence,

the degree of variation in {(x∗,Ψ(x∗))k : k ∈ {1, ..., K}} can be used as a stopping

criterion. Although this variation does not stem from data uncertainty caused inter alia

by the train-test-split in hyperparameter-tuning, but from model imprecision, it may

nevertheless serve as a proxy for the algorithm’s confidence in the incumbent optimum.

Intuitively, such a criterion would stop the process as soon as the (classical) uncertainty

related to the training data outweighs the imprecision due to prior specification. From

this point on, further exploitation on the training data might cause overfitting.

To be more precise, a possible stopping criterion derived from parallel hedging would

be to stop the process if vstop < ε, where
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vstop = max
k

(x∗k)−min
k

(x∗k), k ∈ {1, ..., K} (22)

or alternatively

vstop = min
k

(Ψ(x∗)k)−max
k

(Ψ(x∗)k), k ∈ {1, ..., K}. (23)

For high-performance computing set-ups with many cluster, i.e. large K, one might

also set

vstop = V ar(Ψ(x∗)k), k ∈ {1, ..., K}. (24)

In case of small vstop, confidence in the optimum is high. In case of high vstop, there still

might be some room for improvement in subsequent iterations. Due to time restrictions

of the thesis, the stopping criterion was not implemented and tested. Further research

on how it performs compared to other stopping criteria and an on the choice of ε is

recommended.

8.2 Low Fidelity Bayesian Optimization

As outlined in section 2.6, it is common practice in many applications to approximate

very expensive functions by a (hyper-)surrogate model and then treat this model as

ground truth in (Bayesian) optimization. Evaluations become cheaper, while additional

hyperparameters are introduced by the hyper-surrogate model, representing a second

layer of model imprecision. In such scenarios, imprecise Gaussian processes (definition

18) are an attractive option in two ways. They can either be used as hyper-surrogate

models or as surrogate models directly, i.e. disguised as parallel hedging prior-mean-

robust BO (section 6.3) and batch-wise prior-mean-robust BO (section 6.4). Both

approaches might be preferable to classic low fidelity Bayesian optimization for two

reasons. First and foremost, they allow to make the optimization more robust towards

the choice of the hyper-surrogate model. Second, their main disadvantage of requiring

more evaluations is of smaller consequences, as evaluations are way cheaper. Section

6.6 contained an example of the latter approach to low fidelity prior-mean-robust BO

already since the random forest (RF) trained on the graphene data set was treated as

ground truth during optimization. However, the budget was still regarded as limiting
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factor because the overall aim was to mimic optimization of an expensive-to-evaluate

wiggly functional relationship. Further research particularly on the second approach,

i.e. on using IGPs as hyper-surrogate models is highly recommended.

8.3 Imprecise Random Forests

As mentioned in section 2.1, random forest (RF) is a popular surrogate model in BO

when dealing with categorical covariates. Following similar considerations as in the

Bayesian sensitivity analysis of section 4, the effect of RF’s hyperparameter mtry on

the optimization path can be assessed and, if found influential, explicitly taken into

account by means of parallelization leaning on sections 6.3 and 6.4 or a generalized

acquisition function leaning on the generalized lower confidence bound (GLCB) from

section 6.5.

Another approach would be to integrate already existing imprecise extensions of ran-

dom forests into BO, see [Utkin et al., 2019] for an overview. Some of these extensions

explicitly aim at modeling aleatoric uncertainty, i.e. “uncertainty due to random varia-

tion of the quantity or event being analyzed” [Balch et al., 2019][Section 1.3]. It needs

to be clarified how such surrogate models relate to the general framework of BO. At first

sight, their integration seems reasonable in case of categorical data, given that some

formulations of BO already account for noisy data in the case of continuous parameters

through nugget estimates, as briefly mentioned in section 6.2. Apart from the exten-

sions discussed in [Utkin et al., 2019], imprecise splitting rules [Nalenz and Augustin,

2019] for decision trees could be used for trees in ensemble learners like random forests

and thus also help modeling aleatoric uncertainty in the data.

8.4 Causal Bayesian Optimization

As explained in sections 6.3 and 6.4, imprecise Gaussian processes add some com-

putational overhead to BO compared to precise Gaussian processes. In very high-

dimensional parameter spaces, it might thus be advantageous to restrict the optimiza-

tion or at least focus it on a relevant subset of the parameters. What is more, in

problems like neural architecture search (NAS) (optimizing the design of neural net-

works29), the parameter space might have a hierarchical (conditional) structure. That

is, the dimensionality p of X p can depend on proposed optimal configurations of a

29Loosely speaking, NAS can be regarded as hyperparameter-tuning in deep learning.
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subset of X p. For instance, the number of layer sizes (i.e. number of number of neu-

rons) of course depends on the number of layers. [Swersky et al., 2014] propose a kernel

functional form for such conditional parameter spaces.

Another way to reduce the computational complexity of evaluating the parameter space

is to “make implicit assumptions about causal relationships explicit” [Pearl et al., 2016],

i.e. to integrate causal inference. [Aglietti et al., 2020] just recently proposed causal

Bayesian optimization (CBO), a method in which causal structure in X p is exploited in

order to reduce the number of function evaluations. This is achieved through a causal

GP (see [Aglietti et al., 2020][section 3.2]) that takes into account a structural causal

model of the data as well as a causal version of EI as AF that accounts for the cost of

the evaluation. The above proposed generalized lower confidence bound (GLCB) could

be adapted in a similar manner and thus used as AF in CBO without further ado. The

causal GP prior might potentially be generalized to an IGP prior and thus integrated in

parallel-hedging or batch-wise prior-mean-robust BO. Further research is needed here.

Even further, another concept from imprecise probabilities (IP) could render CBO more

robust towards model imprecision. The structural causal model used in CBO could be

generalized to a credal net [Cozman, 2000]. In a recent work, [Zaffalon et al., 2020] show

that structural causal models can be solved by established algorithms for inference in

credal nets [Augustin et al., 2014, Chapter 9.5] such as “ApproxLP” and the credal

version of the variable elimination algorithm, “CVE”. Interventions in CBO [Aglietti

et al., 2020, algorithm 1] can then be performed by computing lower and upper bounds

of P(Y |do(X = x)) through credal sets obtained by [Zaffalon et al., 2020, algorithm 2],

as in [Zaffalon et al., 2020, Example 7]. In the identifiable case, this approach yields

equal lower and upper bounds corresponding to the ones computed via do-calculus.

If features are only partially identifiable, the algorithm gives intervals narrower than

the ones obtained by linear programming and do-calculus, see [Zaffalon et al., 2020,

Example 8].

8.4.1 Feasibility Study

Implementations of “ApproxLP” and “CVE” are part of the publicly available java

library CREDICI (CREDal Inference for Causal Inference) [Zaffalon et al., 2020].

The demonstration of CBO attached to [Aglietti et al., 2020], on the other hand, is

written in python.30 This is why we conduct a brief feasibility study. We test the com-

30Available on Github.
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patibility of the two implementations using py4j, a python library that enables python

programs to dynamically access arbitrary java objects like the classes CredalCausalVE

or CredalCausalAproxLP from CREDICI that conduct the computations of “CVE” and

“ApproxLP”, respectively. Albeit adding some small computational overhead, compu-

tations of lower and upper bounds of P(Y |do(X = x)) inside CBO could be made by

CredalCausalVE and CredalCausalAproxLP in feasible time. The constraints of this

thesis did not allow for a more detailed analysis, which is thus left to further research.

8.4.2 Theoretical Considerations

At first sight, causal credal nets seem somewhat counter-intuitive. Why should one

be able to specify causal relations in the presence of probabilistic ambiguity? Notably,

this approach is diametrically opposed to regular statistical inference, where causal

interpretation is normally strictly avoided, while uncertainty is expressed by perfect

stochasticity. Yet, we consider the assumption of causality in experimental set-ups

(e.g. in material science) to be appropriate. In fact, causality may be an even weaker

assumption than a precise probability distribution in many experimental set-ups. For

instance, consider the graphene data set in section 6.6. Due to the specialist scientific

knowledge gained by experiments, confounding might be excluded. Thus, the assump-

tion that the power of the laser causes the endothermic reaction is indeed very weak.

The precise nature of this probabilistic relationship, however, likely remains unknown.

In fact, imprecise causal reasoning comes very close to Pearl’s notion of evolutionary

advantageous causal reasoning through planning [Pearl and Mackenzie, 2018, Page 26]

in human history. Still today, humans evidently base decisions on imprecise causal

reasoning. Consider, for example, a hypothetical gardener: she may put a scarecrow

in her yard, assuming this will cause the number of birds in her garden to decrease.

However, she won’t base her decision on a precise estimate of just how many birds the

scarecrow will ward off. More likely, she might guess that the scarecrow will at least

halve the number of birds; otherwise it would not have been worth purchasing it in the

first place. In this case, then, E(X|scarecrow) ∈ [0, n/2] or E(X|scarecrow) = 0 and

E(X|scarecrow) = n/2, respectively, with E(X|scarecrow) being the expected number

of birds conditional on the presence of a scarecrow and n the previously observed number

of birds. This intuitiveness behind imprecise causal reasoning per se does not render

the concept a better problem solver. Yet, it might render credal nets more attractive

from a practitioner’s point of view.
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9 Weighted ML Estimation of Prior Parameters

9.1 Motivation

As indicated in section 5.1, maximum likelihood (ML) estimates of prior parameters

(definition 16) can be biased. This is due to the fact that the estimation is based on

data from the initial design as well as data that were obtained during the optimization

procedure. The latter are usually centered around local or global optima, violating the

iid. assumption, see the example in figure 13 in section 5.1. The later the iteration,

the more points in the data set usually come from such regions. This bias in the data

translates to the ML estimation, see section 5.1. What is more, the bias affects not only

the surrogate model’s mean prediction, but also the acquisition function. As was shown

in section 2.2, it follows from theorem 1 that using acquisition functions such as lower

confidence bound (LCB) or statistical lower bound (SLB) corresponds to implicitly

assuming unbiased mean estimation.

We address this issue by a weighting procedure. The general idea is to focus the

estimation on informative points and ignore such ones that result from exploitative

proposals and provide almost no new information about the true underlying function

but serve a mere optimizational purpose.

Luckily, a measure for the degree of information a proposed point carries (given the

SM) already exists: The estimated variance Var(x) = Var(µ̂(x)) or standard error√
Var(µ̂(x)), respectively. The higher

√
Var(µ̂(x∗)), the more likely the BO explores

unknown territory by proposing x∗. As a consequence, the greater the reduction of

uncertainty and thus the gain in information will be.

However, this absolute value alone strongly depends on the iteration. The overall

(classical data) uncertainty of the SM is decreasing monotonously with the iterations.

We need to compare it to
√

Var(µ̂(x)) of other x of the same iteration. One option is

to use points that could have been proposed in this iteration, namely those ones that

were evaluated during infill optimization. They are called candidate points henceforth.

We thus compute the ratio of the proposed point’s standard error ŝ(x∗) to the mean

standard error of n other candidate points (standard error ratio (SER)) and its location

in the distribution of candidate points’ standard errors (standard error distribution

value (SED)):
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9.1 Motivation

Definition 24 (Standard Error Ratio and Standard Error Distribution Value)

Let x1, ...,xn be the candidate points of a given iteration. Furthermore, ŝ(x) =√
Var(µ̂(x)) for notational simplicity. Let x∗ ∈ {x1, ...,xn} be the proposed point

of that iteration and Fŝ(x)(•) the empirical distribution function of ŝ(x1), ..., ŝ(xn).

SER(x∗) =
ŝ(x∗)

1
n

∑n
i=1 ŝ(xi)

, SED(x∗) = Fŝ(x)(ŝ(x
∗)).

Note that definition 24 depends on the infill optimizer. When focus search is used,

where the sampling space is iteratively shrunken, the proposed point’s standard error is

not compared to the overall uncertainty of the SM, but rather to the SM in those regions

that were visited extensively during infill optimization. Another way to compute SER

and SED would be to compare the proposed points’ standard errors31 to those of post

hoc randomly sampled points from the parameter space. This would allow to better

understand the influence of different infill optimizers on the explore-exploit-behavior.

While definition 24 is well-suited for comparing different AF, the post hoc approach

is more global and allows analyzing the effect of both the infill criteria and the infill

optimizer. Henceforth, we will use SER(x∗) or SED(x∗) as defined in definition 24,

but with random search as infill optimizer, such that the definition de facto corresponds

to random post hoc sampling.

To sum it up, comparing SER(x∗) or SED(x∗) of different iterations allows assessing

the BO’s explore-exploit behavior and the effect of the AF on it. From an information

theoretical point of view,
√

Var(µ̂(x∗)) or SER(x∗) and SED(x∗) express the entropy

of a data point, that is the potential gain of information when Ψ is evaluated at that

point or, in other words, the (classical data driven) uncertainty reduction. As this

uncertainty is associated with sparse data, SER(x∗) or SED(x∗) express the degree

of solitude of the data point.32 Leaning on the rationale behind sampling methods

like latin hypercube sampling (LHS) and maximin-LHS33, a set of such “lonely” points

appears to be a reasonable approximation of an iid. sample.

31In the surrogate model of the respective iteration.
32Analyses in the consulting project “Interpretable Bayesian Optimization” have shown that

SER(x∗) and SED(x∗) strongly correlate with minimal and mean distance of x∗ to the other points.
33Points are sampled such that they maximize the minimal distance to already sampled points.
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9.2 Weighted Maximum Likelihood

This exact property will be used to construct a weighted maximum likelihood estimator

of GP’s prior parameters. Definition 25 directly follows from definition 24 and the

weight property that weights should sum up to 1.

Definition 25 (Importance Weights)

The importance weight wj of xj ∈ {x1, ...,xninit , xninit+1, ...,xninit+t} is

wj =
SED(xj)∑ninit+t

i SED(xi)
.

The question remains how to assign these weights to the observed data or their re-

spective likelihood contribution. [Karampatziakis and Langford, 2011] discuss various

ways of assigning importance weights to data points for optimization purposes. [Field

and Smith, 1994] propose weighting points on the basis of the natural probabilistic

scale, whose implementation appears beyond the scope of this thesis. Far more intu-

itive, [Wang, 2001] simply exponentiate the likelihood contributions by the according

weights, see definition 26 for details.

Definition 26 (Weighted ML Estimation of Prior Parameters)

Following definition 16 (ML estimation) let {x1, ...,xninit , xninit+1, ...,xninit+t} be the

observed covariates and the respective function values {Ψ(x1), ...,Ψ(xninit+1),Ψ(x1), ...,

Ψ(xninit+t)} in iteration t, both subsumed as design matrix Xt. f is a normal density

function and {w1, ..., wninit+1} are the weights as defined above. The weighted likelihood

contribution of xj according to [Wang, 2001] then is f(θ|xj,Ψ(xj))
wj and the weighted

likelihood function becomes L(θ|Xt)w =
∏n

i=1 f(θ|xi,Ψ(xi))
wi . Analogous to definition

16, the weighted maximum likelihood estimator for θ is

θ̂WML(Xt) = arg max
θ

L(θ|Xt)w

= arg max
θ

n∏
i=1

f(θ|xi,Ψ(xi))
wi

= arg max
θ

n∑
i=1

wi · log(f(θ|xi,Ψ(xi))).

Since the latter’s implementation as a fork of DiceKriging turned out to be computa-

tionally expensive, we restrict ourselves to a resampling approach.
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9.3 Experiments

Algorithm 5 Importance Resampling for ML Estimation

1: Let again {x1, ...,xninit , xninit+1, ...,xninit+t} be the observed covariates and the

respective function values {Ψ(x1), ...,Ψ(xninit+1),Ψ(x1), ...,Ψ(xninit+t)} in BO iter-

ation t, each xj with corresponding weight wj ∈ {w1, ..., wninit+t} (definition 25).

2: for ninit + t Iterations do

3: sample (with replacement) xj from {x1, ...,xninit+t} with probability wj

4: end for

5: return θ̂ML(Xt) = arg maxθ L(θ|Xt), whereXt is the design matrix of the sampled

xj and their respective Ψ(xj)

Ideally, this approach would push the likelihood contributions of uninformative points

from thoroughly exploited regions towards 0. Points from exploratory proposals would

have a relatively stronger impact. As a consequence, the deviation from the iid. as-

sumption and thus the bias would be reduced.

9.3 Experiments

In a first experiment, we compare the weighted ML estimation in BO on a set of six

synthetic test functions to unweighted ML, see figure 24. Algorithm 5 was implemented

inside the R package DiceKriging that is in turn used inside mlrMBO for GP computa-

tions. SER and SED were computed by independent functions that build on mlrMBO,

some of which have already been used in the statistical consulting project “Interpretable

Bayesian Optimization”. Expected improvement was used as acquisition function and

random search as infill optimizer with sample size 1000. Bayesian optimizations with

both weighted and unweighted ML estimates were run n = 200 times with 40 iterations

and initial design of size 4 generated by maximin-LHS each.

Based on the results of the first experiment, we further investigate BO with weighted

ML and take a closer look on its optimization of the Mexican hat function. We do this

by changing the AF from expected improvement to lower confidence bound in the second

experiment because the latter allows explicit guidance of the explore-exploit trade-off

through varying τ . This way, we aim at assessing the impact of different exploration-

exploitation-strategies. Thirdly, we choose smaller values for τ in the LCB, to take a

closer look at very exploitative BO behavior. Both experiments were computed on a

high performance computing cluster using 20 64-bit-cores (linux gnu). The experiments
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9.4 Results

were conducted in R version 4.0.3 [R Core Team, 2020]. While implementing the re-

sampling approach by means of modifying functions of DiceKriging, we ran into some

numerical trouble with matrix multiplications, which turned out to be connected to an

already familiar problem of DiceKriging.34 Iterations of the experiments, in which the

respective error occurred were disregarded in the analysis, reducing the sample size of

n = 200 slightly.
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Figure 24: Synthetic test functions from package smoof [Bossek, 2017] that weighted ML was bench-

marked on.

9.4 Results

As can be seen in figure 25, where the first experiment’s results are shown, BO with

weighted ML (blue) is inferior to classical unweighted ML (magenta) on the deflected

corrugates spring function, the exponential function and the Weierstrass function. Only

for the latter one, 0.95% confidence intervals do not overlap. Weighted ML and un-

weighted ML have similar mean optimization paths in case of the second alpine function

and the Chung Reynolds function. It is only the Mexican hat function, where weighted

ML outperforms unweighted ML albeit overlapping confidence intervals.

34See this issue on GitHub.

Page 65

https://github.com/mlr-org/mlrMBO/issues/80


9.4 Results

−2.8

−2.6

−2.4

−2.2

−2.0

0 10 20 30 40
Evaluations

M
ea

n 
B

es
t T

ar
ge

t V
al

ue
1−d Alpine N. 2 Function

−2.75

−2.50

−2.25

−2.00

−1.75

0 10 20 30 40
Evaluations

M
ea

n 
B

es
t T

ar
ge

t V
al

ue

1−d Chung Reynolds Function

−1.25

−1.00

−0.75

0 10 20 30 40
Evaluations

M
ea

n 
B

es
t T

ar
ge

t V
al

ue

1−d Deflected Corrugated Spring function

−1.04

−1.00

−0.96

−0.92

0 10 20 30 40
Evaluations

M
ea

n 
B

es
t T

ar
ge

t V
al

ue

1−d Exponential Function

−1.0

−0.9

−0.8

0 10 20 30 40
Evaluations

M
ea

n 
B

es
t T

ar
ge

t V
al

ue

1D Mexican hat function

0.00

0.25

0.50

0.75

0 10 20 30 40
Evaluations

M
ea

n 
B

es
t T

ar
ge

t V
al

ue

1D Weierstrass function

Figure 25: Benchmarking of BO with weighted ML (blue) against classic unweighted ML (magenta)

on six synthetic functions. Error bars depict 0.95 % confidence intervals.

As presumed, the degree of exploration/exploitation has a strong impact on the per-

formance of weighted ML as compared to unweighted ML inside BO. This becomes

evident when assessing figure 27, which depicts the second experiment’s results. For

very exploratory settings (roughly τ ≥ 5), BO with unweighted ML clearly converges

faster than BO with weighted ML. This relationship is starting to be turned upside

down in case of rather exploitative BOs, as can be seen in figure 27 for τ ∈ {1, 2}
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Figure 26: Benchmarking of BO with weighted ML (blue) against classic unweighted ML (magenta)

on Mexican hat function with varying τ in LCB. Error bars depict 0.95 % confidence intervals.

Zooming in further reveals that for very exploitative settings (τ ≤ 1), BO with weighted

ML clearly outperforms BO with unweighted ML. Figure 27 depicts mean optimization
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9.5 Discussion

paths and confidence intervals for LCB with τ ≤ 0. We observe how decreasing τ entails

a slowdown, if not stagnation of convergence for BO with prior parameters estimated

by unweighted ML. On the other hand, BO with weighted ML only slightly forfeits

convergence speed. Put another way, BO with weighted ML appears to be more robust

towards declines in τ , i.e. more exploitative settings. Notably, this is not observed in

case of optimizing the second alpine function, see figure 52 in the appendix.
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Figure 27: Benchmarking of BO with weighted ML (blue) against classic unweighted ML (magenta)

on Mexican hat function with varying τ in LCB. Error bars depict 0.95 % confidence intervals.

9.5 Discussion

The slowdown in convergence of BO with exploitative AFs on the Mexican hat function

can be easily explained by the shape of the function, as seen in figure 24: Some of the

optimization rounds simply get stuck in the local minima at x ∈ {−5, 5}. Only such

rounds with fortunate initial design exploit the global minima at x = 0. Generally,

this applies to BOs with both weighted and unweighted ML prior parameter estimates.

However, it happens significantly (α = 0.05) less frequently in cases of weighted ML.

Our explanation, which of course needs further critical assessment, goes as follows: The

predictive posterior GP is generally dominated by the likelihood in areas of thorough

exploitation and by the prior in areas in which less proposals were made. For optimiza-

tion rounds that exploit the two local minima at x ∈ {−5, 5}, then, the predictions in

the area around the global optimum are dominated by the prior. If prior parameters

are estimated from the data, the resulting predictions are biased towards the values
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9.5 Discussion

of the well-exploited local minima. This makes casual exploration of these areas even

more unlikely. Weighted ML estimation of prior parameters mitigates this effect by

diminishing the likelihood contribution of points from the local minima. Hence, BO

with weighted ML is more likely to jump into these regions from time to time, and gets

stuck in local optima less often. In the case of the second alpine function, see figure

52 in the appendix, the relative (that is, on a standardized scale) difference of function

values from local and global minima is smaller. This is why – we presume – the bias is

not as severe as in case of the Mexican hat function and as a result, the weighted ML

procedure does not entail a similar improvement.

To sum it up, for (classical uncertainty related) risk-averse subjects who aim at ex-

ploitation rather than exploration, weighted ML has proven to be a better alternative

than (standard) unweighted ML estimation on selected test problems. As with prior-

mean-robust BO (section 6), the exact circumstances (i.e. the determinants of target

functions such as the Mexican hat function) under which the method is beneficial need

further assessment. As a starting point, the above described preliminary hypothesis

that the difference between local and global optima determines the bias and thus the

potential improvement through weighted ML can be more closely examined. Another

hypothesis would be that BO does in fact exploit the global minimum, but occasion-

ally jumps to local minima due to a posterior underestimation of these regions caused

by priors estimated from a sample that is biased towards the global minimum. The

mean optimization path’s literal gridlock, however, contradicts this hypothesis. Such

occasional jumps would slow down, but still allow global convergence.

Let us now turn to the sobering results from the other five test functions that show

no improvement or even change for the worse in the case of weighted ML estimation

as opposed to classical unweighted ML estimation of prior parameters. Apparently, an

unbiased estimate of prior parameters is of no optimizational help in these cases. Simply

put, at the end of the day BO aims at optimization instead of statistical modeling of the

unknown underlying function. Nevertheless, this very behavior appears more coherent

through the eyes of a statistician: the (globally) biased unweighted ML estimates are

in fact unbiased on a local scale around the promising area where they were sampled

from. A sound local approximation of the target function appears beneficial here, while

a good global approximation might simply not serve the optimization’s aim. Giving up

unpromising regions early by both not proposing points within them and not aiming

at a good estimate of the function in these regions might speed up convergence in such

cases.
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9.6 Limitations

Apart from its apparently narrow scope of fruitful applications (see above), there are

only few, if any limitations to weighting the likelihood contributions of proposed points

in ML estimates during BO. The computational costs of resampling appear diminutive

to the human eye. Yet, they should be analyzed in a systematical manner by standard

profiling techniques. Furthermore, the computational issues with matrix multiplications

in DiceKriging, as mentioned in section 9.3, could be analyzed more closely.

9.7 Extensions

As stated in section 9.1,
√

Var(µ̂(x∗)) or SER(x∗) and SED(x∗) express the entropy of

a data point (given a SM), that is the potential gain of information when Ψ is evaluated

at that point with regard to the (classical data driven) uncertainty. Leaning on section

6, analogous considerations lead to potential information gain with regard to model

imprecision, that is reduction in ambiguity. As in the generalized lower confidence

bound (GLCB) from definition 23, such ambiguity can be expressed by µ(x)c − µ(x)c.

The above described weighting procedure can be deployed without need for adaption.

Besides that, a combination of uncertainty and imprecision weights might entail a com-

prehensive account for ignorance in the ML estimation.

However audacious such a combined weighting procedure may sound, it should be cau-

tiously analyzed. The main motivation behind weighted ML is to reduce a bias in the

data induced by optimization proposals rather than in the model. Nonetheless, recall

that
√

Var(µ̂(x∗)) or SER(x∗) and SED(x∗) measure the entropy of x∗ conditioned

on the SM. Accounting for the model imprecision might entail loosening this condition.
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10 Other Stochastic Derivative-free Optimizers

Besides improving prior–mean-robust BO by means of the extensions presented above,

it may be attractive to further explore possibilities of generalizing other derivative-free

optimization methods with stochastic and probabilistic elements. Henceforth, evident

and naive ways to generalize them are outlined. What is more, simple ways to assess

their robustness towards probabilistic modifications are discussed. Two such approaches

are briefly introduced in what follows. Its implementation and thorough assessment are

left to future research.

10.1 Simulated Annealing

Inspired by cooling-down processes of metals and liquids, simulated annealing [Kirk-

patrick et al., 1983] is a local search that uniformly samples from a hypercube or an

ε-ball around the incumbent optimal value xi (exploitation) and casually accepts pa-

rameters from the rejection area {xi+1 : f(xi+1)− f(xi) > 0} (exploration). It uses the

co-called Metropolis criterion.

Definition 27 (Metropolis Criterion)

Accept parameter xi+1 from rejection area {xi+1 : f(xi+1)− f(xi) > 0} with

P(accept) = exp

(
−
(
f(xi+1)− f(xi)

T

))
,

where T is the temperature of the system, which monotonically decreases with the

iterations. P induces an exponential distribution with λ = 1.

Analogous to section 4, a sensitivity analysis may be conducted by deploying different

distributions from the same distributional family (i.e. varying λ) in the metropolis

criterion. Their effect on the optimization path could be assessed. Furthermore, the

effect of the uniform sampling could be taken into account by analyzing the interaction

of the two probability measures (uniform distribution and exponential distribution)

through simulation studies similar to the ones in section 4. Once sufficiently studied, the

variation of optimization paths (definition 13) induced by altering these distributional

assumption could be taken into account by the optimizer. For instance, by a slowdown

of the cooling process that accounts for additional exploration of areas with high model

imprecision.
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10.2 Evolutionary Algorithms

An evolutionary algorithm (EA) optimizes black box functions by mimicking the evolu-

tion of animal populations through natural selection. A crucial part of EA is the muta-

tion operator, as it ensures diversity in following generations [Deb and Deb, 2014]. As

in nature, mutation is assumed to be random. Besides uniformly sampling vector xi+1

from the parameter space, the Gauss-mutation has gained popularity: xi+1 = xi ±m,

m ∼ N (0, σ2I). Following the same pattern as above, the effect of altering σ on the the

optimization paths can be investigated. What is more, Gaussian mixture distributions

might be tried out. Potentially, robust extension of the Gauss-mutation that account

for model imprecision can be suggested.

Instead of deploying such mixture models, one could also sample (batch-wise) from a

set of (normal) distributions, loosely leaning on ε-contamination-models [Chen et al.,

2016] or neighborhood models, see [Huber and Strassen, 1973]. The resulting set of

populations could then be ordered by a fitness function. The induced ordering can

itself be imprecise, as proposed by [Abrams, 2019, Chapter 5.1] as “imprecise fitness

comparison” in his insightful work on natural selection through the lens of imprecise

probabilities.

In both ways it might be possible to explicitly account for model imprecision in evolu-

tionary algorithms by including a second exploration rationale. It aims at the reduction

of such imprecision as opposed to the classical exploration that is concerned with re-

duction of uncertainty induced by data.

This could not only increase the performance of such evolutionary-inspired optimiz-

ers, but also the accuracy of evolutionary models in biology. Here, the exploration-

exploitation trade-off is a well understood phenomenon, see [Zrzavỳ et al., 2009] for

instance. A popular example is the distinction between antigenic drifts (incremental

change) and shifts (new influenza subtype) in influenza A viruses [Ferguson et al., 2003].

We suggest to subdivide the explorational behavior of self-conscious animals such as

humans into two parts. The first one aims at acquiring data (information) about the

physical surroundings of a species (uncertainty reduction). The second one intends

the falsification of the species’ inherent assumptions about the world such as genetic

predispositions or cultural imprints (imprecision reduction). Or, in other words, it

is concerned with data-free assertions that the individual has either required through

inheritance or education (“nature or nurture”).
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11 Conclusion

In this work, we have proposed four modifications of Bayesian optimization that account

for the GP’s model imprecision. The latter’s general effect on BO’s behavior was

studied in section 4. We observed a particularly strong impact of the prior’s mean

parameter(s); this is why our four proposals are concerned with this part of the prior

specification. While the proposed parallel hedging BO (section 6.3) and batch-wise

speed-up prior-mean-robust BO (section 6.4) did not accomplish their aims in empirical

studies, the remaining two proposals achieved promising results. Generalized lower

confidence bound (section 6.5) converged faster than or as fast as several classic AFs

on real-world data sets. Weighted maximum likelihood estimation (section 9) improved

BO’s performance on a specific type of target function given an exploitative AF.

By and large, these results unveil the potential of accounting for model imprecision

not only in BO but in stochastic derivative-free optimization methods in general. In

light of this consideration, we outlined two venues for future work on imprecision in

such optimizers (section 10), one of which entails a conceptual modification of explore-

exploit-models in evolutionary biology. On top of that, the seemingly audacious idea

of integrating model imprecision as defined in the GLCB into the weighted ML estima-

tion was briefly touched upon (section 9.7). However, we suggest further exploitation

of the proposed well-defined BO modifications first, before exploring those ideas. As

insinuated in sections 6.8 and 9.5, some aspects of GLCB and weighted ML applica-

tions remain unclear, e.g. the determinants of target functions on which the methods

exceed conventional approaches. A thorough understanding of GLCB and weighted ML

methods may help prevent dead ends in implementing the additional ones.

All in all, the thesis at hand has demonstrated that thoroughly accounting for the

unknown can increase not only statistical models’ credibility [Manski, 2003] but also the

performance of optimizers that deploy such models. Furthermore, it presumably reduces

the amount of false confidence and “intellectual debt” [Zittrain, 2019] accumulated as

a result of apparently-optimal hyperparameter settings in machine learning models.

Closely leaning on [Popper, 1992] and [Popper, 1987, chapter 2], humbly accepting the

unknown in stochastic derivative-free optimization might elicit scientific advancement

– under some specific conditions, that is. To claim more would be presumptuous – and

in turn result in false confidence.
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A Appendix

A.1 Additional Proofs

Proof 2 (Proof of Bias-Variance-Decomposition of MSE)

Let θ be the parameter of interest, θ̂ its estimator.

MSE(θ̂) = Eθ
[
(θ̂ − θ)2

]
= Eθ

[(
θ̂ − Eθ[θ̂] + Eθ[θ̂]− θ

)2
]

= Eθ
[(
θ̂ − Eθ[θ̂]

)2

+ 2
(
θ̂ − Eθ[θ̂]

)(
Eθ[θ̂]− θ

)
+
(
Eθ[θ̂]− θ

)2
]

= Eθ
[(
θ̂ − Eθ[θ̂]

)2
]

+ Eθ
[
2
(
θ̂ − Eθ[θ̂]

)(
Eθ[θ̂]− θ

)]
+ Eθ

[(
Eθ[θ̂]− θ

)2
]

= Eθ
[(
θ̂ − Eθ[θ̂]

)2
]

+ 2
(
Eθ[θ̂]− θ

)
Eθ
[
θ̂ − Eθ[θ̂]

]
+
(
Eθ[θ̂]− θ

)2

= Eθ
[(
θ̂ − Eθ[θ̂]

)2
]

+ 2
(
Eθ[θ̂]− θ

)(
Eθ[θ̂]− Eθ[θ̂]

)
+
(
Eθ[θ̂]− θ

)2

= Eθ
[(
θ̂ − Eθ[θ̂]

)2
]

+
(
Eθ[θ̂]− θ

)2

= Varθ(θ̂) + Biasθ(θ̂, θ)
2 �

A classic of estimation theory, this deccomposition can be found in various textbooks,

see [Wackerly et al., 2014] for instance.
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A.2 Additional Tables

A.2 Additional Tables

Test Function Mean Mean Kernel Kernel

Functional Form Parameters Functional Form Parameters

1-d Ackley Function 23 38 67 23

1-d Alpine01 Function 2.8 1.8 2 1.2

1-d Alpine N. 2 Function 0.11 0.15 0.16 0.079

1-d Chung Reynolds Function 9.1e+03 5.4e+03 9.3e+03 5.4e+03

Cosine Mixture Function 0.073 0.07 0.11 0.14

1-d Deflected Corrugated Spring function 1.4 1.7 2.1 0.77

1-d Double-Sum Function 0.076 0.044 6.9 0.021

1-d Exponential Function 0.00036 0.0015 0.00064 0.00017

1-d Generelized Drop-Wave Function 0.7 1.4 1.7 0.59

1-d Griewank Function 1.1 0.71 1.9 0.69

2-d Hyper-Ellipsoid Function 0.24 2 3.7 0.0012

Six-Hump Camel Back Function 1.3 3.3 2.9 0.71

Price Function N. 4 1.9e+16 1.1e+16 1.1e+16 3.5e+15

Schaffer Function N. 2 0.79 1.3 0.9 0

Beale Function 27 17 20 0.76

Matyas Function 0.25 0.67 3.8 0.0014

Engvall Function 1.7e+11 3.7e+11 2.7e+11 1.2e+11

El-Attar-Vidyasagar-Dutta Function 3e+07 4.6e+07 7.7e+07 4e+07

Cube Function 2.6e+03 6.3e+03 4.8e+03 0

Holder Table Function N. 1 1.1e+02 62 74 1.8

Goldstein-Price Function 8e+02 5.2e+02 6.8e+02 0

3-d Dixon-Price function 1.5e+03 2.2e+03 9.6e+02 1.3e+03

Schaffer Function N. 2 0.32 0.9 0.94 0.078

Giunta Function 0.16 0.29 0.1 0.00018

Chichinadze Function 19 29 66 3.6

Kearfott Function 3.4 7.8 5.7 0

3-d Hartmann Function 3 4.8 5.3 0.82

3-d Alpine N. 2 Function 14 25 30 4.6

Complex Function 3.1 4 1.4 0

Carrom Table Function 71 71 81 0.2

4-d Alpine N. 2 Function 86 33 66 4.7

Adjiman Function 0.34 0.024 1.6 0.00099

Bird Function 1.4e+02 5.1e+02 1.5e+02 0

4-d Generelized Drop-Wave Function 1.5 2.1 1 0.015

Chichinadze Function 54 47 44 16

Brent Function 0.44 0.47 13 4.4e-05

Bukin Function N. 2 3.1 2.2 1.6e+02 0.089

4-d Sum of Different Squares Function 0.37 1.4 0.32 0

Bent-Cigar Function 3.6e+09 2e+10 7e+09 5.7e+08

Booth Function 13 14 47 15

Bartels Conn Function 2.2e+03 1.3e+04 4e+04 27

7-d Sphere Function 1.5e+02 4.4e+02 97 8.5

Goldstein-Price Function 5.8e+02 4e+02 4.4e+02 0

Price Function N. 2 0.36 1.7 0.84 0.21

Engvall Function 1.4e+11 5.1e+11 2.5e+11 4.7e+10

7-d Deflected Corrugated Spring function 16 38 11 0

7-d Hyper-Ellipsoid function 5e+02 1.7e+03 3.4e+02 0

Bent-Cigar Function 4.8e+10 1.5e+11 3.4e+10 0

Trecanni Function 1.5 3.4 7 0

Matyas Function 0.28 0.59 2.7 0

Table 5: Accumulated difference for BO of 50 randomly selected test functions from smoof, see section
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Test Function Mean Mean Kernel Kernel

Functional Form Parameters Functional Form Parameters

1-d Ackley Function 0.62 1 1.8 0.61

1-d Alpine01 Function 1.4 0.94 1 0.62

1-d Alpine N. 2 Function 0.87 1.2 1.3 0.62

1-d Chung Reynolds Function 1.3 0.74 1.3 0.73

Cosine Mixture Function 0.75 0.72 1.1 1.4

1-d Deflected Corrugated Spring function 0.96 1.1 1.4 0.51

1-d Double-Sum Function 0.043 0.025 3.9 0.012

1-d Exponential Function 0.54 2.3 0.95 0.25

1-d Generelized Drop-Wave Function 0.65 1.3 1.5 0.54

1-d Griewank Function 1 0.64 1.7 0.62

2-d Hyper-Ellipsoid Function 0.16 1.3 2.5 0.00083

Six-Hump Camel Back Function 0.63 1.6 1.4 0.35

Price Function N. 4 1.7 0.99 0.99 0.32

Schaffer Function N. 2 1.1 1.7 1.2 0

Beale Function 1.7 1.1 1.2 0.047

Matyas Function 0.22 0.57 3.2 0.0012

Engvall Function 0.72 1.6 1.2 0.51

El-Attar-Vidyasagar-Dutta Function 0.62 0.96 1.6 0.82

Cube Function 0.75 1.8 1.4 0

Holder Table Function N. 1 1.8 0.99 1.2 0.028

Goldstein-Price Function 1.6 1 1.4 0

3-d Dixon-Price function 1 1.5 0.65 0.85

Schaffer Function N. 2 0.56 1.6 1.7 0.14

Giunta Function 1.2 2.1 0.73 0.0013

Chichinadze Function 0.64 0.99 2.3 0.12

Kearfott Function 0.8 1.8 1.4 0

3-d Hartmann Function 0.86 1.4 1.5 0.24

3-d Alpine N. 2 Function 0.75 1.4 1.6 0.25

Complex Function 1.5 1.9 0.64 0

Carrom Table Function 1.3 1.3 1.4 0.0036

4-d Alpine N. 2 Function 1.8 0.7 1.4 0.1

Adjiman Function 0.69 0.049 3.3 0.002

Bird Function 0.68 2.6 0.76 0

4-d Generelized Drop-Wave Function 1.3 1.8 0.88 0.013

Chichinadze Function 1.3 1.2 1.1 0.39

Brent Function 0.13 0.14 3.7 1.3e-05

Bukin Function N. 2 0.074 0.053 3.9 0.0021

4-d Sum of Different Squares Function 0.73 2.6 0.63 0

Bent-Cigar Function 0.46 2.6 0.9 0.073

Booth Function 0.59 0.61 2.1 0.67

Bartels Conn Function 0.16 0.93 2.9 0.002

7-d Sphere Function 0.84 2.6 0.56 0.049

Goldstein-Price Function 1.6 1.1 1.2 0

Price Function N. 2 0.47 2.2 1.1 0.27

Engvall Function 0.59 2.1 1.1 0.2

7-d Deflected Corrugated Spring function 1 2.3 0.65 0

7-d Hyper-Ellipsoid function 0.79 2.7 0.53 0

Bent-Cigar Function 0.83 2.6 0.59 0

Trecanni Function 0.51 1.1 2.4 0

Matyas Function 0.31 0.66 3 0

Table 6: Standardized accumulated difference (AD) for BO of 50 randomly selected test functions

from smoof, see section 4.2.
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A.3 Additional Figures

Figure 28: Effect of Mean Function Parameter on Bayesian Optimization of Giunta Function. Mean

Constant varies around baseline mean (turquoise) as described in section 4.1.2.

Figure 29: Bird Function Figure 30: Engvall Function
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Figure 31: Effect of Mean Function Parameter on Bayesian Optimization of Carrom Table Function.

Mean Constant varies around baseline mean (turquoise) as described in section 4.1.2.
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Figure 32: Effect of kernel functional form on Bayesian Optimization of bivariate (”2d”) Ackley

function.

Figure 33: Effect of mean functional Form on Bayesian Optimization of Bird function.
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Bayesian optimization of four synthetic functions
40 runs per method with 40 evaluations and initial sample size 4 each

Error bars represent bootstrapped 0.95−CI of incumbent mean best target value
Parallel hedging prior−robust BO with c = 50 (3 models, 30 evaluations each)

Batch−wise speed−up prior−robust BO with c = 1, 10, 100 (3 models, 30 evaluations each)
Same Configurations (AF, Infill Optimizers) for classic BO and both modifications

         

Figure 34: Benchmarking results from synthetic functions: Parallel hedging and batch-wise prior-

robust BO vs. classic BO.
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GLCB vs. Classic Acquisition Functions (Graphene−Time)

Bayesian optimization of graphene quality depending on laser irradiation time
60 runs per Acquisition Function with 90 evaluations and initial sample size 10 each

Error bars represent bootstrapped 0.95−CI of incumbent mean best target value
EI = Expected Improvement, LCB = Lower Confidence Bound, AEI = Augmented Expected Improvement,

GLCB−1−100 means rho = 1 and c = 100. tau = 1 for all GLCBs and for LCB.

Figure 35: Graphene and time: Benchmarking results from graphene quality as function of laser

irradiation time: generalized lower confidence bound (GLCB) vs. several established Acquisition

Functions (1).
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GLCB vs. Classic Acquisition Functions (Graphene−Time)

Bayesian optimization of graphene quality depending on laser irradiation time
60 runs per Acquisition Function with 90 evaluations and initial sample size 10 each

Error bars represent bootstrapped 0.95−CI of incumbent mean best target value
ALCB = Adaptive Lower Confidence Bound, EQI = Expected Quantile Improvement, SE = Standard Error

GLCB−1−100 means rho = 1 and c = 100. tau = 1 for all GLCBs. Adaptive LCB uses different values for tau

Figure 36: Graphene and time: Benchmarking results from graphene quality as function of laser

irradiation time: generalized lower confidence bound (GLCB) vs. several established Acquisition

Functions (2).
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GLCB vs. Classic Acquisition Functions (Graphene−Power)

Bayesian optimization of graphene quality depending on laser irradiation power
60 runs per Acquisition Function with 90 evaluations and initial sample size 10 each

Error bars represent bootstrapped 0.95−CI of incumbent mean best target value
EI = Expected Improvement, LCB = Lower Confidence Bound, AEI = Augmented Expected Improvement,

GLCB−1−100 means rho = 1 and c = 100. tau = 1 for all GLCBs and for LCB.

Figure 37: Graphene and power: Benchmarking results from graphene quality as function of laser

irradiation power: generalized lower confidence bound (GLCB) vs. several established Acquisition

Functions (1).
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GLCB vs. Classic Acquisition Functions (Graphene−Power)

Bayesian optimization of graphene quality depending on laser irradiation power
60 runs per Acquisition Function with 90 evaluations and initial sample size 10 each

Error bars represent bootstrapped 0.95−CI of incumbent mean best target value
ALCB = Adaptive Lower Confidence Bound, EQI = Expected Quantile Improvement, SE = Standard Error

GLCB−1−100 means rho = 1 and c = 100. tau = 1 for all GLCBs. Adaptive LCB uses different values for tau

Figure 38: Graphene and power: Benchmarking results from graphene quality as function of laser

irradiation power: generalized lower confidence bound (GLCB) vs. several established Acquisition

Functions (2).
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GLCB vs. Classic Acquisition Functions (Air Pressure−Humidity)

Bayesian optimization of 500 millibar pressure height (m) as a function of humidity (%)
60 runs per Acquisition Function with 90 evaluations and initial sample size 10 each

Error bars represent bootstrapped 0.95−CI of incumbent mean best target value
EI = Expected Improvement, LCB = Lower Confidence Bound, AEI = Augmented Expected Improvement,

GLCB−1−100 means rho = 1 and c = 100. tau = 1 for all GLCBs and for LCB.

Figure 39: Air pressure in Los Angeles. Benchmarking results from 500 millibar pressure height

(m) as function of humidity (%): generalized lower confidence bound (GLCB) vs. several established

Acquisition Functions (1).
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GLCB vs. Classic Acquisition Functions (Air Pressure−Humidity)

Bayesian optimization of 500 millibar pressure height (m) as a function of humidity (%)
60 runs per Acquisition Function with 90 evaluations and initial sample size 10 each

Error bars represent bootstrapped 0.95−CI of incumbent mean best target value
ALCB = Adaptive Lower Confidence Bound, EQI = Expected Quantile Improvement, SE = Standard Error

GLCB−1−100 means rho = 1 and c = 100. tau = 1 for all GLCBs. Adaptive LCB uses different values for tau

Figure 40: Air pressure in Los Angeles. Benchmarking results from 500 millibar pressure height

(m) as function of humidity (%): generalized lower confidence bound (GLCB) vs. several established

Acquisition Functions (2).
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GLCB vs. Classic Acquisition Functions (Heartbeat−1)

Bayesian optimization of heartbeat rate time series (individual 1)
60 runs per Acquisition Function with 90 evaluations and initial sample size 10 each

Error bars represent bootstrapped 0.95−CI of incumbent mean best target value
EI = Expected Improvement, LCB = Lower Confidence Bound, AEI = Augmented Expected Improvement,

GLCB−1−100 means rho = 1 and c = 100. tau = 1 for all GLCBs and for LCB.

Figure 41: Benchmarking results from heartbeat (individual 1) time series: generalized lower confi-

dence bound (GLCB) vs. several established Acquisition Functions (1).

Page 96



A.3 Additional Figures

GLCB−1−100 GLCB−1−50 GLCB−10−100

0 25 50 75 0 25 50 75 0 25 50 75

101

102

103

104

105

Evaluations

M
ea

n 
B

es
t T

ar
ge

t V
al

ue

Acquisition Function

ALCB

GLCB−1−50

GLCB−1−100

GLCB−10−100

GLCB−1−100 GLCB−1−50 GLCB−10−100

0 25 50 75 0 25 50 75 0 25 50 75

101

102

103

104

105

Evaluations

M
ea

n 
B

es
t T

ar
ge

t V
al

ue

Acquisition Function

EQI

GLCB−1−50

GLCB−1−100

GLCB−10−100

GLCB−1−100 GLCB−1−50 GLCB−10−100

0 25 50 75 0 25 50 75 0 25 50 75

101

102

103

104

105

Evaluations

M
ea

n 
B

es
t T

ar
ge

t V
al

ue

Acquisition Function

SE

GLCB−1−50

GLCB−1−100

GLCB−10−100

GLCB vs. Classic Acquisition Functions (Heartbeat−1)

Bayesian optimization of heartbeat rate time series (individual 1)
60 runs per Acquisition Function with 90 evaluations and initial sample size 10 each

Error bars represent bootstrapped 0.95−CI of incumbent mean best target value
ALCB = Adaptive Lower Confidence Bound, EQI = Expected Quantile Improvement, SE = Standard Error

GLCB−1−100 means rho = 1 and c = 100. tau = 1 for all GLCBs. Adaptive LCB uses different values for tau

Figure 42: Benchmarking results from heartbeat (individual 1) time series: generalized lower confi-

dence bound (GLCB) vs. several established Acquisition Functions (2).
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GLCB vs. Classic Acquisition Functions (Heartbeat−2)

Bayesian optimization of heartbeat rate time series (individual 2)
60 runs per Acquisition Function with 90 evaluations and initial sample size 10 each

Error bars represent bootstrapped 0.95−CI of incumbent mean best target value
EI = Expected Improvement, LCB = Lower Confidence Bound, AEI = Augmented Expected Improvement,

GLCB−1−100 means rho = 1 and c = 100. tau = 1 for all GLCBs and for LCB.

Figure 43: Benchmarking results from heartbeat (individual 2) time series: generalized lower confi-

dence bound (GLCB) vs. several established Acquisition Functions (1).
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GLCB vs. Classic Acquisition Functions (Heartbeat−2)

Bayesian optimization of heartbeat rate time series (individual 2)
60 runs per Acquisition Function with 90 evaluations and initial sample size 10 each

Error bars represent bootstrapped 0.95−CI of incumbent mean best target value
ALCB = Adaptive Lower Confidence Bound, EQI = Expected Quantile Improvement, SE = Standard Error

GLCB−1−100 means rho = 1 and c = 100. tau = 1 for all GLCBs. Adaptive LCB uses different values for tau

Figure 44: Benchmarking results from heartbeat (individual 2) time series: generalized lower confi-

dence bound (GLCB) vs. several established Acquisition Functions (2).
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A.3 Additional Figures
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GLCB vs. EI and LCB (1−d Ackley Function)

Bayesian optimization of 1−d Ackley Function 
40 runs per Acquisition Function with 90 evaluations (20 shown) and initial sample size 10 each

Error bars represent bootstrapped 0.95−CI of incumbent mean best target value
EI = Expected Improvement, LCB = Lower Confidence Bound

GLCB−1−100 means rho = 1 and c = 100. tau = 1 for all GLCBs and for LCB.

Figure 45: Benchmarking results from synthetic Ackley function: generalized lower confidence bound

(GLCB) vs. expected improvement (EI) and lower confidence bound (LCB)
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GLCB vs. EI and LCB (1−d Alpine01 Function)

Bayesian optimization of 1−d Alpine01 Function 
40 runs per Acquisition Function with 90 evaluations (20 shown) and initial sample size 10 each

Error bars represent bootstrapped 0.95−CI of incumbent mean best target value
EI = Expected Improvement, LCB = Lower Confidence Bound

GLCB−1−100 means rho = 1 and c = 100. tau = 1 for all GLCBs and for LCB.

Figure 46: Benchmarking results from synthetic Alpine function: generalized lower confidence bound

(GLCB) vs. expected improvement (EI) and lower confidence bound (LCB)
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GLCB vs. EI and LCB (1−d Alpine N. 2 Function)

Bayesian optimization of 1−d Alpine N. 2 Function 
40 runs per Acquisition Function with 90 evaluations (20 shown) and initial sample size 10 each

Error bars represent bootstrapped 0.95−CI of incumbent mean best target value
EI = Expected Improvement, LCB = Lower Confidence Bound

GLCB−1−100 means rho = 1 and c = 100. tau = 1 for all GLCBs and for LCB.

Figure 47: Benchmarking results from synthetic Alpine-2 function: generalized lower confidence

bound (GLCB) vs. expected improvement (EI) and lower confidence bound (LCB)
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GLCB vs. EI and LCB (1−d Chung Reynolds Function)

Bayesian optimization of 1−d Chung Reynolds Function 
40 runs per Acquisition Function with 90 evaluations (20 shown) and initial sample size 10 each

Error bars represent bootstrapped 0.95−CI of incumbent mean best target value
EI = Expected Improvement, LCB = Lower Confidence Bound

GLCB−1−100 means rho = 1 and c = 100. tau = 1 for all GLCBs and for LCB.

Figure 48: Benchmarking results from synthetic Chung-Reynolds function: generalized lower confi-

dence bound (GLCB) vs. expected improvement (EI) and lower confidence bound (LCB)
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GLCB vs. EI and LCB (1D Weierstrass function)

Bayesian optimization of 1D Weierstrass function 
40 runs per Acquisition Function with 90 evaluations (20 shown) and initial sample size 10 each

Error bars represent bootstrapped 0.95−CI of incumbent mean best target value
EI = Expected Improvement, LCB = Lower Confidence Bound

GLCB−1−100 means rho = 1 and c = 100. tau = 1 for all GLCBs and for LCB.

Figure 49: Benchmarking results from synthetic Weierstrass function: generalized lower confidence

bound (GLCB) vs. expected improvement (EI) and lower confidence bound (LCB)
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GLCB vs. Classic Acquisition Functions (Drop Wave)

Bayesian optimization of synthetic drop wave function
60 runs per Acquisition Function with 60 evaluations and initial sample size 10 each

Error bars represent bootstrapped 0.95−CI of incumbent mean best target value
EI = Expected Improvement, LCB = Lower Confidence Bound, AEI = Augmented Expected Improvement, 

GLCB−1−100 means rho = 1 and c = 100. tau = 1 for all GLCBs and for LCB.

Figure 50: Benchmarking results from synthetic drop wave function: generalized lower confidence

bound (GLCB) vs. established aquisition functions (1).
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GLCB vs. Classic Acquisition Functions (Drop Wave)

Bayesian optimization of synthetic drop wave function
60 runs per Acquisition Function with 60 evaluations and initial sample size 10 each

Error bars represent bootstrapped 0.95−CI of incumbent mean best target value
ALCB = Adaptive Lower Confidence Bound, EQI = Expected Quantile Improvement, SE = Standard Error

GLCB−1−100 means rho = 1 and c = 100. tau = 1 for all GLCBs. Adaptive LCB uses different values for tau

Figure 51: Benchmarking results from synthetic drop wave function: generalized lower confidence

bound (GLCB) vs. established aquisition functions (2).
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Figure 52: Benchmarking results from second alpine function: BO with weighted ML vs. BO with

unweighted ML, both with LCB with varying τ as AF.
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B Code and Data Availability

All code and data sets to reproduce the herein presented results, tables and figures

can be found at https://github.com/rodemann/master-thesis-r. Access to the

repository is granted upon request.
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AD accumulated difference. 26, 27, 29, 30, 85

AEI augmented expected improvement. 10, 11, 45, 50–52
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BQO Bayesian quadrature optimization. 55

CBO causal Bayesian optimization. 59, 60
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COD curse of dimensionality. 22

CrI credible interval. 38

DL deep learning. 40, 55, 58

EA evolutionary algorithm. 71

EI expected improvement. 6–8, 11, 12, 20, 33, 45, 50–53, 59, 64, 100–104

EQI expected quantile improvement. 11, 45, 50–53
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HC hypervolume contribution. 14

IAF integrated acquisition function. 31, 34

IGP imprecise Gaussian process. xii, xiii, 35–42, 45, 53, 54, 57–59

Page 110



IP imprecise probabilities. 2–4, 59

LCB lower confidence bound. xii, 6, 8–10, 12, 42, 45, 49–53, 61, 64, 100–104

LHS latin hypercube sampling. 22, 25, 30, 45, 62, 64

MAP maximum a posteriori. 40

MCMC Markov chain Monte Carlo. 34

ML machine learning. 1, 3, 54

ML maximum likelihood. xiii, 1, 9, 20, 31, 32, 35, 38, 40, 61, 63–65, 69, 72

MOP mean optimization path. 19–22, 24–29, 45, 49, 50

MSE mean squared error. xii, 9, 10

NAS neural architecture search. 58

NFL no free lunch theorem. 35, 36, 52

PI probability of improvement. 6–8, 12

RF random forest. 5, 6, 17, 46–48, 52, 57, 58

SE standard error. 8, 33, 45, 50–53

SED standard error distribution value. 61, 62

SER standard error ratio. 61, 62

SH successive halving. 41

SLB statistical lower bound. xii, 9, 10, 61
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