
Ludwig-Maximilians-Universität München

Department of Statistics

Aspect-based Sentiment Analysis:
A Theoretical and Practical

Comparison of Different Approaches

Master’s Thesis

Elisabeth Lebmeier

Supervisors: Dr. Christian Heumann
Matthias Aßenmacher

Submission Date: 22.07.2021

Abstract

In the last five years, aspect-based sentiment analysis has been a field
of great interest within Natural Language Processing. Supported by the
Semantic Evaluation Conferences in 2014-2016, a lot of methods have
been developed competing in improving performances on benchmark data
sets. Exploiting the transformer architecture behind BERT, results were
improved and efforts in this direction still continue today. In this thesis,
we give a categorization of existing approaches and explain their details in
terms of architecture. As our main practical contribution, we evaluate six
of them on five benchmark data sets. Our experiments show that reported
performance results are not reproducible in general.

Contents

1 Introduction 1

2 Prerequisites 2
2.1 Task Description . 2

2.1.1 Aspects, Sentiments and Opinion Terms 2
2.1.2 ABSA vs. ATSC vs. ACSC . 3
2.1.3 Single-task vs. Multi-task vs. Pipeline Approaches 4

2.2 Modelling Procedure . 4
2.3 Linguistic Features . 5

3 Theoretical Background: (Deep) Architectures 7
3.1 CRFs . 7
3.2 CNNs . 8
3.3 RNNs . 9
3.4 Attention-based Models . 13

3.4.1 Attention Mechanism . 13
3.4.2 Transformer . 15
3.4.3 BERT . 16

3.5 Graph-based Architectures . 17
3.5.1 Graph Convolutional Networks (GCNs) 18
3.5.2 Graph Attention Networks (GATs) 18

4 Meta-Analysis of Approaches 20
4.1 ATSC Methods . 20

4.1.1 CNN-based models . 24
4.1.2 RNN-based Models . 25
4.1.3 Attention-based Models . 33
4.1.4 BERT-based Models . 36
4.1.5 Models based on Extra Data . 38
4.1.6 Models based on Local Context Focus (LCF) 44
4.1.7 Methods based on Graphs . 48
4.1.8 Models based on Capsule Networks 61

4.2 ATE+ATSC Methods . 66
4.2.1 Models with a Pipeline Architecture 67
4.2.2 Models with a Joint Labeling Scheme 73
4.2.3 Models with a Collapsed Labeling Scheme 82

5 Experiments 94
5.1 Selected Approaches . 94
5.2 Data Sets . 96

5.2.1 SemEval-14 . 96
5.2.2 MAMS . 98
5.2.3 ARTS . 100

5.3 Data Preparation . 101
5.4 Evaluation Metrics . 102
5.5 Results . 104

5.5.1 General Outcome . 104
5.5.2 Model-specific Observations . 106
5.5.3 Data-specific Results . 109

6 Conclusion 111

7 Outlook 113

List of Figures 116

List of Tables 118

Bibliography 119

Appendix 129

Declaration of Authorship 137

1 Introduction

Whereas for a very long period numerical analysis was in the center of attention, nowadays
text is becoming more and more important as an object of research. The field of Natural
Language Processing (NLP) has profited a lot from technical and algorithmic improve-
ments within the last years. Before the successful times of Machine Learning and Deep
Learning, NLP was mainly based on what linguists knew about how languages work, i.e.
grammar and syntax. Thus, primarily rule-based approaches were employed in the past.
Nowadays, far more generalized models based on neural networks can be set up that can
learn the desired language features.

On the other hand, data in written form is available in huge amounts and thus might be an
important source for valuable information. For instance, the internet is full of comparison
portals, forums, blogs and social media posts where people state their opinions on a broad
range of products, companies and other people. Product developers, politicians or other
persons in charge could profit from this information and improve their products, decisions
and behavior.

Thus, we focus on the specific topic of Aspect-Based Sentiment Analysis (ABSA) in this
work. It is the task of identifying the polarity of single words, so-called aspects, within
a given text based on their context. These methods can be used to establish a more
differentiated view on a certain topic. We are going to have a look at both the theoretical
and practical behavior of existing approaches.

This thesis is divided into four parts. The first is about the theoretical background in
general, including a clarification of the terminology and different types of ABSA tasks. It
is followed by a chapter introducing the reader to underlying deep learning architectures
like CNNs, RNNs and BERT. The third part gives a categorization of existing methods
and we go into the details of every model. For a subset of them, we explore their practical
performance in the last chapter. There, we first give a detailed overview about available
ABSA data sets, ways to prepare and evaluate the data and finally present the results of
our analysis.

1

2 Prerequisites

2.1 Task Description

Aspect-based sentiment analysis gained a lot of attention through the corresponding tasks
at Semantic Evaluation (SemEval) conferences in 2014-2016 [64–66]. However, terminol-
ogy is not unique when referring to this topic. Thus, we give a short overview about
related terms and state which ones we are going to use throughout this thesis. In general,
the data used in this work are review texts about certain products, often restaurants
and laptops. Usually, they are of arbitrary length and there are no restrictions to their
content.

2.1.1 Aspects, Sentiments and Opinion Terms

To start with the basics, we take the following example from [9]: “The place is small
and cramped but the food is delicious.” Here, “place” and “food” are facets of the visited
restaurant which we call aspects or more precisely aspect terms, sometimes also targets.
Our task is to assign a sentiment to each of these aspects. By sentiment we mean a
positive, negative or neutral polarity that the sentence conveys. In some cases, neutral
polarity is equal to none and some works like [64] also include a conflict sentiment when
the context is not clear about the aspect. This happens when contradicting statements
are made with respect to a certain aspect. Here, the polarities would be positive for
“food” and negative for “place”. Sometimes, also opinion terms are explicitly extracted
from texts. These are words that convey the sentiment. In our example, they are “small”,
“cramped” and “delicious”.

2

2.1.2 ABSA vs. ATSC vs. ACSC

When we speak of Aspect-Based Sentiment Analysis (ABSA), we take this as a generic
term for several unique tasks. This is also caused by the inconsistency of terms in liter-
ature, where many different names are widely used. An alphabetical overview over the
most common one can be found in Table 1. Since we want to be as precise as possible
in this thesis, we are going to use different terms than ABSA to refer to the exact tasks.
The main one is stated as subtask 2 of [64]: Assume that in each text aspect terms are
already marked and thus given exactly as written in the text. Then, the task is a classi-
fication of sentiments for those aspect terms. This is why we find the term Aspect Term
Sentiment Classification (ATSC) the most accurate and we are going to use it throughout
this thesis.

Full Name Abbreviation Source
Aspect-Based Sentiment Analysis ABSA [25]
Aspect-Based Sentiment Classification ABSC [97]
Aspect-Level Sentiment Classification ALSC [97]
Aspect Sentiment Classification ASC [53]
Aspect Target Sentiment Classification ATSC [70]
Aspect Term Sentiment Analysis ATSA [91]
Aspect Term Sentiment Classification ATSC [35]
Target-Based Sentiment Analysis TBSA [46]
Targeted(-Dependent) Sentiment Analysis TSA [14, p.240]
Targeted Sentiment Classification TSC [4]

Table 1: Overview over common names for the task of classifying sentiments of given
aspect terms.

In contrast to the definition of aspects from above, the authors of [14, p.243f] mean aspect
categories when referring to aspects in their task of aspect-level sentiment analysis. This
use of aspects is not unusual and thus it is important to be aware of the difference.
It is also the reason why we insist on ATSC as the correct term for our task. Aspect
categories do not have to be mentioned explicitly in the text and usually there is a small,
fixed amount of them, e.g. “food”, “service”, “price” for restaurants and “performance”
or “price” for laptops. Usually, this is called Aspect Category Sentiment Classification
(ACSC). Although this task might seem quite similar to ATSC, methods for one of these
tasks cannot be easily employed on the other as ATSC approaches often rely on the
explicit position of the aspect within the given text. Thus, we are not going any deeper
into the topic of ACSC. Nevertheless, it is important to keep this difference in mind when
getting to know new approaches in order to distinguish between ATSC and ACSC. Both
can be meant when talking about aspect-based sentiment analysis.

3

2.1.3 Single-task vs. Multi-task vs. Pipeline Approaches

When referring to ATSC methods, we usually think of single-task approaches. These
methods are designed to carry out only aspect term sentiment classification as the aspect
terms are already given. Whether these were identified manually or by an algorithm is
not relevant in this setting.

In practice, however, it is usually not the case that aspect terms are already known. Thus,
approaches dealing with the step of aspect term extraction (ATE) have been developed.
They can either work on their own or be combined to an ATSC method. These combined
methods which we call ATE+ATSC are also channelled under the generic term ABSA.
They can either be pipeline, joint or collapsed models. In pipeline models, ATE and ATSC
are simply stacked one after another, i.e. the output of the first model is used as input to
the second model. The latter two are often also referred to as multi-task models because
both tasks are carried out simultaneously or in an alternating way. These models differ
in their labeling mechanisms: There are two label sets for joint models, one to indicate
whether a word is part of an aspect term and the other one to state the polarity of the
aspect term. For collapsed models, one labeling scheme indicates whether a word is part
of a positive, negative or neutral aspect term or not. Examples will be presented in the
next section when labeling schemes are introduced.

2.2 Modelling Procedure

One usually does not simply apply a model directly on an input text, but some steps are
necessary beforehand. We give a short overview about them here, but refer to literature
for more details.

Tokenization At first, however, a sentence has to be divided into several pieces, most
intuitively words and sub-words (in the case of long or combined terms). This procedure
is called tokenization. Two famous approaches are WordPiece (cf. [86]) and BytePairEn-
coding (cf. [75]). Note that although the latter has “encoding” in its name, the outputs
of the tokenization are still sequences of letters.

Embeddings Thus, it is most important to turn these tokens into numerical repre-
sentations in the next step. As one-hot encoding for each word based on the complete

4

vocabulary would lead to sparse word vectors, other methods are applied. These dense,
numerical vectors called embeddings use a mapping function that is often pretrained on
a large text corpus. A widely used example are GloVe embeddings (cf. [62]). It is also
possible to extract more complex, context-based representations from models like BERT
(see Section 3.4.3).

Labeling In order to make model training for ATSC or ATE+ATSC possible, not only
well-prepared input texts are needed, but also labels indicating the polarity of aspects
or the aspects within a sentence. Therefore, different schemes are used. For the ATSC
task, usually numerical labels are sufficient, with 1 indicating positive, −1 negative and
0 neutral. However, labeling aspects within a sentence is more difficult. A widely used
approach is based on the so-called BIO(ES)-scheme, where the single letters stand for
beginning, inside, end of and single-word aspect and O stands for Other, i.e. no aspect at
all. Depending on the chosen scheme, the last word of an aspect term is either labeled as I
(BIO) or E (BIOES). These positional labels can stand alone, can be more informative
together with a suffix “ASP” for “Aspect” or can be combined with a sentiment, e.g.
“B-POS”. The following example from [53] about a laptop points out the differences:

Text Nice operating system and keyboard
Joint: Aspects O B I O B
Joint: Sentiments O POS POS O POS
Collapsed O B-POS I-POS O B-POS

Table 2: Comparison of joint and collapsed labeling scheme according to BIO tags.

2.3 Linguistic Features

Having encountered tokens as a small unit of text in the previous section, we now present
some linguistic features that can be extracted on token-level. We focus on those that will
appear in the following parts of the thesis.

POS Tags Part-of-speech (POS) tags are very common. Each word is assigned its part
of speech, e.g. noun, verb or adjective, with the corresponding abbreviation, depending on
the chosen tagging scheme. For detailed definitions and explanations on different tagging
schemes, we refer the reader to [36, p.149ff].

5

Chunks Based on the part of speech tags, a sentence can be divided into several
phrases, e.g. noun phrase (NP) and verb phrase (VP). Usually, they are disjunct and
called chunks (cf. [2]).

Constituent Trees Starting with chunks, constituent trees give more detailed infor-
mation about how text is structured. As illustrated in Figure 1, constituent trees are
not directed and they rely on POS tags. Following the explanations on abbreviations
in [36, p.149ff], for the first noun phrase “Economic news”, we get to know that “eco-
nomic” is an adjective and “news” is a singular or mass noun.

Figure 1: Example for a constituent tree. Source: [14, p.82]

Syntactic Dependency How words interact with each other with respect to syntax,
is stated in the syntactic dependency relations. They can be represented in so-called
dependency trees as shown in Figure 2. In contrast to the constituent trees from above,
they are directed, with tokens as vertices and the relations as edges or arcs (cf. [14, p.82]).
The figure illustrates for the same example sentence that the root of the tree is the
predicate “had”. To it, the subject “news” belongs which is modified by “economic”.
The word where an arrow starts is considered the head and the one where it ends the
child (cf. [2]).

Figure 2: Example for a dependency tree. Source: [14, p.82]

6

3 Theoretical Background: (Deep)
Architectures

After a clarification of the task and some basic definitions in the previous part, we now
introduce the architectures that work as basis for the models in Section 4. We strive
to give an overview about the essential characteristics of each model and refer to the
corresponding papers for details. The models appear roughly in the order of creation,
starting with simpler ones and ending with more complex architectures.

3.1 CRFs

Conditional Random Fields (CRFs) were proposed in [41] and are widely used on all
kinds of data. Their key feature is that instead of tag predictions for single words, the
whole sequence of labels is predicted at once. Following the explanation of [36, p.162f],
the probability distribution over a sequence of labels Y = y1, . . . , yn is defined as

p (Y |X) =
exp

(∑K
k=1wkFk(X, Y)

)
∑

Y ′∈Y exp
(∑K

k=1wkFk(X, Y
′)
) (3.1)

with inputs X = x1, . . . , xn. The set of all possible label sequences is denoted by Y
and weights by wk. The K functions Fk are called global features and consist of local,
position-wise features fk(yi−1, yi, X, i), more precisely Fk(X, Y) =

∑n
i=1 fk(yi−1, yi, X, i).

They extract feature vectors from X at position i based on labels yi−1 and yi. Using only
these two labels is the characteristic of a so-called linear-chain CRF. This type of CRFs
is usually applied in NLP. In general, a CRF is trained by minimizing the negative log
likelihood of Equation 3.1 (cf. [21, p.224]).

7

3.2 CNNs

Convolutional Neural Networks (CNNs) are a modification of fully-connected neural net-
works and they were originally designed for Computer Vision (cf. [44]). We follow the
notations of [14, p.29] to present a CNN architecture for sentence classification. The
procedure is illustrated in Figure 3.

Figure 3: CNN Architecture. Source: [14, p.29]

CNNs receive their name from the convolution operator which is its main building block.
During the convolution, a so-called filter matrix U is applied on the input words W to
extract features

ci = tanh(UWi:i+h−1 + b)

with bias b. Note that not all the words in W are used, but just a window of size h. This
is a characteristic of the CNN which reduces the number of connections between the input
layer and the new feature layer in comparison to a fully-connected NN. Applying the same
filter U everywhere on the input, makes a CNN obey to the principle of translation invari-
ance. Thinking of the original use-case of image classification, this is sensible as a certain
object should be detected anywhere in an image. Additionally, trainable parameters are
shared and thus fewer computations are necessary with respect to fully-connected NNs.
The next operation on the new features c is pooling. Depending on the chosen variant,
the maximum (max pooling) or the average (average pooling) value is forwarded to the
next layer. This step reduces the dimensionality of the representations. The combination
of applying a convolution followed by pooling can be repeated several times. Then, a
fully-connected layer and a softmax are applied for classification.

8

3.3 RNNs

Working in the field of Natural Language Processing, our data is text, no matter whether it
was directly written or transcribed from audio. Due to the human way of processing it, i.e.
reading word by word, it is considered sequential data. A model class especially adapted
to this kind of data are Recurrent Neural Networks (RNNs). As explained in [96, p.321-
326], RNNs are neural networks with hidden states which are designed to store knowledge
from previous inputs. In literature, the order of the inputs is often given as time steps
t = 1, . . . , T . By storing all the information encountered until a certain point of time,
i.e. a certain word, the human reading process is imitated and the model can rely on the
same knowledge as a human could. The basic architecture of an RNN consists of input,
hidden and output layers for each time t which is illustrated in Figure 4.

(a) (b)

Figure 4: RNN Architecture with recurrence (a) within the hidden layer h (b) between
predicted outputs o and hidden layer h. The input is denoted as x, the loss as
L and true outputs as y. Source: [23, p.378,380]

To highlight the differences to a standard neural network, we shortly give the equations
for a standard fully-connected two-layer neural network:

H = φ(XWxh + bh)

O = HWhq + bq.

Here, O stands for the output and H for a layer in between. Furthermore, we have
weights and biases Wxh ∈ Rd×h, bh ∈ R1×h, Whq ∈ Rh×q and bq ∈ R1×q. However, for
a recurrent neural network with inputs Xt ∈ Rn×d at time t, the corresponding hidden
state is Ht ∈ Rn×h. It is calculated using the current input Xt, the previous hidden state

9

Ht−1 and the activation function φ of the hidden layer:

Ht = φ(XtWxh +Ht−1Whh + bh),

where Whh ∈ Rh×h is the new weight parameter for the hidden state. The weight Wxh

and the bias bh are the same as for the architecture without a hidden state. The final
output then has the form

Ot = HtWhq + bq,

with Whq and bq having the same sizes as in the architecture from above. This kind of
neural network is called recurrent as the definition of the current hidden state is based on
the same definition of the previous hidden state. Of course, this recurrence cannot only
take place in a hidden layer as shown in Figure 4a, but also between output and hidden
layer as illustrated in Figure 4b.

In general, RNNs are optimized by gradient-based methods. To do so, the gradient of the
loss with respect to weights and biases is calculated by the chain rule. This procedure is
called backpropagation. Due to the time component in RNNs the optimization process is
then named backpropagation through time.

LSTM

Big problems of classic RNNs are vanishing and exploding gradients as well as the storage
of long-term dependencies of information. These are caused by long input sequences:
During backpropagation the number of multiplication of weights Whh with themselves
increases with the length of the sequence. In order to deal with these issues, gating
mechanisms and extra memory states were introduced. They decide which information
should be kept or forgotten in each time step and transferred further to the next one.
A very widely known example for so-called Gated RNNs is Long Short-Term Memory
(LSTM) proposed in [29]. Its key feature is the separation of memory into long- and
short-term memory. The long-term memory state Ct has the advantage that it is not
defined based on matrix multiplications, but only on simple operations like addition and
point-wise multiplication. This makes gradient calculations easy as there are no power
operations in the formula. Consequently, the risk of exploding or vanishing gradients is
much smaller than for standard RNNs.

For explanations, we follow [96, p.352-355]. The LSTM, as shown in Figure 5, consists of
an additional memory cell or state Ct ∈ Rn×h at each time step which is controlled by
forget, input and output gates Ft, It, Ot ∈ Rn×h. The state Ct is responsible for long-term
memories. Its inputs at time t are the current input Xt ∈ Rn×d and the previous hidden

10

Figure 5: LSTM Architecture. Source: [96, p.355]

state Ht−1 ∈ Rn×h. In contrast to Ct, the hidden state works as the short-term memory.
The gates themselves are fully-connected layers with a sigmoid activation:

Ft = σ(XtWxf +Ht−1Whf + bf),

It = σ(XtWxi +Ht−1Whi + bi),

Ot = σ(XtWxo +Ht−1Who + bo),

where Wxj ∈ Rd×h, Whj ∈ Rh×h and bj ∈ R1×h are weights and biases for j ∈ {f, i, o}.
The forget gate is used to restrict the information from the previous long-term memory
cell Ct−1 to be taken into account into the current memory cell. In order to set up Ct, a
so-called candidate memory cell C̃t is computed as

C̃t = tanh (XtWxc +Ht−1Whc + bc),

with the same parameter shapes as above. The input gate decides which new information
from this candidate memory cell should be stored in Ct:

Ct = Ft � Ct−1 + It � C̃t.

Based on this cell memory, the hidden state is calculated via

Ht = OT � tanh (Ct).

11

This architecture allows the model to keep long-term dependencies by setting the forget
gate approximately to 1 and the input gate to approximately 0. Whether these depen-
dencies are necessary is determined during the training process. An output gate value of
about 1 pushes the current cell memory forward to be processed further in the next steps,
whereas a value of about 0 keeps all information in the cell itself.

GRU

Gated Recurrent Units (GRUs), are very similar to LSTMs, yet they are less complex.
They were proposed in [10], but we refer to [96, p.345-349] for our explanations. As shown
in Figure 6, compared to an LSTM it has only two gates and one hidden state Ht.

Figure 6: GRU Architecture. Source: [96, p.349]

The reset gate Rt can be used to dismiss information in the hidden state; thus, it is
responsible for the short-term memory. In contrast to that, the update gate Zt decides
how much old information is kept in the new state, which makes it capture long-term
dependencies. The gates are calculated by

Rt = σ(XtWxr +Ht−1Whr + br) and

Zt = σ(XtWxz +Ht−1Whz + bz)

12

with weights Wxr,Whr,Wxz and Whz and biases br and bz. Based on the reset gate, a
candidate hidden state is given by

H̃t = tanh (XtWxh + (Rt �Ht−1)Whh + bh),

where Wxh and Whh are weights and bh is a bias term. The new hidden state then is

Ht = Zt �Ht−1 + (1− Zt)� H̃t.

Like an LSTM, a GRU deals with the issues of classical RNNs and lowers the risk of
vanishing gradients. This is possible due to performing only simple operations on the
hidden state instead of matrix products, which makes backpropagation for Ht much faster.
Simultaneously, the ability of storing long-term information is improved.

3.4 Attention-based Models

3.4.1 Attention Mechanism

The longer an input sequence is, the more long-term dependent information has to be
stored. This causes problems both in terms of memory capacity and performance. To
deal with this issue, so-called attention mechanisms were introduced which are able to
decide which part of information is relevant at which point of time. Figure 7 shows the
structure of a typical attention mechanism.

Following the notation of [96, p.404-407], we have a query vector q ∈ Rq and key-value
pairs (ki, vi), i = 1, . . . ,m with ki ∈ Rk and vi ∈ Rv. With an (attention) scoring function
a : Rq × Rk → Rm for each key a so-called relevance score (cf. [23, p.475]) is calculated
by

ei = a(q, ki), i = 1, . . . ,m. (3.2)

Then, for each score we have the corresponding attention weight which is received by
applying softmax:

αi =
exp (ei)∑m
j=1 exp (ej)

. (3.3)

The attention output is the following weighted sum:

f(q, (k, v)) =
m∑
i=1

αivi. (3.4)

13

Figure 7: Attention Architecture. Source: [96, p.404]

There are several possibilities for the choice of the scoring function, for instance additive
attention with

a(q, k) = w>v tanh(Wqq +Wkk)

is suitable when queries and key vectors have a different length. As usual, Wq,Wk and
wv denote the weights. The scaled dot-product attention scoring function

a(q, k) =
q>k√
d
.

is computationally more efficient for the same vector length d of both q and k.

In the following, we explain some specialized attention architectures. In multi-head atten-
tion (cf. [96, p.414]), several attention layers or heads are applied in parallel as shown in
Figure 8. This allows to capture and combine different behaviors of an attention mecha-
nism with the same query, key and value vectors. Before they enter the attention layer,
the vectors are fed to different linear projections which are independently learned. Af-
ter the attention layer, the outputs are concatenated and forwarded to a fully-connected
layer.

Self-attention or intra-attention (cf. [96, p.418]) is a special case of attention where the
keys, values and queries all come from the same set of tokens. This means that each token
can attend to itself as well. In contrast to that, cross-attention takes its query vectors
from another set of tokens. Consequently, multi-head self-attention is basically just the
combination of multi-head and self-attention.

14

Figure 8: Multi-head attention architecture. Source: [96, p.415]

3.4.2 Transformer

The Transformer architecture which is solely based on attention was proposed in [80]. As
illustrated in Figure 9, the model can be divided in two parts: an encoder on the left and
a decoder on the right. The encoder consists of N = 6 identical layers with two sub-layers
each. These are a multi-head self-attention and a fully-connected feed-forward neural
network. Precisely, in the multi-head self-attention layer, keys, queries and values are all
outputs of the previous encoder. Both sub-layers have a residual connection and layer
normalization employed on top of them. A residual connection (cf. [96, p.286f]) gives the
model the opportunity to skip a layer if it finds it of no use, i.e. in case a transformation
of the input would make the model perform worse. Formally, this means that the layer
should learn the identity function f(x) = x for an input x. This could be done with
the standard architecture as well, but learning a so-called residual mapping f(x) − x is
easier. For instance, in case of f being a fully-connected layer, this could be reached by
simply setting weights and biases to zero. In Figure 9, the residual connection is depicted
by arrows starting before a layer (e.g. “Feed Forward”), going around it and ending in
the “Add & Norm” layer. The latter stands for layer normalization which is basically
normalization of values across the feature dimension (cf. [96, p.426]).

The decoder also contains six layers, but each of them has three sub-layers. The fully-
connected feed-forward neural network is basically the same as in the encoder, while the
multi-head self-attention layer incorporates masking in order not to allow the model to
see outputs that are not yet generated. The additional sub-layer is a multi-head attention
layer that takes the output of the encoder as key and value vectors and the output of the
previous decoder layer as query vectors. According to the definition from above, this can
be considered cross-attention.

15

Figure 9: Transformer Architecture. Source: [80, p.3]

3.4.3 BERT

Bidirectional Encoder Representations from Transformers (BERT) were introduced in [15].
Their basic architecture is a multi-layer bidirectional Transformer encoder. This means
that for the BERT-BASE model, it consists of twelve transformer encoder blocks with
hidden size 768 and twelve self-attention heads. There also exists a larger version of
BERT, called BERT-LARGE.

In general, BERT is a language model, i.e. a model that is trained to understand how a
language is structured and which vocabulary is used in which way. In order to reach this
goal, there are two phases: During the pretraining phase, the model learns the structure
of the language and the vocabulary in general. This knowledge is used on a certain topic
in the fine-tuning phase, where the model learns a specific task and certain terminology.

16

BERT was pretrained on unlabeled data sets (BooksCorpus, see [99], and English Wikipe-
dia) of 3,300M words with two tasks: Task one was Masked Language Modelling which is
about predicting randomly masked words within a text. For this task, 15% of the tokens
in each sentence were randomly selected to be replaced by a [MASK] token. In order to
keep pretraining and fine-tuning aligned, it was not exactly 15% masked tokens, but only
80% of the chosen tokens were really masked, while ten percent each were substituted by
a random token or not changed at all. BERT’s specialty is to work in a bidirectional way,
i.e. it is able to condition its prediction for the masked word on the context on both sides.
This allows BERT to better deal with different meanings of words as more information
is captured. The other task was Next Sentence Prediction in which the model is given
a pair of sentences that truly appear one after another in half of the cases and that are
randomly combined in the other half. Then, the model has to tell whether the order is
really given like that or not.

In order to use BERT on texts about certain topics, it is necessary to fine-tune it with
labeled data. This means that the model is initialized with the pretrained parameters
and then learns task-specific weights for an extra layer. Fine-tuning BERT can be done
for several tasks, like question answering, token and sequence classification.

An essential part of the application of BERT during fine-tuning is the preparation of word
sequences as inputs. Depending on the task, there is either one sequence on its own or
there is a pair of them, e.g. question and answer. First, words are tokenized using the
vocabulary determined by the pretrained language model. Then, the tokens are turned
into numbers by embeddings, in this case WordPiece embeddings [86]. At the beginning
of each sequence, a so-called classification token [CLS] is added. In case of pairs of
sequences, the separator token [SEP] is added between them and at the end, otherwise it
is put only at the end. BERT is used to always receive inputs of the same length which
is called the maximum sequence length. The maximum that can be chosen is 512; smaller
values make sense in case of shorter samples. Inputs longer than the given maximum
sequence length are truncated, while shorter ones are filled with so-called padding tokens.
It is marked which tokens are real and which are there due to padding. In case of sequence
pairs, it is also marked to which sequence a token belongs. When all this is done, BERT
can be fine-tuned on the data.

3.5 Graph-based Architectures

Based on the trees introduced in Section 2.3, we now present models that work with the
information that can be extracted from them.

17

3.5.1 Graph Convolutional Networks (GCNs)

Figure 10: A single GCN layer. Source: [97, p.4569]

Graph Convolutional Networks (GCNs) were introduced in [40] and consist of one kind
of layer which is repeated several times. Such a layer is illustrated in Figure 10. For an
undirected graph G, an adjacency matrix A indicates which nodes are connected to each
other. In each layer l, the activation matrix is updated by

H(l+1) = σ
(
D̃−

1
2 ÃD̃H(l)W (l)

)
(3.5)

with representations of the input nodes X as initialization H(0). Moreover, σ denotes an
activation function, W (l) the weights, Ã = A+ IN and D̃ =

∑
j Ãjj.

3.5.2 Graph Attention Networks (GATs)

The idea of Graph Attention Networks (GATs) was developed in [81]. They are con-
structed by stacking several graph attentional layers onto each other. A single layer

consists of the following calculation steps: A set h = {
−→
h1, . . . ,

−→
hN} of N nodes works as

inputs. Self-attention with relevance scores eij = a(W
−→
hi ,W

−→
hj) is applied on those nodes

j ∈ Ni which are the first-order neighbors of node i (including i = j). Hereby, the score
function a : RF ′ × RF ′ → R is a dense layer, and W are weights. Attention weights αij
are computed according to Equation (3.3) as softmax of eij. Instead of using the usual
attention output formula from Equation (3.4), multi-head attention is applied in order to

18

stabilize the learning process. This yields the following outputs of the graph attentional
layer:

−→
h ′i = ||Kk=1σ

(∑
j∈Ni

αkijW
k−→hj

)
. (3.6)

Here, K attention heads are used and || symbolizes concatenation. As the final graph at-
tentional layer usually is responsible for predictions, a special formula based on averaging
instead of concatenation is proposed by

−→
h′i = σ

(
1

K

K∑
k=1

∑
j∈Ni

αkijW
k−→hj

)
. (3.7)

19

4 Meta-Analysis of Approaches

The main part of this thesis concerns itself with a detailed comparison of existing ap-
proaches for aspect-based sentiment analysis methods, both ATSC and ATE+ATSC.
Due to the vast amount of methods and the ongoing developments in this field, we make
no claim to completeness. Out of this collection of methods we are going to identify a
subgroup of approaches which we are going to analyze practically in Section 5.

In order to present the selected approaches in a structured manner, we created two big
groups based on the task, one for ATSC only and another one for the combination of
ATE and ATSC. Within these groups, we made up some categories to which the methods
are assigned. Some of them may belong to a combination of several subcategories which
would make a nice overview quite difficult. Thus, we assigned each approach to that
category about which we thought it had the highest impact on. Within the categories,
we usually order the approaches according to their publication date, beginning with the
oldest.

4.1 ATSC Methods

Here, we explain those methods that are classifying sentiments for given aspects. Figure 11
gives an overview about those for which accuracy on SemEval-14 Restaurant data has been
reported. It illustrates that almost all models have been developed in the last six years.
A clear change is visible at the end of 2018 when BERT and the transformer architecture
were introduced. This increased the performance results of all following models that were
build on top of BERT. Since the equivalent graphs for other data sets and other metrics
do not provide more information on the general development, they can be found in the
appendix (see Figures 62, 63 and 64). All these reported accuracies and F1 Macro Scores
for ATSC methods are listed in Tables 3 and 4. We also marked those model in Figure 11
which we will use later in our practical part: RGAT-BERT [4] as it is the latest approach,
MGATN [18] as it is the best of the “old” methods, LCF-ATEPC [93] as one of its variants
is the best on this data set and CapsNet-BERT [34] for the group of capsule networks.

20

Figure 11: Development of reported ATSC Accuracy on SemEval-14 Restaurants. An
asterisk indicates that the corresponding values are not taken from the original
papers.

21

ACCURACY Data Set SemEval-14 ARTS MAMS Dong
Domain Restaurant Laptop Restaurant Laptop Restaurant Twitter

Model
Category

Model
Value
Calculation

ARS ARS
mean of
5 runs

RNN-based

TC-LSTM 71.5

TD-LSTM
75.63 [98]
- 78.00 [7]

68.13 [76]
- 71.83 [18]

30.18 22.57 74.60 70.8

ATAE-LSTM 77.2 68.7 14.64 9.87 77.05 69.58 [49]
IAN 78.6 72.1 76.60 72.50 [97]
RAM 80.23 74.49 69.36

AOA-LSTM
best of 10 runs 81.2 74.5

77.26 72.30 [97]
mean of 10 runs 79.7 72.6

MGATN 81.25 75.39 72.54

Attention-based
MemNet (4) 80.95 72.37 21.52 16.93 64.57

66.91 [7]
- 71.48 [97]

AEN-GloVe 80.98 73.51 66.72 72.83
AEN-BERT 83.12 79.93 74.71

BERT-based
P-SUM mean of 9 runs 86.30 79.55
H-SUM mean of 9 runs 86.37 79.40
BAT (3) mean of 9 runs 86.03 79.35

Extra data

BERT-PT mean of 9 runs 84.95 78.07 59.29 53.29
BERT-ADA Laptop mean of 9 runs 85.51 79.19
BERT-ADA Restaurant mean of 9 runs 87.14 78.60
BERT-ADA Joint mean of 9 runs 86.35 78.96
DomBERT-ATSC mean of 10 runs 83.14 76.72

LCF-based

LCF-GloVe-CDM best 82.5 76.02 72.25
LCF-BERT-CDW best 87.14 82.45 77.31
LCFS-ASC-CDW 86.71 80.52
LCF-ATEPC-Fusion 86.77 80.97 76.7
LCF-ATEPC-CDM-DA 90.18 83.02

Graph-based

AdaRNN 66.3
PhraseRNN (1) 66.20
SynATT mean of 5 runs 80.63 71.94
SDGCN-BERT 83.57 81.35
CDT 82.30 77.19 80.70 [4] 74.66
ASGCN-DT mean of 3 runs 80.86 74.14 24.73 19.91 71.53
ASGCN-DG mean of 3 runs 80.77 75.55 72.15
TD-GAT-GloVe (1) 81.2 74.0
TD-GAT-BERT (1) 83.0 80.1
RGAT 83.55 78.02 81.75 [4] 75.36
RGAT-BERT 86.68 80.94 84.52 [4] 76.28

Capsule Networks
CapsNet (2) mean of 5 runs 80.79 79.78
CapsNet-BERT (2) mean of 5 runs 85.93 55.36 25.86 83.39
TCap (5) mean of 5 runs 79.55 73.87

GCAE
76.09 [8]

- 77.28 [34]
68.72 [8]

Pipeline Models
IMN-Pipeline (ATSC) mean of 5 runs 79.56 72.29
SPAN (ATSC) 81.39

Joint Models IMN (ATSC) mean of 5 runs 83.89 75.36
Collapsed Models UABSA (ATSC) 79.68 [63] 72.30 [25]

Table 3: Reported Accuracy for 3-class-ATSC. Values for MAMS and ARTS are from
those papers; all other sources are marked accordingly. Bold printed values indi-
cate the best model of one category, underlined ones the best performance on the
corresponding data set. Remarks: (1) number of layers taken as hyperparame-
ter, (2) classification assumed to be 3-class, (3) restaurant data assumed to be
SemEval-14 Restaurant, (4) number of hops taken as hyperparameter, (5) data
sets of the auxiliary task taken as hyperparameter.

22

F1 MACRO Data Set SemEval-14 MAMS Dong
Domain Restaurant Laptop Restaurant Twitter

Model
Category

Model
Value
Calculation

mean of
5 runs

RNN-based

TC-LSTM 69.5

TD-LSTM
64.16 [49]
- 66.73 [7]

62.28 [49]
- 68.43 [7]

69.0

ATAE-LSTM
64.95 [49]
- 66.36 [8]

62.45 [49]
- 63.24 [8]

56.72 [49]

IAN
67.71 [8]

- 70.09 [97]
63.72 [8]

- 67.38 [97]
70.81 [97]

RAM 70.80 71.35 67.30
AOA-LSTM 70.42 [97] 67.52 [97] 70.20 [97]
MGATN 71.94 72.47 70.81

Attention-based
MemNet

65.83 [49]
- 69.64 [97]

62.60 [8]
- 65.17 [97]

66.91 [76]

AEN-GloVe 72.14 69.04 69.81
AEN-BERT 73.76 76.31 73.13

BERT-based
P-SUM mean of 9 runs 79.68 76.81
H-SUM mean of 9 runs 79.67 76.52
BAT (2) mean of 9 runs 79.24 76.50

Extra data

BERT-PT mean of 9 runs 76.96 75.08
BERT-ADA Laptop mean of 9 runs 78.09 74.18
BERT-ADA Restaurant mean of 9 runs 80.05 74.09
BERT-ADA Joint mean of 9 runs 78.89 74.18
DomBERT-ATSC mean of 10 runs 75.00 73.46

LCF-based

LCF-GloVe-CDM best 73.92 70.58 70.92
LCF-BERT-CDW best 81.74 79.59 75.78
LCFS-ASC-CDW 80.31 77.13
LCF-ATEPC-Fusion 80.54 77.86 74.54
LCF-ATEPC-CDM-DA 85.88 79.84

Graph-based

AdaRNN 65.9
PhraseRNN (1) 59.32 [4]
SynATT mean of 5 runs 71.32 69.23
SDGCN-BERT 76.47 78.34
CDT (3) 74.02 72.99 79.79 [4] 73.66
ASGCN-DT mean of 3 runs 72.19 69.24 69.68
ASGCN-DG mean of 3 runs 72.02 71.05 70.40
RGAT 75.99 74.00 80.87 [4] 74.15
RGAT-BERT 80.92 78.20 83.74 [4] 75.25

Capsule Networks TCap (4) mean of 5 runs 71.41 70.10
GCAE 63.29 [8] 63.32 [8]

Pipeline Models IMN-Pipeline (ATSC) mean of 5 runs 69.59 68.12
Joint Models IMN (ATSC) mean of 5 runs 75.66 72.02
Collapsed Models UABSA 68.38 [63] 68.24 [25]

Table 4: Reported F1 Macro Scores for 3-class-ATSC. Values for MAMS and ARTS are
from those papers; all other sources are marked accordingly. Bold printed values
indicate the best model of one category, underlined ones the best performance on
the corresponding data set. Remarks: (1) number of layers taken as hyperparam-
eter, (2) restaurant data assumed to be SemEval-14 Restaurant, (3) according to
implementation, values are F1 Macro Scores, (4) data sets of the auxiliary task
taken as hyperparameter.

23

4.1.1 CNN-based models

The first model to be presented is the only one in our thesis to be based on CNNs. The
so-called Gated Convolutional Network with Aspect Embeddings (GCAE or sometimes
GatedCNN) was proposed in [91] and is shown in Figure 12.

Figure 12: GCAE Architecture for ATSC. Source: [91, p.5]

The modeling procedure of a GCAE is the following: First, the embedded words X =
[v1, . . . , vL] of a sentence of length L are fed to convolutional layers, where n-gram features
ci, i = 1, . . . , L are computed position-wise. So-called Gated Tanh-ReLU Units (GTRU)
are used for their calculation:

ci = si × ai with

si = tanh(Xi:i+K ∗Ws + bs)

ai = ReLU(Xi;i+K ∗Wa + Vava + ba).

The convolution is denoted by ∗, Ws,Wa are weights and bs, ba biases. The representation
of the aspect term va is retrieved from a CNN over aspect terms and a max pooling
layer. The new features are created based on aspect features ai and sentiment features si.
They are then forwarded to a max pooling, a fully-connected and a softmax layer. Model
training is done by the minimization of the cross-entropy loss.

GCAE is also applicable on ACSC with a slightly different architecture for which we refer
the reader to [91] as this would go beyond the scope of our work.

24

4.1.2 RNN-based Models

Before Transformer and BERT were designed, RNNs and especially LSTMs were very
popular to use for a broad variety of tasks, for instance ATSC. Thus, we present these
models here, although they do not reach the performance of later approaches, as shown
in Figure 11.

TD-LSTM and TC-LSTM

Figure 13: TD-LSTM Architecture. Source: [78, p.2]

Two of the first approaches, target-dependent and target-connected LSTMs, TD-LSTM
and TC-LSTM, were introduced in [78]. The TD-LSTM consists of two uni-directional
LSTMs which are shown in Figure 13: LSTML takes the left part of the sentence including
the target as input, while LSTMR takes the right part plus the target. The former
processes the input from left to right, the latter from right to left. Their hidden layers
are then concatenated and fed into a softmax layer for classification.

Figure 14: TC-LSTM Architecture. Source: [78, p.3]

25

The TC-LSTM is based on the TD-LSTM as one can see in Figure 14. Here, vtarget is
calculated as the average of words vectors belonging to the target. Concatenated position-
wise with the embedding of each word, this is the input of the TD-LSTM. Both models
are trained by minimizing cross-entropy loss.

ATAE-LSTM

Also in [83], an approach based on LSTMs was proposed, in this case combined with
an attention mechanism. Its name ATAE-LSTM stands for Attention-based LSTM with
Aspect Embedding and its architecture can be found in Figure 15.

Figure 15: ATAE-LSTM Architecture. Source: [83, p.610]

Similar to TC-LSTM, we feed not only word representations w1, . . . , wN with sequence
length N to an LSTM with d hidden layers, but also aspect embeddings va. They are
appended to the word representations. The outputs of the LSTM, i.e. the hidden states
H ∈ Rd×N , are then forwarded to an attention mechanism which calculates relevance
scores and attention weights. They made the following modifications of Equations (3.2)
and (3.3):

M = tanh

([
WhH

Wvva
⊗

eN

])
and α = softmax(w>M),

26

where Wh,Wv and w are weights and eN is a vector of length N filled with ones. The⊗
operator produces a vector of length N consisting of Wvva. The attention output is

calculated according to Equation (3.4) as r = Hα. The final sentence representation is
h∗ = tanh (Wpr +WxhN) with weights Wp and Wx. It is fed to a linear and a softmax
layer for classification. The model it trained by minimizing cross-entropy loss with L2
regularization. It can also be used for the ACSC task.

IAN

Figure 16: IAN Architecture. Source: [55, p.2]

So-called Interaction Attention Networks were proposed in [55]. As depicted in Figure 16,
context and aspect terms are separately encoded with word embeddings and fed to sepa-
rate LSTMs. Here, with context we mean the whole sentence including the aspect term.
Averaging over the final hidden states of the LSTMs leads to representations cavg and tavg,
respectively. On them, an attention mechanism is applied, where the relevance scores from
Equation (3.2) for the context are calculated as

γ(hic, tavg) = tanh(hicWat
>
avg + ba)

with weights Wa and bias ba. For the aspect term, the relevance score is γ(hit, cavg). The

27

corresponding attention weights for context αi and aspect term βi are received following
Equation (3.3). Equation (3.4) leads to the respective attention outputs cr and tr which
are then concatenated. For classification, a linear layer with tanh-activation and a softmax
are applied. The model is optimized using cross-entropy loss with L2 regularization.

RAM

RAM, a Recurrent Attention Network on Memory in [7], uses both LSTMs, GRUs and
Attention. As shown in Figure 17, it consists of five modules.

Figure 17: RAM Architecture. Source: [7, p.454]

In the first step, words are turned into numerical representations using GloVe embeddings
(cf. [62]). These embeddings are then fed into a bidirectional LSTM with two layers. For

each word t, the last hidden states
−→
h2
t and

←−
h2
t are concatenated to m∗t = (

−→
h2
t ,
←−
h2
t) which

builds the memory M∗ = {m∗1, . . . ,m∗T} for the whole sequence with length T . This
memory is modified in the third module in order to assign a specific weight to each word
with respect to an aspect term at position τ . The idea is to assign a higher weight for words
closer to the aspect term. This weight is calculated by wt = 1 − |t−τ |

tmax
, where t indicates

the position of the word and tmax the truncation length of the sequence. Additionally, the
relative offset between the words and the aspect term is measured by ut = t−τ

tmax
. In case

of multi-word aspect terms, τ is the index of the first or last word depending on whether

28

the word t is on the left or right side of the aspect, respectively. Then the final position-
weighted memory for an aspect term is M = {m1, . . . ,mT} with mt = (wt ∗m∗t , ut). This
memory is forwarded to n attention layers that work as described in Section 3.4.1. The
number of layers n was subject to additional experiments of the authors for which they
reported different results.

The attention layers interact with n + 1 GRU layers which are referred to as episodes
e0, . . . , en in the following way: The first GRU episode e0 is initialized with zeros. Based
on it, the attention relevance score from Equation (3.2) for the first attention layer j = 1
is calculated as

gjt = WAL
j (mt, ej−1[, vτ]) + bALj

for word positions t, weights WAL
j and bias bALj . Note that we differ from the authors’

notation here in order not to be confused with word positions t and layer or episode
numbers j = 1, . . . , n. The optional input variable vτ is used when the aspect term refers
to an aspect of a product, but not if it is a person. In case of multi-word aspects, vτ is
received by averaging over the embeddings of all words. Based on the attention relevance
score gjt , attention weights and outputs iALj are calculated according to Equations (3.3)
and (3.4), respectively. Each attention output iALj is then fed to the next episode GRU
layer ej which works as explained in Section 3.3. In the last module, the outputs of the
final GRU en are the inputs of a softmax layer for sentiment classification. The model is
trained by minimizing cross-entropy loss with L2 regularization.

AOA-LSTM

AOA-LSTM is short for Attention-over-Attention LSTM which was proposed in [32]. As
Figure 18 shows, the model consists of four parts, namely an embedding layer, a Bi-LSTM,
an attention-over-attention module and a prediction layer.

In the embedding layer, the whole sentence and the aspect term are embedded separately.
Each set of embeddings is fed into a bidirectional LSTM which outputs the concatenation
of hidden states of each direction. The hidden target states ht and the hidden sentence
states hs are used to calculate a pair-wise interaction matrix I = hsh

>
t . Each entry

of this matrix indicates the correlation between the target and a word of the sentence.
Target-to-sentence attention weights α and sentence-to-target attention weights β are
received by applying softmax column- and row-wise, respectively. Averaging β column-
wise yields target-level attention weights β̄. They are used in order to calculate sentence-
level attention weights γ = αβ̄>. Based on this, the final sentence representation is
r = h>s γ. A linear layer followed by a softmax turns this representation into a probability

29

for each sentiment class. This model is trained by minimizing a cross-entropy loss with
L2-regularization.

Figure 18: Attention-over-Attention LSTM Architecture. Source: [32, p.3]

MGATN

A multi-grained attention network (MGATN) was proposed in [18]. As Figure 19 shows,
it consists of four layers. In the first one, GloVe embeddings (cf. [62]) are applied on both
the whole sentence and the aspect term. These are then separately fed to two BiLSTMs
yielding contextual outputs H∗ for the sentence and Q for the aspect term. This is the
same procedure as in the AOA-LSTM before. Differently to that, weights indicating the
distance between a word t and the aspect term are calculated as

wt = 1− l

N −M + 1
,

where N is the sentence length, M the aspect term length and l the absolute distance
between a word t and the aspect (l = 0 if the word is part of the aspect). These weights
modify the contextual outputs in the following way: H = [H∗1w1, . . . , H

∗
NwN].

The specialty of MGATN is the multi-grained attention which also takes the interaction
between aspects into account. One part of it, here called coarse-grained attention, is what
is usually known as attention. It works bidirectionally as described in Section 3.4.1, yield-
ing C-Aspect2Context and C-Context2Aspect attention (where the C stands for “coarse”).

30

Figure 19: MGATN Architecture. Source: [18, p.3436]

With Qavg and Havg obtained by average pooling over Q and H, respectively, the relevance
scores are

sca(Qavg, Hi) = QavgWcaHi

scc(Havg, Qi) = HavgWccQi

with weights Wca and Wcc. Here, cc is short for “coarse-context” and ca for “coarse-
aspect”. The attention weights acai and acci are received by applying softmax to these
equations. The attention outputs of context and aspects are

mca =
N∑
i=1

acai Hi and mcc =
M∑
i=1

acci Qi.

Fine-grained attention deals with word-level interactions between both aspect and context

31

words. This also includes relationships within the aspect terms. To do so, an alignment
matrix measuring the similarity between a context word i and an aspect word j is defined
as

Uij = Wu[Hi;Qj;Hi ∗Qj]

with weights Wu and element-wise multiplication ∗. Like before, attention vectors for
both directions are calculated. F-Aspect2Context attention identifies the context word
which is most similar to one of the aspect words and thus might be crucial for sentiment
classification. The attention weights afai are computed as the softmax of relevance scores
sfai = max(Ui,:), where fa stands for “fine-aspect”. The attention output then is mfa =∑N

i=1 a
fa
i Hi. F-Context2Aspect attention does the opposite, i.e. identifying aspect words

that are most important to a certain context word. The attention calculations are the
following:

afcij =
exp(Uij)∑M
k=1 exp(Uik

qfci =
M∑
j=1

afcij Qj

mfc = avgpooling ([qfc1 , . . . , q
fc
N]).

The last line denotes the attention output with fc meaning “fine-context”. It is concate-
nated with all the other attention vectors to the final representation m = [mca;mcc;mfa;
mfc]. This is fed to a linear layer and a softmax of which the output is denoted as p ∈ RC

with C sentiment classes.

In order to further include the relationship between aspects, an aspect alignment loss is
defined based on the C-Aspect2Context attention weights. Comparing aspects with each
other may reveal the most important words for sentiment classification which then could
have assigned a higher attention value with respect to a certain aspect. To do so, the
distance between aspects ai and aj is estimated by dij = σ(Wd[Qi;Qj;QiQj]) with weights
Wd and sigmoid function σ. Then, the aspect alignment loss is defined as

Lalign = −
M−1∑
i=1

M∑
j=i+1,yi 6=yj

N∑
k=1

dij(a
ca
ik − acajk)2,

where yi, yj are the true labels of ai, aj and acaik , a
ca
jk are the attention weights of context

32

word k with respect to ai, aj. The overall loss for training is calculated by

L = −
C∑
i=1

yi log(pi) + βLalign + λ||Θ||2

with hyperparameters λ, β ≥ 0.

4.1.3 Attention-based Models

Although we already mentioned some models that include attention mechanisms in the
previous section, we now create a whole section of attention-based models. The reason for
this is that the models from above are all based on RNNs, whereas the following models
do not rely on them as basis.

MemNet

The original idea of Memory Networks came from [84], but was taken up and combined
with attention into MemNet in [79]. Its architecture is illustrated in Figure 20.

Figure 20: MemNet Architecture. Source: [79, p.3]

33

As a first step, the aspect term and the remaining parts of the text are embedded sep-
arately, where the latter is referred to as context or external memory m and the aspect
vector is denoted as vaspect. On the embeddings, a so-called content attention mechanism
is applied with the scoring function

gi = tanh(Watt[mi; vaspect] + batt)

with weights Watt and bias batt. Attention weights and outputs are obtained following
Equations (3.3) and (3.4) with mi as value vectors.

Additionally, so-called location attention is incorporated into the memory vector m which
assigns more importance to those words that are closer to the aspect term. To do so,
the location li of a word is defined as the absolute distance to the aspect term. The
authors proposed four variants of location attention, yet they state their preference for
one of them. Thus, we focus on their “Model 2” and refer the reader to [79] for the
remaining variants. The location vector is calculated as vi = 1 − li/n with sequence
length n. It is used to update the memory via mi = ei � vi, where ei is the embedding of
the corresponding word.

As Figure 20 shows, in each layer or hop the content attention output is added to a linear
transformation of the aspect vector, which then serves as input for the next layer. The
output of the last hop is forwarded to a softmax layer for classification. The model is
trained by minimizing cross-entropy loss.

AEN

The Attentional Encoder Network (AEN) was proposed in [76] and, as Figure 21 shows,
its building blocks are an embedding layer, an attentional encoder layer, a target-specific
attention layer and an output layer.

The embedding layer can either employ GloVe (cf. [62]) or BERT embeddings (see Sec-
tion 3.4.3), determining the model names AEN-GloVe and AEN-BERT. The attentional
encoder layer can be divided into two parts, where the first is multi-head attention
(MHA, see Section 3.4.1). For introspective context words, self-attention (here: intra-
MHA) is chosen, while multi-head cross-attention (here: inter-MHA) is applied to model
context-perceptive words belonging to the aspect term. This basically just means that
self-attention is used on context words, while cross-attention is used on the aspect terms.

34

The attention score function from Equation (3.2) is defined as

fs(k,qj) = tanh([ki; qj]Watt)

with weights Watt, keys ki and queries qj. The outputs of these two attention mecha-
nisms are introspective context representations cintra and context-perceptive target rep-
resentations tinter. They are fed to a point-wise convolution transformation (PCT) layer
separately which is defined as

PCT (X) = σ(X ∗W1 + b1) ∗W2 + b2 (4.1)

with inputs X, weights W1,W2 and biases b1, b2. For AEN, σ is the ELU activation
function, where ELU is short for Exponential Linear Unit. Applying the PCT yields

hc = PCT (cintra) and ht = PCT (tinter).

Figure 21: AEN Architecture. Source: [76, p.3]

35

Then, in the target-specific attention layer, another MHA is applied on both of these
representations together in order to receive target-specific context representations htsc =
MHA(hc, ht). In the output layer, average pooling leads to hcavg, h

t
avg and htscavg which are

concatenated and forwarded to a linear and a softmax layer for classification.

An issue the authors point out is the label unreliability of the neutral sentiment. This
means that the neutral label often cannot be clearly distinguished from positive or negative
polarities. Thus, they include Label Smoothing Regularization (LRS). This results in using
smoothed labels (e.g. 0.1 and 0.9) instead of clear labels 0 and 1 during training. More
formally, the true label distribution q(k|x) of labels k is replaced by

q′(k|x) = (1− ε) q(k|x) + ε u(k),

where ε is a smoothing parameter and u(k) the prior label distribution. Here, u(k) = 1/C
with C sentiment classes is chosen to be uniform. The corresponding loss is equivalent to
the Kullbach-Leibler divergence between u(k) and the predicted distribution pθ:

Llrs = −DKL(u(k)||pθ).

This loss is added to cross-entropy loss with L2-regularization which is to be minimized
during training.

4.1.4 BERT-based Models

In this section, we focus on models that are based on a BERT model. In contrast to that,
we have already mentioned approaches like AEN-BERT that use only BERT embeddings
and do not rely on the whole architecture itself.

PH-SUM

Exploiting the layer-wise representations of BERT is the key behind the methods proposed
in [39] which can be employed for both ATE and ATSC tasks. They propose two modules
to be stacked on top of BERT. The first one is P-SUM which aggregates information in
parallel as shown in Figure 22a. On top of the outputs of each of the last four BERT
layers, another BERT layer is added. Each of these four lines of information is utilized
for predictions which are then fed to a linear and a softmax or CRF layer. Their losses
are summed up in the end. A CRF layer is chosen for the task of ATE in order to take
the joint distribution of labels into consideration.

36

(a) (b)

Figure 22: Variants of PH-SUM: (a) P-SUM (b) H-SUM. Source: [39, p.3]

The other module, called H-SUM, merges information in a hierarchical way as depicted
in Figure 22b. The idea behind it is based on Feature Pyramid Networks in [50] and it
works like this: The output of the last BERT layer (which is on top of the image) is fed
to another BERT layer. The corresponding output representations are aggregated with
the output of the previous BERT layer, i.e. the one directly below the top layer, and then
forwarded to a new BERT layer again. This procedure is applied to the last four BERT
layers. The final outputs of each of them are then processed like in P-SUM.

BAT

Adversarial Training is used to improve BERT in BAT in [38] which is short for BERT
Adversarial Training. Using this technique, the original input is changed a little in order
to confuse the model to make wrong predictions. This procedure takes place during
training and aims for a more robust model. The entire procedure is shown in Figure 23,
where the linear layer accounts for sentiment classification.

Whereas in Computer Vision, these perturbations are possible to be made directly on the
input, for text it is done on word embeddings. More precisely, the adversarial examples
are created using the gradient of the classification loss. This idea was proposed in [56] who
apply so-called white-box attacks that know the model parameters. Solving the following
equation leads to the worst possible perturbations

radv = arg min
r,||r||≤ε

log p(y|x+ r; θ̂), (4.2)

37

where p(y|x+ r; θ̂) is the probability of label y conditioned on input x and model param-
eters θ. Moreover, r stands for the perturbations of the input with a maximum of ε and
θ̂ is a constant copy of the model parameters. Approximating Equation (4.2) with linear
functions yields the perturbations

r̃adv = −ε g

||g||2
with g = ∇x log p(y|x; θ̂)

which are added to the original input embeddings. These new samples are then again
encoded with BERT and fed to a linear classification layer afterwards. The specific ad-
versarial loss is calculated by

− log p(y|x+ r̃adv; θ)

and summed up together with the original classification loss to the overall loss that is
minimized during training. Note that the [CLS] token is not modified by perturbations.

Figure 23: BAT Architecture. Source: [38, p.3]

4.1.5 Models based on Extra Data

While BAT works only with variations of the original data sets, here, we collect all those
methods that rely on additional sources of data during training. In case they were evalu-
ated in a cross-domain way, i.e. trained on one domain and tested on another, their results
are stored in the Appendix (see Table 13).

MGALN

A Multi-Granularity Alignment Network was proposed in [49]. We refer to it as MGALN
in order to distinguish it from MGATN in [18] which is usually also abbreviated with

38

MGAN. The novelty of MGALN is that it includes not only transfer learning between
domains, but also between the tasks of ACSC and ATSC. This means that additional
data Xs from domain Ds with sentiment labels for aspect categories are given. As usual,
the task is to predict sentiments for aspect terms of a data set X t of domain Dt. As
aspect terms are more granular than aspect categories, this model is described as multi-
granularity network. Its architecture is shown in Figure 24.

Figure 24: MGALN Architecture. Source: [49, p.5]

No matter from which task a sentence-aspect (term) pair is, both parts are embedded
separately. For this model, sentence and context are used equally and have length n. The
sentence embeddings e = {e1, . . . , en} are then fed to a BiLSTM yielding contextualized
representations h = {h1, . . . , hn}. Together with the aspect embeddings ea = {ea1, . . . , eam},
they are used to calculate the relevance scores from Equation (3.2) for Context2Aspect
(C2A) attention as

M(i, j) = tanh(Wa[hi; e
a
j] + ba).

They indicate the alignment between a context word i and an aspect word j. Weights and
biases are denoted by Wa and ba. The individual aspect-level attention weights δ(i) given
the i-th word are received according to Equation 3.3 by applying softmax row-wise on
M(i, j). Then, the C2A attention weight is defined as α = 1

n

∑n
i=1 δ(i). Based on them,

context-aware aspect representations, i.e. the attention outputs, are calculated as

ha∗ =
m∑
j=1

αje
a
j ,

where ∗ ∈ {s, t} stands for source or target domain.

39

Now, the process differs for the two domains: The representations of the source domain has
are passed to an additional Coarse2Fine (C2F) attention layer. This includes an auxiliary
pseudo-label task, where the aspect term as is seen as a pseudo-label yc of the aspect
category c. The goal is to predict the pseudo-category label of the aspect term based on
the attention of has with respect to the context. This attention mechanism is computed
with relevance scores

zfi = (uf)
> tanh(Wf [hi;h

a
s] + bf).

Then, the attention weights βf are obtained via softmax and the weighted sum of hi is the
output va. In this equation, Wf , uf and bf are layer-specific weights and biases. Feeding
the attention output va to a softmax, results in the predicted pseudo-label ŷck which is
trained by minimizing the corresponding cross-entropy loss Laux. As there may not exist
an explicit aspect term for every aspect category, a fusion gate F is added which controls
how strongly has and va influence a source aspect representation ras . It is computed via

F = sigmoid(W [va;has] + b) and

ras = F � has + (a− F)�W ′va

with weights W,W ′ and bias b.

The next layer is Position-aware Sentiment (PaS) attention which is again applied on
both source and target representations ras and rat := hat . Here, the position information
for the target domain is included via a so-called target position relevance between a word
i and the aspect term. It is defined as

pti =

1− m0−i

n
, if i < m0

0, if m0 ≤ i ≤ m0 +m

1− i−(m0+m)
n

, if i > m0 +m,

where sentence and aspect term length are denoted by n and m and the index of the
first aspect word by m0. Since the aspect category usually does not appear directly in a
sentence in ACSC-labeled data, an alternative calculation has to be made for the source
domain data. To do so, a location matrix is set up by

Lii′ = 1− |i− i
′|

n

with i, i′ ∈ [1, n] denoting the proximity of all words to each other. Then, the source
position relevance for a word i is psi = Liβ

f . Eventually, the PaS attention relevance
scores are obtained by

zoi = (uo)
> tanh(Wo[hi; r

a
∗] + bo),

40

with weights uo,Wo and bo. The attention weights are calculated as softmax over p∗i z
o
i

and the outputs vo are the weighted sum of hi. These are passed to a fully-connected
layer and a softmax for sentiment classification. The model is optimized on the source or
target domain by minimizing the corresponding cross-entropy losses Lssen or Ltsen.

Additionally, Contrastive Feature Alignment (CFA) is employed to cover up the difference
between the domains. The two models for source and target domain are parameterized by
gs and gt, respectively. Semantic Alignment (SA) is used to obtain identical distributions
P(gs(X

s)) and P(gt(X
t)) for different domains, but same classes. In contrast to that,

Semantic Separation (SS) makes sure that the two probability distributions are as diverse
as possible for both different domains and classes. Then, the CFA loss is defined as

Lcfa =
∑
k,k′

ω(gs(x
s
k, a

s
k), gt(x

t
k′ , a

t
k′))

with a contrastive function for either semantic alignment or separation

ω(u, v) =

{
||u− v||2, if ysk = ytk′

max(0, D − ||u− v||2), if ysk 6= ytk′

with a degree of separation D = 1.

The source and target losses are defined as

Lsrc = Lssen + Laux + λLcfa + ρLsreg and

Ltar = Ltsen + λLcfa + ρLtreg

with hyperparameters λ, ρ and L2 regularization L∗reg. The source loss also includes an
auxiliary loss Laux for task alignment. The first stage of the two-step training procedure
is about training the source network on the source domain by optimizing Lsrc without
the term λLcfa. Then, the source network is initialized with this whole pretrained version
and the target network with the BiLSTM, C2A and PaS modules of the pretrained source
network. In the second stage, Lsrc and Ltar are minimized in an alternating way.

BERT-PT

Although BERT Post-Training (BERT-PT) in [89] was mainly designed for the task of
Question Answering, it can be used for ATE and ATSC as well. Focusing only on the
latter, the architecture is the following: The BERT representation for the [CLS] token

41

which is the aspect-aware encoding of the whole sentence is forwarded to a fully-connected
layer and a softmax. The model is trained by minimizing cross-entropy loss.

The more important part of BERT-PT is the employment of post-training methods on a
pretrained BERT before fine-tuning. The reason for this is that for direct fine-tuning on
the desired task may suffer from limited size of data and thus might result in struggling
with respect to domain or task issues. Their post-training approach works jointly on
domain knowledge (DK) data and machine reading comprehension (MRC) data. The first
data set shares the domain, but is not labeled, which helps to understand the domain,
while the other has flipped properties, which makes the model focus on the task. To post-
train on domain knowledge, BERT’s pretraining objectives Masked Language Modelling
and Next Sentence Prediction are used. Thus, its loss is the sum of both objective losses:
LDK = LMLM +LNSP . For post-training on task-aware knowledge, the SQuAD (cf. [69])
data set is taken. The corresponding loss is called LMRC and similarly calculated as for
the task of Question Answering for which we refer the reader to the paper mentioned
above. Summing over both post-training losses leads to the combined post-training loss
L = LDK + LMRC which should be minimized.

BERT-ADA

Based on the BERT model, the authors of [70] experiment with domain adaptation which
is why their model is called BERT-ADA. The widely known domains Restaurants and
Laptops were chosen for this procedure.

BERT-ADA consists of self-supervised domain-specific fine-tuning (“Language Model fine-
tuning/LM”) and supervised task-specific fine-tuning for ATSC (“Train”) which take
place after the regular pretraining of BERT. In order to evaluate a model trained in this
way, a third step of testing (“Test”) with its own data is needed as usual. This process
can be depicted as

DLM → DTrain → DTest,

where D stands for the corpus used in the corresponding step. In case of Laptops, for Lan-
guage Model fine-tuning Amazon Laptop Reviews (cf. [26]) are chosen, while for Restau-
rants data from Yelp1 is taken. The corpora for training the ATSC task DTrain are the
SemEval-14 data sets.

1https://www.yelp.com/dataset

42

https://www.yelp.com/data set

Creating all combinations of domains across all three steps leads to three categories:

• In-Domain Training: DLM → T → T

• Cross-Domain Training: DLM → S → T with S 6= T

• Joint-Domain Training: DLM → (S ∪ T)→ T with S 6= T

A special case of Cross-Domain Training is Cross-Domain Adaptation with T → S → T .
As there are three options for the first fine-tuning step, there are also three models to
start with: BERT-ADA Laptop, BERT-ADA Restaurant and BERT-ADA Joint, where
the last is the union of Laptops and Restaurant data sets. Language Model fine-tuning
is algorithmically the same as pretraining BERT with Masked Language Modelling and
Next Sentence Prediction tasks and thus similar to BERT-PT.

DomBERT

Profiting from domain knowledge is also the main idea behind DomBERT in [90]. Dom-
BERT focuses on learning domains that are helpful for pretraining. It can be used for
ATE, ATSC and in a combined way.

Given a set of source domains, DomBERT aims to choose those that are relevant for
the target domain t and then performs Masked Language Modelling on their training
examples with the corresponding loss LMLM . Thereby, embeddings for each domain are
learned by the auxiliary task of Domain Classification. For this task, each text document
is labeled with a domain tag l. A training example is built by aggregating texts from the
same domain until the maximum input length for a BERT model is reached. Assume we
have n source domains and one target domain, which leads to a total number of n + 1
domains. Having chosen the Amazon review data set (cf. [26]) and Yelp data2 as auxiliary
data sets, the authors had n = 4679. As DomBERT is based on BERT, the model works
with BERT’s outputs h, precisely with the output for the [CLS] token h[CLS]. It is the
document-level representation of an example and used for calculating the logits for all
domains by

l̂ = D (Wh[CLS] + b)

with weights W and b. Factor D = dt ◦ d1 ◦ . . . ◦ dn is the concatenation of the n + 1
domain embeddings. For optimization, we simply use cross-entropy loss on domain tags
l and l̂ which yields LCLS. The following regularization is added to increase the diversity

2https://www.yelp.com/dataset, version 2019

43

https://www.yelp.com/data set

of domain embeddings:

∆ =
1

|D|2
|| cos(D,D>)− I||22.

The final loss to be optimized then is L = λ LMLM + (1− λ) LCLS + ∆.

Due to the auxiliary domain classification task, DomBERT contains a data sampler which
draws examples from the target domain and other relevant domains and uses them for
future learning. To do so, the target domain should have the highest probability for being
sampled. This probability for a domain i is calculated using cosine similarity cos within

Pi =
exp(cos(dt, di)/τ)∑n+1
j=0 exp(cos(dt, dj)/τ)

with temperature τ balancing between highly-ranked and long-tailed domains.

4.1.6 Models based on Local Context Focus (LCF)

A common assumption in terms of ATSC is that the sentiment of an aspect depends more
strongly on words that are closer to the aspect than on those that are further away. To
model this assumption, [95] introduced a Local Context Focus (LCF) mechanism which
was picked up by others.

LCF-GloVe/-BERT

A Local-Context-Focus mechanism means that, in order to identify the sentiment of an
aspect, an additional focus is set on words that are close to the aspect. To determine the
local context, the Semantic-Relative Distance (SRD) was introduced in [95]. For every
word in a sequence, it is defined as SRDi = |i − Pa| −

⌊
m
2

⌋
, where i and Pa refer to

the position of the corresponding word and the aspect, respectively. The length of the
aspect is denoted by m. As far as we understand, positions and length m are counted
with respect to words. So, the SRD basically measures the distance between words and
aspects. Its value is calculated for each word around the aspect. If it comes below a
certain threshold or is equal to it, this word is said to be part of the local context of
the aspect. To clarify this, we use the following example: “The staff was very friendly.
However, it is too expensive.” Take “staff” as the aspect of choice. We label the positions
for all words from 1 to 8, which results in the position of the aspect Pa = 2. The aspect
itself has a length of m = 1, which reduces the last part of the formula to zero. The SRDs

44

for the words in our review can be seen in Table 5. Setting the SRD threshold α = 3,
“The”, “was”, “very” and “friendly” belong to the local context of the aspect “staff”.

Word The staff was very friendly However it is too expensive
SRD 1 - 1 2 3 4 5 6 7 8

Table 5: SRD values for an example sentence.

The authors suggested two variants of embeddings which are part of the complete ar-
chitecture depicted in Figure 25: The basic architecture LCF-GloVe consists of GloVe
embeddings (cf. [62]) and a pre-feature extractor, whereas in the LCF-BERT variant
these two are substituted by a BERT layer. The pre-feature extractor (PFE) consists of
multi-head self-attention (see Section 3.4.1) followed by a tanh and position-wise convo-
lution transformation as it is defined in Section 4.1.3. Different to the AEN models, the
activation function in Equation (4.1) is a ReLU here.

Figure 25: LCF Architecture. Source: [95, p.5]

45

However, ATSC is not only based on the local context, but also on the global context
of the aspect. Depending on the chosen design, out-of-local-context words are not taken
into account, in case of a Context Features Dynamic Mask Layer (CDM), or with smaller
weights, in case of a Context Features Dynamic Weighted Layer (CDW). CDM simply
masks out those words that have an SRD value higher than the threshold α. The weights
of the out-of-local-context words for CDW are determined by SRDi−α

n
, where n is the

sequence length.

The outputs of the feature extractors are then concatenated, fed to a dense and then
to a multi-head self-attention layer. This procedure takes place in the so-called feature
interactive learning layer. The final classification output is obtained by applying a pooling
and a softmax layer. The model is trained by minimizing cross-entropy loss with L2
regularization.

LCF-ATEPC

Also in [93], the idea of LCF was taken up; yet, they turned it into an approach for both
ATE and ATSC as shown in Figure 26. For each input token, two labels are assigned: The
first indicates whether this token is at the beginning (BASP), inside (IASP) or outside (O)
of an aspect term; the second indicates the polarity. This is the joint labeling scheme from
Section 2.2; yet, extracted aspect terms are not directly used for polarity classification.
Thus, applying aspect extraction first and then sentiment classification would make this
approach a pipeline method. However, we now focus only on how the single-task method
works.

The architecture of LCF-ATEPC strongly resembles the one of LCF-BERT in Figure 25.
One difference appears within the Local Context Feature Generator, more precisely in
CDW: The weights for out-of-local-context words are now calculated as n−SRDi−α

n
. Addi-

tionally, the authors also experimented with computing outputs of both CDM and CDW,
concatenating them and doing a linear transformation before applying multi-head self-
attention. Like before, a tanh is added on top of the multi-head self-attention. This type
of model is called fusion and more successful. The remaining parts of ATSC seem to
be the same as in the original LCF architecture, unless Figure 26 does not depict multi-
head self-attention for global context. Moreover, this output is fed to a softmax which
predicts whether the corresponding token is part of an aspect term. The authors also
experimented with a BERT model that was post-trained on the chosen domain as it was
proposed in [70]. This clearly improves the performance.

46

Figure 26: LCF-ATEPC Architecture. Source: [93, p.5]

LCFS-ASC

The idea of the local context focus mechanism was also followed in [63] and modified
with respect to the Semantic Relative Distance. As it only counts the distances between
words so far, they replaced it by a Syntactic Relative Distance (SyRD). It is defined
as the number of steps of the shortest path of a dependency parsing tree between two
words. Taking their example for which the dependency parsing tree is shown in Fig-
ure 27, we illustrate the computation of SyRD: As SyRD(amplifier, loudly) = 2 and
SyRD(sound, loudly) = 3, the SyRD of the entire aspect term “Sound Amplifier” is 2.5.
Thus, their approach for ATSC is called Local Context Focus on Syntax (LCFS-ASC).
They also developed a new approach for ATE which can be used before ATSC within a
pipeline. However, since this part is independent of the ATSC part, we will forego its
details here and refer the reader to the paper.

47

Figure 27: Example of a Dependency Parsing Tree. Source: [63, p.3216]

4.1.7 Methods based on Graphs

Of course, [63] were not the only ones to exploit a dependency tree when building models
for ATSC. Therefore, the complete next section is dedicated to these models. LCFS-ASC,
however, employs it within the Local Context mechanism which is why that approach has
been part of the previous section.

AdaRNN

One of the first to do so were [17] who proposed an RNN- and syntax-based approach
called Adaptive Recursive Neural Network (AdaRNN). Besides, they also introduced the
Twitter data set (details provided in the Appendix) which is equally popular as the
SemEval-14 data sets.

For each sentence, a dependency tree has to be given. It is converted into a tree where the
aspect term acts as the root node. During this process, the sentiments of the context are
propagated recursively to the aspect term, starting with those words directly connected to
the target. The key feature of AdaRNN is to employ multiple composition functions that
are selected based on linguistic tags and combined vectors. These composition functions
are used for sentiment propagation. The composition result of a parent node is defined
as

v = f

(
C∑
h=1

P(gh|vl, vr, e)gh(vl, vr)

)
, (4.3)

where vl, vr are left and right child vectors and f a non-linear function. The external
feature vector e encodes the relation type in a binary way. The compositions functions
g1, . . . , gC are linear transformations with weights W1, . . . ,WC and biases b1, . . . , bC . Their

48

distribution is given by P(g1|vl, vr, e)
. . .

P(gC |vl, vr, e)

 = softmax

βS
vlvr
e

 (4.4)

with S determining which composition function to use and hyperparameter β. In this
way, the representations for all words in a sentence are calculated. The representations of
the root node are then forwarded to a softmax layer for classification. For optimization,
L2-regularized cross-entropy loss is to be minimized.

PhraseRNN

PhraseRNN, proposed in [58], is an extension of AdaRNN and employs information from
both dependency and constituent trees. Different to AdaRNN, not a list of global compo-
sition functions, but special composition functions for inner-phrase (G) and outer-phrase
(H) words are chosen.

Figure 28: PhraseRNN Architecture. Source: [58, p.2511]

The procedure which is shown in Figure 28 is the following: At first, a constituent tree is
utilized to extract phrases from each sentence. With phrases simply parts of the sentence
are meant, e.g. noun phrases (NP) or verb phrases (VP). Based on these phrases P , a
so-called phrase dependency tree is generated from the given dependency tree T = (V,E)
with vertices V and relation edges E. The resulting tree has the form pT = (pV, pE) with
pV being a set of subtrees of T and pE = {(rji, Ti, Tj)} denoting the set of relations rji
between subtrees. This tree is then again converted into another tree bpT which stands for

49

target dependent binary phrase dependency tree. It takes the target word vt as additional
input. For the detailed tree transformation algorithms, we refer to the paper.

Similarly to Equation (4.3) of AdaRNN, based on this tree, the representation of an
inner-phrase parent node vin is calculated as

vin = f

(
n∑
i=1

P(gi|vl, vr, ein)gi(vl, vr)

)

with the same components as above, besides the external feature vector ein which will
be explained in the following paragraph. Also the probability distribution of the gi’s
follows Equation (4.4) from AdaRNN except for the new definition of ein again. For an
outer-phrase parent node, the representations vout and the probability distributions are
obtained analogously, substituting ein with eout and gi with hi.

Figure 29: Constituent Tree Example. Source: [58, p.2510]

Both external features ein/out,i contain the labels of the left and right child nodes as
well as the dependency relation of node vi: ein/out,i = (labell, labelr, DepTypei). The
labels labell, labelr are the POS tags of the corresponding node in the constituent tree in
Figure 29 if it is a leaf word; otherwise the label is the tag of the lowest common parent
of descendants of that node. For instance, the label is “NP” for the node created from
“the” and “design”. The dependency relation is taken from the original dependency tree,
i.e. the direct relationship between the child nodes if they are leaves. If not, it is the
relationship between their head words. For example, it is “COP” for “is” and “bad”,
“POBJ” for “for” and “me” and “PREP” for their overall parent. The model is trained
minimizing the L2-regularized sum of the mean of the negative log likelihood.

50

SynATT

Also the SynATT model, proposed in [24], works with syntactic distances. The basis
of their model is an attention-based LSTM to which they added two components. The
overall architecture can be found in Figure 30.

Figure 30: SynATT Architecture. Source: [24, p.1124]

In a standard attention-based LSTM, the representation of a sentence is the weighted
sum of LSTM outputs h: zs =

∑n
i=1 pihi which has the same form as the attention

output Equation (3.4). The attention weights pi are computed following Equation (3.3)
as softmax of relevance scores di. They are based on the aspect term representations ts
which are usually the average over the embedded aspect term eai .

One novelty of SynATT is the formula of ts which is calculated as

ts = T>qt with qt = softmax(Wtcs + bt)

and cs = average

(
1

m

m∑
i=1

eai ,
1

n

n∑
j=1

ewj

)
.

The last line cs incorporates both aspect term and context information and qt are weights
for the aspect embeddings matrix T which is randomly initialized. Weights and biases
are denoted by Wt and bt and ewj are word embeddings. This procedure is depicted in
the right half of Figure 30.

51

The second novelty of SynATT concerns the attention weights pi that now also take the
syntax of the sentence into account. The new weights are calculated as

pi =
di∑
j dj

with di =

{
1

2li−1 exp(fscore(hi, ts))), if li ∈ [1, ws]

0, otherwise

with fscore(hi, ts) = tanh(h>i Wats) and weights Wa. The location li is the distance of a
word to the aspect term counting the number of paths between them in the dependency
tree (like in LCFS-ASC in Section 4.1.6). The window size ws indicates in which range
the context words are taken into account for the attention mechanism.

The model is trained by minimizing a loss composed of several objective functions:

L(θ) = J(θ) + λuU(θ) + λrR(θ).

with hyperparameters λr and λr. The cross-entropy loss of sentiment classification is
denoted by J(θ) and U(θ) is introduced to have high quality aspect embeddings. It can
be seen as the reconstruction error of an autoencoder (cf. [72]) and it is defined as

U(θ) = −
∑

(s,a)∈D

log(min(ε, CosSim(ts, cs))).

The trainable parameters are denoted by θ and CosSim is the cosine similarity. Besides,
D stands for the set of training samples of a sentence-aspect pair (s, a) and ε = 10−7. In
the overall loss, the third term is added to make each aspect embedding more unique and
it is thus defined as

R(θ) = ||(TnormT>norm − I)2||

with Tnorm being the L2-normalized form of T .

SDGCN

SDGCN stands for Sentiment Dependencies with Graph Convolutional Networks. This
approach in [98] includes the relationship between several aspects from which additional
information regarding sentiments can be retrieved. For instance, take a look at the exam-
ple “The setting is romantic, but the food is horrible.” with aspect terms “setting” and
“food”. The first is clearly positive and as it is connected to the second aspect via “but”,
it makes sense for “food” to be negative. This kind of relationship is used here to improve
predictions.

52

Figure 31: SDGCN Architecture. Source: [98, p.3]

As Figure 31 shows, at first each word is embedded using either GloVe (cf. [62]) or
BERT embeddings, resulting in SDGCN-GloVe and SDGCN-BERT, respectively. The
embeddings for the whole sentence (here called context) and for the aspect terms are then
fed separately to two BiLSTMs yielding hidden representations Hc = [hc1, . . . , h

c
N] and

Hai = [hai1 , . . . , h
ai
Mi

] with sentence length N and aspect term length Mi. The relative
distance between a word t and an aspect i is defined by

dait =

1, if dis = 0

1− dis
N
, if 1 ≤ dis ≤ s

0, if dis > s,

where dis is the absolute distance between the word and the aspect term with dis = 0
if the word itself is part of the aspect term. A constant threshold is denoted by s. The
relative distance is used to identify those words that are closer to a specific aspect term,

53

just like in local context focus models. Based on them, position-aware representations are
computed by

P ai = Pi = [pai1 , . . . , p
ai
N] with pait = dait h

c
t .

Then, a bidirectional attention mechanism is applied, consisting of context to aspect and
aspect to context attention. With the first, new aspect representations are obtained based
on the context. This is what is shown on the right side of Figure 31. The relevance scores
from Equation (3.2) are calculated as

fca(h̄c, h
ai
t) = h̄c

>
Wcah

ai
t

with weights Wca and h̄c being the output of average pooling of Hc. For attention weights
of hait and the output mai , calculations follow Equations (3.3) and (3.4). The second
attention mechanism, however, yields aspect-specific context representations xai = xi
according to a similar procedure. Relevance scores are defined as

fac(m
ai , pait) = mai>Wacp

ai
t

with corresponding weights Wac. Equations (3.3) and (3.4) again lead to attention weights
for hct and outputs xi. Stacking the representations based on all K aspect terms together
results in a sentence representation X = [x1, . . . , xK].

Then, this works as input to a GCN (see Section 3.5.1). As its basis, two undirected
sentiment graphs are generated in which a node represents an aspect and an edge the
corresponding sentiment dependency relation. In the adjacent-relation graph, each aspect
is only connected to its direct aspect neighbors, whereas in the global-relation graph all
aspects are connected to each other. Experiments showed that the latter performed
slightly better. For a node v, the representation of the l-th GCN layer is updated by

xlv = ReLU

 ∑
u∈N(v)

Wcrossxu + bcross) +ReLU(Wselfx
l−1
v + bself)

where Wcross,Wself are weights, bcross, bself biases and N(v) is the set of neighbors of v.
This formula is an adaptation of Equation (3.5). In each layer, the node representations
of the previous layer are taken as input. The nodes xLi of the last layer L are then fed
to a fully-connected layer and a softmax. Training is done by minimizing L2-regularized
cross-entropy loss.

54

CDT

The CDT model, which is short for Convolution over a Dependency Tree and which was
proposed in [77], is also based on a Graph Convolutional Network (GCN). Its architecture
is presented in Figure 32.

Figure 32: CDT Architecture. Source: [77, p.250]

At first, an embedded sentence is fed to a BiLSTM which outputs the representations
{h0

1, . . . , h
0
n}. They build the basis for a dependency tree which is a graph G with n

nodes. Each node stands for a word which is represented by the corresponding output of
the BiLSTM, whereas each edge stands for a syntactic dependency path. The dependency
tree is represented by an adjacency matrix

A =

{
1, if node i is connected to node j

0, otherwise
(4.5)

specifying the relationship between the nodes. As usual in a GCN, they are updated by
aggregating the information which is propagated along the tree. The update for a single
node embedding has the following form which is based on Equation (3.5):

h
(k+1)
i = ReLU

(
n∑
j=1

ciAij(W
(k)h

(k)
j + b(k))

)
. (4.6)

Here, ci = 1/di = (
∑n

j=1 Aij)
−1 is a normalization constant with di indicating the degree

of node i. Furthermore, h
(k)
j is the hidden state representation of node j in layer k and

W (k) and b(k) are weights and biases. After K + 1 layers, average pooling is applied on
the aspect vectors hK+1

a1
, . . . , hK+1

al
in order to retain most of the information, resulting

in aspect-based representations h
(K+1)
a . They are then passed to a linear and a softmax

55

layer for classification.

The model is trained by minimizing the cross-entropy loss

L(θ1, θ2) = −
∑

(a,s)∈D

∑
c∈C

yc((a, s)) log ŷc((a, s))

with the set of all aspect-sentence pairs D, C sentiment classes, true labels yc((a, s)) and
the corresponding predictions ŷc((a, s)). The parameters of the BiLSTM and the GCN
are denoted by θ1, θ2, respectively.

ASGCN

The Aspect-Specific Graph Convolutional Network (ASGCN) introduced in [97] partly
resembles the CDT model. Its architecture is presented in Figure 33.

Figure 33: ASGCN Architecture. Source: [97, p.4571]

56

Again, each embedded sentence is fed to a BiLSTM to receive hidden state vectors
Hc = {hc1, . . . , hcn}. Like before, aspect-oriented features are obtained by applying a GCN
on the dependency tree that is initialized with Hc. Here, two variants of the dependency
trees are chosen: ASGCN-DG employs un-directional graphs, whereas ASGCN-DT uses
directional trees. This difference is denoted in the corresponding adjacency matrix A (de-
fined in Equation (4.5)) which is more sparse for ASGCN-DT. Additionally, the diagonals
of all adjacency matrices are ones, i.e. each word is adjacent to itself. This is similar to
the modified adjacency matrix of the original GCN in Section 3.5.1. Almost completely
analogously to Equation (4.6), the node update is executed by

hli = ReLU

(
bl +

1

di + 1

n∑
j=1

AijW
lgl−1
j

)
,

where gl−1
j is the representation of token j from layer l−1 and di =

∑n
j=1Aij. As usual, W l

and bl denote weights and bias. Before a representation hli is forwarded to the next GCN
layer, it receives a position-aware transformation gli = qih

l
i that assigns higher position

weights to closer context words. It is employed to decrease noise and bias introduced by
the dependency parsing process. The position weights are defined as

qi =

1− τ+1−i

n
, if 1 ≤ i < τ + 1

0, if τ + 1 ≤ i ≤ τ +m

1− i−τ−m
n

, if τ +m < i ≤ n

where the aspect term has length m and starts at position τ + 1. The output of the GCN
with L layers is denoted as HL = {hL1 , . . . , hLn}.

Similar to the CDT model, aspect-oriented features HL
mask are obtained by masking out

the hidden state vectors that do not belong to an aspect word. Yet, a clear difference
to CDT is the incorporation of an attention mechanism to identify semantically relevant
words of the aspect terms. The relevance scores of Equation (3.2) are computed as

βt =
n∑
i=1

(hct)
>hLi =

τ+m∑
i=τ+1

(hct)
>hLi .

The attention weights αt are obtained following Equation (3.3) and lead to attention
outputs r =

∑n
t=1 αth

c
t . Applied on them, a linear layer and a softmax yield the clas-

sification probabilities. The model is trained minimizing cross-entropy loss with L2-
regularization.

57

TD-GAT

A Graph Attention Network (GAT, see Section 3.5.2) serves as basis for the Target-
Dependent GAT (TD-GAT) model in [31]. First, an embedded sentence is turned into an
un-directed graph by a dependency parser (cf. [6]). In case of multi-word aspect terms, the
aspect term is substituted by a placeholder before feeding the sentence to the dependency
parser. Its local feature vector is the mean of the embeddings of all aspect term words.
All word representations are updated exploiting the graph structure in every GAT layer
as described in Section 3.5.2. The only difference is that a Leaky ReLU is applied on top
of the relevance scores before calculating the attention weights as their softmax. For the
last layer L, concatenation is used and results in representations HL.

In addition to the GAT, an LSTM is employed to model the connections from words to
aspect terms across layers. The idea is that the higher the layer, the more information
from words further away is incorporated. Thus, the TD-GAT model can be summarized
by the update rules

Hl+1, Cl+1 = LSTM(GAT (Hl))

with state initializations (Hl, Cl). The first states are H0, C0 = LSTM(XWp+[bp]N) with
zeros as starting points. Here, Cl is the memory cell of the LSTM in layer l and Wp and
[bp]N are weights and biases, the latter stacked N times. The stacked embeddings vectors
are denoted by X. It is also possible to use a GRU instead of an LSTM. The output of
this architecture with L layers is a representation for the aspect term node. It is fed to
a linear and a softmax layer for classification. It is trained by minimizing cross-entropy
loss with L2 regularization.

RGAT

One of the latest approaches, the Relational Graph Attention Network (RGAT), was in-
troduced in [4]. It is based on the three components contextual encoder, RGAT encoder
and classifier which are shown in Figure 34.

The input of RGAT is a triplet 〈T ,S,G〉, where T stands for the aspect term of length
m appearing in a sentence S of length n. The syntactic graph over S is denoted by
G = (V ,A,R) with the node or word set V , an adjacency matrix A (as defined in Equa-
tion (4.5)) and a label matrix R. Each entry Rij contains the label of the corresponding
Aij if it does not equal zero.

58

Figure 34: RGAT Architecture: RGAT encoder, classifier and contextual encoder. Source:
[4, p.4]

The contextual encoder basically is a model being able to do feature learning and aggre-
gation, like a BiLSTM or BERT. It outputs a contextual vector (hi, . . . , hi+m−1) for the
aspect term. The RGAT encoder, however, creates syntax-aware aspect term embeddings
(ĥi, . . . , ĥi+m−1). The difference to the original GAT is that the RGAT encoder can work
with a labeled graph. In several so-called RGAT layers (as shown in Figure 35), node-
aware and relation-aware attention are calculated and applied in a combined way. To do
so, the entries of the label matrix Rij are first transformed into vectors rij ∈ Rdr with
the dimension of relation embeddings dr. They are used to calculate (not normalized)
relation-aware attention weights

eRij =

{
f(hl−1

i , rij), if j ∈ N (i)

− inf, otherwise

with an attention function f and the index set N (i) of neighbors of word i induced by
A. They are calculated in addition to the (not normalized) node-aware attention weights
eNij which are the same as in the normal GAT (see Section 3.5.2). The final normalized
attention scores are defined by

αij =
exp(eNij + eRij)∑

j′∈N (i) exp(eNij + eRij)
,

almost identically as in the usual GATs. Then, the feature vector of a word i is updated

59

with weights W l
V r via

ĥli = ||Zk=1σ

 ∑
j∈N (i)

α̂lzij
(
W lz
V h

l−1
j +W l

V rrij
) ,

which is similar to Equation (3.6).

Figure 35: RGAT Layer. Source: [4, p.4]

Repeating this procedure in L RGAT layers yields syntax-aware aspect term representa-
tions (ĥLi , . . . , ĥ

L
i+m−1) for which we drop the superscript L for simplification. As well as

on the contextual representations (hi, . . . , hi+m−1), average pooling is applied on them to
receive global representations

hcon = pool(hi, . . . , hi+m−1) and hsyn = pool(ĥi, . . . , ĥi+m−1).

This is similar to the operation in Equation (3.7) of the original GAT. The representations
are then combined by a fusion mechanism based on gates which is defined as

hf = g � hsyn + (1− g)� hcon with g = σ(Wg[hsyn;hcon] + bg),

where Wg and bg are weights and bias. For classification, the fused representation is
fed to a linear and a softmax layer. Training is executed by minimizing L2-regularized
cross-entropy loss.

60

4.1.8 Models based on Capsule Networks

Capsules Networks were proposed in [28,73] for the field of Computer Vision. In this con-
text, so-called capsules are responsible for recognizing certain implicit entities in images.
Each capsule does internal calculations and returns a probability that the corresponding
entity appears in the image. The original CapsNet consists of two capsule layers: one to
store low-level feature maps, the other to calculate classification probabilities where each
capsule refers to one class. This model is able to memorize more information than a CNN
and to control the amount of information flowing from one layer to another by so-called
dynamic routing. For more detailed information, we refer to the papers mentioned ini-
tially. The following approaches have Capsules Networks as their basis and modify them
for the ATSC task.

T(rans)Cap

Capsule Networks and Transfer Learning were combined in [8] to form their method
called Transfer Capsule Network (T(rans)Cap). Transfer Learning is employed by utilizing
knowledge from document-level tasks TD for the ATSC task TA. The model architecture,
in particular the four layers, is depicted in Figure 36.

Figure 36: T(rans)Cap Architecture. Source: [8, p.549]

At first, the input is transformed into numerical vectors using two lookup layers. The
first applies simple pretrained embeddings, in this case GloVe (cf. [62]), which are de-
noted as {e1, . . . , eL} ∈ Rdw×L. The second captures the absolute distance between each
word and the aspect term. This only holds for TA, whereas these position embeddings
{l1, . . . , lL} ∈ Rdl×L for TD are simply zeros. The final representation X = {x1, . . . , xL} ∈
Rdh×L is the position-wise concatenation of both embeddings.

Then, the so-called FeatCap layer selects K-gram features from these embeddings and
receives feature vectors or capsules r ∈ Rdp×(L−K+1) by applying convolutions:

ri = Xi:i+K ∗ F + b.

61

Here, F ∈ Rdp×(dh×K) stands for the kernel group with dp convolutional kernels of size
(dh ×K). Each kernel group F belongs to a semantic category, which is why C different
kernel groups are utilized in the same way, leading to the output of the FeatCap layer
R = [r1, . . . , rC] ∈ RC×dp×(L−K+1).

In the SemanCap layer, so-called aspect routing weights ai are calculated for the words in
a K-sized window around an aspect term by

ai = σ(Xi:i+K ∗ Fa + Taea + ba).

This fusing convolution is only used for TA, with kernel Fa ∈ Rdh×K , transfer matrix
Ta ∈ R1×dw , bias ba and the pretrained embedding ea for the aspect term. By this
operation, the aspect information regarding its context is compressed. An aspect routing
weight of zero means a blockage of the corresponding feature capsule. As document-level
corpora CD do not contain aspect terms, their aspect routing weight is always set to 1. In
order to maintain a unified procedure, a helper function is defined by

gi(X) =

{
ai, if X ∈ CA
1, if X ∈ CD

with CA and CD being the corpora of TA and TD, respectively. Applying gi to the whole
sentence X results in g ∈ R1×(L−K+1). As in the FeatCap layer, this procedure is repeated
C times, yielding G = [g1, . . . , gC] ∈ RC×1×(L−K+1). With these weights, the feature
capsules are routed to aspect-customized feature capsules P = R � G ∈ RC×dp×(L−K+1).
As P does not capture sentence-level, but local features and it contains many capsules,
the next layer may not learn robust representations. Thus, all feature capsules in the
same channel are aggregated horizontally into so-called semantic capsules

U =
C×dp
max
t=1

Pt.

The length of each semantic capsule ui represents the probability that its semantic mean-
ing occurs in the corresponding input. Thus, we apply the so-called squash function

squash(ui) =
||ui||2

1 + ||ui||2
ui
||ui||

(4.7)

in order to have normalized results in [0, 1].

In the last layer, called ClassCap, class capsules based on sentiment classes are built. In
this layer, aspect-level and document-level tasks differ from each other. First, a prediction

62

vector of a semantic capsule i towards a class capsule j is calculated as

ûj|i = Wijui

with weights Wij. Based on this equation, the dynamic routing procedure is executed r
times, leading to a final representation for each class capsule j. It consists of the following
steps applied in exactly this order. Starting with a coupling coefficient

cij =
exp(bij)∑
k exp(bik)

, (4.8)

the vector representation of class capsule j is sj =
∑

i cijûj|i. Applying Equation (4.7)
on it, the final representation vj of class capsule j is calculated. Then, the agreement
coefficient αij = ûj|ivj is updated, which is needed for the log prior probability bij in
Equation (4.8). It denotes the probability of a semantic capsule i passing to a class capsule
j, thus indicating how intense their connection is. Initialized with zero, its update step is
bij ← bij + αij.

As we have already mentioned, the length of a class capsule represents the probability of
the corresponding sentiment. This means that the active class should have the longest
capsule. Therefore, for each class capsule j a margin loss is defined by

Lj = Yj max(0,m+ − ||vj||)2 + λ(1− Yj) max(0, ||vj|| −m−)2 (4.9)

with Yj = 1 if the sentiment is present in class capsule j, otherwise zero. Following [73],
we have m+ = 0.9, m− = 0.1 and λ = 0.5. The loss for a single task T ∈ {A,D} is
LT =

∑J
j=1 Lj and the entire loss of the model is L = LA + γLD with γ ∈ [0, 1].

CapsNet(-BERT)

A variation of Capsule Networks and its combination with BERT was introduced in [34].
It is called CapsNet(-BERT) and its architecture is presented in Figure 37. It is possible
to use CapsNet also for ACSC, yet here we focus on the ATSC variant only. CapsNet
consists of four layers which are an embedding, an encoding and two capsule layers.

In the first one, the sentence is converted to embeddings, where aspect term embed-
dings a are the average of the embeddings of all aspect term words. The aspect-aware
sentence embedding Esa is defined as Esa

i = [Ei; a] with the concatenation operator [;].
These representations are turned into contextualized ones using bidirectional GRUs (see
Section 3.3) and residual connections (see Section 3.4.2): H = BiGRU(Esa) + Esa.

63

In the primary capsule layer, primary capsules P = [p1, . . . , pn] and an aspect capsule c
are defined as

pi = squash(W phi + bp) and c = squash(W aa+ ba)

with weights W p,W a and biases bp, ba and the squash function from Equation (4.7). In
order to avoid unstable training due to varying sentence lengths, aspect aware normal-
ization is proposed by the authors. This also solves the problems of saturated squash
activations with high confidence for all categories for long sentences and low confidence
for short sentences. To do so, normalized primary capsule weights u are generated by
applying softmax and weights W n:

ui =
exp(piW

nc)∑n
j=1 exp(pjW nc)

.

Figure 37: CapsNet Architecture. Source: [34, p.6282]

Instead of the dynamic routing mechanism which was proposed in [73] and used for
T(rans)Cap in Section 4.1.8, a capsule-guided routing mechanism is applied. The reason
for the substitution is that the interaction makes training inefficient and the routing
process is not guided by any upper layer information. Here, prior knowledge about the
sentiment categories is stored in sentiment capsules to direct the routing process. A

64

sentiment matrix G ∈ RC×d is initialized with averaged embeddings of sentiment words
for C sentiment categories and d-dimensional sentiment embeddings. Sentiment capsules
Z = [z1, . . . , zC] and routing weights wij are calculated with weights W r via

zi = squash(Gi)

wij =
exp(piW

rzj)∑n
k=1 exp(piW rzk)

.

In the category capsule layer, the final category capsules are defined as

vj = squash(s
n∑
i=1

wijuipi),

where s is a trainable parameter scaling the connection weights. Based on them, the loss
is calculated like for TCap beforehand, with the only difference that λ = 0.6. To create
CapsNet-BERT, the embedding and encoding layers are substituted by a pretrained BERT
model.

65

4.2 ATE+ATSC Methods

The models in this section are not only capable of predicting sentiments of aspects, but
also of identifying the aspect terms themselves. They can be grouped into collapsed, joint
and pipeline models depending on the labeling scheme (see Section 2.2). Their reported
F1 Micro Scores are depicted in Figure 38 with those models highlighted that are going
to be part of the practical analysis in Section 5. These are GRACE [53] for the pipeline
and BERT+TFM [47] for the collapsed approaches. The graph shows that the topic of
combined models is a rather young one, starting only in 2019. Additionally, the amount
of models is much smaller than for the previous task. All the numbers are additionally
listed in Table 6.

Figure 38: Development of reported ATE+ATSC F1 Micro Scores on SemEval-14 Restau-
rants. An asterisk indicates that the corresponding values are not taken from
the original papers.

66

F1 MICRO Data Set SemEval-14
Domain Restaurant Laptop

Model Category Model Value Calculation
Extra data DomBERT-ATE+ATSC mean of 10 runs 73.45 66.21

Pipeline Models
GRACE 77.26 70.71
IMN-Pipeline (ATE + ATSC) mean of 5 runs 66.53 56.02
SPAN-Pipeline 68.06

Joint Models

LCM-Gate 62.42
DOER mean of 10 runs 68.55 [4] 60.35
IMN (ATE + ATSC) mean of 5 runs 69.54 58.37
RACL-GloVe (ATE + ATSC) mean of 5 runs 70.67 60.63
RACL-BERT (ATE + ATSC) mean of 5 runs 75.42 63.40
SPAN-joint 64.59

Collapsed Models

UABSA* 67.10 57.90
SPAN-collapsed 48.66
BERT+Linear* mean of 5 runs 72.61 60.43
BERT+GRU* mean of 5 runs 73.17 61.12
BERT+SAN* mean of 5 runs 73.68 60.49
BERT+TFM* mean of 5 runs 73.98 60.80
BERT+CRF* mean of 5 runs 73.17 60.78

Table 6: Reported F1 Micro Scores for 3-class ATE+ATSC. Sources different from the
original papers are marked accordingly. For all models except from DomBERT,
only the implementation indicated that the F1 Scores are calculated with “micro”
average. Bold printed values indicate the best model of one category, underlined
ones the best performance on the corresponding data set. An asterisk marks
that values are taken from the GitHub repository instead of the paper due to
corrected re-evaluation.

4.2.1 Models with a Pipeline Architecture

The characteristic of a pipeline model is that it starts with the ATE task and performs
it completely before it continues with ATSC. Moreover, there are no information from
ATSC used for ATE.

SPAN

The model introduced in [30] follows the idea of labeling word spans, more precisely their
beginning and their end positions, instead of tagging words. Thus, it is simply called

67

SPAN. On the spans, a typical pipeline model is applied which first extracts the aspect
terms and then classifies their polarities based on the span information. An advantage of
this procedure is that all target words can be processed before the sentiment is predicted
which avoids label inconsistency of multi-word aspect terms.

(a) (b)

Figure 39: Building blocks of SPAN: (a) Multi-target extractor (b) Polarity Classifier.
Source: [30, p.3]

The specialized architecture is placed on top of a BERT model with L layers. Its output
representations hL are forwarded to a multi-target extractor which is shown in Figure 39a.
Its goal is to extract aspect term candidates by indicating their start and end positions.
The confidence scores for start and end positions are defined as

gs = wsh
L and ge = weh

L

with weights ws, we. Their corresponding probability distributions ps, pe are calculated as
the softmax of the scores. Aspect term extraction is trained by minimizing the summed
negative log likelihood

L = −
n+2∑
i=1

ysi log(psi)−
n+2∑
j=1

yej log(pej).

A multi-span decoding algorithm is introduced to determine the final aspect term spans
per sentence: The top-M indices from the scores gs and ge are identified at first and
stored in S and E, respectively. Each pair rl = (si, ej) denotes a candidate span and has
its own heuristic-regularized score ul = gssi + geej − ej − si + 1. Both rl and ul are added
to the corresponding lists R andU , respectively. The end position has to appear later in
the sentence than the start position and the sum of their scores has to be greater than a
threshold γ. The span rl with the maximum score ul is removed from R and added to the

68

output set O. Any other span that overlaps with rl is also discarded from R. We repeat
this procedure until R is empty or the best K aspect term spans have been identified.

Within the polarity classifier (see Figure 39b), an attention mechanism is applied on a
target span r ∈ O, modifying the attention Equations (3.3) and (3.4) like this:

α = softmax(wαh
L
si:ej

) and v =

ej∑
t=si

αt−si+1h
L
t ,

where weights are denoted by wα. Consequently, the polarity score for an aspect term
span is defined as

gp = Wp tanh(Wvv)

and the corresponding probability pp as its softmax. Here, we have weights Wp,Wv. The
polarity classifier is trained to minimize

J = −
k∑
i=1

ypi log(ppi),

where k denotes the number of sentiment classes and ypi the true sentiment.

The authors did not only set up a pipeline approach, but they also investigated slightly
different variants for joint and collapsed labeling. For the Pipeline approach, both models
are trained independently by minimizing L in the first step and J in the other. Then
they are stacked one after another for inference. In contrast to that, the joint variant
incorporates a shared BERT model with two separate output layers. It is trained by
minimizing the sum L + J . For the collapsed model, the labels are aggregated into
(start position sentiment, end position sentiment). For the example of Figure 39, this
would be (3+, 4+), indicating that the aspect term consists of words three and four
and that it has a positive sentiment. The multi-target extractor outputs three sets of
probabilities for start and end positions, one for each sentiment. Also one optimization
objective for each sentiment class is defined. At inference time, on each set of scores the
multi-span decoding algorithm is applied and the final prediction is received by merging
the output sets O+, O− and O0 of the three polarities. The building blocks of SPAN can
also be used separately for the single tasks ATE and ATSC.

69

MTL

Another model that can not only be a pipeline approach but also a collapsed one was
proposed in [3]. As it is entitled with Multi-task learning, we refer to these models as MTL-
Pipeline and MTL-collapsed in order to be consistent with our terminology, whereas the
authors named them end-to-end and joint. In contrast to the other pipeline approaches,
MTL is not based on BERT.

Figure 40: MTL-pipeline Architecture. Source: [3, p.250]

Figure 40 shows the architecture of the pipeline model. At first, the input sentence is
embedded and fed to a BiLSTM. After that, a self-attention mechanism is applied on
the BiLSTM outputs L to learn the relationship between words or tokens. This helps to
label the beginning, inside and outside an aspect term correctly. The attention weights
of Equation (3.3) are calculated as A = softmax(LL>) and the attention outputs as
R = AL. Then, a softmax layer is used for the final aspect term classification with labels
B, I,O: PredictionAspect = softmax(R).

The second part, ATSC, is built upon a CNN layer that takes the attention outputs R as
its input: C = Conv1D(R). The labels from the ATE task are utilized as masks, because
only B- and I-labeled words should receive a sentiment tag. It is calculated as a softmax
about the masked convolution outputs. Possible sentiments are negative, neutral, positive
and conflict.

For the collapsed approach, the two tasks are merged into a single sequence labeling task,
yet no details about the exact procedure are given. For both types of models, however,

70

in case the sentiment for a multi-word aspect term is not clear, the sentiment with the
maximum count in the sentence is chosen. If there is a tie, the sentiment of the first token
is taken.

GRACE

GRACE, a Gradient Harmonized and Cascaded Labeling model in [53], also belongs to
the group of pipeline approaches. The aspect term label set is T e = {B, I,O} and the
sentiment label set T c consists of positive, negative, neutral, conflict and other. GRACE’s
architecture is shown in Figure 41. The left block depicts a pretrained BERT model
which shares its first l layers between the ATE and the ATSC task. The remaining layers
l+1, . . . , L, where L is the maximum number of BERT layers, are only used for ATE. They
are followed by a classification layer for aspect terms. These classification outputs then are
the inputs of a Transformer decoder which does sentiment classification (right block). The
decoder differs from the original one in [80] due to applying multi-head attention without
masking in its first sublayer. Its second sublayer takes the representations of BERT’s
l-th layer as key and value vectors. The outputs of the decoder, the new sentiment
representations, are denoted as Gc. The principle of using the first set of labels as input
for the second is called Cascaded labeling. It is their way to deal with interactions between
different aspect terms and the reason for us to categorize GRACE as a pipeline model.

Figure 41: GRACE Architecture. Source: [53, p.3]

The authors experimented with more extensions to deal with some general issues. Their
ablation studies show that it is best to include them in the model. A new feature they
introduced is the modification of the loss: They include gradient harmonization to cope
with imbalanced labels during training. Actually, the label “O” appears more often than

71

the other labels. So, instead of the basic cross-entropy loss

Lτ = − 1

n

n∑
i=1

1{tτi ∈T τ}(log pτi)
> with

pτ = softmax(M τwτ) and M τ =

{
HL, if τ = e,

Gc, if τ = c
,

with τ ∈ {e, c} indicating the ATE (e) or ATSC (c) task and trainable weights wτ , they
implemented the following loss:

Lτ = − 1

n

n∑
i=1

βtτi 1{tτi ∈T τ}(log pτi)
> with βtτi =

N τ

ρ(gtτi)
.

The total number of labels is N τ and the gradient norm g = |∂L
∂z
| = |p− t̂|. Moreover, z

is the output of the model, L is the cross-entropy loss, t̂ are the true labels and p are the
predictions. The gradient density ρ is approximated in a more complicated manner for
which we refer to [53].

Additionally, Virtual Adversarial Training (VAT) is used to make GRACE more robust
to input noise. Small perturbations r are added to input embeddings E which is also
shown in Figure 41. The corresponding loss is computed via

LV AL =
1

n

n∑
i=1

DKL (p(·|E; Θ) || (p(·|E∗; Θ))) with

E∗ = E + r, r = εg/||g||2,
g = ∇E′DKL (p(·|E; Θ̂) || (p(·|E ′; Θ̂))),

E ′ = E + ξd,

where DKL(p(·|·)||(p(·|·))) is the Kullbach-Leibler divergence of a conditional probabil-
ity p, Θ the current parameters with Θ̂ being a corresponding constant set, ε and ξ are
hyperparameters and d ∼ N (0, I). Finally, both losses for ATE and ATSC and the
VAT-loss are summed up to the overall loss for training.

Furthermore, post-training was applied on the pretrained BERT model using Amazon
(cf. [26]) and Yelp3 data sets, just like the authors of BERT-PT and DOER did. They
also added a mechanism to create a consistent polarity label. The underlying problem is
that multi-word aspect terms may receive contradicting sentiments. As experiments did

3https://www.yelp.com/dataset

72

https://www.yelp.com/data set

not prove an increasing performance, we refer the reader to the details in the paper. Note
that GRACE can be also employed to carry out the ATE task only.

4.2.2 Models with a Joint Labeling Scheme

As its characteristic, joint labeling has two separate lists of labels indicating aspects and
polarities. Some of the following models can not only be employed on the combined task,
but also perform ATSC alone. For them, F1 Micro Scores are given in Table 7.

F1 MICRO Data Set SemEval-14
Domain Restaurant Laptop

Model Category Model Value Calculation

Joint Models
DOER (ATSC) 64.50 [4] 60.18 [4]
RACL-GloVe (ATSC) mean of 5 runs 74.46 71.09
RACL-BERT (ATSC) mean of 5 runs 81.61 73.91

Table 7: Reported F1 Micro Scores for 3-class-ATSC. Sources different from the original
papers are marked accordingly. Bold printed values indicate the best model.

IMN

The Interactive Multi-Task Network, called IMN, was proposed in [25]. Its general struc-
ture relies on CNNs and it is shown in Figure 42. Besides ATE and ATSC, two document-
level tasks are included as well, which resembles the idea of TCap (see Section 4.1.8).

An input sentence is first fed to a feature extractor fθs , where the words are embedded
and then forwarded to ms CNN layers. This feature extractor is shared by all tasks. Its
output is a vector hs(t), where t = 0 right after the initialization, and it serves as input
for the specific tasks. The important ones for us are ATE (here: AE) and ATSC (here:
AS) and they are summarized as aspect-level tasks. The goal of the first one is to find all
aspect and opinion terms and mark them with the labels from Y ae = {BA, IA,BP, IP,O}
indicating beginning and inside of aspect or opinion terms, or other.

The ATE feature extractor fθae consists of mae CNN layers whose outputs haei are con-

catenated with the word embeddings and the initial representations h
s(0)
i . They are then

fed to a decoder, which is basically a fully-connected layer and a softmax for classification.
The ATSC feature extractor is similar, yet there are the following differences: In addition

73

to the mas CNN layers, there is a self-attention layer, where the model can access the
outputs ŷae from the ATE block. The self-attention matrix A is computed as softmax of
the following scores:

score
(i 6=j)
ij = (hasi W

as(hasj)>)
1

|i− j|
P op
j ,

where P op
j is the predicted probability of the j-th word being part of an opinion term. It is

the sum of the predicted probabilities of words with BP or IP labels in yaej . Furthermore,
W as and hasi are weights and hasj are the outputs of the ATSC-CNNs. The diagonal

elements of A are zeros. The outputs of the self-attention layer are h
′as
i =

∑n
j=1 Aijh

as
j .

Concatenated with h
s(0)
i , they form the final task-specific representation that is fed to the

same decoder as ATE. For multi-word aspect terms, the predicted label of the first token
determines the polarity of the whole aspect term.

Figure 42: IMN Architecture. Source: [25, p.3]

As already mentioned, document-level tasks are included to alleviate the problem of not
enough training data. These are document-level sentiment (DS) and domain (DD) clas-
sification. Their blocks have the same structure as the ATSC block, i.e. mo CNN layers
with outputs hoi followed by an attention layer and the same decoder as above. The
attention weights are calculated as aoi = softmax(hoi) and lead to the final document
representation ho =

∑n
i=1 a

o
ih

o
i . Throughout the whole procedure, o ∈ {ds, dd} indicates

the corresponding document-level task.

A novelty of IMN is the message passing mechanism which uses aggregated predictions of
different tasks of previous layers to update the shared representations hs(t). So, the new
hidden representation is given by

h
s(t)
i = fθre

(
h
s(t−1)
i ; ŷ

ae(t−1)
i ; ŷ

as(t−1)
i

)
; ŷ

ds(t−1)
i ; a

ds(t−1)
i ; a

dd(t−1)
i

74

with the concatenation operator [;] and the fully-connected layer plus ReLU activa-
tion fθre .

IMN is trained alternating between aspect- and document-level instances after some
epochs of pretraining with document-level tasks only. The loss for aspect-level instances
is

L(θs, θae, θas, θds, θdd, θre) =
1

Na

Na∑
i=1

1

ni

ni∑
j=1

l(yaei,j, ŷ
ae(T)
i,j) + l(yasi,j, ŷ

as(T)
i,j)

with the maximum number of iterations T of the message passing mechanism, the number
of aspect-level training instances Na, ni tokens in the i-th sequence and gold labels yi.
Cross-entropy loss is denoted by l. For document-level instances, this loss is used:

L(θs, θds, θdd) =
1

Nds

Nds∑
i=1

l(ydsi , ŷ
ds
i) +

1

Ndd

Ndd∑
i=1

l(yddi , ŷ
dd
i).

Analogously, Nds and Ndd denote the number of document-level training instances for
DS and DD and yi are the corresponding gold labels. Note that the message passing
mechanism is not used for document-level instances.

DOER

In contrast to IMN which relies on CNNs, an RNN-based approach named Dual cross-
shared RNN (DOER) was proposed in [54]. It can also perform both ATE and ATSC
tasks. Designed as two sequence labeling problems, to each word of the input an aspect
term tag out of {B, I,O} and a sentiment tag from the set {NEG,POS,NEU,CON,O}
should be assigned. Predictions are made by executing the six steps of Figure 43.

At first, double embeddings (cf. [88]) are applied on the input. They consist of general-
purpose hg and domain-specific embeddings hd which are simply concatenated. These
embeddings are then fed to stacked dual RNNs (i.e. one stacked RNN for ATE and ATSC
each) having so-called Bidirectional Residual Gated Units (BiReGU) as layers. Figure 44a
shows how a ReGU works which is similar to, yet different from GRU and LSTM (see
Section 3.3): A forget gate ft = σ(Wfxt + Ufct−1) controls how much information from
the previous memory state ct−1 is forwarded to the current one

ct = (1− ft)� ct−1 + ft � tanh(Wixt),

where Wf , Uf and Wi are weights. This means that the forget gate is responsible for the

75

information flow between two time steps. A residual gate ot = σ(Woxt + Uoct−1) decides
how much information from ct is taken to the new hidden state ht:

ht = (1− ot)� ct + oT � h̃t.

For the candidate state h̃t, we have h̃t = xt if the sizes of ct and xt are the same and
h̃t = tanh(Wxxt) otherwise. The residual gate thus controls the information processing
between two layers. Note that σ can be any logistic function. The output of a BiReGU

is the concatenation of the last hidden states
−→
ht and

←−
ht of the unidirectional ReGUs.

Figure 43: DOER Architecture. Source: [54, p.593]

After the RNNs, the interaction between ATE and ATSC is determined by a Cross-shared
Unit (CSU) which is shown in Figure 44b. First, a composition vector is calculated by

αMij = fm(hmi , h
m̄
j) = tanh((hmi)>Gmhm̄j),

where M ∈ {A,P} and m, m̄ ∈ {a, p} are the indices of ATE (A,a) and ATSC (P,p) and
m and m̄ are always the opposite of each other. Weights are denoted by Gm. Based on
this composition vector, the scalar attention score is

SMij = v>mα
M
ij

with weight vm. The higher the SAij score, the higher the correlation is between an aspect
term i and the sentiment representation of the word with index j. A higher SPij score
states the contrary, which is a higher correlation between the polarity of i and the aspect

76

term representation based on the j-th word. These attention scores are used to improve
the representations of ATE and ATSC by

hM = hM + softmax(SM)hM̄ ,

which are again fed to an RNN layer. Then, in the inference layer, a linear-chain CRF (see
Section 3.1) is applied and for the generation of labels the Viterbi algorithm (cf. [19]) is
used. To output joint labels, the aspect term labels work as boundaries for the sentiment
labels. In case of multi-word aspect term, the most frequent polarity tag is taken for the
whole aspect term or - if there is a tie - the label of the first token (just like in MTL).

(a) (b)

Figure 44: Building blocks of DOER: (a) Cross-shared Unit (b) Residual Gated Unit.
Source: [54, p.593]

Additionally, two auxiliary tasks are performed to improve predictions. The first is Auxil-
iary Aspect Length Enhancement (see the blue box in Figure 43) and it is about predicting
the average aspect term length during training. To do so, the output of the first RNN
layer hl1A is turned into h̃A by max pooling. The prediction of the average aspect term
length is

zuA = σ(W>
uA
h̃A)

with a weight wuA . Predictions are trained by minimizing the corresponding loss

LuA = ||zuA + ẑu||2 (4.10)

with ẑu being the average length of an aspect term after applying global normalization.

77

The same procedure is used for ATSC with the corresponding loss LuP .

The other auxiliary task is Auxiliary Sentiment Enhancement and it is depicted by the
red box in Figure 43. Here, a sentiment lexicon is used to train a classifier to assign
a positive, negative or no sentiment to each word. The predictions are made with this
formula

zsi = softmax(W>
s h

p,l1
i),

where hp,l1i is the ATSC output of the first RNN layer and Ws are weights. This classifier
is trained by minimizing the cross-entropy loss for each sentence:

Ls = − 1

n

n∑
i=1

1{ŷSi ∈Ŷ P }
log(zSi)>. (4.11)

Consequently, the complete model is trained by minimizing the joint loss with L2 regu-
larization, i.e.

L = La + Lp + LuA + LuP + Ls +
λ

2
||Θ||2,

where Θ denotes the parameter set and λ the regularization parameter. The first two
losses are the negative log likelihoods for each of the tasks, whereas the other losses come
from Equations (4.10) and (4.11).

RACL

Like IMN, [9] introduced an approach which is able to perform ATE, ATSC and joint
modelling. It also divides the overall ABSA task into the three subtasks aspect term
extraction (ATE, here: AE), opinion term extraction (OE) and aspect term sentiment
classification (ATSC, here: SC). Their method is called Relation Aware Collaborative
Learning (RACL) model and shown in Figure 45a.

As depicted in Figure 45b, a single RACL layer consists of three modules, one for each
subtask. They share the same input representations E = {e1, . . . , en} ∈ Rdw×n which are
either GloVe embeddings (cf. [62]) or the outputs of a pretrained BERT model. Thus, the
final models are either called RACL-GloVe or RACL-BERT. Following the shared-private
scheme of [12,51], the input representations are transformed into task-invariant and task-
specific features. The first ones, denoted as H = {h1, . . . , hn} ∈ Rdh×n, are received by
applying a fully-connected layer on each embedded sentence E. The AE-oriented features
XA ∈ Rdc×n and OE-oriented features XO ∈ Rdc×n are constructed by feeding H to
two CNNs FA and FO separately. For the SC task, contextual features are encoded as

78

Xctx = F ctx(H) ∈ Rdh×n with another CNN F ctx. In order to get the semantic relation
between aspect terms and their context, an attention mechanism is used with hi as query
vector. The relevance scores here indicate the strength of the dependency between a query
word i and a context word j and they are calculated as

ds
(i 6=j)
i,j = ((hi)

> ×Xctx
j)(log2(2 + |i− j|))−1.

The second factor, a modification of the absolute distance between two words, is added
to give words closer to the aspect term higher weights. Following Equation (3.3) the
attention weights M ctx

i,k are computed using the dependency strength. Analogously to
Equation (3.4), the attention output representing the SC-oriented features is

XS
i =

n∑
j=1

M ctx
i,j X

ctx
j . (4.12)

(a) (b)

Figure 45: Architecture of RACL: (a) General Overview (b) A single RACL layer. Source:
[9, p.3688]

In order to profit from relationships between the subtasks, the authors proposed four
interactive relations which are also part of Figure 45b. The dyadic relation between AE
and OE is modelled by R1. So-called useful clues XO2A

i from OE to AE and, vice versa,
XA2O
i can be extracted with a similar attention mechanism as was used for the SC-oriented

features. To do so, the semantic relation between words in AE and OE is calculated via

sr
(i 6=j)
i,j = (XA

i)> ×XO
j (4.13)

and normalized with respect to j via Equation (3.3) to obtain MO2A
i,j . The useful clues

79

XO2A
i =

∑n
j=1 M

O2A
i,j XO

j are concatenated with the AE-oriented features XA via [;] and
turned into aspect term tag predictions by

Y A = softmax(WA[XA;XO2A])

with a transformation matrixWA ∈ R3×2dc . The opinion tags Y O are predicted completely
in the same manner using the transposition of Equation (4.13). As a word wi can only
be an aspect term or an opinion term in a certain sentence, this has to be assured of in
the loss function

LR =
n∑
i=1

max
(
0,P(yAi ∈ {B, I}) + P(yOi ∈ {B, I})− 1.0

)
. (4.14)

The second relation R2 is the triadic one between SC and R1, denoting the influence of
R1 to SC as

M ctx
i,k ←M ctx

i,k +MO2A
i,k ,

where MO2A
i,k represents R1. The difference between M ctx

i,k and MO2A
i,k is that the first

models the dependency between aspect terms and their contexts from the point of view
of sentiment classification and the latter from the point of view of ATE.

Relation R3 is located between SC and OE, giving higher weights to extracted opinion
terms during sentiment prediction. This works similarly to R2 by updating M ctx

i,k , here
with the predictions Y O:

M ctx
i,k ←M ctx

i,k + P(yOi ∈ {B, I})(log2(2 + |i− j|))−1.

After this update step, Equation (4.12) should be re-evaluated. Now sentiments for iden-
tified aspect terms can be predicted by

Y S = softmax(W S[H;XS])

with a transformation matrix W S ∈ R3×2dh .

The last relation R4, taking place between AE and SE, works with AE results to supervise
SC training. Actually, the true aspect term tags Ŷ A are incorporated in the following
way:

ySi ← 1(ŷAi)ySi .

If word wi is an aspect term, the indicator functions evaluates to 1.

In order to capture sufficient features of the input, several RACL layers are stacked as

80

shown in Figure 45a. In the first layer, Xctx(1), [XA(1);XO2A(1)] and [XO(1);XA2O(1)] are
encoded. They serve as input for the second layer, where Xctx(2), XA(2) and XO(2) are
calculated. This procedure is repeated until the last layer L is reached. Then, the final
predictions are obtained by average pooling over all layers:

Y T = avg([Y T (1), . . . , Y T (L)]

with T ∈ {AE,OE, SC}.

For each subtask, the cross-entropy loss is defined as

LT = −
n∑
i=1

J∑
j=1

ŷTijlog(yTij)

with sequence length n, J label categories and ground truth labels ŷTij. Together with the
Hinge loss of Equation (4.14), the subtask losses form the combined loss L =

∑
T∈{AE,OE,SC}

LT + λLR which is to be minimized in order to train the model.

LCM

Some issues of existing models were raised in [82]. They introduced an approach with
separated sets of labels that are used to correct each other if they do not agree. This is
why their model is called Label Correction Model (LCM). The aspect boundary labels Y B

follow the BIOES-scheme which is different from the approaches we encountered so far.
The sentiment label set Y S contains positive, negative, neutral and outside.

The architecture has three building blocks as shown in Figure 46: Encoder, Add/Gate
Mechanisms and Conditional Random Fields (CRFs, see Section 3.1). The input sentences
embedded with WordPiece (cf. [86]) are fed to BERT which serves as encoder resulting in
representations HL. Both sentiment and aspect boundary label sequences of the input are
also turned into embeddings HS and HB, respectively. For a simpler notation, we write
Hset with set ∈ S,B. These embeddings can be used together with the hidden states HL

in two different ways to calculate combined representations of input labels and sequences.
For the Add mechanism, HL and Hset are simply added, yielding HLset

add , while the Gate
mechanism is more complex. First, a so-called gate matrix Gset is calculated by

Gset = σ(HL ∗Hset),

where σ stands for the sigmoid activation. The gate matrix is then used to compute

81

combined representations

HLset
gate = HL �Gset +Hset � (1−Gset).

This means that for each entry in HLset
gate , HL and Hset are combined in a weighted sum.

A high value of the so-called 2-Norm Gate Value ||Gset
i ||32 indicates that more information

from HL is forwarded to the combined representation, i.e. predictions are made based on
more contextual information. On the contrary, the lower the 2-Norm Gate Value, the
more the other label type is integrated into predictions as the context alone does not
provide enough information.

Figure 46: LCM Architecture. Source: [82, p.823]

For label predictions, two CRFs are applied on HLset
add or HLset

gate that output the entire label
sequences at once. During training, the log-likelihood L = P(Y B|X) + P(Y S|X) is to be
maximized. For test-time predictions, the Viterbi algorithm (cf. [19]) is applied to obtain
the optimal labels. Note that the Add/Gate mechanism and CRFs are run once during
training, but can be repeated several times for testing. For training, the model uses the
real sentiment labels and the hidden state of the sequence to predict the aspect boundary
label sequence. At test time, only the hidden states are used for the first predictions,
which in turn are then additional input for further predictions.

4.2.3 Models with a Collapsed Labeling Scheme

What tells collapsed models from joint models apart is the unified tagging scheme that
incorporates both aspect term tags and sentiments labels in one set of labels. We already

82

got to know some approaches that incorporate a collapsed variant, yet in this section we
are going to see collapsed models only.

BERT-E2E-ABSA

A rather simple way of performing ATE+ATSC with collapsed labels is stacking a clas-
sification layer on top of BERT. This is the approach followed in [47] and officially called
BERT-E2E-ABSA. Depending on the top layer, we name it BERT+X.

BERT+Linear BERT+Linear simply adds a linear layer and a softmax on the BERT
representations. On the following three models, exactly these two layers are placed on
top for classification.

BERT+GRU In BERT+GRU, the task-specific representations are calculated by a
GRU (see Section 3.3) applied on BERT’s output. Layer normalization is added after
each multiplication with weights to stabilize training.

BERT+SAN Self-Attention is added to BERT in BERT+SAN, where keys, queries
and values are weighted products of the BERT representations. The output is a layer-
normalized sum of the BERT outputs and the self-attention.

BERT+TFM Also BERT+TFM is based on the addition of self-attention, more pre-
cisely of another transformer layer. This means that the representations of BERT-SAN
ĤL are fed into a point-wise feed-forward network and its outputs are summed up with
ĤL. Again, layer normalization is applied.

BERT+CRF BERT+CRF employs a linear-chain CRF layer on BERT’s representa-
tions. The goal of a CRF layer (see Section 3.1) is to identify the globally most likely tag
sequence. To do so, sequence-level scores are defined as

s(x, y) =
T∑
t=0

MA
yt,yt+1

+
T∑
t=1

MP
t,yt

83

and the likelihood p(y|x) is calculated as their softmax over all possible tag sequences.
These scores correspond to the weighted sum of feature functions Fk in Equation (3.1).
The transition matrix MA indicates how strongly adjacent predictions are dependent
from each other and MP denotes the linear transformation of BERT representations.
The sequence with the maximum score works as the output of the model; it is received
by applying the Viterbi algorithm (cf. [19]).

UABSA

A more complicated collapsed approach is a Unified Model for ABSA (UABSA) in [46]. It
consists of two stacked LSTMs cells LSTMT and LSTMS and three special components
for Boundary Guidance (BG), Sentiment Consistency (SC) and Opinion-Enhanced Target
Word Detection (OE). Figure 47 shows how these building blocks are connected to each
other.

Figure 47: UABSA Architecture. Source: [46, p.3]

The upper LSTMS is responsible for the entire ATE+ATSC task which also includes
outputting a label sequence. It is predicted using a softmax layer. The lower LSTMT ,
however, does auxiliary work by predicting boundary tags of targets. They are used to
improve the predictions of the upper LSTM. This means that the lower LSTM produces
the first part of the unified label according to the BIOES-scheme which restricts the
unified tags to those that start with the correct letter. Both LSTMs are connected in
such a way that the hidden representations from LSTMT can be directly forwarded to
the upper LSTM. In formulas, it looks like this:

hTt = [
−−−−−→
LSTMT (xt);

←−−−−−
LSTMT (xt)], (4.15)

hSt = [
−−−−−→
LSTMS(hTt);

←−−−−−
LSTMS(hTt)]. (4.16)

84

Here, we have time t ∈ 1, . . . , T , input xt and the hidden representations hTt and hSt of
the corresponding LSTMs. (Model-based) Probability scores zTt for the boundary tags
and the unified tags are obtained by

zTt = P(yTt |xt) = softmax(W T hTt), (4.17)

zSt = P(ySt |hTt) = softmax(W ShSt), (4.18)

where W T and W S are weights.

At this point, the extra components come into play: The first one is the BG component
which is colored green in Figure 47. It turns the label restrictions, also called constraints,
into a transition matrix which is initialized with

W tr
i,j =

{
1
|Bi| , if j ∈ Bi,

0, otherwise.

The boundary tag is denoted as i, the unified tag as j and the set of possible unified
tags as Bi. The transition matrix is used to calculate transition-based/boundary-based
sentiment scores

zS
′

t = (W tr)>zTt .

As these scores might be not very informative, e.g. if the boundary tagger makes pre-
dictions with low confidence, proportion scores αt are introduced. Relying on the confi-
dence ct, they are defined as

αt = εct with ct = (zTt)>zTt

and the maximum proportions ε of the scores zS
′

t in the tagging decisions. The final scores
then are a combination of boundary-based and model-based unified tagging scores

z̃St = αtz
S′

t + (1− αt)zSt .

It may appear for multi-word aspect terms that the predictions are not consistent among
all the words. To avoid this issue, the SC component was designed (marked in gray in
the graphic). The underlying idea is to predict a unified tag based on the features from
its own time step and those from the previous time step. Thus, a gating mechanism is
used:

h̃St = gt � hSt + (1− gt)� h̃St−1 with gt = σ(W ghSt + bg),

where W g and bg are weight and bias.

85

The third component OE which is symbolized in blue in Figure 47 is responsible for a
more robust boundary tagger. This goal should be reached by taking a different look at
the training data. The underlying hypothesis is that a word counts “as a target word
if there is at least one opinion word within the context window of fixed-size [...] of this
word” (cf. [46]). An auxiliary classifier on token-level is set up to determine whether a
word is a target word or not:

yOt = arg max
y
zOt with zOt = softmax(WOhTt).

The boundary representation hTt here include labels indicating a target word. Weights
are denoted by WO. The complete model is trained by minimizing the sum over the
cross-entropy losses for the tree tasks S, T and O.

ADS-SAL

Figure 48: SAL Architecture. Source: [48, p.4592]

Based on Selective Adversarial Training (SAL), [48] introduced their new approach ADS-
SAL, where “ADS” stands for aspect detection and sentiment. As depicted in Figure 48,
it resembles UABSA in its underlying architecture of two stacked BiLSTMs. Like before,
the upper LSTMU outputs the collapsed labels, whereas the lower LSTMB is respon-
sible for predicting aspect term boundaries. Their representations are denoted as hBi
and hUi and obtained by Equations (4.15) and (4.16). Note that U stands for upper
(instead of S) and B stands for the lower LSTM (instead of T) now. The model-based
probability scores for aspect boundary tags zBi and unified tags zUi are calculated as in

86

Equations (4.17) and (4.18), with the only difference that explicit bias terms within the
softmax are mentioned now. The loss for both tags with true labels yQi is summarized
as

LM =
∑
Ds

∑
Q∈B,U

T∑
i=1

l(zQi , y
Q
i) (4.19)

Different to UABSA, now a Global-Local Memory Interaction (GLMI) is introduced which
is responsible for the interaction between a global memory m and a local memory hi. In
order to have both memories in the same space, local and global information are combined
in the transformed local memory h̃i = hi + ReLU(W [hi;m] + b) with the concatenation
operator [;]. The amount of correlation between m and h̃i is measured by the correlation
vector

ri = m>Gh̃Bi =: f(hi,m; Θ, G)

where the latter is just a parameterization. We have Θ = {W, b} and G models the latent
relations.

Figure 49: Dual Memory Interaction (DMI). Source: [48, p.4593]

Between the LSTMs, a multi-hop Dual Memory Interaction (DMI) is added. Its details
are depicted in Figure 49. Analogously to the GLMI, we define a global aspect memory ma

and a global opinion memory mo. The hidden states of the lower LSTM HB = {hBi }Ti=1

serve as local memories. In each hop l, two correlation vectors for aspect and opinion
co-detection are calculated via

rla,i = [f(hBi ,m
l
a; Θa, Ga); f(hBi ,m

l
o; Θo, Gao)]

rlo,i = [f(hBi ,m
l
o; Θo, Go); f(hBi ,m

l
a; Θa, G

>
ao)]

87

with the composition tensors Ga, Go and Gao for the latent relations within aspects, within
opinions and between aspects and opinions. These vectors are then turned into aspect
(A-attention) and opinion attention (O-attention) weights by

αlp,i =
exp(Wpr

l
p,i)∑T

j=1 exp(Wprlp,j)

with p ∈ {a, o} and weights Wp. The attentions are then used to update the global
aspect and opinion memories of the next hop of with the current local memories: ml+1

p =

ml
p +
∑T

i=1 α
l
p,ih

B
i . In the last hop L, rLa,i is fed to LSTMU for aspect detection and rLo,i is

taken to predict whether a word is an opinion word by probability scores

zOi = p(yOi |rLo,i) = softmax(WOr
L
o,i + bO). (4.20)

The corresponding loss is called opinion detection loss and with true labels yOi and cross-
entropy loss l it is defined as

LO =
∑
Ds∪Dt

T∑
i=1

l(zOi , y
O
i).

Afterwards, a domain discriminator is used to determine the domain label yDi of each
word. This is part of the Selective Adversarial Learning (SAL) which is used for declaring
words with high probabilities as aspects. To do so, a Gradient Reversal Layer (GRL) is

defined as Rλ(x) = x with a reversal gradient ∂Rλ(x)
∂x

= −λI and adaptation rate λ. The
GRL is applied on the correlation vector rLa,i before the probability scores over the domain
labels are predicted by

zDi = p(yDi |rLa,i) = softmax(WDRλ(r
L
a,i) + bD).

The selective domain adversarial loss is defined as

LD =
∑
Ds∪Dt

T∑
i=1

αLa,il(z
D
i , y

D
i), (4.21)

where l stands for cross-entropy loss, Ds for labeled source data and Dt for unlabeled
target data.

Training is divided into two stages: During the discriminative stage, the sum LM + ρLO
with hyperparameter ρ is minimized, while in the domain-invariant stage the optimization
objective is the minimum of LD. This alternating procedure makes training more stable.

88

EI

Another collapsed labeling approach was introduced in [45]. It focuses on extracting both
explicit (E) and implicit (I) structures that are relevant for the task of ATSC. Thus is
called EI.

For the explicit structures, they made up a tagging scheme with three types of labels
Bp, Ap and Eε,p. The goal of this scheme is to separate a sentence into spans to each of
which a polarity is assigned. Within these spans, they distinguish between aspect terms
and other words. Each word can have multiple labels. The index p ∈ {+,−, 0} denotes
the polarity and ε ∈ {B,M,E, S} stands for beginning, middle, end of and one-word
aspect term. In case of Bp, the corresponding word is located before the aspect term or
it is the first word of it. So to speak, the opposite, i.e. the word after the aspect term or
its last word is denoted by Ap. The third label type Eε,p indicates that the current word
is both part of a sentiment span and part of the aspect term, where its exact position
is specified by ε. A sentiment span ends when an Ap-labeled word is followed by a Bp′-
labeled word; the first word belongs to a span with sentiment p, the other to another span
with sentiment p′. Some words, especially conjunctions, are often not clearly assignable
to one span or another. Thus, there are many possibilities for labeling a single sentence.
In order to make this more clear, we refer to Figure 50, where the words of one sentence
are labeled in two different ways. Neighboring tags are connected to each other by arrows.
They are red if they cross a span border and blue otherwise.

Figure 50: Labeling Examples of EI. Source: [45, p.2f]

The explicit structure has the following form: The probability of an output y given a
sentence x is defined as

p(y|x) =

∑
h exp(s(x, y, h))∑

y′,h′ exp(s(x, y′, h′))

with a latent variable h providing all combinations of sentiment spans for (x, y). The

89

sentence-level score function is given by

s(x, y, h) =
∑

e∈E(x,y,h)

φx(e),

where E(x, y, h) denotes the set of all edges and φx(e) the edge-level score functions. The
remaining model resembles a neural CRF as proposed in [16,61].

Figure 51: EI Architecture for implicit structures. Source: [45, p.4]

The edge-level score functions already belong to the implicit structures and are illustrated
in Figure 51. Their calculation depends on the edge types:

φx(E
k
ε,pE

k+1
ε′,p) = ft(hk)ε

φx(E
k
ε,pA

k
p) = ft(hk)ε

φx(B
k
pB

k+1
p) = fs(hk)p

φx(A
k
pA

k+1
p) = fs(hk)p

φx(A
k
pB

k+1
p′) = fs(hk)p.

Two separate linear layers ft and fs are applied on hk in order to obtain target and
sentiment scores for each possible tag, i.e. {B,M,E, S} and {+,−, 0}, respectively. The
representations hk = BiLSTM(e1, . . . , en) are the outputs of a BiLSTM which takes
embeddings ek = [wk; ck] consisting of word embeddings wk and character embeddings ck
as inputs.

Additional edge-level score functions (also depicted in Figure 51) have the following
form:

φx(B
k1
p E

k1
ε,p) = gs(ak1)p

φx(E
k2
ε,pA

k2
p) = gs(ak2)p.

90

They return scores for {+,−, 0} for the edges at the beginning k1 and the end k2 of the
aspect terms. Their inputs ak denoting the implicit structure between the corresponding
word wk and the context are the outputs of the following self-attention mechanism (see
Section 3.4.1):

ak =
n∑
j=1

αk,jej with αk,j = softmaxj(βk,j),

βk,j = U>ReLU(W [ek; ej] + b).

The attention matrix is denoted by U , weights by W and bias by b. This procedure was
inspired by [42].

BERT-UDA

BERT-UDA in [22] is a BERT-based approach relying on a unified domain adaptation
(UDA) framework with two components for Feature- and Instance-Based Domain Adap-
tation. The authors introduce these two building blocks to reduce feature and instance
discrepancy between different domains.

(a) (b)

Figure 52: Components of BERT-UDA: (a) Feature-Based Domain Adaptation Compo-
nent (b) Instance-Based Domain Adaptation Component. Source: [22, p.7038]

We start with describing the Feature-Based Domain Adaptation component to which
Figure 52a corresponds. Each word is embedded using four different types of embeddings
which are word, segment, absolute position and POS tag embeddings. They are fed
to a BERT layer and result in context-aware representations H. Masked POS tagging

91

is performed on them which means that 25% of the tokens and their tags are replaced
with [MASK], similarly to training BERT. For the masked tokens, a POS tag should be
predicted. The probabilities pposi of POS tag types are calculated as a softmax of a linear
transformation of hi. For optimization, the loss is defined as

Lpos =
∑
DU

T∑
i

1{token i is masked}l(p
pos
i , yposi) (4.22)

where yposi indicates the true POS tag, DU the set of unlabeled instances of the target
domain and l the cross-entropy loss. Furthermore, syntactic relations in H are identified
by

hheadi = tanh(W1hi + b1) and htaili = tanh(W2hi + b2)

which are the representations of head and child or tail tokens in a dependency tree.
Weights and biases are denoted by W1,W2 and b1, b2. So, for words i and j that are
connected in the dependency tree, their dependency relation is the following concatena-
tion:

oij = [hheadi ;htailj ;hheadi − htailj ;hheadi � htaili].

The corresponding probabilities pdepij are received by applying a linear transformation and
a softmax on oij. Optimization is done on

Ldep =
∑
DU

T∑
i

T∑
j

1(ij)l(pdepij , y
dep
ij), (4.23)

where 1(ij) equals 1 if tokens i and j are connected via a direct edge in the dependency
tree. The entire loss for feature-based domain adaptation is

Lfeature = Lpos + Ldep. (4.24)

Instance-based Domain Adaptation (see Figure 52b) strives to cover the differences be-
tween domains by re-weighting the instances in the source domain. In each sentence,
words can be distinguished as domain-invariant and domain-specific. For each word, a
word-level domain classifier is trained which predicts whether a word belongs to the source
or target domain. The domain distribution probabilities pDi are obtained by applying a
linear transformation and a softmax on H. The loss for this classifier is

Ld =
∑
DU

T∑
i=1

l(pDi , y
D
i)

with ground truth yDi . During the main task, the ratio of word-level target-domain and

92

source-domain probabilities
pDi,t
pDi,s

is used as weight for each word. Thus, Ld only optimizes

those weights and biases that are needed for the linear transformation when calculating pDi .
Training the main task is based on the loss

Lm =
∑
DS

T∑
i

αil(p
m
i , y

m
i) with pmi = softmax(Wmhi + bm).

Word-level weights αi are retrieved by re-normalization of
pDi,t
pDi,s

of which the components

are delivered by the domain classifier. The composite loss for instance-based domain
adaptation is

Linstance = Lm + Ld. (4.25)

There are two ways to conduct overall model training, sequentially and jointly. In the first
case, initially a feature space is learned by optimizing Equation (4.24); then instance-based
domain adaptation is executed by minimizing Equation (4.25). For joint training, the four
losses are summed up in the following way, referring to Equations (4.22) and (4.23):

L = Lm + Ld + Lpos + λLdep.

Here, λ denotes a hyperparameter. Ablation studies showed that in most of the cases,
joint training outperformed sequential training. Thus, the values reported in Table 13
are those from joint training. They used two different BERT models for BERT-UDA:
the original uncased BERT-Base (in our table: BERT-B) and the post-trained BERT
from [89] (BERT-E). Like in the cross-domain case of BERT-ADA (see Section 4.1.5),
training is done on the source domain and evaluation on the target domain.

93

5 Experiments

Having gathered all the theoretical knowledge about model architectures and categoriza-
tion, we selected six models to be re-evaluated on five different data sets. These data
sets as well as their preparation will be explained in detail in this section. The goal is to
establish comparability between the models and to examine whether reported results can
be reproduced. We will also give an overview about the reasons for choosing the models,
their implementations and the results. Our code is available on our GitHub page4.

5.1 Selected Approaches

The idea was to choose one model for most of the categories from the previous section
for our experiments. We did not cover all of them due to various reasons. They include
missing opinion term labels for MAMS or ARTS, missing or too large additional data or
too long training times. For our selected approaches, the procedure is the following: At
first, we take the implementation as given by the authors and try to reproduce their results.
We leave the hyperparameters as they are stated there. Then, we adapt their code for the
remaining data sets and their modifications, sticking closely to the hyperparameters for
already used data. The biggest change we made was increasing the number of training
epochs drastically and adding an early stopping mechanism to all of them. We had a
Tesla V100 PCIe 16GB GPU at hand to speed up model training.

MGATN We chose MGATN for our practical part as it is reported to be the best of the
RNN-based models on SemEval-14 data sets (for SemEval-14 Restaurants, see Figure 11).
As there is no public implementation by its authors, we refer to this collection5 of ABSA
methods. We slightly modified the here introduced early stopping mechanism and then
implemented it into the other models. The best model during training process was chosen

4https://github.com/el-ma-le/atsc-experiments-official
5https://github.com/songyouwei/ABSA-PyTorch

94

https://github.com/el-ma-le/atsc-experiments-official
https://github.com/songyouwei/ABSA-PyTorch

based on the best validation accuracy and/or F1 Macro Score - like for all other ATSC
models.

CapsNet-BERT CapsNet-BERT seems to outperform all capsule networks with re-
spect to their accuracy on SemEval-14 Restaurant data. Additionally, it performed
second-best on MAMS as Figure 53 shows. Thus, we chose it for our experiments. Its
code can be found here6.

RGAT-BERT The best performance in the group of graph-based models is RGAT-
BERT which is also the best of all approaches on MAMS data in terms of both accuracy
and F1 Macro (see Figure 53). Additionally, it is one of the latest approaches. Its
implementation can be found here7. In comparison to the two models from above, the
manually created accuracy score was not the same as the one from Scikit-learn8, which
is why we substituted the original metric to keep the metrics across the models aligned.
During the data transformation process, we selected the stanza tokenizer (see [67]) as it
provided us with the necessary syntax information. We decided against the Deep Biaffine
Parser9 that was used by the authors since it did not produce the syntactic dependency
relation tags and head IDs (see Section 2.3) we needed.

LCF-ATEPC We chose LCF-ATEPC for the group of LCF-based models as it has
reached the highest F1 Macro Scores and accuracy on SemEval-14 data of all approaches
(see Figure 11). Yet, this only holds for the variant that is trained using additional domain
adaptation which we were not able to reproduce due to missing pretrained models. Thus,
we decided to go for the second best, LCF-ATEPC-Fusion using the official implementa-
tion of LCF-ATEPC from here10. During our experiments, the authors of LCF-ATEPC
started building a new repository11 based on the existing code which we did not use as
it was still subject to changes. LCF-ATEPC is a joint approach which can be trained
simultaneously for aspect extraction and aspect term polarity classification. Yet, the ex-
tracted aspects are not used for the ATSC task in this case. Thus, this method can be
seen as a single-task model which is why we report the ATSC measures only and no ATE
measures.

6https://github.com/siat-nlp/MAMS-for-ABSA
7https://github.com/muyeby/RGAT-ABSA
8https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy score.htm

l
9https://github.com/yzhangcs/parser

10https://github.com/yangheng95/LCF-ATEPC
11https://github.com/yangheng95/pyabsa

95

https://github.com/siat-nlp/MAMS-for-ABSA
https://github.com/muyeby/RGAT-ABSA
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://github.com/yzhangcs/parser
https://github.com/yangheng95/LCF-ATEPC
https://github.com/yangheng95/pyabsa

BERT+TFM In order to determine which kind of F1 Score is reported in the paper,
we decided to run BERT-E2E-ABSA methods in our practical analysis. Besides, they
seemed to be the best models on Laptop data among all collapsed models. The variant
of our choice was TFM as it was slightly better than the rest (see Figure 38). The im-
plementation is taken from this repository12. As our F1 Micro Scores were much closer
to the given values as our F1 Macro Scores, we assume that they report F1 Micro. Due
to misunderstandings of the SemEval14-16 data sets, the authors announced new perfor-
mance measures for the restaurant data sets on their GitHub page which we include in
our tables. Model selection was based on F1 Micro and Macro Scores, which were cal-
culated based on (start position, end position, polarity)-triples for each identified aspect.
Due to the collapsed labeling scheme, these scores account for both ATE and ATSC. The
calculation based on triples was included in the other ATE+ATSC models as well.

GRACE GRACE appears to be the best of the pipeline models in literature. Fur-
thermore, it is the best ATE+ATSC model on SemEval-14 Restaurants and Laptops as
Figure 38 shows. It includes a post-training step of the pretrained BERT model using
Yelp and Amazon data. The authors provide this post-trained model on their GitHub
page13 where we also took the implementation from. Model selection was done based on
ATSC F1 Micro and F1 Macro Score as well as on ATE F1 Micro Score; their calculations
were slightly adjusted in order to match the calculation of those from BERT+TFM.

5.2 Data Sets

All data sets used throughout this thesis are publicly available. We give an exploratory
overview about their characteristics based on our own analyses. The sizes and numbers
may slightly vary from some papers due to different approaches in data selection and
preprocessing.

5.2.1 SemEval-14

SemEval-14 Restaurants The most frequently used data set in ABSA is about restau-
rants in New York. It was presented first in [20] and adapted later by many others. It
probably received the most publicity being the basis for the restaurant data sets of the

12https://github.com/lixin4ever/BERT-E2E-ABSA
13https://github.com/ArrowLuo/GRACE

96

https://github.com/lixin4ever/BERT-E2E-ABSA
https://github.com/ArrowLuo/GRACE

Semantic Evaluation (SemEval) Conferences in 2014-2016 [64–66]. Here, we solely focus
on SemEval-14 as these are the data sets most suitable for our task and the ones for
which the most evaluation results exist. A subset of the restaurant data from [20] was
chosen as training data and several kinds of labels for specific subtasks were added. The
testing data were collected by the authors of [64] themselves and labeled in the same
way. The train and test sets (as well as other data sets for the competition) are available
here14. Each row contains one English sentence giving the author’s opinion about a cer-
tain restaurant in New York. As these data sets were designed for both ATSC and ACSC
tasks, there are sentences that only have labels for one of the tasks, i.e. aspect terms or
aspect categories, each with corresponding polarities. We are only interested in ATSC
which is why in Table 8 we also state the data set sizes for which we removed sentences
without any extracted aspect terms. We also deleted duplicate sentences in the training
set. Interestingly, there are three more sentences in the training set than reported in [64].
For each identified aspect term within a sentence, the polarity is given by positive, neg-
ative, neutral or conflict. Yet, we removed conflict polarities due to their small amount.
Together with the corrections mentioned before, this reduced the amount of training and
test sentences usable for our task from 3,044 to 1,978 and 800 to 600, respectively. Table 9
shows the distribution of aspect terms per sentence after data cleaning. The subset of
sentences that contain at least two aspect terms with different sentiments has a length
of 320 in the training set and of 80 in the test set. For each sentence, in addition to the
sentence itself and the aspect terms with polarities, the start and end position of each
aspect term are given.

Data Set Subset
Original
Sentences
in total

Sentences
without
Duplicates

Sentences
for 3-class
ATSC

Multi-
Sentiment
Sentences

Aspect
Terms
in total

Positive
Aspect
Terms

Negative
Aspect
Terms

Neutral
Aspect
Terms

Removed
Conflict
Aspect
Terms

Training 3,044 3,038 1,978 320 3,605 2,161 807 637 91SemEval-14
Restaurants Test 800 800 600 80 1,120 728 196 196 14

Training 3,048 3,036 1,460 166 2,317 988 866 463 45
SemEval-14 Laptops

Test 800 800 411 38 638 341 128 169 16
ARTS Restaurants Test 2,784 2,784 2,784 206 3,528 1,952 1,103 473 0
ARTS Laptops Test 1,576 1,576 1,576 74 1,877 883 587 407 0

Training 4,297 4,297 4,297 4,297 11,186 3,380 2,764 5,042 0
Validation 500 500 500 500 1,332 403 325 604 0MAMS Restaurant
Test 500 500 500 500 1,336 400 329 607 0

Table 8: Number of sentences, aspect terms and aspect term polarities per data set. Multi-
Sentiment sentences are those with at least two different polarities after removing
“conflict” polarity. Aspect Terms in total also exclude “conflict”.

14http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-absa-restaurant-review

s-train-data/479d18c0625011e38685842b2b6a04d72cb57ba6c07743b9879d1a04e72185b8/ and
http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-absa-test-data-gold-an

notations/b98d11cec18211e38229842b2b6a04d77591d40acd7542b7af823a54fb03a155/

97

http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-absa-restaurant-reviews-train-data/479d18c0625011e38685842b2b6a04d72cb57ba6c07743b9879d1a04e72185b8/
http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-absa-restaurant-reviews-train-data/479d18c0625011e38685842b2b6a04d72cb57ba6c07743b9879d1a04e72185b8/
http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-absa-test-data-gold-annotations/b98d11cec18211e38229842b2b6a04d77591d40acd7542b7af823a54fb03a155/
http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-absa-test-data-gold-annotations/b98d11cec18211e38229842b2b6a04d77591d40acd7542b7af823a54fb03a155/

Data Set Subset 1 2 3 4 5 6 7 8 9 10 11 12 13
Training 966 565 262 105 29 15 5 3 1 0 0 0 0

SemEval-14 Restaurants
Test 282 186 78 31 14 3 1 0 0 0 0 0 1
Training 895 350 139 42 10 6 3 1 1 0 0 0 1

SemEval-14 Laptops
Test 258 101 34 10 6 1 0 0 0 0 0 0 0

ARTS Restaurants Test 2,289 348 85 41 15 3 1 0 0 0 1 0 1
ARTS Laptops Test 1,360 159 37 13 6 1 0 0 0 0 0 0 0

Training 0 2,568 1,169 364 126 48 13 6 1 1 1 0 0
Validation 0 285 136 55 16 5 2 0 0 1 0 0 0MAMS Restaurant
Test 0 264 173 45 10 5 0 1 0 1 1 0 0

Table 9: Number of sentences with precisely 1 to 13 identified aspect terms per data set
after removing duplicates, ACSC-only sentences and “conflict” polarities.

SemEval-14 Laptops The second domain of SemEval-14 data is Laptops. The data
were collected and annotated in [64] for the task of aspect ATE and ATSC. The train data
are available here15, while the test data are combined with those of the Restaurants above.
The corresponding statistics are shown in Tables 8 and 9. Again, there are three additional
sentences in comparison to [64] and there were duplicate sentences in the training data
which we deleted. Removing those sentences without any identified aspects or conflict
polarities only, we end up with 1,460 instead of 3,048 original rows of data in the training
set and 411 instead of 800 in the test set. The number of sentences with two aspect terms
with different sentiments is 166 in the training and 38 in the test set.

5.2.2 MAMS

The authors of [64] were not the only ones to take the data of [20] as basis and develop
a data set for ATSC. A so-called Multi-Aspect Multi-Sentiment (MAMS) data set for
the restaurant domain was created in [34] who criticized existing data sets for not being
adequate for ATSC. Their main point was that those original data sets mainly contain
sentences with only one aspect or several aspects with the same sentiment. This would
make sentiment prediction far too easy: It would not be more difficult than sentence-level
sentiment prediction. In order to deal with this issue, they only allowed sentences of [20] in
their data sets that had at least two aspects with differing sentiments. Additionally, they
only selected sentences with a maximum of 70 words. A similar approach was followed
in [91] who extracted a so-called “hard subset” of the SemEval-14 test data consisting
only of samples with multiple aspects with opposite polarities. Yet, their data set did not
get very popular so far.

15http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-absa-laptop-reviews-tr

ain-data/94748ff4624e11e38d18842b2b6a04d7ca9201ec33f34d74a8551626be122856

98

http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-absa-laptop-reviews-train-data/94748ff4624e11e38d18842b2b6a04d7ca9201ec33f34d74a8551626be122856
http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-absa-laptop-reviews-train-data/94748ff4624e11e38d18842b2b6a04d7ca9201ec33f34d74a8551626be122856

Having prepared a data set for each of ATSC and ACSC, we now focus on the one for
ATSC which is provided in this repository16. Its characteristics can be found in Tables 8
and 9. Note that they did not take aspects with a conflicting polarity into account. The
MAMS data sets have the same structure as the SemEval-14 data sets, yet the official
MAMS set is the only data collection with an extra validation set. Its proportion with
respect to the union of training and validation data is about ten percent.

Figure 53: Development of reported ATSC Accuracy on MAMS. All values except for
RGAT(-BERT) and CDT are taken from the MAMS paper.

The authors of MAMS did not explicitly state which performance measure they used.
However, comparing the results for other methods, e.g. AOA-LSTM or AEN, makes us
conclude that they report accuracy. We applied the same logic to the number of classes

16https://github.com/siat-nlp/MAMS-for-ABSA

99

https://github.com/siat-nlp/MAMS-for-ABSA

for their SemEval results, which is why we assume that they only tested on the three
classes positive, negative and neutral. The reported accuracy measures on MAMS are
shown in Figure 53.

5.2.3 ARTS

Another issue regarding the quality of SemEval data sets was raised in [87]: They question
whether the existing data sets are good enough to test the aspect robustness of a model,
i.e. whether the model is able to correctly identify the words corresponding to the chosen
aspect term and predict its sentiment based only on them. Using their examples “Tasty
burgers and crispy fries” and “Terrible burgers, but crispy fries”, this means that a model
should predict a positive polarity for “burgers” in the first sentence and a negative one in
the second. In order to test this, it is necessary to have sentences containing aspects with
differing polarities. Thus, the authors created an automatic generation framework that
takes SemEval-14 test data as input and yields an Aspect Robustness Test Set (ARTS).
They used three different strategies to enrich the existing test set: The first one, REVTGT
(=“reverse target”), aims to reverse the sentiment of the chosen aspect term (also called
target aspect). This is reached by flipping the opinion using antonyms or adding negation
words like “not”. Additionally, conjunctions may be changed in order to make sentences
sound more fluent, as it was done in the example above. Another way to improve the
test set is REVNON (=“reverse non-target”) which changes the sentiment of non-target
aspects if they have the same sentiment as the target aspect or exaggerates it if it already
is of a differing polarity. Taking the same example again, this may lead to “Tasty burgers,
but terrible fries”. The third strategy is called ADDDIFF (=“add different sentiment”)
and adds non-target aspects with an opposite sentiment to confuse the model. These
aspects are selected from a set of aspects collected from the whole data set and put at
the end of the sentence. This may create the following variant of our example: “Tasty
burgers, terrible fries and poor service”.

As ARTS data only work as test sets, models have to be trained on SemEval training sets.
The test sets for both restaurants and laptops can be found in this repository17 and their
statistics in Tables 8 and 9. They show that the focus of ARTS is totally different from
the one of MAMS: Whereas the latter strives to provide sentences with lots of aspects
with contradicting sentiments, the aim of ARTS is to make variations of the existing
sentences. In contrast to the data sets mentioned before, each ARTS row contains only
one aspect term, its polarity and its start and end position, but sentences may appear
more than once to cover for different aspects. Sentiments can be positive, negative and

17https://github.com/zhijing-jin/ARTS TestSet

100

https://github.com/zhijing-jin/ARTS_TestSet

neutral. Preparing the data set for CapsNet-BERT, we noticed that the start and end
positions of some aspect terms were not correct. We changed them in order to make the
code work properly. We also deleted duplicates.

5.3 Data Preparation

As we have already discovered in the previous section that each data set has been designed
with its own motivation, they have different properties regarding task specificity, label sets
and number of aspect terms. Now we describe our procedure to process the data in such
a way that they have the same structure and same content for each model.

Data Structure Although almost all models rely on the same data from SemEval-14,
they require different input formats which were determined by the corresponding authors.
This means that not only the file types are different, but also the structure of the content.
Table 10 gives an overview about these differences. Sequence Tagging means that each
token receives a label, not only aspect terms. In order to fulfill our comparability goal,
we re-created these data formats ourselves in order to make sure the same information is
used for all models. Details can be found in Section 5.1.

Model Format Aspects Labels
MGATN xml.seg one aspect per sentence aspect term, polarity - in case of multiple aspects, duplicate sentences
CapsNet-BERT xml multiple aspects per sentence aspect term, polarity, to, from (both character numbers)
RGAT-BERT json multiple aspects per sentence token, pos, head, deprel, aspect term, polarity, to, from (both token numbers)
BERT+TFM txt multiple aspects per sentence sequence tagging collapsed (“T”+sentiment)

GRACE txt multiple aspects per sentence
sequence tagging joint & collapsed: Token, POS-Tag, Chunk, Term Label,
Sentiment Label, Collapsed Label

LCF-ATEPC dat multiple aspects per sentence
sequence tagging joint, per sentence the polarity only for one aspect term
is given - in case of multiple aspects, duplicate sentences

Table 10: Overview about the different input formats for our models.

Duplicates The SemEval-14 training sets and the ARTS Restaurants test set included
some duplicate lines. As we have already mentioned, we removed them.

Corrections The majority of the data sets contained a few incorrect labels. They were
often incorrect in terms of the position of the aspects or their spelling. Which data sets
needed to be corrected, can be found in Table 11.

101

Data Set Subset Original Removed Duplicates Removed Conflict Corrected terms & Positions

SemEval-14

Restaurant Train xml yes yes yes
Restaurant Test xml - yes -
Laptop Train xml yes yes yes
Laptop Test xml - yes -

ARTS
Restaurant Test json yes - yes
Laptop Test json - - yes

MAMS
Train xml - - yes
Validation xml - - -
Test xml - - yes

Table 11: Overview about required preprocessing for data sets. Blank cells mean that the
corresponding task was not necessary.

Full Data vs. ATSC Data Often, only a subset of the data is labeled for ATSC,
i.e. aspect terms and their polarities are marked. These numbers are shown in Figure 8,
columns 2 and 3. For ATSC, there is no benefit on training on data without aspect terms.
For consistency, we removed all reviews without aspects from our data sets.

Three-class vs. Four-class Classification While the original SemEval-14 data sets
contain negative, positive, neutral and conflict sentiment labels, in the others only the
first three sentiment categories are used. These differences can also be observed in the
architectures of some methods. As the number of conflict labels is rather small (as shown
in Table 8), we removed them from the data.

Train-Validation Split Unlike MAMS data, the SemEval data come without an official
validation set. Thus, we split the SemEval training data five times into training and
validation sets with a 90%-10%-ratio like in [46]. On every train-validation pair and for
each model, we perform five runs. For each of these combinations, the resulting trained
model is then evaluated on the same test. Several runs are necessary in order to receive
more reliable performance results.

5.4 Evaluation Metrics

For both ATE and ATSC, we can measure the model performance with two different
statistics. However, it is important to note that only models within these two categories
can be compared with each other, but not between those two. The reason behind this
is that ATSC-only models are given the true aspect terms, whereas combined methods

102

identify them by themselves. This results in a discrepancy with respect to the set of
aspect terms for which sentiment classification is to be made.

Accuracy The most widely used performance measure is accuracy. It is simply the
percentage of correctly classified samples with respect to all samples (cf. [23, p.103]).
More formally, it can be written as

Acc =
TP + TN

TP + TN + FP + FN
,

where TP stands for the number of true positive samples, TN for that of true negatives,
FP for that of false positives and FN for that of false negatives (cf. [71, p.38]).

F1 Score In multi-class classification, however, it is often more sensible to use the F1
Score instead (cf. [71, p.38]) as the class proportions may vary strongly. This behavior
can be taken into account by the F1 Score. It is based on Recall R and Precision P , given
as

R =
TP

TP + FN
and P =

TP

TP + FP
,

and defined as

F1 =
2PR

P +R
.

There are several calculation variants (cf. [1]) of which the most prominent are:

• micro: globally, i.e. count all TPs, FNs and FPs no matter which label they belong
to.

• macro: label-wise, i.e. calculate F1 for each label and average them without weights.

• weighted: label-wise and weighted, i.e. calculate F1 for each label and average them
using the number of true samples per label as weight. This takes label imbalance
into account.

In order to produce easily comparable results, we are going to monitor both accuracy and
all of these F1 Scores.

103

Aspect Robustness Score (ARS) The Aspect Robustness Score (ARS) was intro-
duced in [87] in order to measure how well models can deal with variations of sentences
like in the ARTS data set. Therefore, they see a sentence and all its variations as a unit
for which a prediction is only correct if all the predictions for all variations are correct.
These units and their corresponding predictions are then fed to a regular accuracy score.
This score was used in the corresponding paper for ARTS data. For them, we calculate
both ARS and the usual metrics.

5.5 Results

Our detailed quantitative results can be found in Tables 15 and 16 in the appendix. Here,
we first give a general overview, then we will show plots and draw an individual conclusion
for each model. Furthermore, we also discuss data-specific observations.

5.5.1 General Outcome

(a) SemEval-14 Laptops (b) SemEval-14 Restaurants

Figure 54: Comparison of reported and reproduced performance. The reproduced value
is the mean of all five runs for each of the five splits, i.e. 25 runs per model in
total. Note that absolute performance of GRACE and BERT+TFM cannot
be compared to the other models due to different tasks. No F1 Micro Score
was reported for CapsNet-BERT on SemEval-14 Laptops.

Results not reproducible In general, reported values were not reproducible in an
exact way. Figure 54 shows that our results except for BERT+TFM tend to be lower

104

than the reported ones for both SemEval-14 Restaurants and Laptops. We do not give a
similar figure for MAMS or ARTS as there are not enough reported values to form a good
graph. The insight that reported values usually cannot be reached is also shared in [57],
although they tested other models in a different setup.

Effect of multiple runs It is very interesting to see how different runs can lead to
rather broad ranges of results, although having done only five training runs per model
and data split. This is especially important when it comes to model comparison, where
also small improvements with respect to the state of the art are often seen as a big
success.

Effect of splits There is no clear sign that a certain split has a definitely better per-
formance than another throughout all the models. We can observe that sometimes the
variance within a split is definitely smaller than in another one, but there is no pattern.
This may lead to the conclusion that the data sets are homogeneous enough so that the
exact splits have no impact on model performance.

Reasons for gaps in performance results Results differing from the reported values
can be explained by various reasons. First, we often do not know how the reported values
were created, i.e. whether the authors took the best or an average value of their runs. For
instance, Figure 61a shows that in average, our results are lower than the reported value.
Yet, if only the best run is taken into consideration, we surpassed the reported score.
Second, our data usually are not identical to the data sets used for the original papers
due to the preprocessing steps we explained beforehand. Also, training and validation
splits are probably different from ours. For some models, we needed additional syntactical
information which we inferred from other packages than indicated (or none were given).
Third, hyperparameter configurations are often not totally clear. Mainly, we took those
that were chosen in the implementations. Consequently, it is not surprising that we were
not able to exactly reproduce given results.

105

5.5.2 Model-specific Observations

(a) SemEval-14 Laptops (b) SemEval-14 Restaurants

Figure 55: Accuracy of MGATN.

MGATN For MGATN, we were not able to reach the reported values by far. Figure 55
shows that our results are around five to ten percentage points below the reported accura-
cies for Laptops and Restaurants, respectively. A reason for this behavior might be that
we could not use the official implementation of the authors. In terms of ARS Accuracy
on ARTS Restaurants, MGATN was the only model that reached only a single-digit value
which means that it is not good at dealing with perturbed sentences. Furthermore, our
point of view that RNN-based methods perform worse than BERT-based methods (as
shown by the reported values in Figure 11) was confirmed: As Table 15 illustrates the
values of MGATN usually lie ten to 15 (sometimes even 20) percentage points below those
of the other ATSC methods.

(a) ARTS Laptops (b) ARTS Restaurants

Figure 56: ARS Accuracy of CapsNet-BERT.

106

CapsNet-BERT Comparing all the selected models on the ATSC task, CapsNet-BERT
performed best on all data sets regarding all the metrics except for ARS Accuracy on
ARTS Restaurant data. Yet, our attention is mainly drawn towards ARTS and MAMS
results, also because there is only one reported value for SemEval-14 data. In terms of
MAMS, our results are scattered around the reported value as Figure 57a shows. For
ARTS, however, it seems as if the reported ARS accuracy for Laptops matched our result
for Restaurants, and vice versa, as Figure 56 illustrates. As far as we can tell, we did not
mix up the data sets during our calculations which makes this quite peculiar.

(a) CapsNet-BERT (b) RGAT-BERT

Figure 57: Results on MAMS.

RGAT-BERT For both SemEval-14 and MAMS data we missed the reported values
by around five percentage points as Figures 58 and 57b show. ARTS Restaurants is the
only data set on which the best ARS Accuracy was not reached by CapsNet-BERT, but
RGAT-BERT.

(a) SemEval-14 Laptops (b) SemEval-14 Restaurants

Figure 58: Accuracy of RGAT-BERT.

107

LCF-ATEPC Our experiments resulted in on average about five percentage points
lower accuracies for LCF-ATEPC than were reported. This can be seen in Figure 59.
Yet, LCF-ATEPC reached the best ARS Accuracy value on ARTS Restaurant data in
our analysis.

(a) SemEval-14 Laptops (b) SemEval-14 Restaurants

Figure 59: Accuracy of LCF-ATEPC.

BERT+TFM In contrast to the majority of the other models, for BERT+TFM our
runs surpassed the reported values on SemEval-14 data. As Figure 60 indicates this holds
for all runs for the Laptop domain and in average for the Restaurant domain.

(a) SemEval-14 Laptops (b) SemEval-14 Restaurants

Figure 60: F1 Micro Scores of BERT+TFM.

108

GRACE Running GRACE, we were able to produce results in the scope of the reported
values, regarding SemEval-14 Restaurants our results were even better in average. This
is shown in Figure 61. In the ATE+ATSC task, GRACE outperformed BERT+TFM on
all data sets except for MAMS.

(a) SemEval-14 Laptops (b) SemEval-14 Restaurants

Figure 61: ATSC F1 Micro Scores of GRACE.

5.5.3 Data-specific Results

SemEval-14 In general, the performances on the Restaurants data set are better than
on the Laptops data set, usually within a range of five to ten percentage points. This
behavior was not only observed by us, but can also be seen in the reported values in
Figure 11. The only exception for differences between the domains can be found in the
ATE F1 Micro Score for GRACE which is caused by the different task.

MAMS As explained in Section 5.2, MAMS and SemEval-14 Restaurants rely on the
same source of original restaurant reviews. Yet, the MAMS data set is a more compli-
cated version with more and usually differing aspects, which is why it makes sense that
our observed performance on MAMS lies below that of SemEval-14 Restaurants. This
behavior is also common among the reported values. Although we had the official valida-
tion set at hand here, reproduced and reported performance were not much closer to each
other in average than for data sets where we constructed the splits by ourselves. The only
exception is CapsNet-BERT where there is only a difference of 0.35 percentage points for
accuracy, speaking of the overall mean.

109

ARTS Unlike for the SemEval-14 data sets, the performance values on ARTS do not
differ that much from each other comparing Restaurant and Laptop data sets. Usually,
the differences account to up to five percentage points for both ATSC and ATE+ATSC
regarding the overall mean. Maybe the domain-specific results are more similar because
the same enrichment methods have been applied to both of them which stronger aligned
their levels of complexity with respect to the task. Referring to the ARS Accuracy, we
can observe that this is a very strict metric, never resulting in an overall mean higher than
45%. Since mainly different models were tested in [87], it is hard to check whether this
outcome is caused by our implementation of the ARS or these models in general perform
badly with respect to this score.

110

6 Conclusion

In this work, we presented a thorough overview about existing models for aspect-term
sentiment classification (and partly also for aspect term extraction), yet no claim is made
to completeness. Categorization of approaches revealed that models are based on a variety
of ideas to which the future will probably add many more. Starting with rather simple
RNN- or CNN-based models, models evolved by including attention mechanism, local
context focus or graphs. With the introduction of BERT, a new level of performance
could be reached. In recent times, the task of identifying aspects became more relevant
which is why more approaches deal with both tasks.

Our practical part revealed that reproducing reported results precisely is not possible, at
least for the subset of our selected models. We decided to run MGATN for the group
of RNN-based models, LCF-ATEPC as it was the overall best, RGAT-BERT as it was
the latest, CapsNet-BERT for the capsule networks, GRACE for the group of pipeline
approaches and BERT+TFM for the collapsed models. A tendency towards lower results
is clearly visible in our experiments, sometimes even five to ten percentage points lower
than the original values. The only exception was BERT+TFM for which we surpassed the
given values. The reasons for these observations may lay in the data preprocessing step,
in the hyperparameters or in the absence of a convention on which values to report (best
or mean of several runs). Such a convention indicating a common reporting procedure
combined with already prepared data sets with all possible labels could improve the
comparability between models a lot. Also a huge practical meta-analysis of all models on
several data sets would clarify the situation.

The discovery of models hardly being comparable based on their performance measures
is a very important one from our point of view. When new models are proposed, one of
the main aspects during their evaluation is the improvement with respect to the state of
the art. But when the performance of a single model can vary between single runs, the
question is which results to take into account for model rankings.

Based on our experiments, CapsNet-BERT outperformed the other ATSC models with
a varying margin depending on data set and metric. Furthermore, it is easy to handle
as no additional labels or syntax tags need to be added by external packages. Thus,

111

we recommend using this model to someone who wants to choose from our selection.
In contrast to CapsNet-BERT, MGATN performed clearly worse than the other ATSC
models, which we expected as typical for RNN-based approaches. For ATE+ATSC, our
comparison revealed the superiority of GRACE which is probably justified by its more
complex architecture.

In terms of data sets, it is not that easy to make a recommendation: SemEval-14 data are
common benchmark data sets, yet ARTS and MAMS have their justification based on their
motivation for more complicated data sets. In general, models perform best on Restaurant
data sets from SemEval-14 and MAMS. Consequently, for simple comparisons against
other models, the first ones should be sufficient (ignoring the comparability issues for
the moment). When interested in the challenge of analyzing more complicated sentences,
however, ARTS and MAMS data should be chosen. Regarding efficiency, applying models
on SemEval-14 data first and then on ARTS would be the best choice as both are trained
on the SemEval-14 training sets. In doing so, one longer lasting step of training could be
skipped.

Anyway, as this is a rather young field of research, we are interested to see what the future
brings and how methods can be improved any further.

112

7 Outlook

While we gave a rather broad overview in the theoretical part, the practical part still
holds a lot of possibilities to be pursued in the future. Here, we collect the ideas that
came to our minds during the work on our own experiments.

Cross Domain Experiments We have seen that there are some models like MGALN
and BERT-ADA (see Section 4.1.5) or ADS-SAL and BERT-UDA (see Section 4.2.3)
which are designed to do cross-domain learning, i.e. training on one domain, e.g. Restau-
rants, and testing on another, e.g. Laptops. Although this might lead to worse results
than in-domain training, the idea behind this concept is important for practical reasons.
Often, labeled data are very rare in practice and it is expensive to do labeling. Thus, hav-
ing enough labeled at hand, would reduce annotation work to a minimum. Consequently,
it would be very nice to know which models are suitable for this type of learning. Few
experiments on this topic were already made in [57], yet there are enough model-data
combinations left for further analyses.

Data Sets Recently, more ABSA data sets have been constructed, like Men’s T-Shirts
and Television in [57]. For SemEval-15, [66] also provided a test set for the hotels domain.
Evaluating the existing models on these data sets could reveal whether the models perform
well on all data sets, or it depends on the domain. Another new data set is the so-called
YASO data set introduced in [59]. It consists of several domains which would make the
task more interesting, but also less realistic as real-world applications of ATSC methods
may focus on a single domain only.

Languages Pursuing the idea of new data sets even further, may lead to non-English
data sets, for instance the GermEval-17 data set in [85]. It provides German texts about
“Deutsche Bahn”. Testing our models on this data set would introduce a new quality
criterion as the models are usually only trained and tested on English data. Based on
the idea of analyzing a German, one could also extend this idea and compare approaches

113

between different languages. For this task, however, appropriate data sets would be
needed which are still not available for the majority of languages.

BERT Variants It would also be interesting to substitute the BERT basis of a model
with DistilBERT [74], RoBERTa [52], AlBERT [43] or other variants of BERT. Each of
them was created with a special motivation which may also be beneficial for the ATSC
task: DistilBERT is much smaller, whereas RoBERTa was pretrained on much more
data and for AlBERT changes in the model architecture were made. For instance, the
performance results of models based on BERT and RoBERTa were compared in [13].

Different Basic Models BERT is a very popular model, especially in our case as basis
for more complex ones. Yet, GPT [5], Electra [11], XLNet [94] and T5 [68] have also been
published recently with similarly promising or even better results on benchmark tasks.
Thus, researching about ABSA methods based on them may be interesting as well. Maybe
it is even possible to achieve another increase in performance as the one from RNN-based
to BERT-based models.

Multi-task extras A new labeling scheme for joint ATE+ATSC was introduced in [37].
Whereas in this work, the aspect label is assigned to the aspect term as usual, for the
polarity label an extra token is created: After the aspect term, [sentiment] is inserted,
like in the following example:

Word Price [sentiment] was affordable
Label B positive O O

Table 12: ATE+ATSC Labeling Example following [37].

Incorporating this labeling scheme into existing models could result into different perfor-
mances which would be interesting to examine. Another idea regarding multi-task models
comes from [92] who generated a unified framework to solve all ABSA subtasks in one
run. Maybe it is possible to transfer this scheme to other models as well.

Weakly/Semi-/Unsupervised Models Few methods have been developed so far to
solve the ABSA tasks in a weakly, semi- or unsupervised way. Yet, this could be helpful as
labeling is always an expensive and time-consuming task. For instance, [27], [33] and [60]
proposed some ideas on how this topic could be approached. Further work could give an

114

overview on how these models are structured, how they perform and how they can be
improved in the future.

115

List of Figures

1 Example for a constituent tree. Source: [14, p.82] 6
2 Example for a dependency tree. Source: [14, p.82] 6

3 CNN Architecture. Source: [14, p.29] . 8
4 RNN Architecture . 9
5 LSTM Architecture. Source: [96, p.355] . 11
6 GRU Architecture. Source: [96, p.349] . 12
7 Attention Architecture. Source: [96, p.404] 14
8 Multi-head attention architecture. Source: [96, p.415] 15
9 Transformer Architecture. Source: [80, p.3] 16
10 A single GCN layer. Source: [97, p.4569] 18

11 Reported ATSC Accuracy on SemEval-14 Restaurants 21
12 GCAE Architecture for ATSC. Source: [91, p.5] 24
13 TD-LSTM Architecture. Source: [78, p.2] 25
14 TC-LSTM Architecture. Source: [78, p.3] 25
15 ATAE-LSTM Architecture. Source: [83, p.610] 26
16 IAN Architecture. Source: [55, p.2] . 27
17 RAM Architecture. Source: [7, p.454] . 28
18 Attention-over-Attention LSTM Architecture. Source: [32, p.3] 30
19 MGATN Architecture. Source: [18, p.3436] 31
20 MemNet Architecture. Source: [79, p.3] . 33
21 AEN Architecture. Source: [76, p.3] . 35
22 Variants of PH-SUM: (a) P-SUM (b) H-SUM. Source: [39, p.3] 37
23 BAT Architecture. Source: [38, p.3] . 38
24 MGALN Architecture. Source: [49, p.5] . 39
25 LCF Architecture. Source: [95, p.5] . 45
26 LCF-ATEPC Architecture. Source: [93, p.5] 47
27 Example of a Dependency Parsing Tree. Source: [63, p.3216] 48
28 PhraseRNN Architecture. Source: [58, p.2511] 49
29 Constituent Tree Example. Source: [58, p.2510] 50
30 SynATT Architecture. Source: [24, p.1124] 51

116

31 SDGCN Architecture. Source: [98, p.3] . 53
32 CDT Architecture. Source: [77, p.250] . 55
33 ASGCN Architecture. Source: [97, p.4571] 56
34 RGAT Architecture . 59
35 RGAT Layer. Source: [4, p.4] . 60
36 T(rans)Cap Architecture. Source: [8, p.549] 61
37 CapsNet Architecture. Source: [34, p.6282] 64
38 Reported ATE+ATSC F1 Micro on SemEval-14 Restaurants 66
39 Building blocks of SPAN . 68
40 MTL-pipeline Architecture. Source: [3, p.250] 70
41 GRACE Architecture. Source: [53, p.3] . 71
42 IMN Architecture. Source: [25, p.3] . 74
43 DOER Architecture. Source: [54, p.593] 76
44 Building blocks of DOER . 77
45 Architecture of RACL . 79
46 LCM Architecture. Source: [82, p.823] . 82
47 UABSA Architecture. Source: [46, p.3] . 84
48 SAL Architecture. Source: [48, p.4592] . 86
49 Dual Memory Interaction (DMI). Source: [48, p.4593] 87
50 Labeling Examples of EI. Source: [45, p.2f] 89
51 EI Architecture for implicit structures. Source: [45, p.4] 90
52 Components of BERT-UDA . 91

53 Reported ATSC Accuracy on MAMS . 99
54 Comparison of reported and reproduced values 104
55 Accuracy of MGATN. 106
56 ARS Accuracy of CapsNet-BERT. 106
57 Results on MAMS. 107
58 Accuracy of RGAT-BERT. 107
59 Accuracy of LCF-ATEPC. 108
60 F1 Micro Scores of BERT+TFM. 108
61 ATSC F1 Micro Scores of GRACE. 109

62 Reported ATSC Accuracy on SemEval-14 Laptops 130
63 Reported ATSC F1 Macro on SemEval-14 Laptops 131
64 Reported ATSC F1 Macro on SemEval-14 Restaurants 132

117

List of Tables

1 ABSA Names . 3
2 Labeling Examples . 5

3 Accuracy . 22
4 F1 Macro Score . 23
5 SRD Example . 45
6 F1 Micro Scores for ATE+ATSC . 67
7 F1 Micro Scores for ATSC . 73

8 Data Set Statistics . 97
9 Aspect Term Statistics . 98
10 Model Input Formats . 101
11 Data Preprocessing Requirements . 102

12 Labeling Example . 114
13 Cross-Domain Results . 129
14 Data Set Twitter Statistics . 133
15 ATSC Results . 135
16 ATE+ATSC Results . 136

118

Bibliography

[1] scikit learn: sklearn.metrics.f1 score. https://scikit-learn.org/stable/module

s/generated/sklearn.metrics.f1 score.html, (accessed: 04.03.2021).

[2] spaCy: Linguistic features. https://spacy.io/usage/linguistic-features,
(accessed: 12.07.2021).

[3] Md Shad Akhtar, Tarun Garg, and Asif Ekbal. Multi-task learning for aspect term
extraction and aspect sentiment classification. Neurocomputing, 398:247–256, 2020.

[4] Xuefeng Bai, Pengbo Liu, and Yue Zhang. Investigating typed syntactic depen-
dencies for targeted sentiment classification using graph attention neural network.
IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29:503–514,
2020.

[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners. CoRR, abs/2005.14165, 2020.

[6] Danqi Chen and Christopher Manning. A fast and accurate dependency parser using
neural networks. Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 740–750, 2014.

[7] Peng Chen, Zhongqian Sun, Lidong Bing, and Wei Yang. Recurrent attention network
on memory for aspect sentiment analysis. Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, pages 452–461, 2017.

[8] Zhuang Chen and Tieyun Qian. Transfer capsule network for aspect level senti-

119

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://spacy.io/usage/linguistic-features

ment classification. Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 547–556, 2019.

[9] Zhuang Chen and Tieyun Qian. Relation-aware collaborative learning for unified
aspect-based sentiment analysis. Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 3685–3694, 2020.

[10] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-
decoder for statistical machine translation. CoRR, abs/1406.1078, 2014.

[11] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. Electra:
Pre-training text encoders as discriminators rather than generators. 2020.

[12] Ronan Collobert and Jason Weston. A unified architecture for natural language
processing: Deep neural networks with multitask learning. Proceedings of the 25th
International Conference on Machine Learning, page 160–167, 2008.

[13] Junqi Dai, Hang Yan, Tianxiang Sun, Pengfei Liu, and Xipeng Qiu. Does syntax
matter? A strong baseline for aspect-based sentiment analysis with roberta. CoRR,
abs/2104.04986, 2021.

[14] Li Deng and Yang Liu, editors. Deep Learning in Natural Language Processing.
Springer, Berlin, Heidelberg, 2018.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding. CoRR,
abs/1810.04805, 2019.

[16] Trinh–Minh–Tri Do and Thierry Artieres. Neural conditional random fields. Pro-
ceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics, 9:177–184, 2010.

[17] Li Dong, Furu Wei, Chuanqi Tan, Duyu Tang, Ming Zhou, and Ke Xu. Adaptive
recursive neural network for target-dependent Twitter sentiment classification. Pro-
ceedings of the 52nd Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 49–54, 2014.

[18] Feifan Fan, Yansong Feng, and Dongyan Zhao. Multi-grained attention network for

120

aspect-level sentiment classification. Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 3433–3442, 2018.

[19] G. David Forney. The viterbi algorithm. Proceedings of the IEEE, pages 268–278,
1973.

[20] Gayatree Ganu, Noemie Elhadad, and Amélie Marian. Beyond the stars: Improving
rating predictions using review text content. Twelfth International Workshop on the
Web and Databases (WebDB 2009), 2009.

[21] Yoav Goldberg. Neural Network Methods for Natural Language Processing, volume 37
of Synthesis Lectures on Human Language Technologies. Morgan & Claypool, San
Rafael, CA, 2017.

[22] Chenggong Gong, Jianfei Yu, and Rui Xia. Unified feature and instance based domain
adaptation for aspect-based sentiment analysis. Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages 7035–7045,
2020.

[23] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[24] Ruidan He, Wee Sun Lee, Hwee Tou Ng, and Daniel Dahlmeier. Effective attention
modeling for aspect-level sentiment classification. Proceedings of the 27th Interna-
tional Conference on Computational Linguistics, pages 1121–1131, 2018.

[25] Ruidan He, Wee Sun Lee, Hwee Tou Ng, and Daniel Dahlmeier. An interactive
multi-task learning network for end-to-end aspect-based sentiment analysis. CoRR,
abs/1906.06906, 2019.

[26] Ruining He and Julian McAuley. Ups and downs. Proceedings of the 25th Interna-
tional Conference on World Wide Web, 2016.

[27] Carlos Henŕıquez, Freddy Briceño, and Dixon Salcedo. Unsupervised model for
aspect-based sentiment analysis in spanish. IAENG International Journal of Com-
puter Science, 46, 2019.

[28] Geoffrey E. Hinton, Alex Krizhevsky, and Sida D. Wang. Transforming auto-
encoders. ICANN, 2011.

121

http://www.deeplearningbook.org

[29] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9:1735–1780, 1997.

[30] Minghao Hu, Yuxing Peng, Zhen Huang, Dongsheng Li, and Yiwei Lv. Open-domain
targeted sentiment analysis via span-based extraction and classification. CoRR,
abs/1906.03820, 2019.

[31] Binxuan Huang and Kathleen M. Carley. Syntax-aware aspect level sentiment clas-
sification with graph attention networks. CoRR, abs/1909.02606, 2019.

[32] Binxuan Huang, Yanglan Ou, and Kathleen M. Carley. Aspect level sentiment classi-
fication with attention-over-attention neural networks. CoRR, abs/1804.06536, 2018.

[33] Jiaxin Huang, Yu Meng, Fang Guo, Heng Ji, and Jiawei Han. Weakly-supervised
aspect-based sentiment analysis via joint aspect-sentiment topic embedding. CoRR,
abs/2010.06705, 2020.

[34] Qingnan Jiang, Lei Chen, Ruifeng Xu, Xiang Ao, and Min Yang. A challenge dataset
and effective models for aspect-based sentiment analysis. Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 6280–6285, 2019.

[35] Hyun jung Park, Minchae Song, and Kyung-Shik Shin. Deep learning models and
datasets for aspect term sentiment classification: Implementing holistic recurrent
attention on target-dependent memories. Knowledge-Based Systems, 187:104825,
2020.

[36] Daniel Jurafsky and James H. Martin. Speech and Language Processing. Draft for
third edition, 2020. https://web.stanford.edu/~jurafsky/slp3/ed3book dec30

2020.pdf.

[37] Bamba Kane, A. Jrad, A. Essebbar, Ophélie Guinaudeau, V. Chiesa, Ilhem Quénel,
and S. Chau. Cnn-lstm-crf for aspect-based sentiment analysis: A joint method
applied to french reviews. ICAART, 2021.

[38] Akbar Karimi, Leonardo Rossi, and Andrea Prati. Adversarial training for aspect-
based sentiment analysis with bert. 2020.

122

https://web.stanford.edu/~jurafsky/slp3/ed3book_dec302020.pdf
https://web.stanford.edu/~jurafsky/slp3/ed3book_dec302020.pdf

[39] Akbar Karimi, Leonardo Rossi, and Andrea Prati. Improving bert performance for
aspect-based sentiment analysis. 2020.

[40] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convo-
lutional networks. CoRR, abs/1609.02907, 2016.

[41] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional ran-
dom fields: Probabilistic models for segmenting and labeling sequence data. Proceed-
ings of the Eighteenth International Conference on Machine Learning, pages 282–289,
2001.

[42] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami,
and Chris Dyer. Neural architectures for named entity recognition. Proceedings of
the 2016 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, pages 260–270, 2016.

[43] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma,
and Radu Soricut. ALBERT: A lite BERT for self-supervised learning of language
representations. CoRR, abs/1909.11942, 2019.

[44] Yann Lecun. Generalization and network design strategies. Connectionism in per-
spective, 1989.

[45] Hao Li and Wei Lu. Learning explicit and implicit structures for targeted sentiment
analysis. CoRR, abs/1909.07593, 2019.

[46] Xin Li, Lidong Bing, Piji Li, and Wai Lam. A unified model for opinion target
extraction and target sentiment prediction. 2019.

[47] Xin Li, Lidong Bing, Wenxuan Zhang, and Wai Lam. Exploiting BERT for end-to-
end aspect-based sentiment analysis. CoRR, abs/1910.00883, 2019.

[48] Zheng Li, Xin Li, Ying Wei, Lidong Bing, Yu Zhang, and Qiang Yang. Transfer-
able end-to-end aspect-based sentiment analysis with selective adversarial learning.
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4590–4600, 2019.

[49] Zheng Li, Ying Wei, Yu Zhang, Xiang Zhang, Xin Li, and Qiang Yang. Ex-

123

ploiting coarse-to-fine task transfer for aspect-level sentiment classification. CoRR,
abs/1811.10999, 2018.

[50] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath Hariharan,
and Serge J. Belongie. Feature pyramid networks for object detection. CoRR,
abs/1612.03144, 2016.

[51] Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. Adversarial multi-task learning for
text classification. Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1–10, 2017.

[52] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly
optimized BERT pretraining approach. CoRR, abs/1907.11692, 2019.

[53] Huaishao Luo, Lei Ji, Tianrui Li, Nan Duan, and Daxin Jiang. Grace: Gradient
harmonized and cascaded labeling for aspect-based sentiment analysis. 2020.

[54] Huaishao Luo, Tianrui Li, Bing Liu, and Junbo Zhang. DOER: dual cross-shared
RNN for aspect term-polarity co-extraction. CoRR, abs/1906.01794, 2019.

[55] Dehong Ma, Sujian Li, Xiaodong Zhang, and Houfeng Wang. Interactive attention
networks for aspect-level sentiment classification. Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI-17, pages 4068–4074,
2017.

[56] Takeru Miyato, Andrew M. Dai, and Ian Goodfellow. Adversarial training methods
for semi-supervised text classification. 2017.

[57] Rajdeep Mukherjee, Shreyas Shetty, Subrata Chattopadhyay, Subhadeep Maji,
Samik Datta, and Pawan Goyal. Reproducibility, replicability and beyond: Assessing
production readiness of aspect based sentiment analysis in the wild. 2021.

[58] Thien Nguyen and Kiyoaki Shirai. Phrasernn: Phrase recursive neural network for
aspect-based sentiment analysis. pages 2509–2514, 2015.

[59] Matan Orbach, Orith Toledo-Ronen, Artem Spector, Ranit Aharonov, Yoav Katz,
and Noam Slonim. Yaso: A new benchmark for targeted sentiment analysis. 2020.

124

[60] Aitor Garćıa Pablos, Montse Cuadros, and German Rigau. W2VLDA: almost unsu-
pervised system for aspect based sentiment analysis. CoRR, abs/1705.07687, 2017.

[61] Jian Peng, Liefeng Bo, and Jinbo Xu. Conditional neural fields. Advances in Neural
Information Processing Systems, 22, 2009.

[62] Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vec-
tors for word representation. Proceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pages 1532–1543, 2014.

[63] Minh Hieu Phan and Philip O. Ogunbona. Modelling context and syntactical features
for aspect-based sentiment analysis. Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 3211–3220, 2020.

[64] Maria Pontiki, Dimitrios Galanis, John Pavlopoulos, Harris Papageorgiou, Ion An-
droutsopoulos, and Suresh Manandhar. Semeval-2014 task 4: Aspect based sentiment
analysis. Proceedings of the 8th international workshop on semantic evaluation (Se-
mEval 2014), pages 27–35, 2014.

[65] Maria Pontiki, Dimitris Galanis, Haris Papageorgiou, Ion Androutsopoulos, Suresh
Manandhar, Mohammad AL-Smadi, Mahmoud Al-Ayyoub, Yanyan Zhao, Bing Qin,
Orphée De Clercq, Véronique Hoste, Marianna Apidianaki, Xavier Tannier, Na-
talia Loukachevitch, Evgeniy Kotelnikov, Nuria Bel, Salud Maŕıa Jiménez-Zafra, and
Gülşen Eryiğit. SemEval-2016 task 5: Aspect based sentiment analysis. Proceedings
of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pages
19–30, 2016.

[66] Maria Pontiki, Dimitris Galanis, Haris Papageorgiou, Suresh Manandhar, and Ion
Androutsopoulos. SemEval-2015 task 12: Aspect based sentiment analysis. Pro-
ceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015),
pages 486–495, 2015.

[67] Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and Christopher D. Manning.
Stanza: A Python natural language processing toolkit for many human languages.
Proceedings of the 58th Annual Meeting of the Association for Computational Lin-
guistics: System Demonstrations, 2020.

[68] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer
learning with a unified text-to-text transformer. CoRR, abs/1910.10683, 2019.

125

[69] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD:
100,000+ questions for machine comprehension of text. Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, pages 2383–2392,
2016.

[70] Alexander Rietzler, Sebastian Stabinger, Paul Opitz, and Stefan Engl. Adapt or
get left behind: Domain adaptation through BERT language model finetuning for
aspect-target sentiment classification. CoRR, abs/1908.11860, 2019.

[71] Sebastian Ruder. Neural Transfer Learning for Natural Language Processing. PhD
thesis, National University of Ireland, Galway, 2019.

[72] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal represen-
tations by error propagation. Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, Vol. 1: Foundations, pages 318–362, 1986.

[73] Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. Dynamic routing between
capsules. CoRR, abs/1710.09829, 2017.

[74] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a dis-
tilled version of BERT: smaller, faster, cheaper and lighter. CoRR, abs/1910.01108,
2019.

[75] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation
of rare words with subword units. Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1715–
1725, 2016.

[76] Youwei Song, Jiahai Wang, Tao Jiang, Z. Liu, and Y. Rao. Attentional encoder
network for targeted sentiment classification. ArXiv, abs/1902.09314, 2019.

[77] Kai Sun, Richong Zhang, Samuel Mensah, Yongyi Mao, and Xudong Liu. Aspect-
level sentiment analysis via convolution over dependency tree. Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 5679–5688, 2019.

[78] Duyu Tang, Bing Qin, Xiaocheng Feng, and Ting Liu. Target-dependent sentiment
classification with long short term memory. CoRR, abs/1512.01100, 2016.

126

[79] Duyu Tang, Bing Qin, and Ting Liu. Aspect level sentiment classification with deep
memory network. CoRR, abs/1605.08900, 2016.

[80] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR,
abs/1706.03762, 2017.

[81] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò,
and Yoshua Bengio. Graph attention networks. 2017.

[82] Qianlong Wang and Jiangtao Ren. Label correction model for aspect-based sentiment
analysis. pages 822–832, 2020.

[83] Yequan Wang, Minlie Huang, Xiaoyan Zhu, and Li Zhao. Attention-based LSTM for
aspect-level sentiment classification. Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 606–615, 2016.

[84] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. 2015.

[85] Michael Wojatzki, Eugen Ruppert, Sarah Holschneider, Torsten Zesch, and Chris
Biemann. GermEval 2017: Shared Task on Aspect-based Sentiment in Social Media
Customer Feedback. Proceedings of the GermEval 2017 – Shared Task on Aspect-
based Sentiment in Social Media Customer Feedback, pages 1–12, 2017.

[86] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian,
Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick,
Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s neural
machine translation system: Bridging the gap between human and machine transla-
tion. CoRR, abs/1609.08144, 2016.

[87] Xiaoyu Xing, Zhijing Jin, Di Jin, Bingning Wang, Qi Zhang, and Xuanjing Huang.
Tasty burgers, soggy fries: Probing aspect robustness in aspect-based sentiment anal-
ysis. Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 3594–3605, 2020.

[88] Hu Xu, Bing Liu, Lei Shu, and Philip S. Yu. Double embeddings and cnn-based
sequence labeling for aspect extraction. CoRR, abs/1805.04601, 2018.

127

[89] Hu Xu, Bing Liu, Lei Shu, and Philip S. Yu. BERT post-training for review reading
comprehension and aspect-based sentiment analysis. CoRR, abs/1904.02232, 2019.

[90] Hu Xu, Bing Liu, Lei Shu, and Philip S. Yu. Dombert: Domain-oriented language
model for aspect-based sentiment analysis. 2020.

[91] Wei Xue and Tao Li. Aspect based sentiment analysis with gated convolutional
networks. CoRR, abs/1805.07043, 2018.

[92] Hang Yan, Junqi Dai, Tuo ji, Xipeng Qiu, and Zheng Zhang. A unified generative
framework for aspect-based sentiment analysis. 2021.

[93] Heng Yang, Biqing Zeng, Jianhao Yang, Youwei Song, and Ruyang Xu. A multi-task
learning model for chinese-oriented aspect polarity classification and aspect term
extraction. CoRR, abs/1912.07976, 2020.

[94] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov,
and Quoc V. Le. Xlnet: Generalized autoregressive pretraining for language under-
standing. CoRR, abs/1906.08237, 2019.

[95] Biqing Zeng, Heng Yang, Ruyang Xu, Wu Zhou, and Xuli Han. Lcf: A local context
focus mechanism for aspect-based sentiment classification. Applied Sciences, 9:3389,
2019.

[96] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into Deep
Learning. 2021. https://d2l.ai.

[97] Chen Zhang, Qiuchi Li, and Dawei Song. Aspect-based sentiment classification with
aspect-specific graph convolutional networks. CoRR, abs/1909.03477, 2019.

[98] Pinlong Zhao, Linlin Hou, and Ou Wu. Modeling sentiment dependencies with
graph convolutional networks for aspect-level sentiment classification. CoRR,
abs/1906.04501, 2019.

[99] Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan Salakhutdinov, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. Aligning books and movies: Towards story-like
visual explanations by watching movies and reading books. CoRR, abs/1506.06724,
2015.

128

https://d2l.ai

Appendix

Appendix A: Reported Results

Domain
Beauty/Hotels
→ Rest14

Rest/Beauty/Hotels
→ Lap14

Rest/Beauty/Hotels
→ Twitter

Model Category Model Metric Accuracy F1 Macro Accuracy F1 Macro Accuracy F1 Macro
Extra data MGALN average of AC-AT pairs 81.49 71.48 76.21 71.42 74.62 73.53

Domain Lap14 → Rest14 Rest14 → Lap14
Model Category Model Metric Accuracy F1 Macro Accuracy F1 Macro

Extra data

BERT-ADA
Laptop

mean of 9 runs 80.68 72.93 77.92 72.99

BERT-ADA
Restaurant

mean of 9 runs 83.68 72.91 76.16 70.46

BERT-ADA
Joint

mean of 9 runs 82.23 73.03 75.91 69.84

Domain
Lapt14+Rest14
→ Rest14

Lapt14+Rest14
→ Lap14

Model Category Model Metric Accuracy F1 Macro Accuracy F1 Macro

Extra data

BERT-ADA
Laptop

mean of 9 runs 86.22 79.79 80.23 75.77

BERT-ADA
Restaurant

mean of 9 runs 87.89 81.05 79.14 74.93

BERT-ADA
Joint

mean of 9 runs 87.69 81.20 79.94 78.74

Domain
Rest14-16
→ Lap14

Lap14
→ Rest14-16

Model Category Model Metric F1 Micro F1 Micro

Collapsed
ADS-SAL mean of 5 runs 34.13 43.04
BERT-B-UDA mean of 5 runs 33.68 45.46
BERT-E-UDA mean of 5 runs 43.95 49.52

Table 13: Accuracy and F1 Macro Scores for 3-class-ATSC of models trained in a cross-
domain way and with reported values. Bold printed values indicate the best
model of one category.

129

Figure 62: Development of reported ATSC Accuracy on SemEval-14 Laptops. An asterisk
indicates that the corresponding values are not taken from the original papers.

130

Figure 63: Development of reported ATSC F1 Macro on SemEval-14 Laptops. An asterisk
indicates that the corresponding values are not taken from the original papers.

131

Figure 64: Development of reported ATSC F1 Macro on SemEval-14 Restaurants. An
asterisk indicates that the corresponding values are not taken from the original
papers.

132

Appendix B: Twitter Data

In order to receive a data set based on Tweets, [17] queried the Twitter API using names
of people, companies and products as keywords. For instance, the top three aspects
in terms of frequency are “Britney Spears”, “Lindsay Lohan” and “Harry Potter” in
both training and test set. These words simultaneously act as aspect terms which were
classified as negative, neutral and positive manually. The training set consists of 6,243
unique sentences. The reported number of 6,248 is higher due to duplicates. The test set
includes 692 sentences and no duplicates. The authors made sure that both data sets are
balanced by providing class proportions of 25%, 50% and 25% for positive, neutral and
negative, respectively. The exact statistics can be found in Tables 14. As the table shows,
each sentence only contains exactly one aspect term. This makes ATSC rather easy, since
the sentiment based on the whole sentence could be taken as the aspect-based sentiment.
Thus, we did to use this data set for our practical evaluations.

Source &
Domain

Subset
Sentences
in total

Sentences
w/o
duplicates

Sentences
labeled
for ATSC

Aspect
Terms
in total

Positive
Aspect
Terms

Negative
Aspect
Terms

Neutral
Aspect
Terms

Conflict
Aspect
Terms

Twitter
Training 6,248 6,243 6,243 6,243 1,56 1,56 3,123 0
Test 692 692 692 692 173 173 346 0

Table 14: Number of sentences, aspect terms and aspect term polarities in the Twitter
data set. Multi-Sentiment sentences are those with at least two different polar-
ities.

133

Appendix C: Our Results

The following tables show the quantitative results of our experiments. For SemEval-14,
five train-validation splits were created out of the original training set. On each split pair,
five runs were performed which lead to split-specific means and standard deviations. In
the overall mean and deviation, all runs of all splits were included. Consequently, they
are based on 25 values for SemEval-14 and ARTS data and five values for MAMS data
(as there were no splits applied).

Metric Model SemEval-14 Restaurant
Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported

Accuracy =
F1 Micro

MGATN 74.32 (±1.24) 74.36 (±1.47) 74.70 (±0.73) 73.23 (±1.07) 73.66 (±0.81) 74.05 (±1.14) 81.25
RGAT-BERT 82.52 (± 0.60) 83.21 (±0.88) 82.00 (±1.13) 82.70 (±0.67) 82.09 (±0.60) 82.50 (±0.86) 86.68
CapsNetBERT 84.46 (±0.84) 84.07 (±0.92) 84.68 (±0.87) 83.46 (±0.63) 82.77 (±1.40) 83.89 (±1.13) 85.93
LCF-ATEPC 82.56 (±0.89) 83.09 (±0.49) 82.87 (±1.28) 82.01 (±1.06) 81.78 (±1.52) 82.46 (±1.13) 86.77

F1 Macro

MGATN 62.04 (±2.37) 60.48 (±2.78) 61.34 (±0.99) 59.05 (±3.13) 57.15 (±3.70) 60.01 (±3.08) 71.94
RGAT-BERT 72.88 (±0.68) 75.00 (±1.72) 72.86 (±2.21) 73.59 (±2.27) 72.39 (±0.81) 73.34 (±1.79) 80.92
CapsNetBERT 76.21 (±1.59) 76.85 (±0.87) 77.02 (±1.66) 74.50 (±1.06) 72.43 (±4.07) 75.40 (±2.66) -
LCF-ATEPC 73.33 (±2.34) 75.17 (±0.38) 74.03 (±2.85) 73.22 (±1.58) 71.38 (±2.76) 73.43 (±2.36) 80.54

F1 Weighted

MGATN 72.83 (±1.56) 71.91 (±1.81) 72.53 (±0.48) 71.08 (±1.75) 70.03 (±2.23) 71.68 (±1.84) -
RGAT-BERT 81.03 (±0.54) 82.42 (±1.11) 81.09 (±1.37) 81.80 (±1.32) 80.76 (±0.67) 81.42 (±1.15) -
CapsNetBERT 83.50 (±1.00) 83.65 (±0.75) 83.98 (±1.09) 82.48 (±0.71) 81.02 (±2.44) 82.93 (±1.65) -
LCF-ATEPC 83.86 (±0.73) 83.80 (±0.70) 83.97 (±0.89) 82.88 (±1.09) 83.61 (±1.37) 83.63 (±0.99) -

Metric Model SemEval-14 Laptop
Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported

Accuracy =
F1 Micro

MGATN 64.48 (±0.85) 63.86 (±2.66) 64.67 (±1.78) 64.08 (±0.88) 63.61 (±0.85) 64.14 (±1.49) 75.39
RGAT-BERT 76.14 (±1.05) 76.24 (±1.43) 75.27 (±0.63) 76.39 (±1.19) 75.20 (±1.02) 75.85 (±1.13) 80.94
CapsNetBERT 76.21 (±1.01) 77.52 (±1.80) 77.49 (±1.13) 77.55 (±1.22) 77.84 (±1.70) 77.32 (±1.41) -
LCF-ATEPC 76.22 (±2.37) 76.93 (±1.24) 75.61 (±1.35) 77.58 (±1.16) 75.44 (±1.16) 76.36 (±1.62) 80.97

F1 Macro

MGATN 56.98 (±0.92) 56.36 (±3.09) 55.82 (±2.29) 56.81 (±2.87) 56.93 (±2.05) 56.58 (±2.21) 72.47
RGAT-BERT 70.54 (±1.54) 70.86 (±2.51) 69.49 (±1.13) 71.94 (±1.62) 70.59 (±1.23) 70.68 (±1.73) 78.2
CapsNetBERT 70.76 (±1.87) 72.92 (±2.45) 72.68 (±1.72) 72.56 (±2.43) 73.39 (±3.21) 72.46 (±2.37) -
LCF-ATEPC 70.23 (±3.60) 72.43 (±0.89) 70.20 (±1.58) 73.34 (±1.72) 70.63 (±2.07) 71.37 (±2.37) 77.86

F1 Weighted

MGATN 63.71 (±0.66) 63.20 (±2.63) 62.52 (±1.87) 63.22 (±2.30) 63.50 (±1.48) 63.23 (±1.79) -
RGAT-BERT 75.16 (±1.26) 75.37 (±1.87) 74.38 (±1.00) 76.14 (±1.32) 74.99 (±0.97) 75.21 (±1.34) -
CapsNetBERT 75.29 (±1.47) 77.20 (±2.09) 76.97 (±1.38) 76.73 (±2.00) 77.43 (±2.59) 76.72 (±1.95) -
LCF-ATEPC 77.33 (±1.93) 77.08 (±1.72) 76.43 (±1.37) 77.74 (±0.99) 75.59 (±1.23) 76.84 (±1.56) -

Metric Model MAMS
Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported

Accuracy =
F1 Micro

MGATN - - - - - 61.95 (±3.17) -
RGAT-BERT - - - - - 79.79 (±0.55) 84.52
CapsNetBERT - - - - - 83.04 (±0.70) 83.39
LCF-ATEPC - - - - - 78.94 (±0.56) -

F1 Macro

MGATN - - - - - 59.25 (±3.78) -
RGAT-BERT - - - - - 79.24 (±0.69) 83.74
CapsNetBERT - - - - - 82.44 (±0.81) -
LCF-ATEPC - - - - - 78.43 (±0.64) -

F1 Weighted

MGATN - - - - - 61.24 (±3.53) -
RGAT-BERT - - - - - 79.77 (±0.59) -
CapsNetBERT - - - - - 83.04 (±0.74) -
LCF-ATEPC - - - - - 78.94 (±0.50) -

Metric Model ARTS Restaurant
Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported

Accuracy =
F1 Micro

MGATN 57.19 (±1.42) 57.61 (±2.47) 58.04 (±1.91) 57.74 (±1.01) 58.45 (±0.57) 57.81 (±1.54) -
RGAT-BERT 72.32 (±0.83) 73.20 (±1.52) 72.57 (±2.37) 71.38 (±1.54) 72.44 (±1.09) 72.38 (±1.54) -
CapsNetBERT 78.80 (±1.17) 78.38 (±0.75) 78.91 (±1.98) 78.80 (±0.77) 75.23 (±5.86) 78.02 (±2.98) -
LCF-ATEPC 73.59 (±0.55) 73.92 (±1.43) 74.88 (±1.58) 71.11 (±3.27) 73.13 (±0.90) 73.32 (±2.09) -

F1 Macro

MGATN 47.03 (±0.76) 43.15 (±6.16) 43.17 (±7.18) 45.96 (±1.69) 43.13 (±2.40) 44.49 (±4.40) -
RGAT-BERT 63.53 (±2.11) 66.20 (±2.04) 64.77 (±3.19) 62.99 (±3.07) 63.70 (±1.27) 64.24 (±2.51) -
CapsNetBERT 71.22 (±1.36) 71.94 (±0.65) 71.63 (±2.65) 71.02 (±1.32) 65.87 (±7.49) 70.34 (±4.06) -
LCF-ATEPC 64.94 (±1.38) 66.82 (±1.76) 66.55 (±2.61) 62.91 (±2.71) 63.84 (±0.99) 65.01 (±2.39) -

F1 Weighted

MGATN 54.89 (±0.81) 52.59 (±3.92) 52.79 (±5.22) 55.02 (±0.25) 52.96 (±1.44) 53.65 (± 2.96) -
RGAT-BERT 70.96 (±1.15) 72.65 (±1.66) 72.03 (±2.49) 70.61 (±2.07) 71.41 (±1.16) 71.53 (±1.79) -
CapsNetBERT 78.12 (±1.19) 78.29 (±0.48) 78.55 (±1.85) 78.19 (±0.84) 74.20 (±6.39) 77.47 (±3.25) -
LCF-ATEPC 74.74 (±0.37) 74.41 (±1.36) 75.83 (±1.34) 72.04 (±3.37) 74.70 (±0.91) 74.34 (±2.07) -

ARS Accuracy

MGATN 9.13 (±1.42) 9.50 (±2.51) 10.00 (±3.03) 9.90 (±1.00) 9.57 (±0.67) 9.62 (±1.81) -
RGAT-BERT 35.17 (±3.16) 36.47 (±3.02) 35.47 (±4.52) 33.33 (±3.31) 35.73 (±3.14) 35.23 (±3.34) -
CapsNetBERT 29.96 (±3.11) 27.70 (±2.60) 28.75 (±5.70) 29.74 (±1.84) 21.43 (±8.50) 27.52 (±5.57) 55.36
LCF-ATEPC 39.16 (±1.66) 40.30 (±3.24) 40.10 (±3.89) 34.02 (±6.20) 39.16 (±3.12) 38.55 (±4.28) -

134

Metric Model ARTS Laptop
Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported

Accuracy =
F1 Micro

MGATN 52.31 (±0.20) 52.14 (±1.56) 52.29 (±1.20) 52.19 (±0.83) 52.83 (±0.77) 52.35 (±0.96) -
RGAT-BERT 65.81 (±3.23) 64.66 (±5.33) 66.31 (±1.68) 68.25 (±1.35) 66.31 (±2.56) 66.27 (±3.12) -
CapsNetBERT 66.68 (±6.17) 72.51 (±0.73) 70.80 (±2.32) 71.97 (±1.48) 71.84 (±1.85) 79.77 (±3.60) -
LCF-ATEPC 69.38 (±1.78) 67.57 (±2.58) 68.99 (±0.74) 69.45 (±2.12) 67.50 (±1.56) 68.58 (±1.91) -

F1 Macro

MGATN 46.58 (±0.76) 46.86 (±2.05) 44.91 (±1.69) 46.81 (±2.63) 48.41 (±1.57) 46.71 (±2.03) -
RGAT-BERT 60.30 (±4.14) 59.96 (±5.90) 61.46 (±1.73) 64.37 (±1.69) 62.75 (±2.62) 61.77 (±3.68) -
CapsNetBERT 61.61 (±6.59) 68.53 (±1.71) 66.57 (±3.09) 67.36 (±2.66) 68.29 (±3.51) 66.47 (±4.38) -
LCF-ATEPC 63.90 (±2.70) 63.79 (±3.44) 64.19 (±1.64) 66.02 (±2.87) 63.81 (±1.99) 64.34 (±2.53) -

F1 Weighted

MGATN 50.54 (±0.45) 50.67 (±1.20) 49.60 (±1.30) 50.83 (±1.70) 52.10 (±1.00) 50.75 (±1.37) -
RGAT-BERT 64.30 (±3.69) 63.47 (±5.71) 65.23 (±1.58) 67.60 (±1.52) 65.73 (±2.70) 65.27 (±3.43) -
CapsNetBERT 65.34 (±6.43) 71.89 (±1.18) 70.02 (±2.69) 70.96 (±2.11) 71.31 (±2.61) 69.91 (±4.00) -
LCF-ATEPC 70.71 (±1.68) 68.02 (±2.25) 69.94 (±0.60) 69.79 (±1.80) 67.96 (±1.59) 69.28 (±1.89) -

ARS Accuracy

MGATN 11.68 (±0.83) 12.12 (±1.43) 11.14 (±1.78) 12.41 (±1.34) 13.87 (±0.93) 12.24 (±1.52) -
RGAT-BERT 34.31 (±6.26) 31.68 (±10.32) 34.84 (±3.83) 39.17 (±2.18) 34.01 (±6.34) 34.80 (±6.36) -
CapsNetBERT 35.52 (±10.83) 46.13 (±1.61) 41.75 (±3.66) 44.33 (±3.01) 42.34 (±2.90) 42.01 (±6.21) 25.86
LCF-ATEPC 41.98 (±2.42) 37.77 (±4.95) 40.69 (±0.75) 40.94 (±4.09) 37.08 (±3.60) 39.69 (±3.73) -

Table 15: Our performance results (mean ± standard deviation) for ATSC models. For
SemEval-14 Restaurants and Laptops as well as for MAMS, no ARS Accuracy
is measured.

Metric Model SemEval-14 Restaurant
Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported

F1 Micro
BERT+TFM 74.27 (±1.25) 74.90 (±0.84) 75.90 (±0.53) 74.55 (±0.54) 74.96 (±0.46) 74.91 (±0.91) 73.98
GRACE 77.78 (±0.65) 77.40 (±0.54) 78.43 (±0.75) 77.90 (±0.95) 77.84 (±0.80) 77.87 (±0.76) 77.26

F1 Macro
BERT+TFM 66.71 (±1.52) 67.16 (±1.39) 69.37 (±0.73) 66.49 (±0.84) 67.63 (±1.20) 67.47 (±1.50) -
GRACE 72.05 (±0.88) 71.40 (±0.99) 72.41 (±1.22) 72.13 (±1.35) 71.36 (±1.49) 71.87 (±1.18) -

Precision
BERT+TFM 74.25 (±1.46) 74.72 (±1.00) 76.04 (±0.86) 74.29 (±0.35) 75.46 (±0.85) 74.95 (±1.14) -
GRACE 76.25 (±0.79) 76.08 (±0.90) 77.17 (±0.82) 76.86 (±0.87) 76.35 (±0.83) 76.54 (±0.87) -

Recall
BERT+TFM 74.30 (±1.30) 75.10 (±1.01) 75.78 (±0.57) 74.82 (±0.90) 74.48 (±1.07) 74.90 (±1.06) -
GRACE 79.37 (±0.75) 78.78 (±0.22) 79.75 (±0.87) 78.99 (±1.12) 79.41 (±0.83) 79.26 (±0.82) -

ATE F1 Micro GRACE 87.88 (±0.60) 88.29 (±0.30) 88.38 (±0.42) 88.64 (±0.41) 88.66 (±0.53) 88.37 (±0.51) -

Metric Model SemEval-14 Laptop
Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported

F1 Micro
BERT+TFM 63.53 (±0.93) 63.92 (±0.81) 64.03 (±1.56) 64.16 (±0.99) 64.09 (±1.05) 63.95 (±1.03) 60.80
GRACE 70.04 (±1.33) 68.84 (±0.27) 69.10 (±1.68) 69.10 (±1.17) 69.49 (±1.28) 69.31 (±1.21) 70.71

F1 Macro
BERT+TFM 56.92 (±2.33) 57.04 (±2.39) 57.92 (±2.66) 58.62 (±1.31) 58.09 (±1.49) 57.72 (±2.03) -
GRACE 65.29 (±1.90) 64.00 (±0.39) 64.95 (±2.42) 64.51 (±0.98) 65.06 (±1.57) 64.76 (±1.55) -

Precision
BERT+TFM 65.57 (±1.16) 65.69 (±0.65) 65.19 (±1.61) 65.48 (±0.77) 65.35 (±1.02) 65.46 (±1.02) 63.23
GRACE 69.77 (±1.47) 68.19 (±0.35) 68.18 (±1.78) 68.64 (±1.60) 68.63 (±1.31) 68.68 (±1.41) 72.38

Recall
BERT+TFM 61.65 (±1.38) 62.26 (±1.37) 62.94 (±1.79) 62.90 (±1.31) 62.90 (±1.33) 62.53 (±1.42) 58.64
GRACE 70.32 (±1.27) 69.52 (±0.47) 70.06 (±1.69) 69.58 (±0.82) 70.38 (±1.38) 69.97 (±1.16) 69.12

ATE F1 Micro GRACE 85.99 (±1.51) 85.18 (±0.60) 85.40 (±0.59) 85.98 (±0.72) 85.68 (±0.65) 85.64 (±0.87) 87.93

Metric Model MAMS
Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported

F1 Micro
BERT+TFM - - - - - 64.94 (±1.47) -
GRACE - - - - - 63.48 (±0.60) -

F1 Macro
BERT+TFM - - - - - 65.54 (±1.43) -
GRACE - - - - - 64.59 (±0.61) -

Precision
BERT+TFM - - - - - 65.01 (±1.90) -
GRACE - - - - - 62.63 (±0.98) -

Recall
BERT+TFM - - - - - 64.93 (±2.42) -
GRACE - - - - - 64.37 (±0.86) -

ATE F1 Micro GRACE - - - - - 75.96 (±0.42) -

Metric Model ARTS Restaurant
Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported

F1 Micro
BERT+TFM 39.80 (±0.78) 39.34 (±0.44) 39.76 (±0.41) 39.29 (±0.56) 39.28 (±1.01) 39.50 (±0.66) -
GRACE 61.86 (±1.53) 63.22 (±1.04) 62.80 (±1.28) 62.44 (±1.71) 63.82 (±2.38) 62.83 (±1.66) -

F1 Macro
BERT+TFM 36.83 (±0.90) 36.13 (±0.47) 36.80 (±0.50) 36.04 (±0.76) 36.19 (±1.27) 36.40 (±0.84) -
GRACE 55.91 (±2.11) 57.22 (±1.11) 56.89 (±1.80) 56.40 (±2.03) 57.18 (±3.46) 56.72 (±2.10) -

Precision
BERT+TFM 28.21 (±0.62) 27.83 (±0.39) 28.22 (±0.28) 27.77 (±0.46) 27.97 (±0.56) 28.00 (±0.48) -
GRACE 60.76 (±1.67) 62.20 (±1.41) 61.63 (±1.62) 61.68 (±1.46) 62.56 (±2.38) 61.76 (±1.71) -

Recall
BERT+TFM 67.55 (±1.17) 67.17 (±0.99) 67.33 (±0.85) 67.17 (±0.86) 66.01 (±2.72) 67.05 (±1.47) -
GRACE 63.02 (±1.65) 64.30 (±0.93) 64.02 (±1.00) 63.24 (±2.02) 65.14 (±2.38) 63.94 (±1.73) -

135

ARS Accuracy
BERT+TFM 37.53 (±1.97) 35.60 (±2.25) 35.07 (±2.59) 35.83 (±2.43) 34.30 (±2.81) 35.67 (±2.94) -
GRACE 34.71 (±2.98) 38.39 (±3.00) 37.70 (±2.49) 36.78 (±3.81) 40.69 (±4.11) 37.66 (±3.64) -

ATE F1 Micro GRACE 50.53 (±0.32) 50.81 (±0.25) 50.78 (±0.26) 50.87 (±0.14) 51.02 (±0.33) 50.83 (±0.29) -

Metric Model ARTS Laptop
Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported

F1 Micro
BERT+TFM 34.56 (±1.88) 34.55 (±1.61) 35.06 (±1.64) 35.80 (±.075) 35.50 (±0.39) 35.09 (±1.36) -
GRACE 65.90 (±1.75) 64.63 (±3.57) 63.16 (±1.97) 64.36 (±2.47) 64.67 (±1.10) 64.54 (±2.30) -

F1 Macro
BERT+TFM 31.70 (±2.60) 31.34 (±2.02) 32.44 (±2.22) 33.37 (±0.55) 33.12 (±0.64) 32.39 (±1.84) -
GRACE 63.98 (±1.92) 61.54 (±3.97) 60.24 (±2.27) 61.56 (±3.10) 61.90 (±1.85) 61.85 (±2.79) -

Precision
BERT+TFM 25.91 (±1.29) 25.85 (±0.99) 26.06 (±1.00) 26.56 (±0.53) 26.41 (±0.15) 26.16 (±0.86) -
GRACE 66.81 (±2.20) 65.43 (±3.99) 63.83 (±2.04) 65.23 (±3.14) 65.41 (±2.23) 65.34 (±2.75) -

Recall
BERT+TFM 51.91 (±3.33) 52.14 (±3.33) 53.62 (±3.45) 54.90 (±1.32) 54.15 (±1.42) 53.34 (±2.78) -
GRACE 65.03 (±1.48) 63.89 (±3.37) 62.51 (±1.96) 63.54 (±2.08) 64.00 (±1.34) 63.79 (±2.14) -

ARS Accuracy
BERT+TFM 23.60 (±4.29) 23.26 (±4.83) 24.87 (±4.12) 26.91 (±2.10) 26.23 (±2.47) 24.97 (±3.70) -
GRACE 38.80 (±3.90) 36.40 (±3.85) 33.20 (±1.79) 32.80 (±3.03) 36.40 (±4.56) 35.52 (±3.97) -

ATE F1 Micro GRACE 52.97 (±0.53) 52.64 (±0.59) 52.62 (±0.36) 53.08 (±0.49) 52.82 (±0.37) 52.83 (±0.47) -

Table 16: Our performance results (mean ± standard deviation) for ATE+ATSC mod-
els. For SemEval-14 Restaurants and Laptops as well as for MAMS, no ARS
Accuracy is measured.

136

Declaration of Authorship
I hereby declare that the thesis submitted is my own unaided work. All direct or indirect
sources used are acknowledged as references.

This paper was not previously presented to another examination board and has not been
published.

Munich, 22.07.2021

Elisabeth Lebmeier

137

	Introduction
	Prerequisites
	Task Description
	Aspects, Sentiments and Opinion Terms
	ABSA vs. ATSC vs. ACSC
	Single-task vs. Multi-task vs. Pipeline Approaches

	Modelling Procedure
	Linguistic Features

	Theoretical Background: (Deep) Architectures
	CRFs
	CNNs
	RNNs
	Attention-based Models
	Attention Mechanism
	Transformer
	BERT

	Graph-based Architectures
	Graph Convolutional Networks (GCNs)
	Graph Attention Networks (GATs)

	Meta-Analysis of Approaches
	ATSC Methods
	CNN-based models
	RNN-based Models
	Attention-based Models
	BERT-based Models
	Models based on Extra Data
	Models based on Local Context Focus (LCF)
	Methods based on Graphs
	Models based on Capsule Networks

	ATE+ATSC Methods
	Models with a Pipeline Architecture
	Models with a Joint Labeling Scheme
	Models with a Collapsed Labeling Scheme

	Experiments
	Selected Approaches
	Data Sets
	SemEval-14
	MAMS
	ARTS

	Data Preparation
	Evaluation Metrics
	Results
	General Outcome
	Model-specific Observations
	Data-specific Results

	Conclusion
	Outlook
	List of Figures
	List of Tables
	Bibliography
	Appendix
	Declaration of Authorship

