
Model Based Quality Diversity Optimization

Lennart Schneider

Master’s thesis supervised by

Florian Pfisterer Martin Binder Prof. Dr. Bernd Bischl

Ludwig-Maximilians-Universität München

Submitted on May 20th, 2021

Department of Statistics

Ludwig-Maximilians-Universität München

Summary

Quality diversity optimization algorithms generate a set of high-performing yet be-

haviorally diverse solutions. Typically, diversity is defined via pre-specified so-called

behavioral niches using so-called feature functions that represent high-level behavioral

characteristics of their domain. Classical quality diversity optimization algorithms are

based on the principles of evolutionary algorithms. However, Kent and Branke (2020)

recently proposed a model based quality diversity algorithm, BOP-Elites, that is em-

bedded within the Bayesian optimization framework. Here, both the objective function

and feature functions are treated as black-box functions and each function is modeled

using a probabilistic surrogate model. While the seminal work of Kent and Branke

(2020) shows promising results, only a very limited type of optimization problem has

been considered: Quality diversity optimization of an objective function and a single fea-

ture function defined on a one-dimensional continuous domain (which is then actually

discretized) assuming pairwise disjoint niches. In this thesis, BOP-Elites is extended to

overlapping niches, higher-dimensional domains, multiple feature functions and mixed

domains. Moreover, results of a novel application are presented, using BOP-Elites for

finding a set of high-performing yet resource-related diverse neural architectures for im-

age classification.

Contents

1 Introduction 1

2 Theoretical Background 6

2.1 Quality Diversity Optimization . 6

2.2 Bayesian Optimization . 9

2.3 BOP-Elites . 11

3 Simulation Studies 15

3.1 Simulation 1: A Conceptual Replication of Kent & Branke (2020) 16

3.2 Simulation 2: Extending Kent & Branke (2020) 18

3.3 Simulation 3: Comparing Acquisition Function Optimizers 21

3.4 Summary and Discussion . 25

4 Application Study 28

5 General Discussion and Outlook 34

6 Appendix 36

6.1 NAS-Bench-301 Ablation Study . 36

6.2 Computational Details . 41

i

List of Figures

3.1 Simulation 1: Example problem. 17

3.2 Simulation 1: Mean total error. Ribbons represent standard errors. 100

simulation runs. 17

3.3 Simulation 2.1: Overlapping niches. Mean total error. Ribbons represent

standard errors. 100 simulation runs. 18

3.4 Simulation 2.2: Two-dimensional search space. Mean total error. Rib-

bons represent standard errors. 100 simulation runs. 19

3.5 Simulation 2.3: Two feature functions. Mean total error. Ribbons rep-

resent standard errors. 100 simulation runs. 20

3.6 Simulation 2.3: Mixed domain. Mean total error. Ribbons represent

standard errors. 100 simulation runs. 22

3.7 Simulation 3: Comparing acquisition function optimizers. Mean total

error. Ribbons represent standard errors. 100 simulation runs. 24

3.8 Simulation 3: Comparing acquisition function optimizers, d = 4. Mean

EJIE / Mean actual improvement. Ribbons represent 2.5% and 97.5%

quantiles. 100 simulation runs. 25

4.1 Example DARTS architecture. Normal cell on the left. Reduction cell

on the right. 30

4.2 BOP-Elites on NAS-Bench-301. Mean validation accuracy. Ribbons rep-

resent standard errors. 100 replications. 32

4.3 BOP-Elites on NAS-Bench-301. Mean validation accuracy over all

niches. 100 replications. 33

6.1 Different BANANAS configurations on NAS-Bench-301. Mean validation

accuracy. Left facet: BANANAS and Random. Middle facet: Acquisition

Function Optimizer Mut. Right facet: Acquisition Function Optimizer

RS. Ribbons represent standard errors. 20 replications. 37

ii

6.2 Random forest surrogate model and expected improvement on NAS-

Bench-301. Different acquisition function optimizers. Mean validation

accuracy. Ribbons represent standard errors. 20 replications. 39

6.3 Random forest surrogate model and expected improvement on NAS-

Bench-301. Different acquisition function optimizers. Mean EI / Mean

actual improvement. Ribbons represent 2.5% and 97.5% quantiles. 20

replications. 40

6.4 Configuration of BOP-Elites on NAS-Bench-301. Different acquisition

function optimizers. Mean validation accuracy. Ribbons represent stan-

dard errors. 100 replications. 41

iii

List of Tables

2.1 Differences and similarities of multi-modal, multi-task, multi-objective

and quality diversity optimization. 9

6.1 Different BANANAS configurations on NAS-Bench-301. Results of a four-

way ANOVA on the factors surrogate candidate, architecture encoding,

acquisition function, and acquisition function optimizer. Type II sums of

squares. 38

iv

1 Introduction

Optimization is an important tool in science and practice allowing for efficient use of

resources. In classical single-objective optimization, the goal is to find the minimum of

an objective function over a feasible set. Mathematically speaking, a (single-objective)

optimization problem consists of a vector of variables x ∈ X (also called unknowns or

parameters), an objective function f of x (f : X → Y) which should be minimized or

maximized, and potential constraint functions that define certain equalities and inequal-

ities that x must satisfy (Nocedal & Wright, 2006, Chapter 1). Such an optimization

problem can then be formulated as:

min
x∈X

f(x) subject to ci(x) = 0, i ∈ E , cj(x) ≥ 0, j ∈ I,

where E and I are sets of indices for equality and inequality constraints (Nocedal &

Wright, 2006, Chapter 1). Oftentimes, optimization problems are continuous, i.e., X ⊆
Rn, but this must not be the case, e.g., in discrete optimization the domain is given by

the set of integers. A solution to the optimization problem is typically denoted as1:

x∗ := arg min
x∈X ′

f(x),

where X ′ ⊆ X denotes the feasible set, i.e., X ′ contains all x that satisfy all constraints.

Typically, optimization problems can be classified via the following properties (No-

cedal & Wright, 2006, Chapter 1): 1. The domain of f (e.g., continuous vs. discrete

optimization), 2. the codomain of f (i.e., single- vs. multi-objective optimization), 3.

the constraints (constrained vs. unconstrained optimization, where the latter refers to

the set of equality and inequality constraints being the empty set), 4. whether a local or

global solution should be found (where a local solution refers to a point with an objective

value smaller than all other feasible nearby points and a global solution refers to a point

with the lowest objective value among all feasible points) 5. whether f is deterministic

or stochastic and 6. whether the domain of f is a convex set and f is a convex function.

1if finding the maximum of f instead of the minimum is desired, f(x) is replaced by −f(x)

1

In the context of machine learning (ML) a central optimization problem is given by the

tuning of hyperparameters (hyperparameter optimization, HPO) of a learner, or so called

inducer, I (Hutter, Kotthoff, & Vanschoren, 2018, Chapter 1): Given d hyperparameters,

the hyperparameter configuration space is given as Λ = Λ1 × . . . × Λd, where Λi is the

(continuous, discrete or categorical) domain of the i-th hyperparameter. Moreover, I

with its hyperparameters instantiated to λ is denoted as Iλ. Given a dataset D, the goal

is to find:

arg min
λ∈Λ

E(Dtrain,Dvalid)∼D [V (L, Iλ, Dtrain, Dvalid)] , (1.1)

where V (L, Iλ, Dtrain, Dvalid) measures the loss of a model generated by the inducer I

with hyperparameters λ on training data Dtrain and evaluated on validation data Dvalid,

e.g., this can be the cross validation error for a user-given loss function (such as the

mean squared error). Note that in practice the expectation above is approximated

due to only finite data D ∼ D being accessible. The domain of HPO problems is

typically a mixed domain (i.e., hyperparameter sets often contain continuous, discrete

and categorical hyperparameters). Regarding the number of objectives, both single- and

multi-objective HPO is common (in the case of multiple objectives, one is interested in

the trade-off between two or more objectives, e.g., performance and resource usage or

multiple loss functions, see, e.g., Horn and Bischl 2016; Igel 2005). HPO problems can

either be constrained or unconstrained (often simple box constraint apply), usually a

global solution is desired and appropriate optimization algorithms are used and HPO

problems are typically non-convex. Finally, another particularity of HPO problems is

given by the so-called search space: It is common that not all regions of the domain are of

interest and therefore a subspace of the domain is defined via for example box constraints

on continuous hyperparameters or collapsing levels of categorical hyperparameters. This

subspace then formally constitutes a feasible set which in the context of HPO is referred

to as the search space.

Another important property of HPO problems has not been mentioned so far: HPO

problems are almost exclusively so-called black-box problems, i.e., the objective is a

so-called black-box function that, provided an input returns an output, but the inner

workings are not analytically available, which results in the need for gradient free opti-

mization (Audet & Hare, 2017, Chapter 1)2. Moreover, the evaluation of the objective

function of HPO problems at a given configuration of hyperparameters is typically very

costly, e.g., in the case of neural architecture search (NAS, see, e.g., Hutter et al. 2018,

Chapter 3) performed by standard training and validation of architectures on data, this

2for an example of a non-black-box HPO problem, see Maclaurin, Duvenaud, and Adams (2015)

2

takes up to several GPU days (where a GPU day is loosely speaking the computation

time on a single GPU).

Classical black-box optimization algorithms are given by grid search and random

search: In grid search, a finite set of values for each hyperparameter is specified and the

Cartesian product of these sets are evaluated, whereas in random search, configurations

sampled (uniformly) at random are evaluated (Hutter et al., 2018, Chapter 1). Other

popular algorithms are given by so-called population-based methods, such as genetic

algorithms (GAs) and evolutionary algorithms (EAs, Hutter et al. 2018, Chapter 1).

For example, the well-known CMA-ES algorithm (Hansen, 2016) samples configurations

from a multivariate Gaussian distribution with its mean and covariance being updated

in each generation based on the performance of the population’s individuals. Finally,

another popular class of black-box optimization algorithms is given by the Bayesian

optimization framework (Hutter et al., 2018, Chapter 1). In Bayesian optimization (his-

torically introduced by Močkus 1975), a probabilistic surrogate model is iteratively fitted

to all observations made so far. A (comparably cheap to evaluate) acquisition function

then determines the utility of different configurations, i.e., candidates that should be

evaluated next, using the predictive distribution of the surrogate model balancing explo-

ration and exploitation. A brief formal introduction to Bayesian optimization is given

in Section 2.2.

So far, the goal of solving a (single-objective) optimization problem has been formu-

lated as finding the (global) minimum of the objective function. A substantial challenge

in the optimization of black-box functions are local minima, i.e., points that have an

objective value smaller than all other feasible nearby points (for a formal definition, see

Nocedal and Wright 2006, Chapter 2). For example, most evolutionary algorithms rely

on the heuristic that random changes to good solutions will lead to better solutions but

for highly deceptive optimization problems, this may be insufficient in order to find the

global minimum because low-performing valleys need to be crossed to find the global op-

timum, or even just a better local optimum (Floreano & Mattiussi, 2008, Chapter 3.8)

and the domain of the objective function will not be explored sufficiently. Many modern

evolutionary algorithms therefore encourage diversity via iteratively increasing mutation

rates when the performance of intermediate solutions no longer improves (e.g., Clune

et al. 2008) or explicitly select points for diversity (e.g., Lehman and Stanley 2011a;

Stanley and Miikkulainen 2002). Here, a distinction has to be made between genetic

diversity, i.e., diversity of the points with respect to their domain values and behavioral

diversity, i.e., diversity with respect to a function of the domain. For example, consider

a population of robots with genotypes described by the length, shape and weight of their

3

components (which formally define the domain, X), where we are interested in minimiz-

ing an objective function f : X → R>0 (e.g., speed) depending on the choice of different

components. Genetic diversity refers to diversity with respect to the length, shape and

weight of these components directly whereas behavioral diversity refers to a function of

these, e.g., different choices of components result in a different size (g1 : X → R>0),

weight (g2 : X → R>0) and energy consumption (g3 : X → R>0) of the robot.

This idea of promoting diversity within optimization algorithms has emerged to a

sub-field of optimization that has been termed Quality Diversity optimization (Cully,

Mouret, & Doncieux, 2019). Pioneer work is given by the Novelty Search (Lehman &

Stanley, 2011a, 2011b) algorithm, where the goal is no longer to improve performance but

simply select points only for diversity in the behavior space (also called feature space).

Novelty Search relies on a distance metric and aims at producing as many different be-

haviors as possible. Together with the idea of maintaining a collection of high-performing

individuals (e.g., Cully and Mouret 2016), this led to the development of the first ac-

tual (evolutionary) quality diversity optimization algorithm, the MAP-Elites algorithm

(Mouret & Clune, 2015). In a nutshell, MAP-Elites finds high-performing yet behav-

iorally diverse solutions (with respect to pre-specified niches defined via feature functions

of interest), by maintaining a set of intermediate solutions for each so-called behavioral

niche and generating new solutions via random selection of an elite (which is the best

intermediate solution for a niche found so far) that is further varied via mutation and

crossover with the other elites. As as example, MAP-Elites will search for the fastest

robot that is small, light and energy efficient; the fastest robot that is tall, light and

energy efficient; the fastest robot that is tall, heavy and energy efficient, etc. (Mouret

& Clune, 2015). So far, quality diversity optimization algorithms have been successfully

used to, for example, create repertoires of behaviors of robots that allow for adaption

to damage (Cully, Clune, Tarapore, & Mouret, 2015), to design diverse aerodynamic

shapes (Gaier, Asteroth, & Mouret, 2018), or to optimize workforce scheduling and

routing problems (Urquhart & Hart, 2018). The general idea of why quality diversity

optimization should be used instead of, e.g., sequentially solving multiple constrained

optimization problems for each niche, lies in solving the set of problems simultaneously

is expected to be faster as it is likely that high-performing solutions for neighboring

niches will be close and therefore sharing information should be beneficial (Chatzilyger-

oudis, Cully, Vassiliades, & Mouret, 2020; Mouret & Clune, 2015; Nguyen, Yosinski, &

Clune, 2015). Moreover, solving independent constrained optimization problems would

be especially wasteful in the context of black-box optimization (Chatzilygeroudis et al.,

2020; Kent & Branke, 2020).

4

As outlined so far, quality diversity optimization algorithms are typically based on

the principles of evolutionary algorithms. However, Kent and Branke (2020) recently

proposed a model based quality diversity optimization algorithm, BOP-Elites, that is

embedded within the Bayesian optimization framework. In BOP-Elites, not only the ob-

jective function but also each feature function is modeled using a probabilistic surrogate

model (where both the objective function and all feature functions are treated as black-

box functions). New candidates are proposed by maximizing the expected joint improve-

ment of elites, selecting points that have a high probability of belonging in niches where

the expected improvement over the current elite is high. While the work of Kent and

Branke (2020) on model based quality diversity optimization shows promising results, a

limitation is that only a single type of optimization problem has been considered: Qual-

ity diversity optimization of an objective function and a single feature function defined

on a one-dimensional continuous domain (which is then actually discretized) assuming

pairwise disjoint niches.

The goal of this thesis is to extend the seminal work of Kent and Branke (2020) on

model based quality diversity optimization. In the following Chapter 2, the general

quality diversity optimization problem is introduced formally (Section 2.1) and a differ-

entiation with respect to multi-model, multi-task, and multi-objective optimization is

given. Following a brief introduction to Bayesian optimization and some typical surro-

gate models (Section 2.2), model based quality diversity optimization is introduced in

the form of the BOP-Elites algorithm (Section 2.3). In Chapter 3, simulation studies

are presented investigating the performance of the BOP-Elites algorithm extended to

inter alia: overlapping niches, higher-dimensional domains, multiple feature functions

and mixed domains. Chapter 4 then presents the results of an application study where

BOP-Elites is used to find a set of high-performing yet resource-related diverse neu-

ral architectures for image classification. Finally, Chapter 5 concludes with a general

discussion and outlook.

5

2 Theoretical Background

2.1 Quality Diversity Optimization

This formal introduction of quality diversity optimization follows the main outline of the

framework introduced in Mouret and Clune (2015) and Kent and Branke (2020). The

goal of a quality diversity optimization algorithm is to find a set of high-performing, yet

behaviorally diverse solutions. Performance is characterized with respect to an objective

function f :

f : X → Y

x 7→ y,

whereas behavior is characterized with respect to feature functions gi, i = 1, . . . , k:

gi : X → Zi

x 7→ zi.

Typically, Y ⊆ R (but principally multi-objective quality diversity optimization could

also be done) and ∀i = 1, . . . , k : Zi ⊆ R. Diversity is defined via so-called behavioral

niches Nj ⊆ X , j = 1, . . . , c, which are sets of points characterized via niche-specific

boundaries bij =
[
blowerij , bupperij

)
⊆ Zi on the image of the feature functions gi. A point

x belongs to niche Nj if its values with respect to the feature functions lie between the

respective boundaries, i.e.:

x ∈ Nj ⇐⇒ ∀i = 1, . . . , k : gi(x) ∈ bij

⇐⇒
(
blower1j ≤ g1(x) < bupper1j

)
∧ . . . ∧

(
blowerkj ≤ gk(x) < bupperkj

)
(2.1)

6

The goal of a quality diversity optimization algorithm can then be summarized. For

each niche Nj find the point that minimizes the objective function f :

x∗j := arg min
x∈Nj

f(x)

That is, obtain a set of solutions S :=
{
x∗1, . . . ,x

∗
c

}
that are diverse with respect to the

feature functions, but yet high-performing. Throughout this thesis, it is assumed that

Y ⊆ R and ∀i = 1, . . . , k : Zi ⊆ R. Without loss of generality, it is assumed that the

objective function is to be minimized. Moreover, both the objective function as well as

all feature functions are assumed to be deterministic.

Before giving a brief formal introduction to the Bayesian optimization framework, a

differentiation of quality diversity optimization to multi-modal, multi-task and multi-

objective optimization is provided. Multi-modal optimization algorithms aim to return

multiple solutions that correspond to local minima (Chatzilygeroudis et al., 2020). For-

mally, multi-modal optimization algorithms return a set of solutions:

{
x∗j ∈ X ′ : f(x∗j) < f(x), ∀x ∈ X ′, d(x,x∗j) < ε, ε > 0

}
,

where d is a distance function and X ′ denotes the feasible set (X ′ ⊆ X). Compared

to quality diversity optimization, there are no feature functions that define behavioral

niches but multi-modal optimization will result in genetic diversity, i.e., diversity of the

points with respect to their domain values. Additionally, quality diversity optimization

algorithms may return far more solutions than local minima exist.

Multi-task optimization algorithms are typically defined for objective functions that

are parameterized by a task descriptor (Chatzilygeroudis et al., 2020):

f : X × T → Y

(x, τ)T 7→ y.

Here, task descriptors could be, e.g., the morphology of a robot. Multi-task optimization

algorithms then aim to return a set of solutions where each solution is given by

x∗τ := arg min
x∈X ′

f
(

(x, τ)T
)
.

Recently, MAP-Elites has been extended to multi-task optimization problems where the

task τ is selected in the neighborhood of the parents using the standard MAP-Elites

7

algorithm resulting in a more global search by incorporating all tasks simultaneously

(Mouret & Maguire, 2020).

Multi-objective optimization involves multiple objective functions (for a brief intro-

duction, see, e.g., Konak, Coit, and Smith 2006):

fi : X → Yi, i = 1, . . . k, k ≥ 2

where the vector of objective functions is denoted as f(x) = (f1(x), . . . , f1(x))T . The

goal of multi-objective optimization algorithms states as:

min
x∈X ′

f(x),

where X ′ denotes the feasible set (X ′ ⊆ X). Note that all objective functions should

be minimized simultaneously. However, as typically no single solution minimizing all

objective functions simultaneously exists, attention is given to so-called Pareto optimal

solutions that cannot be improved in any objective without degrading at least one other

objective. Mathematically, x1 ∈ X ′ is said to Pareto dominate another x2 ∈ X ′ if:

∀i = 1, . . . , k : fi(x1) ≤ fi(x2) ∧ ∃j ∈ 1, . . . , k : fj(x1) < fj(x2).

A solution is then called Pareto optimal if there exists no other solution that domi-

nates it and the set of Pareto optimal solutions is called the Pareto front. Intuitively,

multi-objective optimization has a completely different goal in mind compared to qual-

ity diversity optimization, i.e., there are multiple objective functions but neither feature

functions nor niches. While typically a set of Pareto optimal solutions is returned, these

solutions must not necessarily be (behaviorally) diverse but simply reflect different trade-

offs with respect to the objectives. However, by introducing a binary objective function

for each niche Nj

fNj
: X → {0, 1}

x 7→

0 if x ∈ Nj,

1 else,

quality diversity optimization problems could potentially be framed as multi-objective

optimization problems (although this approach should scale relatively poorly in the

number of niches and it has not been considered in the literature so far). In Table

8

Optimization Objective Output Diversity Particularity

Multi-Modal scalar genetic

Multi-Task scalar via task descriptors task descriptors

Multi-Objective vector valued trade-off in objectives

Quality Diversity (so far) scalar behavioral feature functions & niches

Table 2.1. Differences and similarities of multi-modal, multi-task, multi-objective and quality
diversity optimization.

2.1, differences and similarities of multi-modal, multi-task, multi-objective and quality

diversity optimization is summarized.

2.2 Bayesian Optimization

Bayesian optimization is a powerful tool for the optimization of black-box functions that

has gained great popularity in the past years. The Bayesian optimization framework

has two main ingredients (see, e.g., Hutter et al. 2018, Chapter 1 or Shahriari, Swersky,

Wang, Adams, and de Freitas 2016): First, a probabilistic surrogate model that captures

beliefs about the behavior of the unknown objective function via a prior distribution

while the posterior distribution represents the updates beliefs. More formally, a surrogate

modelM provides a probabilistic interpretation of the function it models, where possible

explanations for the function are seen as draws f l ∼ P(f |D)1. Typically,M dictates the

parameters θ of a distribution over the function’s behavior at any point x. By optimizing

the models’ (hyper)parameters ξ, a belief is than formed as P(y|x,D) = P(y;θ), where

θ are specified by the surrogate model M evaluated at x, i.e., M(x; ξ) = θ. Note that

the formulation above is seen in function space view. Secondly, a so-called acquisition

function that leverages the uncertainty in the posterior proposing new candidate points

for evaluating - ideally finding a good trade-off between exploration and exploitation.

Compared to the evaluation of the expensive black-box function, acquisition functions

are generally very cheap to compute and can be optimized thoroughly. Seeing Bayesian

optimization fully modular, one can also identify a third ingredient: The optimizer that

optimizes the acquisition function (see, e.g., Wilson, Hutter, and Deisenroth 2018).

A popular choice for the surrogate model is given by Gaussian processes (Rasmussen

& Williams, 2006). A Gaussian process G(m(x), k(x,x′)) is a collection of random vari-

1where D is the data used to fit the surrogate model

9

ables, any finite number of which have consistent Gaussian distributions. A Gaussian

process is completely specified via its mean m(x) (in the context of Bayesian optimiza-

tion typically assumed to be constant) and covariance function k(x,x′). In the case

of a deterministic objective function, the mean µ(·) and variance predictions σ2(·) are

calculated as:

µ(x) = kT∗K
−1y

σ2(x) = k(x,x)− kT∗K
−1k∗,

where k∗ is the vector of covariances between x and all previous observations, K is

the covariance matrix of all previous observations and y are the observed objective

function values. Following the surrogate model notation established earlier, one can

denote the distribution of the surrogate model prediction y for point x as P(y;θ) =

N
(
µ(x), σ2(x)

)
, where

(
µ(x), σ2(x)

)T
constitute θ. Classical choices for the covariance

function are the Gaussian (also known as squared exponential or radial basis function

kernel) or Mátern 5/2 kernel (Rasmussen & Williams, 2006, Chapter 4).

As a surrogate model, Gaussian processes have nice properties such as well-calibrated

uncertainty estimates and closed-form computability of the predictive distribution. How-

ever, downsides, such as poor scalability to high dimensions and cubical scaling in the

number of data points, resulted in other machine learning models being used as surro-

gate models (Hutter et al., 2018, Chapter 1), however, note that not all models fulfill

the function space view of a surrogate model as described above, but simply return a

mean and variance prediction. For example, deep neural networks are very flexible and

scalable models. A standard feed-forward neural network can be used as a surrogate

model either by using a Bayesian neural network (Springenberg, Klein, Falkner, & Hut-

ter, 2016) where a posterior distribution is inferred over network weights or by using an

ensemble of neural networks with different random weight initializations and training

set orders (White, Neiswanger, & Savani, 2019). As another example, random forests

(Breiman, 2001) have gained popularity as a surrogate model (Hutter, Hoos, & Leyton-

Brown, 2011) due to their natural ability to handle mixed domains with dependencies,

e.g., in the case of HPO and categorical hyperparameters, Gaussian processes either

require preprocessing of the input (Jenatton, Archambeau, González, & Seeger, 2017)

or transformations of the covariance function (Garrido-Merchán & Hernández-Lobato,

2020).

A popular acquisition function is given by the expected improvement (EI) (Jones,

10

Schonlau, & Welch, 1998):

αEI(x) := Ey[I(x)] = Ey [max (fmin − y, 0)] .

Here, fmin is the best observed value so far and y is the surrogate model prediction for

point x. If the posterior distribution of the surrogate model follows a normal distribution,

the EI can be calculated in closed form:

Ey[I(x)] = (fmin − µ(x)) Φ

(
fmin − µ(x)

σ(x)

)
+ σ(x)φ

(
fmin − µ(x)

σ(x)

)
.

Here, µ(x) and σ(x) are the mean and standard deviation prediction of the surrogate

model, and φ(·) and Φ(·) are the standard normal density and distribution function.

The acquisition function optimizer solves the inner optimization problem in each iter-

ation given an acquisition function α(·):

x? := arg max
x∈X

α(x).

Effectively, the acquisition function optimizer proposes the point with the largest acquisi-

tion value for evaluation (in the case of sequential Bayesian optimization and single-point

proposal which will be followed here). Popular algorithms for optimizing the acquisition

function are given by the Nelder-Mead (Nelder & Mead, 1965) or L-BFGS-B (Byrd, Lu,

Nocedal, & Zhu, 1995) algorithm (in the case of a continuous domain and for L-BFGS-B

additionally gradients being available) or a simple random search in the case of a mixed

domain.

In summary, seeing Bayesian optimization as a fully modular framework one can

identify the following components: 1. A probabilistic surrogate model that models the

objective function providing a mean and variance prediction, 2. an acquisition function

on which basis new points for evaluation are proposed and 3. an optimizer to optimize

the acquisition function, effectively proposing the new points.

2.3 BOP-Elites

In the seminal work of Kent and Branke (2020), quality diversity optimization has been

united with Bayesian optimization in an algorithm that they termed Bayesian Optimiza-

tion of Elites (BOP-Elites). Kent and Branke (2020) consider a setting where besides an

objective function to be optimized, every solution is characterized by categorizing their

11

feature values into niches (as introduced in Section 2.1). If a solution’s feature values

are computationally expensive to compute or linked to the objective function evaluation,

it is sensible to treat the feature functions as black-box functions themselves. Uniting

this idea with the Bayesian optimization framework results in not only one surrogate

model being used to model the objective function, but multiple surrogate models being

used additionally modeling the feature functions. In principle, one could aim at jointly

modeling all feature values using a single multi-output surrogate model. In practice, us-

ing multiple surrogate models and treating the feature functions independently is more

reasonable, as for example standard GPs are not capable of multi-output modeling. In

the BOP-Elites algorithm, new points for evaluation should be proposed by considering

joint information, i.e, the predicted objective function value but also the predicted fea-

ture function value and the resulting probability of new points falling into the predefined

niches. It should be noted that Kent and Branke (2020) explicitly introduce the algo-

rithm for X ⊆ R, k = 1 (one-dimensional continuous domain of the objective function

f and single feature function g1) and pairwise disjoint niches. In the following, these

limitations are relaxed, i.e., X can be a high-dimensional mixed space, there can be

more than a single feature function and niches must not necessarily be pairwise disjoint,

i.e., it must not hold that ∀j, j′ ∈ 1, . . . , c : j 6= j′ =⇒ Nj ∩ Nj
′ = ∅. As acquisition

function, Kent and Branke (2020) introduce the expected joint improvement of elites

(EJIE) that measures the expected improvement to the ensemble problem of identifying

the best solution in every niche:

αEJIE(x) := Ez
[
Ey [Iz(x)]

]
=

c∑
j=1

P(x ∈ Nj|D)Ey [Iz(x)] . (2.2)

Here, the outer expectation is over z = (z1, . . . , zk)T denoting the vector of surrogate

model predictions for the feature functions, P(x ∈ Nj|D) is the (posterior) probability

of x falling into niche Nj, and Ey [Iz(x)] is the expected improvement with respect to

niche Nj derived on the basis of z (Equation 2.1):

Ey [Iz(x)] = Ey

[
max

(
fminNj

− y, 0
)]
,

where fminNj
is the best observed value in niche Nj so far and y is the surrogate model

prediction for point x.

The probability of a point x belonging to niche Nj generally (see Equation 2.1) states

12

as:

P(x ∈ Nj|D) = P(z ≤ bupper.j)− P(z ≤ blower.j)

where z = (z1, . . . , zk)T again denotes the vector of surrogate model predictions for point

x and bupper.j = (bupper1j , . . . , bupperkj)
T and blower.j is defined analogously.

As already outlined above, in practice it is sensible to use multiple surrogates to model

each feature function independently. Furthermore, assuming the posterior distribution of

the surrogates modeling the feature functions each to follow a normal distribution with

a mean prediction and standard deviation prediction of νi(x) and τi(x), P(x ∈ Nj|D)

then simplifies to:

P(x ∈ Nj|D) =
k∏

i=1

[
Φ

(
νi(x)− bupperij

τi(x)

)
− Φ

(
νi(x)− blowerij

τi(x)

)]
,

where Φ(·) again denotes the standard normal distribution function.

The full BOP-Elites algorithm can be summarized in pseudocode as in Algorithm 1.

Algorithm 1: BOP-Elites

Result: S =
{
x∗1, . . . ,x

∗
c

}
(set of solutions)

X , f, gi, i = 1, . . . , k,Nj with bij, j = 1, . . . , c,Ddesign, Ntotal

D ← Ddesign

for n← 1 to Ntotal do
Fit surrogate models to current data D
x? ← arg maxx∈X αEJIE(x)

Evaluate y ← f(x?),∀i = 1, . . . , k : zi ← g(x?)

if x? ∈ Nj ∧ y < f(x∗j) then
x∗j ← x?

end

D ← D ∪ {(x?, y, z1, . . . , zk)}
end

Kent and Branke (2020) then present the results of a small-scale simulation study,

investigating the performance of the BOP-Elites algorithm in the scenario of the true

objective function and feature function each being the mean prediction of a GP with

a Gaussian kernel fitted to some initial data Df =
{(
x(i), y(i) ∼ U(0, 20)

)}
, Dg1

={(
x(i), z

(i)
1 ∼ U(0, 20)

)}
. They compare their “ensemble” BOP-Elites algorithm to two

other variants that conduct separate searches in each niche further varying whether

joint surrogate models are fitted: In the “sequential” BOP-Elites algorithm, niches are

13

optimized in a round-robin fashion for a fixed number of iterations and for each niche

Nj, the expected expected improvement with respect to niche Nj weighted with the

probability of x falling into Niche Nj is considered as the acquisition function:

αEINj
(x) := P(x ∈ Nj|D)Ey [Iz(x)] . (2.3)

Still, the surrogates modeling the objective and feature function are trained relying

on all data observed so far over all runs. Contrary to this, the “independent” BOP-

Elites algorithm only trains the surrogate models on the data observed so far for each

separate niche run (and uses independent surrogate models for every niche). Comparing

the “ensemble” BOP-Elites algorithm to the “sequential”‘ and “independent” BOP-Elites

algorithms allows for the investigation of the following questions: 1. How much does

the BOP-Elites algorithm profit from a simultaneous search in all niches (“ensemble” vs.

“sequential”)? 2. How much does the BOP-Elites algorithm profit from building joint

surrogate models (“sequential” vs. “independent”).

The following section presents results of several small-scale simulation studies. Sim-

ulation 1 is a conceptual replication of the findings of Kent and Branke (2020). In

Simulation 2.1, the limitation of pairwise disjoint niches is relaxed and in 2.2, the di-

mensionality of the domain of f and g1 is increased, whereas in Simulation 2.3, the

limitation of using only a single feature function g1 is relaxed and in Simulation 2.4, a

mixed domain of f and g1 is considered. Finally, in Simulation 3 the performance of

different acquisition function optimizers is examined.

14

3 Simulation Studies

The following simulations studies replicate (Simulation 1) and extend the findings of Kent

and Branke (2020) regarding the BOP-Elites algorithm in the following ways: 1. The

limitation of pairwise disjoint niches is relaxed (Simulation 2.1), 2. the dimensionality of

the domain of the objective function and feature function is increased (Simulation 2.2),

3. the number of feature functions is increased (Simulation 2.3), 4. a mixed domain

of the objective function and feature function is considered (Simulation 2.4) and 5. the

performance of different acquisition function optimizers is examined (Simulation 3).

In all simulations, the objective function f is to be minimized. As an evaluation

metric, the total error is used:

TE(x∗1, . . .x
∗
c) := −

c∑
j=1

(
f(x∗j)− f(x̂j

)
),

where f(x∗j) is the “true” function minimum for niche Nj obtained by exhaustive search

over the domain performed using an equidistant grid of dimension b106
1

dcont cdcont, where

dcont is the dimensionality of the domain (in the case of a mixed domain, dcont is the

dimensionality with respect to the continuous part and the grid is expanded by crossing

with all other possible values for integer, categorical and boolean subdomains) and f(x̂j)

is the best solution for niche Nj found (if no solution has been found for a niche, this value

is set to fmax obtained via the same exhaustive search procedure as described above).

No measure regarding the diversity of the solutions or the coverage of the feature space

is used because in the case of only few discrete niches, this is not very informative

(Chatzilygeroudis et al., 2020) in the sense that all algorithms typically find a solution

for every niche. The “ensemble” BOP-Elites algorithm will be abbreviated as EJIE

(Equation 2.2), the “sequential” one as EIN (Equation 2.3) and the “independent” one as

IND (Equation 2.3 but independent surrogate models for each niche). The abbreviation

RS refers to a simple random search serving as a baseline (if not stated otherwise, 1000

points are drawn uniformly at random, evaluated and the niches the points belong to

are determined post hoc). For additional computational details, please see Section 6.2.

15

3.1 Simulation 1: A Conceptual Replication of Kent &

Branke (2020)

This simulation serves as a conceptual replication of the simulation of Kent and Branke

(2020). The domain of f : x 7→ y and g1: x 7→ z1 is given by [0, 10]. f(·) and

g1(·) are given by the mean prediction of GPs with Gaussian kernels fitted to initial

data Df =
{(
x(i), y(i) ∼ U(0, 20)

)}11

i=1
and Dg1

=
{(
x(i), z

(i)
1 ∼ U(0, 20)

)}11

i=1
, with

(x(1), . . . , x(11))T = (0, . . . , 10)T . Five niches are defined via the following boundaries on

Z1: b11 = [0, 4), b12 = [4, 8), b13 = [8, 12), b14 = [12, 16), b15 = [16, 20). An example

problem is visualized in Figure 3.1 showing the objective function value y and feature

function value z1 depending on x. In the left plot, the abscissa is colored with respect to

the niche x belongs to (colored in the same colors) which is derived based on the feature

function values z1 on the right. The goal is to find the minimum objective function value

for each niche (visualized by the colored points).

For both GPs, length-scales are constrained to [0.5, 2] (isotropic) and hyperparame-

ters are optimized via the L-BFGS-B algorithm (Byrd et al., 1995) using ten randomly

initialized starting values in a multistart setting and selecting the hyperparameter solu-

tions of the best run. As surrogate models for f(·) and g1(·), GPs with Gaussian kernels

are used with the same technical specifications as the true functions. As an optimizer

for the acquisition function a Nelder-Mead simplex algorithm (Nelder & Mead, 1965)

with support for box constraints (Box, 1965) is used, allowing for up to 100 function

evaluations (terminating earlier, if the relative change in the optimization parameters

is less than 1e − 6 with respect to the L1 norm). 5 points are sampled uniformly at

random and used as the initial design points and all algorithms are run for a total of 35

iterations. In total, 100 simulation runs are performed (note that each run constitutes a

slightly different optimization problem due to the initial data that is used to fit the true

functions being sampled). Results are given in Figure 3.2. The “ensemble” BOP-Elites

(EJIE) algorithm strongly outperforms its competitors reaching a mean total error of

around 1 after the 20th iteration. The “sequential” BOP-Elites (EIN) algorithm out-

performs the “independent” (IND) one indicating that building joint surrogate models

results in a performance boost.

16

0

5

10

15

20

0.0 2.5 5.0 7.5 10.0
x

y

5

10

15

0.0 2.5 5.0 7.5 10.0
x

z 1
Niche Niche 1 Niche 2 Niche 3 Niche 4 Niche 5

Figure 3.1. Simulation 1: Example problem.

0

10

20

30

40

0 10 20 30
Batch Number

T
E

 ±
 S

E

Algorithm EIN EJIE IND RS

Figure 3.2. Simulation 1: Mean total error. Ribbons represent standard errors. 100 simulation
runs.

17

0

1

2

3

0 10 20 30
Batch Number

T
E

 ±
 S

E

Algorithm EIN EJIE IND RS

Figure 3.3. Simulation 2.1: Overlapping niches. Mean total error. Ribbons represent standard
errors. 100 simulation runs.

3.2 Simulation 2: Extending Kent & Branke (2020)

All simulations presented in this subsection relax or extend some assumptions made

by Kent and Branke (2020), i.e., they consider overlapping niches, higher-dimensional

domains, multiple feature functions, and mixed domains.

3.2.1 Simulation 2.1: Overlapping Niches

The domain of f : x 7→ y and g1: x 7→ z1 is given by [0, 10]. f(·) and g1(·) are given

as in Simulation 1. Five niches are defined via the following boundaries on Z1: b11 =

[0, 4), b12 = [0, 8), b13 = [0, 12), b14 = [0, 16), b15 = [0, 20), i.e., they are nested in each

other. Surrogates are defined as in Simulation 1 and and all other technical details are

the same as in Simulation 1. 5 points are sampled uniformly at random and used as

the initial design points and all algorithms are run for a total of 35 iterations. Results

are given in Figure 3.3 based on 100 simulation runs. Again, the “ensemble” BOP-Elites

(EJIE) algorithm outperforms its competitors reaching a total error of close to zero at

around the 13th iteration.

18

10

20

30

40

50

0 20 40 60
Batch Number

T
E

 ±
 S

E

Algorithm EIN EJIE IND RS

Figure 3.4. Simulation 2.2: Two-dimensional search space. Mean total error. Ribbons represent
standard errors. 100 simulation runs.

3.2.2 Simulation 2.2: 2-Dimensional Domain

The domain of f : x 7→ y and g1: x 7→ z1 is given by [0, 10] × [0, 10]. f(·) and g1(·)
are given by the mean prediction of GPs with Gaussian kernels fitted to initial data

Df =
{(
x(i), y(i) ∼ U(0, 20)

)}121

i=1
, Dg1

=
{(
x(i), z(i) ∼ U(0, 20)

)}121

i=1
with x(i) = Xi.,

where X is a matrix of dimension 121× 2 where rows are constituted by the Cartesian

product {0, . . . , 10} × {0, . . . , 10}, e.g., X1. = (0, 0). Niches and surrogate models are

defined as in Simulation 1 (that is, niches are again pairwise disjoint) and all other

technical details are the same as in Simulation 1. 10 points are sampled uniformly at

random and used as the initial design points and all algorithms are run for a total of 70

iterations. Results are given in Figure 3.4 based on 100 simulation runs. The “ensemble”

BOP-Elites (EJIE) algorithm again outperforms it competitors although convergence to

a lower total error would naturally require more iterations.

3.2.3 Simulation 2.3: Two Feature Functions

The domain of f : x 7→ y, g1: x 7→ z1 and g2: x 7→ z2 is given by [0, 10].

f(·), g1(·) and g2(·) are given by the mean prediction of GPs fitted to initial data

Df =
{(
x(i), y(i) ∼ U(0, 20)

)}11

i=1
, Dg1

=
{(
x(i), z

(i)
1 ∼ U(0, 20)

)}11

i=1
and Dg2

={(
x(i), z

(i)
2 ∼ U(0, 20)

)}11

i=1
, with (x(1), . . . , x(11))T = (0, . . . , 10)T . Four niches are de-

19

0

10

20

30

0 5 10 15 20
Batch Number

T
E

 ±
 S

E

Algorithm EIN EJIE IND RS

Figure 3.5. Simulation 2.3: Two feature functions. Mean total error. Ribbons represent
standard errors. 100 simulation runs.

fined via the following boundaries on Z1 and respectively Z2: b11 = [0, 10), b21 =

[0, 10), b12 = [0, 10), b22 = [10, 20), b13 = [10, 20), b23 = [0, 10], b14 = [10, 20), b24 =

[10, 20)1. Surrogates are defined as in Simulation 1 (where a similar GP is used to model

g2(·)), and all other technical details are the same as in Simulation 1. 5 points are sam-

pled uniformly at random and used as the initial design points and all algorithms are run

for a total of 25 iterations. Results are given in Figure 3.5 based on 100 simulation runs.

Compared to the results of Simulation 1 (Figure 3.2), convergence is slightly slower,

although the “ensemble” BOP-Elites (EJIE) manages to yield a total error lower than 1

at around the 16th iteration and outperforms its competitors.

3.2.4 Simulation 2.4: Mixed Domain

The domain of f : x 7→ y and g1: x 7→ z1 is given by [0, 10] × {“a”,“b”,“c”} ×
{FALSE,TRUE}. f(·) is given by the mean prediction of a regression tree (Breiman,

Friedman, Stone, & Olshen, 1984) fitted to initial dataDf =
{(
x(i), y(i)

)}66

i=1
with x(i) =

Xi., where X is a matrix of dimension 66× 3 where rows are constituted by the Carte-

sian product {0, . . . , 10}×{“a”,“b”,“c”}×{FALSE,TRUE}, e.g., X1. = (0,“a”,FALSE).

1this e.g., results in the first niche being defined as {x ∈ [0, 10] : 0 ≤ g1(x) < 10 ∧ 0 ≤ g2(x) < 10}

20

Here, y(i) is constructed as follows:

y(i) ∼


U(0, 20) + 10 · 1TRUE(x3) if x2 = “a”

U(10, 30) + 10 · 1TRUE(x3) if x2 = “b”

U(20, 40) + 10 · 1TRUE(x3) if x2 = “c”.

g1(·) is given by the mean prediction of a GP with a Gaussian kernel fitted to ini-

tial data Dg1
=
{(
x
(i)
1 , z

(i) ∼ U(0, 20)
)}11

i=1
, i.e., only x1 is relevant for g1, where

(x
(1)
1 , . . . , x

(11)
1)T = (0, . . . , 10)T . Niches are defined as in Simulation 1. As a surrogate

model for f(·) and g1(·) either a random forest or a GP with preprocessing (converting

Booleans to integers and one-hot encoding of categorical variables) is used. All other

technical details are the same as in Simulation 1. 15 points are sampled uniformly at

random and used as the initial design points and all algorithms are run for a total of

75 iterations. Results are given in Figure 3.6 based on 100 simulation runs. Comparing

the scenario of using GP (GP) surrogate models to using random forests (RF) shows that

the GP surrogate models strongly outperform the random forests - at least with respect

to the “ensemble” BOP-Elites (EJIE) algorithm. This is somewhat surprising, as the

preprocessing of the GP (one-hot encoding of categorical variables) essentially results

in a five-dimensional space being modeled (compared to the original three-dimensional

space). Looking at the GP surrogate models and the “sequential” (EIN) and “indepen-

dent” (IND) BOP-Elites algorithms, a clear step pattern is visible that emerges due to

the niches being optimized sequentially. This pattern is not visible when looking at

the random forest surrogate models, indicating that (naturally) a random forest cannot

model a mean prediction of a GP as a true function (for the feature function) as well

as a GP itself. In hindsight, this shows that the simulation design is somewhat biased

against the random forest surrogate models. Nevertheless, the “ensemble” (EJIE) BOP-

Elites algorithm using random forests surrogate models still outperforms random search

(RS), especially with respect to its speed of improvement of the total error.

3.3 Simulation 3: Comparing Acquisition Function

Optimizers

In this simulation, different acquisition function optimizers are compared for solving the

inner optimization problem of the Bayesian optimization framework within the (“ensem-

21

Surrogate Model = GP Surrogate Model = RF

0 20 40 60 0 20 40 60 0 20 40 60
0

10

20

30

40

50

Batch Number

T
E

 ±
 S

E

Algorithm EIN EJIE IND RS

Figure 3.6. Simulation 2.3: Mixed domain. Mean total error. Ribbons represent standard
errors. 100 simulation runs.

ble”) BOP-Elites algorithm:

x? ← arg max
x∈X

αEJIE(x) (line 6 in Algorithm 1)

Comparing acquisition function optimizer is motivated by the finding in the quality

diversity literature that simultaneous search in all niches aids the generation of better

solution for each niche (Chatzilygeroudis et al., 2020; Mouret & Clune, 2015; Nguyen et

al., 2015). To investigate this hypothesis, the following acquisition function optimizers

are compared: 1. A Nelder-Mead simplex algorithm as already used in the simulations

before (NM), 2. a simple random search where points are drawn uniformly at random (RS)

and the best point is proposed, 3. a small-scale GA with a (10 + 5) evolution strategy

(MIES), mutating continuous parameters by adding an independent standard normally

distributed term, performing uniform crossover with a probability of 0.5, where parents

are selected at random and the top individuals are selected based on the best fitness

value, 4. a similar small-scale GA that starts with including the current best solutions

for each niche in the initial population (MIES_warm). Comparing the performance of

MIES to MIES_warm allows for an investigation of the hypothesis, that the benefit of

simultaneous search in all niches can be transferred to some extent to the model based

quality diversity framework. All acquisition function optimizers are allowed to use up

to 100 function evaluations (where the Nelder-Mead algorithm can terminate earlier as

22

already outlined in the previous simulations). To allow for meaningful conclusions, a fifth

acquisition function optimizer is added as a baseline: Random search with 105 function

evaluations, i.e., 105 points are drawn uniformly at random and the best one is proposed

(RS+).

The simulation design is given as follows: The domain of f : x 7→ y and g1: x 7→ z1

is given by [0, 10]d, where d varies from 1 to 4. f(·) is given by the d-dimensional

Shekel function constructed with 10 local minima (Surjanovic & Bingham, 2013) and

g1(·) is given by the mean prediction of a GP with a Gaussian kernel fitted to ini-

tial data Dg1
=
{(
x
(i)
1 , z

(i) ∼ U(0, 20)
)}11

i=1
, i.e., only x1 is relevant for g1, where

(x
(1)
1 , . . . , x

(11)
1)T = (0, . . . , 10)T . This design represents a more realistic and difficult

quality diversity optimization problem. Niches and surrogate models are defined as in

Simulation 1 and all other technical details are the same as in Simulation 1. The“ensem-

ble” BOP-Elites algorithm (EJIE) is used and only the acquisition function optimizer is

varied. 5d points are sampled uniformly at random and used as the initial design points

and all algorithms are run for a total of 35d iterations.

Figure 3.7 shows the mean total error for the “ensemble” BOP-Elites algorithm with

each different acquisition function optimizer split for the dimensionality d based on 100

simulation runs. In the scenario of d = 1, all acquisition function optimizers result in a

similar overall performance, although Nelder-Mead (NM) tends to result in a somewhat

slower convergence. Looking at the scenario of d = 2, the random search evaluating

105 random points (RS+) tends to outperform the other optimizers, but only by a small

margin. NM further falls behind and the (10 + 5) small-scale GA with a warm start based

on the current best solutions for each niche (MIES_warm) stronger outperforms both the

standard random search (RS) and the (10 + 5) small-scale GA without a warm start

(MIES). This trend consolidates in the scenarios of d = 3 and d = 4, where MIES_warm

results in a more substantial performance boost compared to MIES.

To investigate whether the different acquisition function optimizers actually find better

solutions with respect to the inner optimization problem or whether the solutions simply

yield a better improvement regardless of the quality of solving the inner optimization

problem, the mean expected joint improvement of elites and the actual improvement

after evaluation was calculated. Here, the BO loop always relies on the RS+ acquisition

function optimizer, i.e., the next point to be evaluated is always chosen based on the

best solution provided by RS+ and the values for the different acquisition function opti-

mizers have to be interpreted in a “what if” scenario, i.e., what improvement would the

point proposed by MIES_warm have yielded if the BO loop had followed the MIES_warm

23

0

5

10

15

20

0 10 20 30
Batch Number

T
E

 ±
 S

E

d = 1

5

10

15

20

25

0 20 40 60
Batch Number

T
E

 ±
 S

E

d = 2

10

15

20

25

0 25 50 75
Batch Number

T
E

 ±
 S

E

d = 3

10

15

20

25

0 25 50 75 100 125
Batch Number

T
E

 ±
 S

E

d = 4

Optimizer MIES MIES_warm NM RS RS+

Figure 3.7. Simulation 3: Comparing acquisition function optimizers. Mean total error. Rib-
bons represent standard errors. 100 simulation runs.

24

0.0

0.5

1.0

1.5

2.0

0 25 50 75 100 125
Iteration

M
ea

n
E

JI
E

0.0

0.5

1.0

1.5

2.0

0 25 50 75 100 125
Iteration

M
ea

n
A

ct
ua

l I
m

pr
ov

em
en

t

Optimizer MIES MIES_warm NM RS RS+

Figure 3.8. Simulation 3: Comparing acquisition function optimizers, d = 4. Mean EJIE /
Mean actual improvement. Ribbons represent 2.5% and 97.5% quantiles. 100 simulation runs.

optimizer for the next iteration of the BO loop. The actual improvement is calculated

as the improvement over the current best solution in niche Nj which is selected based

on the niche the evaluated point would have belonged to conditional on the proposed

point giving a lower objective function value (i.e., the actual improvement is bounded

below by zero). Results are given in Figure 3.8 for the scenario of d = 4. RS+ results

in both higher EJIE and actual improvement, i.e., RS+ solves the inner optimization

problem better than the other optimizers and the evaluation of the solutions matches

the expected improvement with respect to the actual improvement observed. The other

three optimizer perform comparatively similar, although MIES_warm appears to have the

edge with respect to the actual improvement whereas NM falls behind in solving the inner

optimization problem.

3.4 Summary and Discussion

In Simulation 1, the results of Kent and Branke (2020) were conceptually replicated in

the sense that the “ensemble” BOP-Elites algorithm strongly outperformed its competi-

tors. Differences in results can be explained by the fact that Kent and Branke (2020)

discretized the domain into 1000 equidistant points, whereas Simulation 1 treated the

domain as naturally continuous. Throughout Simulation 2.1 to 2.3, the“ensemble”BOP-

Elites algorithm again outperformed its competitors and performed well throughout the

25

extensions of overlapping niches, higher-dimensional domains and multiple feature func-

tions.

In Simulation 2.1 the “sequential” and “independent” BOP-Elites algorithm show a

performance close to the “ensemble” BOP-Elites algorithm which can be explained due

to the overlapping niches, i.e., once a good solution is found in the first niche, this

solution is also applicable to all other niches because they all sequentially overlap. Future

simulations could therefore focus on different overlapping niches and also the scenario of

points not belonging to any niche.

In Simulation 2.3 which is characterized by a three-dimensional mixed domain, GP

surrogate models with preprocessing outperformed the random forests surrogate models.

This can potentially be explained due to the difference in surrogate model performance

with respect to the feature function, i.e., the true function being the mean prediction

of a GP which a GP can naturally model very well resulting in more precise predicted

probabilities of points belonging to niches (which could also explain the step patterns

in the case of the “sequential” and “independent” BOP-Elites algorithms when combined

with GP surrogate models). Future simulations could focus on further investigating

the question whether a good surrogate model performance with respect to the feature

function(s) is more important than good surrogate model performance with respect to the

objective function, i.e., by not using a surrogate model at all for the feature function(s)

but simply determining the niche a point belongs to by evaluating the feature function(s)

in an oracle scenario.

Simulation 3 showed that the choice of the acquisition function optimizer does matter

for the BOP-Elites algorithm. While conducting a random search with 105 acquisition

function evaluations is in most scenarios not practicable, this did result in a strong per-

formance boost, especially for an increased dimensionality of the domain of the objective

function and feature function. This itself is interesting because one would argue that

random search suffers from the curse of dimensionality, but this only highlights the fact

that there is plenty of room for improvement regarding the choice of the acquisition func-

tion optimizer. In general, the Nelder-Mead acquisition function optimizer performed

comparatively poorly, although this may have been the case due to the multitude of lo-

cal minima in the acquisition function surface. Variants of Nelder-Mead optimizers may

therefore benefit from a random restart procedure. Moreover, a comparison of a small-

scale GA with the same small-scale GA which uses a warm start given by the current

best solutions for each niche showed that the benefit of simultaneous search in all niches

in quality diversity optimization potentially can be transferred to the model based set-

ting by using a suitable acquisition function optimizer (that can exploit the information

26

given by the best solutions for each niche via, e.g., crossover). Future simulations should

further investigate this potential.

In the following application section, the “ensemble” BOP-Elites algorithm is used to

find a set of high-performing yet (resource-related) diverse neural architectures for image

classification.

27

4 Application Study

Neural Architecture Search (NAS) promises to automatically find well performing ar-

chitectures of deep neural networks that facilitate the learning of strong representations

for a given dataset (Elsken, Metzen, & Hutter, 2019b). So far, NAS methods have out-

performed manually designed architectures on tasks such as image classification (Real,

Aggarwal, Huang, & Le, 2019; Zoph, Vasudevan, Shlens, & Le, 2018) or object detection

(Zoph et al., 2018). Formally, NAS can be embedded within the HPO setting (see equa-

tion 1.1) with the particularity that other hyperparameters such as batch size or learning

rate are typically considered fixed while tuning over the search space of architectures

and no joint tuning is performed.

Following Elsken et al. (2019b), NAS can be categorized according to three dimen-

sions: search space, search strategy and performance estimation strategy. The search

space defines which architectures can be represented, while the search strategy details

how to explore the search space (e.g., Bayesian optimization, evolutionary methods, re-

inforcement learning or gradient-based methods). The simplest performance estimation

strategy is given by training the architecture on training data and evaluating its perfor-

mance on validation data. However, due to the huge computational demand strategies

like using lower fidelity estimates (e.g., Bello, Zoph, Vasudevan, and Le 2017) or weight

sharing (e.g., Pham, Guan, Zoph, Le, and Dean 2018) have become popular.

Typically, NAS is considered a single-objective optimization problem (Hutter et al.,

2018, Chapter 3) and the goal is to find an architecture that maximizes performance

(e.g., validation accuracy). However, resource restrictions like number of FLOPS nat-

urally arise when deploying networks on different hardware (e.g., in computer vision,

where algorithms are being integrated and deployed on very heterogeneous small de-

vices, see e.g., Xiong, Mehta, and Singh 2019). One possibility for handling resource

restrictions is to incorporate them as additional objective functions in a multi-objective

optimization problem (e.g., Elsken, Metzen, and Hutter 2019a). Another possibility is

to incorporate them as constraints in a constrained optimization problem (e.g., Jin et al.

2019; Xiong et al. 2019). While the multi-objective approach allows for finding a set of

(non-dominated) solutions along the Pareto front during a single optimization run, these

28

solutions must not necessarily be diverse and only reflect different trade-offs with respect

to the different objectives. On the other hand, the constrained approach only allows for

finding a single solution (that satisfies a given set of constraints) in a single optimization

run. In this application study, the BOP-Elites algorithm is applied to NAS, aiming at

finding a set of high-performing yet diverse architectures with respect to pre-defined

(resource-related) feature functions in a single run. In principle, these resource func-

tions could range from number of trainable parameters or number of FLOPS to predict

time or memory usage during prediction. Note that while prior work applying quality

diversity optimization algorithms to machine learning problems exists (e.g., Cazenille,

Bredeche, and Halloy 2019; Costa, Lourenço, Correia, and Machado 2020; Parker-Holder,

Pacchiano, Choromanski, and Roberts 2020; Stanley, Clune, Lehman, and Miikkulainen

2019), this application is the first of its kind to use a (model based) quality diversity

optimization algorithm directly for NAS.

To facilitate the computational burden, the study was conducted using the NAS-

Bench-301 benchmark (Siems et al., 2020). NAS-Bench-301 is a surrogate benchmark

for neural architecture search. Contrary to other tabular benchmarks for NAS like the

NAS-Bench-101 (Ying et al., 2019), or NAS-Bench-201 (Dong & Yang, 2020), NAS-

Bench-301 relies on surrogate models that can be used for prediction instead of querying

tables to get the validation accuracy or training time of the architecture in question.

This overcomes the limitation of only a small number of architectures being searched

that tabular benchmarks suffer (where all architectures in the search space must be

evaluated exhaustively). NAS-Bench-301 covers the cell-based search space of DARTS

(Liu, Simonyan, & Yang, 2019; Zoph et al., 2018) trained on the CIFAR-10 dataset

(Krizhevsky, 2009), which contains more than 1018 possible architectures. Surrogates

were constructed by evaluating architectures using the standard 40k, 10k, 10k split for

train, validation and test set. For more details on NAS-Bench-301, see Siems et al.

(2020).

The DARTS search space (Liu et al., 2019; Zoph et al., 2018) consist of so-called

normal and reduction cells that are stacked to form a convolutional neural network.

A cell is a directed acyclic graph (DAG) consisting of an ordered sequence of vertices

(here nodes). Each node is a feature map and each directed edge is associated with

an operation that transforms the input node. Each cell is assumed to have two input

nodes and one output node, whereby the input nodes are defined as the cell outputs in

the previous two layers and the output of the cell is obtained by a reduction operation

to all intermediate nodes. Here, the four intermediate nodes add element-wise feature

maps from two previous nodes in the cell. The directed edges represent one of the

29

c_{k-2} 0
sep_conv_3x3

1
sep_conv_3x3

2skip_connect

3
skip_connect

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

dil_conv_3x3

c_{k}

c_{k-2}

0

max_pool_3x3 2
max_pool_3x3

c_{k-1}

max_pool_3x3

1

max_pool_3x3

3

max_pool_3x3

skip_connect

skip_connect

skip_connect c_{k}

Figure 4.1. Example DARTS architecture. Normal cell on the left. Reduction cell on the right.

following operations: 3x3 and 5x5 separable convolutions, 3x3 and 5x5 dilated separable

convolutions, 3x3 max pooling, 3x3 average pooling, identity, and zero (skipping the

connection). All operations are of stride one (if applicable) and the convolved feature

maps are padded. The ReLU-Conv-BN order is used for convolutional operations, and

each separable convolution is applied twice. Cells located at 1/3 and 2/3 of the total

depth of the network are reduction cells, in which all the operations adjacent to the

input nodes are of stride two. An example architecture as described in Liu et al. (2019)

is given in Figure 4.1, where ck−1 and ck−2 denote the input nodes and ck denotes the

output node. Additional details on the search space and its architectures can be found

in Zoph et al. (2018), Liu et al. (2019) and Siems et al. (2020).

As a feature function, the number of trainable parameters was selected1 and five

overlapping niches were defined as: [0, 2500000), [0, 3000000), [0, 3500000), [0, 4000000),

[0,∞). The reason for constructing overlapping niches lies in the context of resource

restrictions, since it is more sensible to assume that a device that can handle up to,

e.g., a fixed number of FLOPS (or here parameters) can also handle a lower number of

FLOPS. The right boundaries were selected to closely reflect the following quantiles of the

empirical cumulative distribution function of the around 60000 architectures used to train

the NAS-Bench-301 surrogate models: 0.15, 0.45, 0.75, 0.9, 1 (i.e., of all architectures used

to train the surrogate models, 75% had less than 3500000 trainable parameters).

As outlined in Section 2, the BOP-Elites algorithm is embedded within the Bayesian

optimization framework. As competitors, BANANAS (White et al., 2019) and a simple

random search (as NAS method, Random) were selected. BANANAS is also embedded

within the Bayesian optimization framework and uses an ensemble of feed-forward neural

networks as surrogate model (where each network is initialized using different random

weights and trained using a random set order) and encodes architectures using a trun-

1which can be interpreted as a proxy related to, e.g., memory usage or number of FLOPS during
predict time

30

cated path encoding (for every path, i.e., every possible ordering of nodes, a binary

feature is generated, indicating whether the DAG contains all directed edges along this

path but only those paths are included that are “likely” to occur when randomly sam-

pling edges in the DAG subject to a maximum edge constraint). BANANAS then uses

independent Thompson sampling (White et al., 2019) as the acquisition function which

is optimized using a mutation algorithm (the best architecture observed so far is selected

and mutated in 100 different ways by changing a single operation or edge randomly).

According to White et al. (2019), BANANAS “achieves state-of-the-art performance on

NAS search spaces”. As neither BANANAS nor random search are aware of the feature

function and niches, niches were derived post hoc by determining the number of trainable

parameters for each evaluated architecture.

The BOP-Elites algorithm was configured as follows: As surrogate models, random

forests with some preprocessing were used (imputing missing categorical values with

a new level “.missing”). Note that no transformation of the architectures was carried

out (i.e., representing the DAG via an adjacency matrix, see, e.g., White, Neiswanger,

Nolen, and Savani 2020), because a random forest can naturally handle the representa-

tion of an architecture via interdependent categorical parameters (edges between nodes

and their operation) which is provided by NAS-Bench-301 in the form of a ConfigSpace

(Lindauer et al., 2019) containing 34 categorical parameters with 24 dependencies. More

precisely, in this natural tabular encoding, architectures are represented by enumerating

all nodes and potential edges and introducing categorical hyperparameters for each op-

eration along each potential edge, where the nodes serving as input of each intermediate

node are again defined as categorical hyperparameters and operations on a certain edge

can only be specified if this edge is actually present in the DAG (Siems et al., 2020).

As an acquisition function the EJIE was used (see Equation 2.2). The EJIE was opti-

mized using a mutation algorithm similar to the one BANANAS uses but adapted for

the niches setting. More specifically, the best architectures observed in each niche so far

are selected and a single operation or edge is mutated randomly in each architecture.

Disjoint pairs of parents are then selected at random and a single operation or edge that

is currently not mutated is selected randomly and crossover of this operation or edge is

performed with a probability of 0.5. This procedure is then repeated for the resulting

children until only a single child is left. The complete GA is repeated 100 times resulting

in 100 candidate architectures. More details on and a justification for the configuration

of the BOP-Elites algorithm is given in an ablation study in the appendix (see Section

6.1 in the appendix). Each algorithm starts with evaluating 10 architectures drawn uni-

formly at random which are used as the initial design points and all algorithms are run

31

Niche 1 Niche 2 Niche 3 Niche 4 Niche 5

0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

93.0

93.5

94.0

94.5

Batch Number

M
ea

n
V

al
id

at
io

n
A

cc
ur

ac
y

±
S

E

Algorithm BANANAS BOP−Elites Random

Figure 4.2. BOP-Elites on NAS-Bench-301. Mean validation accuracy. Ribbons represent
standard errors. 100 replications.

for a total of 150 iterations (which would correspond to roughly 10 GPU days). Note

that by default BANANAS only updates its surrogate model every 10 iterations (due

to the computational cost to train the ensemble of feed-forward neural networks). In

the application study presented here, BANANAS was configured to update its surrogate

model every iteration to allow for a meaningful comparison to the BOP-Elites algorithm.

Results are based on 100 replications. Computational details are given in Section 6.2.

Figure 4.2 shows the mean validation accuracy over the 100 iterations separate for

each niche. Generally, BANANAS improves its performance with respect to niches 3 to

5 while BOP-Elites shows a more uniform distributed performance improvement over

all niches. Random search results in comparably good performance with respect to

niches 1 and 2 but falls behind in the other niches. All in all, this is the expected

behavior: BANANAS is not aware of the niches and architectures with a higher number

of trainable parameters typically also yield better performance. Contrary to this, BOP-

Elites balances high performance with diversity with respect to the niches and is able

to find well performing architectures in every niche. Figure 4.3 additionally visualizes

the mean validation accuracy over all five niches over the 100 iterations, showing more

clearly that BOP-Elites is able to find well performing solutions over all niches.

This application study is the first of its kind to use a (model based) quality diversity

optimization algorithm for NAS. On the NAS-Bench-301 surrogate benchmark, BOP-

Elites is able to find a set of high-performing yet diverse neural architectures of the

32

93.6

93.8

94.0

94.2

94.4

0 50 100
Batch Number

M
ea

n
V

al
id

at
io

n
A

cc
ur

ac
y

ov
er

 N
ic

he
s

Algorithm BANANAS BOP−Elites Random

Figure 4.3. BOP-Elites on NAS-Bench-301. Mean validation accuracy over all niches. 100
replications.

DARTS search space with respect to a pre-defined resource-related feature function

and thereupon derived niches. The overall quality of the solutions outperforms that of

BANANAS, a state-of-the-art model based NAS algorithm. However, as seen in the

ablation study, fine-tuning of the configuration of BOP-Elites (choice of surrogate model

and acquisition function optimizer) is needed to achieve good performance although most

of the performance difference stems from the choice of the acquisition function optimizer.

Similarly, BANANAS appears to mostly rely on its acquisition function optimizer to be

able to yield good performance on NAS-Bench-301. This is interesting as the choice

of acquisition function optimizer is typically not examined in detail when configuring

model based algorithms. Future work should extend the results presented here to other

benchmarks and search spaces but also real applications including other feature functions

such as number of FLOPS, memory usage or energy usage during predict time.

33

5 General Discussion and Outlook

The goal of quality diversity optimization is to find a set of high-performing, yet diverse

solutions. In the setting described here, so called feature functions constitute so called

behavioral niches and the goal is to find a high-performing solution for every niche. In

the model based quality diversity setting, both the objective function and all feature

functions are treated as black-box functions naturally calling for algorithms being em-

bedded within the Bayesian optimization framework. Seminal work is given by Kent

and Branke (2020) introducing the BOP-Elites algorithm which relies on probabilistic

surrogate models for both the objective function and feature function(s) and balances ex-

ploration and exploitation over niches by considering a novel acquisition function called

the expected joint improvement of elites.

In this thesis, BOP-Elites has been extended and investigated in the scenarios of

overlapping niches (i.e., not necessarily pairwise-disjoint), higher-dimensional domains,

multiple feature functions, as well as mixed domains. Throughout all extensions, BOP-

Elites yielded promising results. However, two findings are of central importance: First,

it is unclear whether a good performance of the surrogate(s) modeling the feature func-

tion(s) should be of higher interest than the performance of the surrogate modeling the

objective function. Looking at the simulation scenario of a mixed domain, results indi-

cate that the former might be of higher importance, i.e., if BOP-Elites cannot determine

the probability of a point belonging to a niche with high accuracy, the expected joint

improvement may result in non-optimal points being proposed leading to overall less

improvement as if the improvement of the point is under or overestimated. First, future

work should systematically investigate the effect of the performance of the different sur-

rogate models on the overall performance of BOP-Elites. Secondly, results regarding the

choice of acquisition function optimizer suggest that it might be possible to transfer the

benefit of simultaneous search in all niches, observed in the quality diversity literature

(Chatzilygeroudis et al., 2020; Mouret & Clune, 2015; Nguyen et al., 2015), to the model

based setting by using GAs with crossover that incorporate the best solution found for

each niche so far in a warm start setting (i.e., by including these points in the initial

population). Future work should examine this finding more comprehensively.

34

Looking at the current methodological state of BOP-Elites, several extensions could

be of central interest: First, BOP-Elites should be extended to handle a noisy objective

and/or feature function(s). Moreover, looking at determining the probability of a point

belonging to a niche based on the surrogate models’ predictions modeling the feature

functions, it could be fruitful to relax the assumption of independent feature functions.

For example, multi-output Gaussian processes could be used to jointly model all feature

functions and by exploiting the correlations between them could provide better predic-

tions (Bonilla, Chai, & Williams, 2008; Dai, Álvarez, & Lawrence, 2017; Moreno-Muñoz,

Artés, & Álvarez, 2018), allowing for a more precise derivation of the probability of a

point belonging to a niche. Moreover, multi-point proposal variants could be developed

which might exploit the existence of diverse niches for their proposals. In this context,

the derivation of novel acquisition functions would be useful. For example, entropy based

acquisition functions like entropy search (Hennig & Schuler, 2012), predictive entropy

search (Hernández-Lobato, Hoffman, & Ghahramani, 2014) or max-value entropy search

(Wang & Jegelka, 2017) could be adapted to the BOP-Elites setting.

On the NAS-Bench-301 surrogate benchmark, BOP-Elites was able to find a set of

high-performing yet diverse neural architectures of the DARTS search space with respect

to a pre-defined resource-related feature function and thereupon derived niches. This

is a novel application in the sense that no other (model based) quality diversity opti-

mization algorithm has yet been applied to NAS directly. Overall, BOP-Elites showed

good performance surpassing state-of-the-art NAS algorithms. In ablation studies, fo-

cus was given to the configuration of BOP-Elites showing that especially the choice of

the acquisition function optimizer is of high importance for NAS problems (at least for

NAS-Bench-301). Future work should generalize this finding to other NAS benchmarks.

Moreover, the capability of BOP-Elites to solve resource restricted NAS problems should

be examined in real applications including other feature functions such as number of

FLOPS, memory usage or energy usage during predict time.

35

6 Appendix

6.1 NAS-Bench-301 Ablation Study

6.1.1 BANANAS Configurations

In this section, results of an ablation study on the configuration of BANANAS (White

et al., 2019) and BOP-Elites (Kent & Branke, 2020) on NAS-Bench-301 are presented.

As introduced in Section 4, BANANAS is embedded within the Bayesian optimization

framework and uses an ensemble of feed-forward neural networks as a surrogate model

combined with path encoding of architectures. As an acquisition function, BANANAS

uses independent Thompson sampling which is optimized using a mutation algorithm

where the best architecture observed so far is selected and mutated in 100 different ways

by changing a single operation or edge randomly. As BOP-Elites initially performed

poorly on NAS-Bench-301, an ablation study on the configuration of BANANAS on

NAS-Bench-301 was conducted, aiming to answer the following question: Which con-

figuration of which components (surrogate model, path encoding, acquisition function,

acquisition function optimizer) leads to good performance of BANANAS on NAS-Bench-

301.

The general design is given as follows: Regarding the surrogate model and path encod-

ing, either a random forest (RF) with or without path encoding (Paths)1 or an ensemble

of feed-forward neural networks (NN) was used. The acquisition function was varied be-

tween independent Thomson sampling (ITS) and expected improvement (EI) and the

acquisition function optimizer was varied between the mutation algorithm described

above (Mut) and a simple random search where 1000 architectures are drawn uniformly

at random (RS). These variations were crossed in a full factorial design where applicable.

Ten architectures were sampled uniformly at random and evaluated as the initial design

points and all algorithms were run for 100 iterations.

Results are given in Figure 6.1 where the first facet shows the performance of the orig-

1in the case of no path encoding with some preprocessing where missing categorical values were imputed
with a new level “.missing”

36

Optimizer = Mut Optimizer = RS

0 25 50 75 0 25 50 75 0 25 50 75
93.75

94.00

94.25

94.50

94.75

Batch Number

M
ea

n
V

al
id

at
io

n
A

cc
ur

ac
y

±
S

E

Algorithm
BANANAS

EI + Paths + NN

EI + Paths + RF

EI + RF

ITS + Paths + NN

ITS + Paths + RF

ITS + RF

Random

Figure 6.1. Different BANANAS configurations on NAS-Bench-301. Mean validation accuracy.
Left facet: BANANAS and Random. Middle facet: Acquisition Function Optimizer Mut. Right
facet: Acquisition Function Optimizer RS. Ribbons represent standard errors. 20 replications.

inal BANANAS configuration and random search (as NAS method, Random) whereas

the second and third facet show the performance of the configurations listed above using

Mut or RS as the acquisition function optimizer. Note that ITS + Paths + NN + Mut

by design is a reimplementation of BANANAS. Summarizing the results, several effects

can be identified: Using independent Thompson sampling instead of expected improve-

ment only benefits configurations that rely on path encoding and especially those that

use mutation as the acquisition function optimizer. In general, using mutation as ac-

quisition function optimizer always results in a strong performance boost compared to

random search as acquisition function optimizer. Notably, BANANAS’ novel ensemble

of feed-forward neural networks together with path encoding only performs well if com-

bined with mutation as acquisition function optimizer and is otherwise outperformed

by Random. Moreover, the very simple configuration of a random forest as a surrogate

model, with no path encoding together with expected improvement that is optimized

using mutation performs similarly to the default BANANAS configuration. Table 6.1

presents results of a four-way ANOVA on the final performance of the algorithms out-

lined above (excluding BANANAS and Random) with respect to the factors surrogate

candidate, architecture encoding, acquisition function, and acquisition function opti-

mizer. The acquisition function optimizer is by far the most important determinant of

final performance.

37

Sum Sq Df F value Pr(>F)

Surrogate Candidate 0.35 1 18.58 0.0000

Architecture Encoding 0.37 1 20.11 0.0000

Acquisition Function 0.53 1 28.21 0.0000

Acq. F. Optimizer 10.84 1 582.31 0.0000

Residuals 4.38 235

Table 6.1. Different BANANAS configurations on NAS-Bench-301. Results of a four-way
ANOVA on the factors surrogate candidate, architecture encoding, acquisition function, and
acquisition function optimizer. Type II sums of squares.

Another small scale ablation study was conducted investigating the performance dif-

ference of BANANAS with respect to the acquisition function optimizers. Based on the

random forest surrogate model with no path encoding and expected improvement as

the acquisition function, three different acquisition function optimizers were compared:

Random search where 105 architectures are drawn uniformly at random (RS+), random

search where 1000 architectures are drawn uniformly at random (RS) and the mutation

algorithm (Mut) described above. Ten architectures were sampled uniformly at randomly

and evaluated as the initial design points and all algorithms were run for 100 iterations.

Results are given in Figure 6.2. As can be seen, Mut strongly outperforms even the RS+

optimizer.

To investigate whether the different acquisition function optimizers actually find better

solutions with respect to the inner optimization problem or whether the solutions simply

yield a better improvement regardless of the quality of solving the inner optimization

problem, the mean expected improvement and the actual improvement after evaluation

were calculated similarly as in Simulation 3. Here, the BO loop always relies on the

RS+ acquisition function optimizer, i.e., the next architecture to be evaluated is always

chosen based on the best solution provided by RS+ and the values for the different

acquisition function optimizers have to be interpreted in a “what if” scenario, i.e., what

improvement would the architecture proposed by Mut have yielded if the BO loop had

followed the Mut optimizer for the next iteration of the BO loop. Ten architectures

were sampled uniformly at random and evaluated as the initial design points and all

algorithms were run for 100 iterations. Results are given in Figure 6.3. Mut results in both

higher mean EI and mean actual improvement, i.e., Mut solves the inner optimization

problem better than the other optimizers and the evaluation of the solutions matches

the expected improvement with respect to the actual improvement observed. Notably,

38

94.00

94.25

94.50

94.75

0 25 50 75
Batch Number

M
ea

n
V

al
id

at
io

n
A

cc
ur

ac
y

±
S

E

Optimizer Mut RS RS+

Figure 6.2. Random forest surrogate model and expected improvement on NAS-Bench-301.
Different acquisition function optimizers. Mean validation accuracy. Ribbons represent stan-
dard errors. 20 replications.

Mut even strongly outperforms RS+, which is quite surprising given the fact that all that

Mut does is to mutate a random single operation or edge of the best architecture found

so far. This result hints at the fact that the DARTS search space may profit strongly

from local search variants (e.g., White, Nolen, and Savani 2020)

6.1.2 BOP-Elites Configurations

Based on the results of the ablation study above, BOP-Elites was configured using ran-

dom forests as a surrogate model (with some preprocessing where missing categorical

values were imputed with a new level “.missing”) due to its simplicity, lower compu-

tational effort but nevertheless good performance. The last configurable component

missing for the configuration of BOP-Elites on NAS-Bench-301 is given by the acqui-

sition function optimizer. Therefore, another small scale experiment was conducted

varying the acquisition function optimizer of the BOP-Elites algorithm. Five different

acquisition function optimizers were compared, namely: 1. Random search (RS) where

1000 architectures are drawn uniformly at random, 2 the mutation algorithm used by

BANANAS (MUT) adapted for the niche setting by sampling the niche for which the best

architecture observed so far should be mutated, 3. Mut where for every other iteration

(if n ≡ 0 (mod 2)) RS is used for the optimization (Mut Interleave), 4. an own custom

GA adapted for the niches setting (Mut/Cross) and 5. Mut/Cross where for every other

39

0.00

0.02

0.04

0.06

0.08

0 25 50 75
Iteration

M
ea

n
E

I

0.0

0.1

0.2

0.3

0.4

0.5

0 25 50 75
Iteration

M
ea

n
A

ct
ua

l I
m

pr
ov

em
en

t

Optimizer Mut RS RS+

Figure 6.3. Random forest surrogate model and expected improvement on NAS-Bench-301.
Different acquisition function optimizers. Mean EI / Mean actual improvement. Ribbons
represent 2.5% and 97.5% quantiles. 20 replications.

iteration (if n ≡ 0 (mod 2)) RS is used for the optimization (Mut/Cross Interleave).

Mut/Cross works as the following: The best architectures observed in each niche so far

are selected and a single operation or edge is mutated randomly in each architecture.

Disjoint pairs of parents are then selected at random and a single operation or edge that

is currently not mutated is selected randomly and crossover of this operation or edge is

performed with a probability of 0.5. This procedure is then repeated for the resulting

children until only a single child is left and the complete GA is repeated 100 times re-

sulting in 100 candidate architectures. Ten architectures were sampled randomly and

evaluated as the initial design points and the BOP-Elites algorithms was run for 150 it-

erations with the varying acquisition function optimizers listed above. Results are given

in Figure 6.4. Overall, results differ strongly depending on the choice of the acquisition

function optimizer. In general, RS and the random search interleaving variants (Mut

Interleave and Mut/Cross Interleave) perform well for the lower niches (especially

niche 1). In these niches, both Mut and Mut/Cross fail to lead to substantial performance

increase and stagnate similarly to BANANAS that is completely unaware of the feature

function and niches (see, e.g., Figure 4.2). In niches 3 to 5, the custom GAs outperform

the other optimizers and the crossover variation Mut/Cross manages to yield the highest

performance for niches 4 and 5. In order to have good performance with respect to all

niches it appears that interleaving random search as the acquisition function optimizer

40

Niche 1 Niche 2 Niche 3 Niche 4 Niche 5

0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

93.0

93.5

94.0

94.5

Batch Number

M
ea

n
V

al
id

at
io

n
A

cc
ur

ac
y

±
S

E

Optimizer Mut/Cross Mut/Cross Interleave Mut Mut Interleave RS

Figure 6.4. Configuration of BOP-Elites on NAS-Bench-301. Different acquisition function
optimizers. Mean validation accuracy. Ribbons represent standard errors. 100 replications.

(as done in Mut Interleave and Mut/Cross Interleave) is a must-have. A potential

explanation for the bad performance of Mut and Mut/Cross with respect to the lower

niches could be that these optimizers are biased for architectures with a higher number of

trainable parameters because these tend to yield a higher improvement in performance,

combined with an imprecise surrogate model prediction with respect to the feature func-

tion (therefore deriving the probability of an architecture belonging to a certain niche

could be inexact and the expected joint improvement of elites would then be determined

to a larger extent by the performance gain with respect to niches that cover a wider

range).

6.2 Computational Details

The BOP-Elites algorithm was implemented in R (R Core Team, 2020) within the mlr3

ecosystem relying on mlr3mbo (version 0.0.0.9999, Richter et al. 2021) and bbotk (version

0.3.0.9999, Becker, Richter, Lang, Bischl, and Binder 2021). Up-to date forks are avail-

able at https://github.com/sumny/mlr3mbo and https://github.com/sumny/bbotk.

Preprocessing pipelines were built using mlr3pipelines (version 0.3.0, Binder et al.

2020). Gaussian processes were used as implemented in the mlr3extralearners (Son-

abend & Schratz, 2020) package (version 0.1.1) wrapping DiceKriging::km (version

1.5.8; Roustant, Ginsbourger, and Deville 2012). Here, default hyperparameter val-

41

https://github.com/sumny/mlr3mbo
https://github.com/sumny/bbotk

ues were set except for nugget.stability = 1e-8. Random forests were used as

implemented in the mlr3extralearners package wrapping ranger::ranger (version

0.12.1; Wright and Ziegler 2017) with the following hyperparameter values: num.trees

= 500, se.method = "jack", respect.unordered.factors = "order", and addition-

ally min.node.size = 1 for the simulation studies. Regression trees were used as im-

plemented in mlr3 wrapping rpart::rpart (version 4.1-15; Therneau and Atkinson

2019) with no hyperparameters changes except for minbucket = 5. Regarding acquisi-

tion function optimizers, the Nelder-Mead implementation (NLOPT_LN_NELDERMEAD) of

NLopt (Johnson, 2021) was used as implemented in bbotk wrapping nloptr::nloptr

(version 1.2.2.2); random search was used as implemented in bbotk and mlr3mbo; genetic

algorithms were built using miesmuschel (Binder, 2021) version 0.0.0-9000. Additional

packages being used are: mlr3 (version 0.11.0; Lang et al. 2019), mlr3misc (version 0.7.0;

Lang and Schratz 2021), paradox (version 0.7.1; Lang and Schratz 2021), R6 (version

2.5.0; Chang 2020).

Python (Van Rossum & Drake Jr, 1995) 3.8.7 was used via the reticulate pack-

age (version 1.18; Ushey, Allaire, and Tang 2020) within R. For NAS-Bench-301, nas-

bench301 version 0.2 (Siems et al., 2020) was used relying on the xgb_v1.0 surrogate

model (deterministic) for the validation accuracy. The number of trainable model pa-

rameters of the architectures was determined by building the respective convolutional

neural network using DARTS (Liu et al., 2019) and looping over all cells and layers. Prior

to fitting the surrogate model, the number of trainable parameters was log-transformed.

The feed-forward ensemble of neural networks and path encoding as used by BANANAS

was directly adopted as implemented in naszilla (version 1.0; White, Neiswanger, et

al. 2020). BANANAS and random search (as a NAS method) were run using naszilla

employing the same nasbench301 setup as described above under Python 3.6.12 (due

to different module requirements). BANANAS was configured to update its surrogate

model after each iteration (instead of the default 10 iterations). Additional Python

modules required by nasbench301, DARTS or naszilla are not explicitly listed here.

Figures were created using the ggplot2 (Wickham, 2016) and ggpubr (Kassambara,

2020) packages (version 3.3.3 and 0.4.0). All computations were performed on 2 In-

tel© Xeon© E5-2650 v2 @ 2.60GHz CPUs each with 16 threads using R 4.0.3 under

Ubuntu 20.04.1 LTS. Parallelization in R was done via the future (Bengtsson, 2020)

and future.apply (Bengtsson, 2020) packages (version 1.21.0 and 1.7.0) on top of the

internal parallelization of the data.table (Dowle & Srinivasan, 2021) package (version

1.14.0). Numerical values were rounded based on the IEC 60559 standard.

42

6.2.1 NAS Best Practices Checklist

Here, answers are given to applicable questions of the NAS best practices checklist

(version 1.0), see Lindauer and Hutter (2019).

• for all NAS methods NAS-Bench-301 (nasbench301 version 0.2) was used relying

on the xgb_v1.0 surrogate model (deterministic) for the validation accuracy

• all computations were run on the same hardware (2 Intel© Xeon© E5-2650 v2 @

2.60GHz CPUs)

• ablation studies on the configuration of BANANAS and BOP-Elites on NAS-

Bench-301 were run and are reported in the appendix in Section 6.1

• the same evaluation protocol was used for all methods (for BANANAS and random

search niches were derived post hoc if needed)

• performance was compared with respect to the number of architecture evaluations

• random search was included as a NAS method

• multiple runs (either 20 or 100) were conducted; reproducibility with respect to

the BOP-Elites algorithm implemented in R is given due to an initial random seed

being set; regarding naszilla, no seed can be explicitly set

43

References

Audet, C., & Hare, W. (2017). Derivative-free and blackbox optimization. New York:

Springer.

Becker, M., Richter, J., Lang, M., Bischl, B., & Binder, M. (2021). bbotk: Black-

box optimization toolkit [Computer software manual]. (https://bbotk.mlr-org.com,

https://github.com/mlr-org/bbotk)

Bello, I., Zoph, B., Vasudevan, V., & Le, Q. V. (2017). Neural optimizer search with

reinforcement learning. In D. Precup & Y. W. Teh (Eds.), Proceedings of the 34th

international conference on machine learning (pp. 459–468).

Bengtsson, H. (2020). A unifying framework for parallel and distributed processing in R

using futures. arXiv:2008.00553 [cs.DG]. (Online; accessed 10 May 2021)

Binder, M. (2021). miesmuschel: Mixed integer evolutionary strategies [Computer

software manual]. Retrieved from https://github.com/mlr-org/miesmuschel

(R package version 0.0.0-9000)

Binder, M., Pfisterer, F., Schneider, L., Bischl, B., Lang, M., & Dandl, S.

(2020). mlr3pipelines: Preprocessing operators and pipelines for ’mlr3’ [Com-

puter software manual]. Retrieved from https://CRAN.R-project.org/package=

mlr3pipelines (R package version 0.3.0)

Bonilla, E. V., Chai, K., & Williams, C. (2008). Multi-task Gaussian process prediction.

In J. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.), Proceedings of the 20th

international conference on neural information processing systems (pp. 153–160).

Box, M. J. (1965). A new method of constrained optimization and a comparison with

other methods. The Computer Journal , 8 (1), 42–52.

Breiman, L. (2001). Random forests. Machine Learning , 45 (1), 5–32.

Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and

regression trees. Boca Raton: CRC Press.

Byrd, R. H., Lu, P., Nocedal, J., & Zhu, C. (1995). A limited memory algorithm for

bound constrained optimization. SIAM Journal on Scientific Computing , 16 (5),

1190–1208.

Cazenille, L., Bredeche, N., & Halloy, J. (2019). Automatic calibration of artificial neural

44

https://github.com/mlr-org/miesmuschel
https://CRAN.R-project.org/package=mlr3pipelines
https://CRAN.R-project.org/package=mlr3pipelines

networks for zebrafish collective behaviours using a quality diversity algorithm.

In U. Martinez-Hernandez et al. (Eds.), Conference on biomimetic and biohybrid

systems (pp. 38–50).

Chang, W. (2020). R6: Encapsulated classes with reference semantics [Computer soft-

ware manual]. Retrieved from https://CRAN.R-project.org/package=R6 (R

package version 2.5.0)

Chatzilygeroudis, K., Cully, A., Vassiliades, V., & Mouret, J.-B. (2020). Quality-diversity

optimization: A novel branch of stochastic optimization. arXiv:2012.04322 [cs.NE].

(Online; accessed 05 May 2021)

Clune, J., Misevic, D., Ofria, C., Lenski, R. E., Elena, S. F., & Sanjuán, R. (2008).

Natural selection fails to optimize mutation rates for long-term adaptation on

rugged fitness landscapes. PLoS Computational Biology , 4 (9), e1000187.

Costa, V., Lourenço, N., Correia, J., & Machado, P. (2020). Exploring the evolution of

GANs through quality diversity. In Proceedings of the 2020 genetic and evolution-

ary computation conference.

Cully, A., Clune, J., Tarapore, D., & Mouret, J.-B. (2015). Robots that can adapt like

animals. Nature, 521 (7553), 503–507.

Cully, A., & Mouret, J.-B. (2016). Evolving a behavioral repertoire for a walking robot.

Evolutionary Computation, 24 (1), 59–88.

Cully, A., Mouret, J.-B., & Doncieux, S. (2019). Quality-diversity optimisation algo-

rithms. https://quality-diversity.github.io/. (Online; accessed 07 April 2021)

Dai, Z., Álvarez, M., & Lawrence, N. (2017). Efficient modeling of latent information in

supervised learning using Gaussian processes. In I. Guyon et al. (Eds.), Proceedings

of the 31st international conference on neural information processing systems (pp.

5137–5145).

Dong, X., & Yang, Y. (2020). Nas-bench-201: Extending the scope of reproducible neural

architecture search. arXiv:2001.00326 [cs.CV]. (Online; accessed 30 April 2021)

Dowle, M., & Srinivasan, A. (2021). data.table: Extension of ‘data.frame‘ [Computer

software manual]. Retrieved from https://CRAN.R-project.org/package=data

.table (R package version 1.14.0)

Elsken, T., Metzen, J. H., & Hutter, F. (2019a). Efficient multi-objective neural ar-

chitecture search via Lamarckian evolution. In Proceedings of the international

conference on learning representations.

Elsken, T., Metzen, J. H., & Hutter, F. (2019b). Neural architecture search: A survey.

Journal of Machine Learning Research, 20 (55), 1–21.

Floreano, D., & Mattiussi, C. (2008). Bio-inspired artificial intelligence: Theories,

45

https://CRAN.R-project.org/package=R6
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=data.table

methods, and technologies. Cambridge: MIT press.

Gaier, A., Asteroth, A., & Mouret, J.-B. (2018). Data-efficient design exploration

through surrogate-assisted illumination. Evolutionary Computation, 26 (3), 381–

410.

Garrido-Merchán, E. C., & Hernández-Lobato, D. (2020). Dealing with categorical

and integer-valued variables in Bayesian optimization with Gaussian processes.

Neurocomputing , 380 , 20–35.

Hansen, N. (2016). The CMA evolution strategy: A tutorial. arXiv:1604.00772v1 [cs.LG].

(Online; accessed 07 April 2021)

Hennig, P., & Schuler, C. J. (2012). Entropy search for information-efficient global

optimization. Journal of Machine Learning Research, 13 (6).

Hernández-Lobato, J. M., Hoffman, M. W., & Ghahramani, Z. (2014). Predictive entropy

search for efficient global optimization of black-box functions. In Z. Ghahramani,

M. Welling, C. Cortes, N. Lawrence, & K. Q. Weinberger (Eds.), Proceedings of

the 27th international conference on neural information processing systems (pp.

918–926).

Horn, D., & Bischl, B. (2016). Multi-objective parameter configuration of machine

learning algorithms using model-based optimization. In A. Likas (Ed.), 2016 IEEE

symposium series on computational intelligence (SSCI) (pp. 1–8).

Hutter, F., Hoos, H., & Leyton-Brown, K. (2011). Sequential model-based optimization

for general algorithm configuration. In C. Coello (Ed.), Proceedings of the fifth

international conference on learning and intelligent optimization (pp. 507–523).

Hutter, F., Kotthoff, L., & Vanschoren, J. (Eds.). (2018). Automated machine learn-

ing: Methods, systems, challenges. New York: Springer. (In press, available at

http://automl.org/book)

Igel, C. (2005). Multi-objective model selection for support vector machines. In C. Coello,

A. Aguirre, & E. Zitzler (Eds.), Evolutionary multi-criterion optimization (pp.

534–546).

Jenatton, R., Archambeau, C., González, J., & Seeger, M. (2017). Bayesian optimization

with tree-structured dependencies. In D. Precup & Y. Teh (Eds.), Proceedings of

the 34th international conference on machine learning (pp. 1655–1664).

Jin, X., Wang, J., Slocum, J., Yang, M. H., Dai, S., Yan, S., & Feng, J. (2019). RC-

DARTS: resource constrained differentiable architecture search. arXiv:1912.12814

[cs.CV]. (Online; accessed 30 April 2021)

Johnson, S. G. (2021). The NLopt nonlinear-optimization package.

http://github.com/stevengj/nlopt.

46

Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of

expensive black-box functions. Journal of Global Optimization, 13 (4), 455–492.

Kassambara, A. (2020). ggpubr: ’ggplot2’ based publication ready plots [Computer soft-

ware manual]. Retrieved from https://CRAN.R-project.org/package=ggpubr

(R package version 0.4.0)

Kent, P., & Branke, J. (2020). BOP-Elites, a Bayesian optimisation algorithm for

quality-diversity search. arXiv:2005.04320 [math.OC]. (Online; accessed 07 April

2021)

Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using

genetic algorithms: A tutorial. Reliability Engineering & System Safety , 91 (9),

992–1007.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images (Tech.

Rep.). University of Toronto.

Lang, M., Binder, M., Richter, J., Schratz, P., Pfisterer, F., Coors, S., . . . Bischl, B.

(2019, dec). mlr3: A modern object-oriented machine learning framework in R.

Journal of Open Source Software.

Lang, M., & Schratz, P. (2021). mlr3misc: Helper functions for ’mlr3’ [Computer soft-

ware manual]. Retrieved from https://CRAN.R-project.org/package=mlr3misc

(R package version 0.7.0)

Lehman, J., & Stanley, K. O. (2011a). Abandoning objectives: Evolution through the

search for novelty alone. Evolutionary Computation, 19 (2), 189–223.

Lehman, J., & Stanley, K. O. (2011b). Evolving a diversity of virtual creatures through

novelty search and local competition. In N. Krasnogor (Ed.), Proceedings of the

13th annual conference on genetic and evolutionary computation (pp. 211–218).

Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Marben, J., Müller, P., &

Hutter, F. (2019). BOAH: A tool suite for multi-fidelity Bayesian optimization &

analysis of hyperparameters. arXiv:1908.06756 [cs.LG]. (Online; accessed 04 May

2021)

Lindauer, M., & Hutter, F. (2019). Best practices for scientific research on neural

architecture search. arXiv:1909.02453 [cs.LG]. (Online; accessed 10 May 2021)

Liu, H., Simonyan, K., & Yang, Y. (2019). DARTS: Differentiable architecture search.

In Proceedings of the international conference on learning representations.

Maclaurin, D., Duvenaud, D., & Adams, R. (2015). Gradient-based hyperparameter

optimization through reversible learning. In F. Bach & D. Blei (Eds.), Proceedings

of the 32nd international conference on machine learning (pp. 2113–2122).

Močkus, J. (1975). On Bayesian methods for seeking the extremum. In Optimization

47

https://CRAN.R-project.org/package=ggpubr
https://CRAN.R-project.org/package=mlr3misc

techniques IFIP technical conference (pp. 400–404).

Moreno-Muñoz, P., Artés, A., & Álvarez, M. (2018). Heterogeneous multi-output Gaus-

sian process prediction. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,

N. Cesa-Bianchi, & R. Garnett (Eds.), Proceedings of the 32nd international con-

ference on neural information processing systems (p. 6712—6721).

Mouret, J.-B., & Clune, J. (2015). Illuminating search spaces by mapping elites.

arXiv:1504.04909 [cs.AI]. (Online; accessed 07 April 2021)

Mouret, J.-B., & Maguire, G. (2020). Quality diversity for multi-task optimization. In

Proceedings of the 2020 annual conference on genetic and evolutionary computation

(pp. 121–129).

Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The

Computer Journal , 7 (4), 308–313.

Nguyen, A. M., Yosinski, J., & Clune, J. (2015). Innovation engines: Automated

creativity and improved stochastic optimization via deep learning. In Proceedings

of the 2015 annual conference on genetic and evolutionary computation (pp. 959–

966).

Nocedal, J., & Wright, S. (2006). Numerical optimization. New York: Springer.

Parker-Holder, J., Pacchiano, A., Choromanski, K., & Roberts, S. (2020). Effective

diversity in population based reinforcement learning. arXiv:2002.00632 [cs.LG].

(Online; accessed 07 May 2021)

Pham, H., Guan, M., Zoph, B., Le, Q., & Dean, J. (2018). Efficient neural architecture

search via parameters sharing. In J. Dy & A. Krause (Eds.), Proceedings of the

35th international conference on machine learning (pp. 4095–4104).

R Core Team. (2020). R: A language and environment for statistical comput-

ing [Computer software manual]. Vienna, Austria. Retrieved from https://

www.R-project.org/

Rasmussen, C. E., & Williams, C. (2006). Gaussian processes for machine learning.

Cambridge: MIT Press.

Real, E., Aggarwal, A., Huang, Y., & Le, Q. V. (2019). Regularized evolution for image

classifier architecture search. In Proceedings of the AAAI conference on artificial

intelligence (pp. 4780–4789).

Richter, J., Becker, M., Lang, M., Bischl, B., Binder, M., & Moosbauer, J. (2021).

mlr3mbo: Flexible Bayesian optimization in R [Computer software manual].

(https://mlr3mbo.mlr-org.com, https://github.com/mlr-org/mlr3mbo)

Roustant, O., Ginsbourger, D., & Deville, Y. (2012). DiceKriging, DiceOptim: Two R

packages for the analysis of computer experiments by kriging-based metamodeling

48

https://www.R-project.org/
https://www.R-project.org/

and optimization. Journal of Statistical Software, 51 (1), 1–55.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., & de Freitas, N. (2016). Taking

the human out of the loop: A review of Bayesian optimization. Proceedings of the

IEEE , 104 (1), 148-175.

Siems, J., Zimmer, L., Zela, A., Lukasik, J., Keuper, M., & Hutter, F. (2020). NAS-

Bench-301 and the case for surrogate benchmarks for neural architecture search.

arXiv:2008.09777 [cs.LG]. (Online; accessed 30 April 2021)

Sonabend, R., & Schratz, P. (2020). mlr3extralearners: Extra learners for mlr3 [Com-

puter software manual]. (R package version 0.1.1)

Springenberg, J. T., Klein, A., Falkner, S., & Hutter, F. (2016). Bayesian optimization

with robust Bayesian neural networks. In D. Lee, M. Sugiyama, U. Luxburg,

I. Guyon, & R. Garnett (Eds.), Proceedings of the 30th international conference

on neural information processing systems (pp. 4141–4149).

Stanley, K. O., Clune, J., Lehman, J., & Miikkulainen, R. (2019). Designing neural

networks through neuroevolution. Nature Machine Intelligence, 1 (1), 24–35.

Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting

topologies. Evolutionary Computation, 10 (2), 99–127.

Surjanovic, S., & Bingham, D. (2013). Virtual library of simulation experiments: Test

functions and datasets. https://www.sfu.ca/~ssurjano/shekel.html. (Online;

accessed 05 May 2021)

Therneau, T., & Atkinson, B. (2019). rpart: Recursive partitioning and regression trees

[Computer software manual]. Retrieved from https://CRAN.R-project.org/

package=rpart (R package version 4.1-15)

Urquhart, N., & Hart, E. (2018). Optimisation and illumination of a real-world work-

force scheduling and routing application (WSRP) via Map-Elites. In A. Auger,

C. M. Fonseca, N. Lourenço, M. P., L. Paquete, & D. Whitley (Eds.), Interna-

tional conference on parallel problem solving from nature (pp. 488–499).

Ushey, K., Allaire, J., & Tang, Y. (2020). reticulate: Interface to ’python’ [Com-

puter software manual]. Retrieved from https://CRAN.R-project.org/package=

reticulate (R package version 1.18)

Van Rossum, G., & Drake Jr, F. L. (1995). Python reference manual. Amsterdam:

Centrum voor Wiskunde en Informatica Amsterdam.

Wang, Z., & Jegelka, S. (2017). Max-value entropy search for efficient Bayesian opti-

mization. In D. Precup & Y. W. Teh (Eds.), Proceedings of the 34th international

conference on machine learning (pp. 3627–3635).

White, C., Neiswanger, W., Nolen, S., & Savani, Y. (2020). A study on encodings

49

https://www.sfu.ca/~ssurjano/shekel.html
https://CRAN.R-project.org/package=rpart
https://CRAN.R-project.org/package=rpart
https://CRAN.R-project.org/package=reticulate
https://CRAN.R-project.org/package=reticulate

for neural architecture search. In Proceedings of the 34th conference on neural

information processing systems.

White, C., Neiswanger, W., & Savani, Y. (2019). BANANAS: Bayesian optimization

with neural architectures for neural architecture search. arXiv:1910.11858 [cs.LG].

(Online; accessed 21 April 2021)

White, C., Nolen, S., & Savani, Y. (2020). Local search is state of the art for neu-

ral architecture search benchmarks. In ICML workshop on automatic machine

learning.

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. New York: Springer.

Retrieved from https://ggplot2.tidyverse.org

Wilson, J., Hutter, F., & Deisenroth, M. (2018). Maximizing acquisition functions for

Bayesian optimization. In S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman,

& C.-B. N. (Eds.), Proceedings of the 32nd international conference on neural

information processing systems (pp. 9906–9917).

Wright, M. N., & Ziegler, A. (2017). ranger: A fast implementation of random forests

for high dimensional data in C++ and R. Journal of Statistical Software, 77 (1),

1–17.

Xiong, Y., Mehta, R., & Singh, V. (2019). Resource constrained neural network archi-

tecture search: Will a submodularity assumption help? arXiv:1904.03786 [cs.CV].

(Online; accessed 30 April 2021)

Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., & Hutter, F. (2019). NAS-

Bench-101: Towards reproducible neural architecture search. In K. Chaudhuri

& R. Salakhutdinov (Eds.), Proceedings of the 36th international conference on

machine learning (pp. 7105–7114).

Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning transferable archi-

tectures for scalable image recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 8697–8710).

50

https://ggplot2.tidyverse.org

Declaration of Authorship

I hereby declare that I wrote this master’s thesis by myself without auxiliary means or

sources other than those indicated. All parts taken from published and unpublished

scripts are indicated as such. This master’s thesis has not been previously presented as

an examination paper in this or any other form.

Munich, May 20th, 2021,

(Lennart Schneider)

51

Stamp

	Introduction
	Theoretical Background
	Quality Diversity Optimization
	Bayesian Optimization
	BOP-Elites

	Simulation Studies
	Simulation 1: A Conceptual Replication of Kent & Branke (2020)
	Simulation 2: Extending Kent & Branke (2020)
	Simulation 3: Comparing Acquisition Function Optimizers
	Summary and Discussion

	Application Study
	General Discussion and Outlook
	Appendix
	NAS-Bench-301 Ablation Study
	Computational Details

