
Ludwig-Maximilians-Universität München
Department of Statistics

Master’s Thesis

Sequence to Sequence Models:
Knowledge Tracing with Deep Learning

Author:

Johannes Nawrath

Supervisor:

Prof. Dr. Christian Heumann

April 29, 2021

Statutory Declaration

I herewith declare that I have composed the present thesis myself and without use

of any other than the cited sources and aids. Sentences or parts of sentences quoted

literally are marked as such. Other references regarding the statement and scope are

indicated by full details of the publications concerned. The thesis in the same or similar

form has not been submitted to any examination body and has not been published. This

thesis was not, even in part, used in another examination or as a course performance.

Furthermore, I declare that the submitted written bound copies of the present thesis

and the version submitted on a data carrier are consistent with each other in contents.

Augsburg, 29.04.2021
Johannes Nawrath

I

Abstract

This thesis consists of two parts. At first, various methods of modeling sequential data

with neural networks are presented. The idea is to show the development of sequential

deep learning models over time. For this purpose, the problems of early approaches

are highlighted in order to better understand the methods in more modern solutions.

More precisely, the thesis starts off with simple recurrent neural networks and moves

on to gated recurrent units. Furthermore, attention mechanisms are discussed, which

ultimately result in the transformer architecture.

The second part of the thesis demonstrates that modern sequential deep learning models

can be applied successfully to the task of knowledge tracing, the ability to model the

knowledge of students over time, as they interact with coursework. Various model

configurations are trained on real world data from almost 400K students as part of a

competition on Kaggle. The models achieve state-of-the-art results and trump other

machine learning algorithms, which cannot exploit the sequential data structure well

enough.

II

Contents

Contents

1 Introduction 1

2 Machine Learning with (Time) Series 2

3 Recurrent Neural Networks 4

3.1 Backpropagation through Time . 6

3.2 Modern Architectures for Recurrent Neural Networks 10

3.2.1 Vanishing and Exploding Gradients 10

3.2.2 Long Short-Term Memory . 12

3.2.3 Gated Recurrent Units . 14

3.3 RNN Applications . 15

3.3.1 Bidirectional RNN’s . 15

3.3.2 Encoder-Decoder . 16

3.3.3 Attention-Mechanisms . 17

4 The Transformer 20

4.1 Self-Attention . 20

4.2 Multi Head Attention . 21

4.3 Transformer Architecture . 22

4.3.1 Positional Encoding . 23

5 Knowledge Tracing 25

5.1 Bayesian Knowledge Tracing . 25

5.2 Deep knowledge Tracing . 26

6 Riiid AIEd Challenge 2020 28

6.1 Dataset Description . 28

6.2 Problem Definition . 30

6.3 Preprocessing . 32

6.4 Sampling Strategy . 33

6.5 Input-representation . 34

6.6 Model Architectures . 35

6.6.1 Bidirectional GRU . 36

6.6.2 Transformer . 39

6.7 Training and Evaluation . 42

6.7.1 Evaluation Metric . 42

6.7.2 Optimization . 44

6.7.3 Hardware . 45

6.7.4 Ablation Study . 45

6.8 Winning solution . 47

III

List of Figures

7 Discussion and Outlook 48

8 Conclusion 50

List of Figures

1 Unfolding an RNN (Goodfellow et al. 2016, Chapter 10) 4

2 A simple feed forward network . 7

3 Backpropagation through time . 9

4 Error signal in an RNN . 11

5 Long Short-Term Memory Cell (graphic from Fan et al. (2020)) 13

6 Gated Recurrent Unit (graphic from (Jabreel & Moreno (2019)) 14

7 Different types of RNNs . 15

8 Bidirectional RNN . 16

9 Generating sequences with an RNN 1 17

10 Generating sequences with an RNN 2 17

11 User interactions over time . 30

12 Histogram of sequence lengths . 30

13 Average correctness over time . 30

14 Input representation . 35

15 Bidirectional Recurrent Network with Attention 36

16 Transformer model for Knowledge Tracing 39

17 Receiver operator characteristic curve and AUC 43

18 Winning solution (Jeon 2021) . 47

List of Tables

1 Exemplary input sequence . 31

2 Sampling strategy . 33

3 Hyper-parameters: Bidirectional GRU 38

4 Hyper-parameters: Transformer . 42

5 Contingency table . 42

6 Results Transformer . 46

7 Results Recurrent Network . 46

IV

1 Introduction

1 Introduction

According to the UNESCO Institute for Statistics, there have been about 258 million

children, who did not attend school in 2018. These children can not enjoy the personal-

ized learning experience of a well educated teacher, who knows the individual strengths

and weaknesses of each student. An approach to tackle these challenges in education

could be a fully automated learning system, based on large scale data bases and inno-

vative algorithms. Such systems would dramatically reduce the cost of education and

ease the access to personalized lectures and exercises. In addition to that, the Covid-19

outbreak in 2020 forced schools to shut down all around the globe and industrialized

countries like Germany learned the hard way, how beneficial an online tutoring system

could for keeping up the educational standard (Schipp 2021). A key element for these

systems is a task called knowledge tracing; the ability to accurately model students

knowledge over time, such that the learning material can be adjusted to the individual

needs of a student.

From a statistical modeling perspective, the progress of a user in an online tutoring

system generates sequential data, where each step is resembled by an exercise and its

corresponding response. The overall goal of knowledge tracing models is to predict,

whether a user will answer a specific question correctly, given a history of previous

question-response pairs. Since the available history varies widely among different users,

a key aspect of such models is the ability to handle sequences of variable length. This is

a feature, most machine learning algorithms do not support inherently. For this reason,

the thesis focuses on sequential deep learning models, that can process variable length

inputs.

The structure of the thesis is as follows. Section 2 gives a short introduction to

time series modeling with tabular machine learning algorithms. Section 3 covers the

fundamentals of recurrent neural networks and its modern generalizations, such as long

short-term memory cells (LSTM’s) and gated recurrent units (GRU’s). Furthermore,

the encoder-decoder architecture is described, that allows to model sequence to sequence

mappings of arbitrary and varying lengths. Attention mechanisms are introduced as an

improvement to these models and chapter 4 extends the idea to self-attention and the

well known Transformer architecture. Chapter 5 gives a short review of knowledge

tracing models and the theory is finally applied on real world data (Chapter 6), as part

of participation in the Riiid AIEd Challenge 2020 hosted on Kaggle1.

1Kaggle, a subsidiary of Google LLC, is an online community of data scientists. Companies can
post problems on the platform and machine learning practitioners compete to find state of the art
solutions, which are typically rewarded with cash prizes.

1

2 Machine Learning with (Time) Series

2 Machine Learning with (Time) Series

Sequential data is ubiquitous in many applications, that include but are not limited

to human speech recognition, weather forecasting or stock market analysis. The com-

mon characteristic of these examples is, that the data is observed at a finite number of

known (time) steps. More precisely, sequential data consists of a sequence of positions

t1, ..., tT , e.g days, months or simply the position of a word in a sentence, and a sequence

x(t1), ..., x(tT), where x(ti) can be a vector of arbitrary dimension, representing the ob-

servation at position ti. In the example of weather forecasting, the x(ti) might consist

of meteorological data, like the minimum and maximum temperature, the amount of

rainfall etc. Throughout this thesis, the notation is slightly abbreviated and it is sim-

ply written x = x1, ..., xT , to refer to a sequence with measurements at position t1, ..., tT .

There are two fundamentally different ways, in which sequential data arises (Löning

et al. 2019):

• (Multivariate) time series data: Two or more variables are observed over

time, representing different kinds of measurements within a single experimental

unit. E.g. the daily closing price of all stocks in the S&P 500.

• Panel data: Multiple independent instances of the same kinds of measurements

are observed, e.g. time series from multiple patients in a hospital.

For multivariate time series, the data is highly correlated and no i.i.d. assumption can

be made. The panel data setup corresponds to independent instances of multivariate

time series and therefore an i.i.d. assumption among different instances is plausible.

But note, that each instance might be a multivariate time series itself, for which the

assumption does not hold.

The amount of different time series generating scenarios is mirrored by the amount of

learning tasks applicable to such data. Two common tasks are (Löning et al. 2019):

• Time series regression/classification: N i.i.d. training instances of feature-

label pairs (xi, yi), i = 1, ...N are observed. Where xi = x1, ..., xT is a series of

values and for regression tasks yi ∈ R is a scalar value. For classification yi takes

a value from a finite set of categories. The goal is to learn a predictor f that can

accurately predict ŷ = f(x∗) for a new input sequence x∗

• Supervised/Panel forecasting: N i.i.d training instances (xi,yi), i = 1, ..., N

are observed, where xi = x1, ..., xT and yi = y1, ..., yT are both, possibly multi-

variate, time series. The task is to learn a forecaster f , that can make accurate

temporal forward predictions ŷT+1
i = f(xi,yi), where ŷT+1

i is the next value in

the series yi.

Time series regression/classification is basically the same as the usual tabular supervised

learning task, with the difference that the input features are time series. In contrast

2

2 Machine Learning with (Time) Series

to that, panel forecasting trains a model that predicts future values of a time series,

conditioned on its history and additional input features, which can be time series as

well.

The panel forecasting setup can be reduced to the simpler problem of time series re-

gression/classification by iterating over the output periods (Bontempi et al. 2012). For

two sequences y1, ..., yT and xt, ..., xT the goal is to learn a model f , such that for every

time step t = 1, ..., T :

ˆyt+1 = f(y1, ..., yt, x1, ..., xt) (2.1)

Which is the same formulation as in the time series regression/classification task, with

y1, ..., yt, x1, ..., xt as the multivariate time series and yt+1 as the target value. However,

there are two important differences: first, the i.i.d. assumption does not hold among

different time steps t in (2.1) and second, the sequence lengths of the source sequences

y1, ..., yt, x1, ..., xt grows with t. Hence, the amount of features varies at each step.

The violated i.i.d. assumption requires specialized validation strategies. A popular

method is rolling window cross validation (Hyndman & Athanasopoulos 2018, Chap-

ter 3), which ensures that the training set only consists of observations, which have

been made prior to the observations in the test set. More sophisticated procedures can

be found in (de Prado 2018, Chapter 7). These methods, share one similarity: They

require multiple models trained on different subsets of the training data. This makes

such approaches impracticable in the field of deep learning, due to the enormous com-

putational effort to train a single model, and are therefore out of scope of this thesis.

Typically, machine learning algorithms are designed to process an arbitrary, but fixed

amount of input features. This leads to a problem with the formulation in (2.1), where

the amount of input features grows with the sequence length. To overcome this prob-

lem, one needs to extract a fixed amount of features from the variable length input

sequences. An easy approach is to simply use the last n steps of the sequence as input

features, i.e.

ŷt = f(yt−1, ..., yt−n). (2.2)

In general, arbitrary engineered features can be used. For example moving averages

over different periods or other statistics of the input sequence. More sophisticated

approaches (Fulcher & Jones 2016) extract thousands of such features automatically.

The information is then compressed with dimension reduction methods and used as the

models input.

3

3 Recurrent Neural Networks

3 Recurrent Neural Networks

The ideas of the previous section can be applied directly to feed forward neural networks.

For example one could train a model with the values of time steps (t − 1), ..., (t − n)

as input nodes and step t as the target value. However, such a model could only gen-

eralize to sequences of length n. For tasks with approximately same sequence lengths,

this could be handled by padding the sequences to the same size. But for tasks such as

knowledge tracing (section 5), where the lengths vary between one and several thousand

time steps, this is not an appropriate approach. Another drawback is, that there are

separate parameters for every input position and the model would have to learn patterns

independently for every position.

Recurrent neural networks (RNN’s) use a more natural approach to model sequential

data. Instead of training a model that processes a fixed sized sequence all at once,

RNN’s intend to model transitions from one time step to the next. For this, a model f

is learned, that takes as input only the current time step xt ∈ Rd and a fixed size vector

ht−1 ∈ Ru, called the hidden/latent state, such that

ht = fθ([xt;ht−1]). (3.1)

For a finite amount of time steps, this recursion can be unfolded by applying the function

f repeatedly. For example for t = 3:

h3 = fθ([h2;x3])

= fθ([fθ([h1;x2]);x3])

= fθ([fθ([fθ([h0;x1]);x2]);x3])

(3.2)

Where h0 is a predefined initial state, that is usually set to 0.

Figure 1 shows the computational graph of equation (3.1) and its unrolled version in

(3.2). The recursion is displayed by a loop in the graph that can be unfolded, such that

every node is associated with one particular time step.

Figure 1: Unfolding an RNN (Goodfellow et al. 2016, Chapter 10)

4

3 Recurrent Neural Networks

This means, that the hidden state after t steps can be represented in two ways: By

a function ut of the whole past input sequence xt, xt−1, ..., x2, x1 and an initial state h0

or by a function f of the previous hidden state ht−1 and the current input xt:

ht = ut(xt, xt−1, ..., x2, x1) = f(ht−1, xt) (3.3)

Note, that the function ut is different for every time step but can be factorized into re-

peated application of the function f . This introduces two major advantages (Goodfellow

et al. 2016, Chapter 10):

1. The model is specified in terms of transitions from one hidden state to another.

This way, the input size is the same for all time steps.

2. The same function f with the same parameters is used at every time step.

This makes it possible to train a single model, that is shared across all time steps and

therefore generalizes to sequences of arbitrary length. Another benefit of this form of

parameter sharing is, that it requires far less training samples than training a model ut

for every time step.(Goodfellow et al. 2016, Chapter 10)

With this concept of parameter sharing, the forward pass of a recurrent neural network

can be formalized. For this, a reasonable representative example is used, where a input

sequence x is mapped to a corresponding output sequence o and a function L measures

the loss between o and the ground truth sequence y. In the following, the output

sequence is assumed to be binary and the loss function is set to the binary cross entropy.

This is a fairly general example and could be interpreted as predicting the probability

for rain, given a sequence of meteorological data or as the task of predicting, whether

the price of a stock moves upwards or downwards, given a history of past financial

information.

Let xi ∈ Rd be a d-dimensional input at every time step and yi ∈ {0, 1} the binary

output. Furthermore, W ∈ Rk×h is the hidden to hidden weight matrix, U ∈ Rk×d

is the input to hidden weight matrix and V ∈ R1×k are the hidden to output weights.

b ∈ Rk and c ∈ R are biases applied before each activation function. The forward pass of

such a recurrent neural network can then be summarized with a set of update equations,

that are applied at each time step:

at = b+Wht−1 + Uxt

ht = tanh(at)

ot = c+ V ht

ŷt = σ(ot)

(3.4)

The loss L for the whole sequence of length τ can then be computed as the sum of the

5

3.1 Backpropagation through Time

losses Lt over all time steps:

L({y1, ..., yτ}, {ŷ1, ..., ŷτ})

=
τ∑
i=1

 Lt(yt, ŷt)

=
τ∑
i=1

yilog(ŷi) + (1− yi)log(1− ŷi)

(3.5)

By computing the gradient of 3.5 with respect to the weight matrices and bias vectors,

the model can be trained using gradient descent and back-propagation trough time

(Werbos 1990).

3.1 Backpropagation through Time

The purpose of this section is to provide a high level understanding for computing the

gradients in recurrent neural networks. There are several algorithms for this task, for

example Real Time Recurrent Learning (Williams & Zipser 1989) and Backpropagation

Through Time (BPTT; Werbos (1990)). The following focuses on BPTT, because it is

a straight forward application of the back-propagation algorithm to the unfolded graph

of the recurrent network.

The back-propagation algorithm is obtained, by recursively applying the chain rule

of calculus, to calculate the derivative of a function that is formed as a composition of

other functions. Let x ∈ Rm, y ∈ Rn be two vectors and g : Rm → Rn, g : Rn → R two

real-valued functions. For y = g(x) and z = f(y), the chain rule yields the derivative of

z with respect to x:

∂z

∂xi
=
∑
j

∂z

∂yj

∂yj
∂yi

(3.6)

Consider a simple feed forward network with two input nodes, two hidden nodes and

an output node f . For the input-to-hidden weights wi,j , the hidden-to-output weights ui,

and the biases bi and c the forward pass for a single input example (x1, x2) is calculated

with

6

3.1 Backpropagation through Time

zin,1 = w1,1x1 + w2,1x2 + b1

zin,2 = w2,1x1 + w2,2x2 + b2

zout,1 = σ(zin,1)

zout,2 = σ(zin,2)

f = u1zout,1 + u2zout,2 + c

(3.7)

Figure 2: A simple feed forward network

Where σ is the logistic sigmoid function. Given a ground truth value y, the loss (L-2

loss) can be computed with respect to the networks output f :

L(y, f(x)) =
1

2
(y − f(x))2 (3.8)

The derivatives of L with respect to the weights wi,j , uj and biases bi, c yield the

information, in which direction a change in those parameters would affect the total loss.

Since the forward pass in (3.7) is nothing else than a composition of multiple functions,

the gradients can be obtained, by recursively applying the chain rule from (3.6):

∂L(y, f(x))

∂f
= y − f

∂L(y, f(x))

∂ui
=
∂L(y, f(x))

∂f

∂f

∂ui
= (y − f)zout,i

∂L(y, f(x))

∂c
=
∂L(y, f(x))

∂f

∂f

∂c
= (y − f)

∂L(y, f(x))

∂wi,j
=
∂L(y, f(x))

∂f

∂f

∂zout,j

∂zout,j
∂zin,j

∂zin,j
∂wi,j

= (y − f)ujσ(zin,j)(1− σ(zin,j))wi,j

∂L(y, f(x))

∂bj
=
∂L(y, f(x))

∂f

∂f

∂zout,j

∂zout,j
∂zin,j

∂zin,j
∂bj

= (y − f)ujσ(zin,j)(1− σ(zin,j))

(3.9)

Note, that some of these expressions, σ(zin,j) for instance, have already been computed

during the forward-pass. This means those values can be cached when feeding the data

through the network and can then be plugged in when computing the gradient. The

term back-propagation refers to the fact, that the gradients are computed backwards,

starting at the output layer. Consider the gradient for the input to hidden weights wi,j .

7

3.1 Backpropagation through Time

The terms for calculating these four gradients share two common expressions:

δj = (y − f)ujσ(zin,j)(1− σ(zin,j))

∂L(y, f(x))

∂wi,j
= δjwi,j

(3.10)

Therefore, the gradients can be computed very efficiently, by caching the intermediate

result δj and plugging it in multiple times. For this toy example this is only a minor

advantage, but for large networks with hundreds of hidden units and dozens of layers

this advantage is huge.

On the other hand, if the gradients were computed forwards, starting from the input

layer, the gradient for w1,1 and w2,1 would be calculated with

∂L(y, f(x))

∂w1,1
=

(((
∂zin,1
∂w1,1

∂zout,1
∂zin,1

)
∂f

∂zout,1

)
∂L(y, f(x))

∂f

)
∂L(y, f(x))

∂w2,1
=

(((
∂zin,j
∂w2,1

∂zout,1
∂zin,1

)
∂f

∂zout,1

)
∂L(y, f(x))

∂f

) (3.11)

This way, there would be no common expressions, that could be reused multiple times

and the computation of the gradients would be too inefficient to train large neural net-

works.

This very same procedure can be applied to the unfolded computational graph of a re-

current neural network. Reconsider the forward pass of the RNN described by the equa-

tions in 3.4. The goal is to derive the gradients of the loss function L({y1, ..., yτ}, {x1, ..., xτ})
in 3.5 with respect to the weight matrices W,U, V and the biases b, c.

In the following, the gradients are derived as in Goodfellow et al. (2016), starting at the

loss Lt of each output node:

∂L

∂Lt
=

∂

∂Lt

τ∑
i=1

Lt(yt, ŷt) = 1 (3.12)

The gradients of each output node ot can be computed:

∂L

∂ot
=

∂L

∂Lt

∂Lt
∂ôt

= (yt − ot) (3.13)

At the final time step τ , the gradient with respect to hτ is simply

∇hτL = V T ∂L

∂oτ
, (3.14)

because the only descendent of hτ is oτ . From there the gradients with respect to the

hidden states at time steps t < τ can be obtained by back-propagating the gradients

8

3.1 Backpropagation through Time

Figure 3: Backpropagation through time

through time from t = τ − 1 to t = 1. The difference to the gradient in 3.14 is, that for

t < τ the descendents of ht are ot and ht+1. The gradient is thus given by

∇htL =

(
∂ht+1

∂ht

)T
(∇ht+1L) +

(
∂ot
∂ht

)T
(∇otL)

= W Tdiag(1− (ht+1)2)(∇ht+1L) + V T (∇otL).

(3.15)

Where diag(1 − (ht+1)2) is a diagonal matrix of the hidden states at t + 1, that is the

Jacobian matrix of the hyperbolic tangent. With these results, the gradients for the

weight matrices and bias vectors can be computed as the sum of the gradients at each

time step:

9

3.2 Modern Architectures for Recurrent Neural Networks

∇cL =
∑
t

(
∂ot
∂c

)
∇otL =

∑
t

∇otL

∇bL =
∑
t

(
∂ht
∂bt

)
∇htL =

∑
t

diag(1− (h2
t))∇htL

∇V L =
∑
t

(
∂L

∂ot

)
∇vtot =

∑
t

(∇otL)hTt

∇WL =
∑
t

∑
i

(
∂L

∂h
(i)
t

)
∇wthit =

∑
t

diag(1− (ht)
2)(∇htL)hTt−1

∇UL =
∑
t

∑
i

(
∂L

∂h
(i)
t

)
∇Uth

(i)
t

(3.16)

3.2 Modern Architectures for Recurrent Neural Networks

Recurrent neural networks are a powerful model class for sequential data. Similar to the

universal approximation theorem for feed forward networks (Hornik et al. 1989), RNN’s

can approximate any measurable sequence-to-sequence mapping to arbitrary accuracy

(Hammer 2000). This means, that in theory RNN’s can learn dependencies among po-

sitions in the input and output sequence, no matter how far the distance between those

positions. In practice however, it is a difficult task to learn such long-term dependencies

with gradient descent and back-propagation through time (Bengio et al. 1994). The rea-

son for this is that the gradients tend to either explode or vanish, the further they are

propagated back through time. Modern architectures use gating mechanisms within the

hidden state updates, to overcome this problem. In this section two popular gated re-

current units are introduced: long short-term memory models and gated recurrent units.

3.2.1 Vanishing and Exploding Gradients

Consider the following unfolded recurrent network, that produces a single output after

processing a sequence of length τ .

10

3.2 Modern Architectures for Recurrent Neural Networks

Figure 4: Error signal in an RNN

To train this network, the loss-gradient with respect to the weight matrices U , W and

V has to be computed. At one step during the recursive application of the chain-rule,

the gradient with respect to the first hidden state output h1 will be required:

∇h1L =
∂L

∂hτ

∂hτ
∂hτ−1

· · · ∂h2

∂h1
(3.17)

with

ht+1 = f(b+Wht−1 + Uxt), (3.18)

where f is a differentiable activation function, usually the logistic sigmoid function or

the hyperbolic tangent. The gradient in 3.17 is then:

∂hτ
∂hτ−1

= diag(f ′(Whτ−1 +Wxτ + b))W = Dτ−1W

∂hτ−1

∂hτ−2
= diag(f ′(Whτ−2 +Wxτ−1 + b))W = Dτ−2W

...

∂h2

∂h1
= diag(f ′(Wh1 +Wx2 + b))W = D1W

∂L

∂h1
=

∂L

∂hτ
Dτ−1Dτ−2...D1W

τ−1

(3.19)

Therefore, the gradient at any time step t will contain the term W t−1. In the one-

11

3.2 Modern Architectures for Recurrent Neural Networks

dimensional case, where W is a scalar value, it is clear that W t−1 will explode for

W > 1 and vanish for W < 1, for large values of t. In case W is a k × k dimensional

matrix, suppose there exists an eigendecomposition, such that W = QΛQ−1, where Λ

is diagonal matrix of eigenvalues. The term W t−1 can then be simplified to

W t−1 = QΛt−1Q−1. (3.20)

Since Λ is a diagonal matrix with values λi, Λt−1 is also diagonal with values λt−1
i , for

i = 1, ..., k. If λmax = max
i
λi is larger than 1, the gradient in 3.19 will grow exponen-

tially. On the other hand, if λmax < 1, all diagonal values λi will shrink to zero and

thus the gradient will vanish for long term dependencies.

A effective method to avoid exploding gradients is called gradient clipping (Pascanu

et al. 2013). This mechanism rescales the gradient∇Θ, if its norm exceeds a certain

threshold:

∇Θ =

{
threshold
||∇Θ|| ∇Θ, || ∇Θ ||> threshold

∇Θ, else
(3.21)

This is a simple to implement and computationally efficient method, with one addi-

tional hyper-parameter, the threshold. A good heuristic for setting this parameter is

to calculate a sufficient larger number of gradients and look at statistics of the average

norm (Pascanu et al. 2013).

The problem of vanishing gradients, however, can not be solved that easily and a lot

of research in that area has been made (e.g. Hochreiter (1998), Bengio et al. (1994)).

Modern approaches to this problem use modified recurrent architectures such as long

short term memory (Hochreiter & Schmidhuber 1997) models and gated recurrent units

(Cho et al. 2014), which will be highlighted in the next sections.

3.2.2 Long Short-Term Memory

Long short term memory networks (LSTM’s; Hochreiter & Schmidhuber (1997)) were

one of the earliest approaches to address the difficulty of learning long term depen-

dencies. LSTM’s introduce gated memory cells for the recurrent units, that allow the

model to decide, whether inputs from previous hidden states should be remembered or

ignored. While the original architecture did not include a forget gate, in the following

the widely used implementation in Gers et al. (2000) is described. A LSTM-cell consists

of an input gate, a forget gate and an output gate, followed by some element-wise oper-

ations. A major difference, to the simple recurrent cell in (3.4) is the introduction of an

additional variable, the cell state st. In contrast to the hidden outputs ht at each step,

the cell states are purely internal and are not passed to subsequent layers of the network.

12

3.2 Modern Architectures for Recurrent Neural Networks

Let xt ∈ Rk be the input, ht ∈ Rd the hidden state and ct ∈ Rd the cell state

at time step t, with h0 = c0 = 0. For learnable weight matrices and bias vectors

Wj , Uj , bj , j ∈ {f, i, o, s}, the update equations at each time step are:

ft = σ(Wfxt + Ufht−1 + bf)

it = σ(Wixt + Uiht−1 + bi)

ot = σ(Woxt + Uoht−1 + bo)

c̃t = tanh(Wsxt + Usht−1 + bs)

ct = ft � ct−1 + it � c̃t
ht = ot � tanh(ct)

(3.22)

Figure 5: Long Short-Term Memory Cell (graphic from Fan et al. (2020))

There are three gates, the forget gate ft ∈ Rd, the input gate it ∈ Rd and the output

gate ot ∈ Rd. These gates are small feed-forward networks itself, that operate on the

previous hidden state ht−1 and the current input xt. Each has its own set of weight

matrices and bias vectors.

The forget-gate learns which components of the previous cell-state ct−1 should be for-

gotten. Mathematically, this is achieved by multiplying every dimension of ct−1 ∈ Rd

with the output of the forget gate ft ∈ Rd. Since the forget gate uses a sigmoid activa-

tion, the values are between 0 and 1, where 0 means that the cell state at this position

is fully removed, and 1 means the state is kept unchanged.

After the decision, which old information should be removed from memory, the next

step focuses on the new information that should be added to the models state. For this,

the new cell state candidate c̃t is computed by a feed forward network, that uses the

13

3.2 Modern Architectures for Recurrent Neural Networks

hyperbolic tangent as activation, i.e. the output values are between −1 and 1.

Depending on the last hidden state ht−1 and the current input xt the forget gate decides,

which information from c̃t should be added to the new cell state ct. The procedure is

the same as in the forget gate: The output of the input gate are values between 0 and

1, that indicate how much of c̃t is actually used for the new cell state ct.

The final output of the LSTM ht is the hyperbolic tangent of the new cell state ct, that

is filtered by the output gate ot. This is again implemented by a element-wise product

with values between 0 and 1.

3.2.3 Gated Recurrent Units

Gated recurrent units (GRU’s) were introduced by Cho et al. (2014) and have become

a widely used alternative to LSTM networks (e.g. Ravanelli et al. (2018)). Similar

to LSTM’s, GRU’s control the flow of information with gating mechanisms. The key

difference is, that GRU’s do not rely on an internal cell state st. Therefore GRU’s have

less parameters than LSTM’s and can be trained faster.

Figure 6: Gated Recurrent Unit (graphic from (Jabreel & Moreno (2019))

Let xt ∈ Rk be the input and ht ∈ Rd the hidden state at time step t, with h0 = 0. For

learnable weight matrices and bias vectors Wj , Uj , bj , j ∈ {z, r, h}, the update equations

at each time step are:

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

h̃t = φ(Whxt + Uh(rt � ht−1) + bh)

ht = (1− zt)� ht−1 + zt � h̃t

(3.23)

14

3.3 RNN Applications

The candidate vector h̃t for a new hidden state is obtained, similar as in the simple

RNN, by a feed forward network of the previous hidden state ht−1 and the current in-

put xt. The difference is, that the reset gate rt decides which information of ht−1 should

be removed, by an element-wise multiplication with values between 0 and 1. The final

output is then a element-wise convex combination between the previous hidden state

ht−1 and the candidate vector h̃t. Where each coefficient of the convex combination is

the output of the update gate zt, a feed forward network with a sigmoid activation.

3.3 RNN Applications

The concepts discussed so far cover the basic building blocks of recurrent neural net-

works, that are necessary to process sequences of variable length. Furthermore, the

modification of the recurrent cells with gating mechanisms enables RNN’s to learn long

term dependencies. These models can already be used in a wide range of tasks, e.g.

document classification or time series forecasting. However, they are still limited to two

cases: either they produce an output for every time step of the input sequence or they

produce only a single output for the whole sequence. Additionally, the flow of informa-

tion is limited to one direction: The input sequence is processed from left to right.

Figure 7: Different types of RNNs

3.3.1 Bidirectional RNN’s

The recurrent neural networks covered so far, have one thing in common: The hidden

state output at each time step is computed in a causal order, i.e. the output at step t

only depends on inputs up to step t. Depending on the task however, this might not be

the best approach. For example, consider a model for speech recognition (Graves et al.

2013). A correct interpretation of the current sound may be difficult, due to indistinct

pronunciation or an ambiguous meaning of a specific word. Humans can easily bridge

such uncertainties by inferring the correct interpretation from future context. Bidirec-

15

3.3 RNN Applications

tional recurrent neural networks were invented by Schuster & Paliwal (1997) to address

this issue.

As the name suggests, bidirectional RNN’s generalize recurrent neural networks to op-

erate in two directions. For this there are two separate RNN’s. One processes the

inputs in the forward direction from x1 to xτ , computing a sequence of hidden state

h1, ..., hτ and the other one in the backward direction from xτ to x1 computing another

sequence of hidden states h̃τ , ..., h̃1. Both sequences of hidden states are then merged

by e.g. concatenation and the output at each step contains information about the whole

sequence.

Figure 8: Bidirectional RNN

3.3.2 Encoder-Decoder

Cho et al. (2014) introduced the so called Encoder-Decoder architecture, that makes it

possible to condition a variable length sequence on yet another variable length sequence.

The architecture consists of two components. The encoder maps a variable length se-

quence to a fixed sized vector and the decoder takes this fixed sized vector and generates

the output sequence from it. A popular application for such models is neural machine

translation, since the amount of words in a sentence may vary among different languages.

The encoder consists of an RNN, that reads a input sequence x1, ..., xT , and generates

a hidden state at each step. Eventually, the last hidden state hT depends on the whole

input sequence and can be interpreted as a fixed sized summary, also called the context

vector c, of the variable length input sequence. The decoder consists of another RNN,

that is trained to generate the output sequence y1, ..., YT ′ , solely based on the context

vector and the already predicted values.

There are several options, how a sequence can be generated from the context vector

16

3.3 RNN Applications

c. Figure 9 illustrates the approach proposed by Sutskever et al. (2014). The context

vector is used as the initial state of the decoder RNN and the input at the first position

is a special start token ST . Note, that this requires the context vector dimension and

the hidden state dimension to be equal.

Figure 9: Generating sequences with an RNN 1

A different method (Cho et al. (2014); figure 10) is to use the context vector as

additional input at every position. This can for example be achieved by a simple con-

catenation of the context vector and the input at the current position. Note, that for

concatenation the dimensions of context vector and input vectors have to match.

Figure 10: Generating sequences with an RNN 2

The main difference between both methods is, that the second approach uses the

context vector at every position. This leaves room for improvement by adjusting the

context vector at every time step.

3.3.3 Attention-Mechanisms

The psychological concept of attention refers to a bottleneck in the amount of data, the

human brain can process at a time. In human vision for example, less than 1% of the

visual input data can enter this bottleneck. The reason why this is not an obstacle,

is that humans can easily shift their attention to different things for different tasks.

(Zhaoping 2014, Chapter 1)

17

3.3 RNN Applications

The idea of attention mechanisms in neural networks (Bahdanau et al. 2015) is similar:

The network has access to a huge amount of time steps, from which it selectively chooses

those, which are relevant to make the next prediction.

Reconsider the Encoder-Decoder architecture from the previous section. From a prob-

abilistic perspective, such a model learns the conditional distribution of a variable length

sequence y = y1, ..., yT given another variable length sequence x = x1, ..., xT ′ :

p(y1, ..., yT ′ |x1, ..., xT) (3.24)

It is important to note, that the lengths T and T ′ of these sequences may differ. The

Encoder-RNN compresses the input sequence x to a context vector c of fixed size. The

Decoder-RNN is trained to predict the next entry yi of the target sequence, given the

context vector c and the predictions y1, ..., yi−1 made so far.

The use of a fixed sized representation of a variable length input sequence introduces a

bottleneck in the network architecture, that makes it difficult to capture all the relevant

information of long sequences (Goodfellow et al. 2016, Chapter 12). Cho et al. (2014)

and Sutskever et al. (2014) could partially overcome this problem, by increasing the

model size in terms of parameters and the context vector dimension. This approach

however, is not very efficient and does not solve the problem in a fundamental way.

Bahdanau et al. (2015) proposed attention mechanisms to address this issue.

Let x = x1, ..., xT and y = y1, ..., yT ′ be the input and target sequence, respectively.

The encoders output is then enc(x) = h1, ..., hT . Using the method from Figure 10, the

attention mechanism at every decoding time step i works as follows:

1. Initialize the decoders hidden state s0 (e.g. with the last hidden state of the

encoder)

2. Compute an alignment score between the previous decoder hidden si−1 state and

every position of the encoders output h1, ..., hT :

scoreij = align(si−1, hj) (3.25)

3. Normalization of the scores with the softmax function:

αij =
exp(scoreij)∑T
k=1 exp(scoreik)

, (3.26)

4. The context vector at decoding step i is then obtained by a weighted sum of the

18

3.3 RNN Applications

encoder outputs hj with the normalized scores αij :

ci =

T∑
j=1

αijhj (3.27)

5. The input to the decoder at step i is then the concatenation of the context vector

ci and the previous decoder output, along with the decoders previous hidden state.

In the original paper (Bahdanau et al. 2015), the alignment model in step 2 is a simple

feed forward network with a hyperbolic tangent activation

align(si−1, hj) =
∑

tanh(Wssi−1 +Whhj). (3.28)

where the sum reduces the output to a scalar value, i.e. a score that represents the

relevance of the source sequence position j with respect to the target position i. This

type of attention is often referred to as additive attention or Bahdanau-style attention.

19

4 The Transformer

4 The Transformer

The models in Chapter 3 relied on recurrent neural networks, that sequentially process

a sequence of inputs x1, ..., xT and output a sequence of hidden states h1, ..., hT , that

capture the relevant information. Furthermore, attention mechanisms were introduced

to allow the model to search for relevant information in the hidden states when making

predictions. Vaswani et al. (2017) proposed a novel architecture, that dispenses recur-

rent neural networks entirely, by relying solely on attention mechanisms.

4.1 Self-Attention

The attention mechanism in section 3.3.3 was used to align positions in a source se-

quence with positions in a corresponding target sequence. Self-attention (sometimes

called intra-attention; Cheng et al. (2016)) refers to the very same mechanism, that is

used to align different positions within a single sequence.

For a sequence x = x1, ..., xT , the self-attention mechanism computes a vector of

normalized scores of the same length T for every time step i = 1, ..., T of the input

sequence. Resulting in a T × T matrix A, where the entries αij are weights, that

represent how well position i aligns with position j:

A =

α11, α12, ..., α1T

...

αT1, αT2, ..., αTT

 =

softmax(f(x1, x1), f(x1, x2), · · · , f(x1, xT))

...

softmax(f(xT , x1), f(xT , x2), · · · , f(xT , xT))

(4.1)

f can be an arbitrary function, that maps two same sized vectors to a scalar value. In

practice, this function should be easy to compute and somehow represent the similarity

between two vectors. It is important to note, that the T ×T matrix A in 4.1 is obtained

by repeated application of the same function f on different positions of the input se-

quence.

The matrix A can then be multiplied with the input sequence x, such that

Ax =

α11x1 + α12x2 + · · ·+ α1TxT

...

αT1x1 + αT2x2 + · · ·+ αTTxT

 (4.2)

is of the same length as the original input sequence x1, .., xT , and each position contains

information about the whole sequence.

20

4.2 Multi Head Attention

This approach allows to process sequences of variable length such as the recurrent

neural network. However, self-attention works in a fundamentally different way. For

RNN’s the basic idea is to model the transition between two consecutive positions in a

sequence for which the same parameters can be used at every time step. Self-attention

shares the same function as well, but instead of focusing on transitions, the similar-

ity between two arbitrary positions is used to produce an output, that incorporates

positions from the whole sequence. More precisely, the output at every position is a

weighted sum of all other sequence positions, with weights obtained by a model f .

This reflects still a difference to unidirectional RNN’s, where the output at position

t does only depend on earlier positions 1, ..., t − 1. Fortunately, the solution for this

problem is quite simple. Every score f(xi, xj) represents the similarity between position

i and j. Therefore, positions that are not allowed to attend to each other can be masked

out by setting f(xi, xj) = −∞ and the softmax operation will push the corresponding

weights αij to zero. This allows the model to maintain a causal order in the output

sequence.

4.2 Multi Head Attention

Vaswani et al. (2017) rephrased attention mechanisms with the concept of query key

and value, which has been widely adopted by many researchers and commercial software

implementations. An attention function can then be described as mapping a query and

a set of key-value pairs to an output. The output is a weighted sum of the values, with

weights obtained by a compatibility function of the query and keys.

The particular attention function used in the Transformer is called scaled dot product

attention. This mechanism takes matrices of queries Q ∈ RT×dk , keys K ∈ RS×dk and

values V ∈ RS×dv as input. In terms of sequential data, the rows represent time steps

and the columns represent the multidimensional observations at every position. An

alignment score is computed, that determines how well the i-th row of Q matches the

j-th row of K, by computing the dot products of all rows in Q with all rows in K.

These scores are then divided by
√
dk and normalized with the softmax function. The

final output is then the values weighted by the normalized scores:

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V (4.3)

This is essentially the same as in Luong et al. (2015), except for the scaling factor 1√
dk

.

Vaswani et al. (2017) suspect, that the dot product can grow large in magnitude for

large values of dk, pushing the softmax into regions with extremely small gradients. A

more probabilistic view is the following: Assume, that the entries of q and k are inde-

pendent random variables with mean 0 and variance 1. The dot product
∑dk

i=1 qiki then

21

4.3 Transformer Architecture

has a variance of dk. Thus, the scaling factor counteracts the growing variance.

The idea of scaled dot product is extended to a mechanism called multi-head attention

(Vaswani et al. 2017). For this, the key, value and query vectors are linearly projected

to h separate vectors of dimension d̃k for queries and keys and dimension d̃v for the

values. On each of these projections the scaled dot product attention is performed in

parallel, yielding h output values of dimension d̃v. These outputs are then concatenated

and again linearly projected.

Let Q ∈ RT×dq , K ∈ RS×dkand V ∈ RS×dv be the queries, keys and values. For learnable

weight matrices W i
Q ∈ Rdq×d̃q , W i

K ∈ Rdk×d̃v , W i
V ∈ Rdv×d̃k and Wout ∈ Rhd̃v×dv the

multi-head attention is computed as

MultiHead(Q,K, V) = Concat(head1, ..., headh)Wout,

with headi = Attention(QW i
Q,KW

i
K , V W

i
V).

(4.4)

The intuition of multi headed attention is, that each attention head can specialize to

specific tasks. For example, one head could focus on the immediate neighborhood,

while another one captures long term dependencies. In practice, the dimension of each

attention head is coupled to the amount of heads, such that the computational effort

stays roughly the same.

4.3 Transformer Architecture

The transformer architecture (Vaswani et al. 2017) is similar to the recurrent Encoder-

Decoder with attention mechanisms described in section 3.3.2 and 3.3.3, with the dif-

ference, that RNN’s are replaced with self-attention. The encoder processes an input

sequence x = x1, ..., xT of variable length and outputs a sequence of the same length

h1, ..., hT . Each hi depends on xi and, depending on the masking strategy, arbitrary

additional time steps xj , j ∈ {1, ..., T}. Note, that this is a difference to RNN’s, where

each hi depends on all previous time steps (or the whole sequence in case of bidirec-

tional RNN’s). Another difference is, that the there are (possibly) multiple attention

mechanisms, that align the encoders output with the target sequence.

The encoder of the transformer is composed of N identical layers. Each layer consists

of a multi-head self-attention mechanism followed by a fully connected feed forward

network. Both sub-layers are followed by a normalization layer and skip-connections

22

4.3 Transformer Architecture

(He et al. 2016) are employed around them. The output of the encoder is computed as:

ãtt = MultiHead(X,X,X)

att = Normalization(ãtt+X)

ffn = feedforward(att)

output = Normalization(att+ ffn)

(4.5)

For the first layer, the input is the matrix X ∈ RT×d containing the input sequence,

i.e. one row represents one d-dimensional time step. And for the subsequent layers,

the input is the output of the previous layer. The multi-head attention is computed

as in (4.4). Normalization corresponds to Layer Normalization as in Ba et al. (2016).

In contrast to Batch Normalization (Ioffe & Szegedy 2015), which is commonly used

in computer vision models, the normalization is applied for each example in a batch

independently. The feed-forward network is a simple fully connected network with one

hidden layer.

Likewise, the decoder consists of N identical layers, which are slightly more complex.

Self-attention is computed along the decoders input sequence. The output is fed as

query to another multi-head attention mechanism with key and value from the encoders

output:

˜att1 = MultiHead(Y, Y, Y)

att1 = Normalization(˜att1 + Y)

˜att2 = MultiHead(att1, encout, encout)

att2 = Normalization(˜att2 + att1)

ffn = feedforward(att2)

output = Normalization(ffn+ att2)

(4.6)

The input to the first layer is the input sequence y1, ..., yT and the subsequent layers

take the output of the previous layer as input. The key and value in the second attention

mechanism are identically set to the encoder output in every layer. This means, that

the final output of the decoder layer would be just a weighted sum of the encoders

output, if it weren’t for the skip connections. This gives the residual connections a

greater meaning than just stabilizing the gradients.

4.3.1 Positional Encoding

In contrast to recurrent neural networks, the transformer architecture does not explicitly

model the absolute or relative positions in the input sequences. At each time step,

the transformer maps the query against all keys and produces a weighted sum of the

corresponding values. This means, that a random permutation of the input positions

23

4.3 Transformer Architecture

would result in the exact same output values, except for that permutation. To overcome

this problem, the positional information about every time step has to be encoded in the

input sequence. There are two major approaches for creating such positional encodings:

Learned encodings, that are trained jointly with the model and fixed encodings, that

are computed with a predefined function of the absolute position in the sequence.

Vaswani et al. (2017) propose a fixed encoding of sine and cosine functions of different

frequencies, that are:

PE(pos, 2i) = sin(
pos

100002i/dmodel
)

PE(pos, 2i+ 1) = cos(
pos

100002i/dmodel
)

(4.7)

where pos is the absolute position in the sequence and i corresponds to the dimension

of the input sequence. These encodings are then simply added to the models input

sequences.

24

5 Knowledge Tracing

5 Knowledge Tracing

Computer-assisted education promises a personalized learning experience, which is inde-

pendent of well educated teachers or nearby educational institutions. Especially for the

258 million children, that were not attending school in 2020, such systems would reduce

the minimal requirements for education to a reliable internet connection. In addition

to that, the covid-19 pandemic highlighted, how beneficial such systems are even in

industrialized countries that struggled with keeping up the educational standard, when

schools were forced to shut down.

Knowledge Tracing is the task of modeling students knowledge over time, as they in-

teract with coursework. More precisely, such models predict how well a student will

perform on a specific task, given the history of already answered questions. Accurate

models would allow to allocate content based on the individual needs, such that tasks

that are too easy for the student can be skipped and tasks that are too hard can be

delayed until they fit the students knowledge.

5.1 Bayesian Knowledge Tracing

Bayesian Knowledge Tracing (BKT; Corbett & Anderson (1995)) was a popular ap-

proach for modeling students knowledge over time and has a long history of being

actively used in computer assisted tutoring systems (Yudelson et al. 2013). BKT mod-

els students knowledge as a set of binary variables, where each variable represents the

understanding of a single concept/skill. BKT assumes, that once a concept is learned,

it can not be forgotten. Besides the probability of knowing a concept, BKT also models

the probability of answering a question, that belongs to an unknown concept, correctly,

as well as the probability for a wrong answer on a known concept. Summarized, there

are four parameters for each skill concept k (Yudelson et al. 2013):

1. The probability of knowing the skill a priori p(L0)k

2. The probability for a transition from skill is not known to skill is known p(T)k

3. The probability of making a mistake, although the skill is known p(M)k

4. The probability of applying an unknown skill correctly p(G)k

For a students response at time step t on concept k, the probability P (Lkt) that a

student knows the concept k is computed according to Bayes rule. For a correctly

answered question it is

P (Lkt | correctkt) =
P (Lkt)(1− P (Mk))

P (correctkt)
(5.1)

25

5.2 Deep knowledge Tracing

and for an incorrect response it is

P (Lkt | incorrectkt) =
P (Lkt)P (Mk)

P (incorrectkt)
. (5.2)

The students knowledge of concept k is updated as the sum of the probability that the

concept was known beforehand and the probability that the recent interaction made the

student learn the skill:

P (Lkt) = P (Lkt−1 | interactionkt−1) + (1− P (Lkt−1 | interactionkt−1))P (T k) (5.3)

The probability, that a student answers a question on concept k at time step t correctly

is

P (correctkt) = P (Lkt)(1− P (Mk)) + (1− P (Lck))P (Gc). (5.4)

There are several extensions to this model. For instance, the use of student-specific

parameters (Yudelson et al. 2013) or the estimation of individual problem difficulty

(Pardos & Heffernan 2011). However, with or without such extensions, bayesian knowl-

edge tracing suffers from several difficulties. First, it may be unrealistic to represent

students knowledge with binary variables. Second, the meaning of the hidden vari-

ables and their mappings onto exercises can be ambiguous, rarely meeting the model’s

expectation of a single concept per exercise. (Piech et al. 2015)

5.2 Deep knowledge Tracing

With the advances in deep learning architectures, increasing computational power and

larger datasets, neural networks started to outperform traditional models, like bayesian

knowledge tracing, and became the new standard for this task (Choi et al. 2020). The

advantage of neural networks (NN’s) over the hidden Markov model from the previous

section is, that NN’s use a high-dimensional and continuous representation of the latent

state instead of the binary variables used in bayesian knowledge tracing. The rich rep-

resentation and the ability to detect dependencies over many time steps make neural

networks a pefect fit for the task of knowledge tracing.

Formally, the activity of a student is recorded as a sequence of interactions I1, ..., In,

where Ii = (Qi, Ri) is a tuple of question and response information. Qi = (q1
i , ..., q

K
i)

is a tuple itself and refers to the question information at step i. Each qji is a cate-

gorical or continuous feature, that holds meta-information about the specific question.

These features can be as general as a certain subject area, that is shared across many

questions or as specific as a unambiguous id assigned to each question. Similar, each

Ri = (r1
i , ..., r

L
i) is a tuple of response related features, such as the time the student

spent on solving the exercise and, of course, the students response itself. The aim is to

26

5.2 Deep knowledge Tracing

predict a binary outcome at each time step, indicating, whether the student answered

the current question correctly.

The first approaches to deep knowledge tracing used simple recurrent neural net-

works and LSTM’s (Piech et al. 2015) and were extended to bidirectional networks with

attention mechanisms (Liu et al. 2021). These networks process the sequence of user-

interactions I1, ..., In with bidirectional LSTM’s yielding sequences of the same length

as output. An attention mechanism aligns the question information with those out-

puts before predicting the probability for a correct answer. Most recent architectures

dispense with recurrent networks and rely on the transformer architecture (Choi et al.

2020, Shin et al. 2021).

27

6 Riiid AIEd Challenge 2020

6 Riiid AIEd Challenge 2020

Riiid! is a South Korean Company that disrupted the education market by its AI driven

tutor solution (Riiid 2014). In 2017 they launched Santa TOEIC (Test of English for

International Communication), an AI driven tutor solution. Since then more than

one million South Korean students have been attracted and a substantial amount of

data has been gathered and published (Youngduck et al. 2020). In 2020 they hosted

the Riiid! Answer Correctness Prediction Challenge on Kaggle2 looking for innovative

algorithms for modeling students knowledge over time. More specifically the overall

goal is to develop a model, that is capable of predicting whether a user answers a given

question correctly based on the user’s historical performance. This Chapter captures

the participation in the Challenge using the previously discussed theory for sequential

deep learning models.

6.1 Dataset Description

The dataset provided by the host of the competition consists of real world data gathered

from user interactions with Santa TOEIC, a tutoring service, which aims to prepare stu-

dents for the TOEIC (Test of English for International Communication) Listening and

Reading Test. The dataset provides the same information as an actual education app

would have for predicting whether a user would answer a given question correctly: The

students interaction history, the performance of other students for the same question

and additional meta-information about the questions.

The host provided the following dataset description:

• timestamp: The time in milliseconds between this user interaction and the first

event completion from that user.

• user-id : ID code for each user.

• content-id : ID code for the user interaction.

• content-type-id : 0 if the event was a question being posed to the user, 1 if the

event was the user watching a lecture.

• task-container-id : ID code for the batch of questions or lectures. For example, a

user might see three questions in a row before seeing the explanations for any of

them.Those three would all share a task-container-id

• user-answer : the user’s answer to the question, if any. Read -1 as null, for lectures.

• answered-correctly : if the user responded correctly. Read -1 as null, for lectures

2The official description of the challenge can be found here: https://www.kaggle.com/c/

riiid-test-answer-prediction

28

https://www.kaggle.com/c/riiid-test-answer-prediction
https://www.kaggle.com/c/riiid-test-answer-prediction

6.1 Dataset Description

• prior-question-elapsed-time: The average time in milliseconds it took a user to

answer each question in the previous question bundle, ignoring any lectures in

between. Is null for a user’s first question bundle or lecture. Note that the time

is the average time a user took to solve each question in the previous bundle.

• prior-question-had-explanation: Whether or not the user saw an explanation and

the correct response(s) after answering the previous question bundle, ignoring any

lectures in between. The value is shared across a single question bundle, and is null

for a user’s first question bundle or lecture. Typically the first several questions a

user sees were part of an onboarding diagnostic test where they did not get any

feedback.

The meta information for the questions is:

• question-id : Foreign key for the train/test content-id columns, when the content

type is question (0).

• bundle-id : Code for which questions are served together.

• correct-answer : The answer to the question. Can be compared with user-answer

column to check if the user was right.

• part : The relevant section of the TOEIC test.

• tags: One or more detailed tag codes for the question. The meaning of the tags

will not be provided, but these codes are sufficient for clustering the questions

together.

The data contains roughly 100M answered questions from ∼ 400K different users.

From a sequential modeling perspective the data can be treated as 400K i.i.d. se-

quences of variable length, where each step is one user interaction. A single interaction

refers to either a watched lecture video or to the responses to a bundle of up to five

questions. The interactions, which solely contained lectures, were filtered out of the

data, because the use of this information did not contribute to the models performance.

There are a total of 13523 different questions, split into 9765 question-bundles, with a

maximum of five questions per bundle. Each question belongs to one of the 7 parts of

the TOEIC-Test and has a variable amount of tags attached, that provide additional

meta information. All questions are multiple choice, with exactly one correct answer.

Figure 11 illustrates the user interactions: The student is presented a variable amount

of questions at one time step and the next time step contains the responses for those

questions. Elapsed time represents the average time the user spent on solving the ex-

ercises, which is limited to 5 minutes. The timestamp provided in the dataset refers

to the time in milliseconds between this user interaction and the first event completion

29

6.2 Problem Definition

Figure 11: User interactions over time

from that user. In terms of Figure 11, the timestamps would be timestamp1 = t2,

timestamp2 = t4− t2 and timestamp3 = t6− t2.

As can be seen in Figure 12, the sequence lengths vary between 1 and 10000. However,

only 4% of the users have more than 1000 interactions (note the logarithmic scale in

figure 12). Figure 13 shows the average correctness for the j-th interaction across

all users. A clear trend is visible, that the correctness increases with the amount of

questions a user has answered. However, there is still an uncertainty whether the

students improve their knowledge or the questions become easier.

Figure 12: Histogram of sequence
lengths

Figure 13: Average correctness over
time

6.2 Problem Definition

The overall goal of the challenge was to develop a model, that takes a variable length

sequence of user interactions I1, I2, ..., IT as input, where Ii = (Ri, Qi) is a tuple of

question and response information corresponding to the i-th interaction, and predicts

the probabilities for answering each question in the next question bundle correctly.

The fact that the predictions have to be made for a variable amount of questions

30

6.2 Problem Definition

at each step distinguishes the problem from Choi et al. (2020) and Pandey & Karypis

(2019). When training a sequential model this difference has to be treated carefully in

order to avoid data leakage. Data leakage refers to a mistake in a predictive model, in

which the model is trained on information that would not be available when run in a

productive environment. In the usual time series setup it is sufficient, to ensure that

the output at step t does only depend on inputs from step 1 to t. However, this is not

satisfactory for the problem at hand.

position Bundle Question features Prior Response Features Target

1 1 Q1 PAD r1

2 2 Q2 R1 r2

3 2 Q3 R2 r3

4 3 Q4 R3 r4

Table 1: Exemplary input sequence

Table 1 illustrates the format of the data for a user that answered four questio. Every

position in the sequence contains the current question information and the response

information from the previous question. At the first position in the sequence the prior

response feature is set to a padding value and the probability for a correct answer has to

be predicted with only the question information. At position 2 the available information

is the question from the first position and its corresponding response (Q1, R1), the

question features from the current question Q2 and additionally the question features

from the next position Q3, because position 2 and 3 belong to the same question bundle.

For position 3 the exact same features as for position 2 can be used. Note that the

response R2 to question Q2 can not be used to predict r3, because R2 becomes available

not until all questions in the bundle have been answered.

Summarized, the model has to predict the probability of a correct answer for every

question in the bundle, before seeing the response for any of them. I.e. the probabilities

of interest are:

1. P (r1 | Q1)

2. P (r2 | (Q1, R1), Q2, Q3)

3. P (r3 | (Q1, R1), Q2, Q3)

4. P (r4 | (Q1, R1), (Q2, R2), (Q3, R3), Q4)

More generally, when predicting the targets for a question bundle ranging from posi-

tion i to i+ s, the model can attend to question features from position 1 to i+ s and to

response features from position 1 to i− 1. Every additional dependency between input

and output would cause a leak of information during training.

31

6.3 Preprocessing

6.3 Preprocessing

Each user history of length T ∈ N contains a sequence of question informationQ1, Q2, ..., QT ,

and a sequence of response information R1, R2, ..., RT−1. The features used for Qi are:

• Container-id : categorical feature with 10000 categorie

• Question-id : categorical feature with 13000 categories

• Question part : categorical feature with 8 categories

• timediff : numerical feature

and the response related features Ri are:

• Prior answer correct : categorical feature with 2 categories

• Prior question had explanation: categorical feature with 10000 categories

• Prior question elapsed time: numerical feature

Some features, like the tags and correct answers of each question, were excluded from

the models. This keeps the amount of features small, while preserving as much infor-

mation as possible.

Since most of the features are categorical, not much preprocessing is necessary. Prior

question elapsed time is technically a numerical feature. However the exploratory anal-

ysis revealed, that it only takes 2800 distinct values et1, et2, ..., et2800. Therefore, these

values are used to create bins (− inf, et1], (et1, et2], ..., (et2799, et2800], each representing

one category. The models input for that feature is then the category of its corresponding

bin. The numerical feature timediff is computed as the normalized logarithm of the first

order difference of the timestamps xi, i.e.. timediff = log(xt−xt−1+1)
timediffmax

. Where the +1 is

necessary to avoid taking the logarithm of 0 and dividing by timediff max, the maximum

value of log(xt − xt−1 + 1) across the whole dataset, normalizes the values between −1

and 1.

32

6.4 Sampling Strategy

6.4 Sampling Strategy

For sequential deep learning models, the sampling strategy is an important aspect.

There are two classes of such models one needs to differentiate. Models that process the

input sequence as a whole (e.g. bidirectional RNN’s) do not maintain a causal order

and can only learn from the label at the last position in the sequence. On the other

hand, models, which ensure that the output at step t does only depend on inputs up to

step t (e.g. Transformers), can learn from every position in a single sequence.

To get the most out of the data, every labeled time step in every user sequence should

be used to train the models. For a user history of length T , Transformers can be trained

with a single input sequence I1, ..., IT containing the whole history. For a bidirectional

RNN however, one would need T distinct sequences (I1), (I1, I2), ..., (I1, I2, ..., IT).

In theory, this approach would be sufficient. In practice however, the sequences had

to be truncated to fit the computational resources. Therefore, each sequence of length

T is split into dTS e sub-sequences of length W by sliding a window of size W , starting at

the right end of the sequence, S steps to the left. Remaining elements in the last window

are pre-padded to length W . The input-pipeline fills a buffer of 100000 such sequences

and then randomly samples elements from it, replacing selected sequences with new

sequences. Perfect shuffling would require a buffer size as large as the whole dataset.

Due to the amount of data this was not possible. However, the order in which the user

histories are read from file is randomized and the buffer is large enough to break the

correlations in sequences from the same user. One input sample is then a sequence of

tuples I1, ..., IW = (Q1, PAD), (Q2, R1), ..., (QW , RW−1) and the corresponding targets

r1, ..., rW indicate whether the questions were answered correctly.

Consider a sequence of interactions I = I1, I2, I3, I4, I5, I6. The selected sub-sequences

for given W and S are:

W = 3
S = 1

W = 3
S = 2

W = 3
S = 3

• s1 = I4, I5, I6

• s2 = I3, I4, I5

• s3 = I2, I3, I4

• s4 = I1, I2, I3

• s5 = PAD,PAD, I1

• s1 = I4, I5, I6

• s2 = I2, I3, I4

• s3 = PAD, I1, I2

• s1 = I4, I5, I6

• s2 = I1, I2, I3

Table 2: Sampling strategy

This approach covers a wide range of different sampling strategies, by adjusting just

two parameters. Increasing W usually improves the models performance, since the

model can attend to a longer history of answered questions. S controls the granularity

33

6.5 Input-representation

of the sequences presented to the model. The larger the value, the fewer sub-sequences

are generated from each user history. Thus, the value should be chosen as small as

possible. Note that S is only active at training time, since during inference the window

is always slid by one step.

6.5 Input-representation

The input pipeline streams sequences of question information Q = Q1, Q2, ..., QW , where

each time step t is a four-dimensional vector:

Qt =

Containeridt

Questionidt

Questionpartt

timedifft

T

∈ R4 (6.1)

The sequence of response information R = R1, ..., RW−1 is a three-dimensional vector

at every time step:

Rt =

 Prioranswercorrectt

Priorquestionhadexplanationt

Priorquestionelapsedtimet

T

∈ R3 (6.2)

For each categorical feature in Qt and Rt an embedding is trained. I.e. for every feature

k a mapping Ek : Xk → Rdmodel assigns a latent vector of size dmodel = 128 to every

category of feature k. For the numerical feature a single learnable vector e of size dmodel

is multiplied with the feature value.

Q̃et =

E1(Containeridt)

E2(Questionidt)

E3(Questionpartt)

timedifft ∗ e

T

∈ R4×dmodel

R̃et =

 E4(Prioranswercorrectt)

E5(Priorquestionhadexplanationt)

E6(Priorquestionelapsedtimetpartt)

T

∈ R3×dmodel

(6.3)

34

6.6 Model Architectures

Finally, the dimension of each Qet and Ret is reduced to a vector of size dmodel by taking

the sum over the first axis.

Qet =
∑

Q̃et ∈ Rdmodel

Ret =
∑

R̃et ∈ Rdmodel
(6.4)

Figure 14: Input representation

This approach has a few downsides. E.g. consider the feature prioranswercorrect.

It is definitively an overkill to represent a binary feature with a vector of size 128.

A more intuitive approach would be to carefully think about the complexity of each

feature and choose a more appropriate embedding dimension and then concatenate the

features to get the final embedding. This advantage however would only spare a few

hundred parameters at most, which seems negligible in contrast to the millions of other

parameters that have to be trained anyway. Using the same embedding dimension for

every feature allows for more flexibility, when adjusting the overall dimension of the

model. Moreover, this is the approach suggested in Choi et al. (2020) and Shin et al.

(2021).

In the following, Qe = Qe1, ..., Q
e
W and Re = Re1, ..., R

e
W−1 refers to a sequence of question

and response embeddings, respectively.

6.6 Model Architectures

In this section two approaches for tracing students knowledge over time are presented:

One is based on bidirectional recurrent neural networks and the other one on the Trans-

former model. The architectures are inspired by (Choi et al. 2020) and adjusted to the

present dataset. Both approaches take the previously described sequences of question

and response embeddings as input and predict the probability that a given question

35

6.6 Model Architectures

will be answered correctly. The main difference between the architectures is, that the

bidirectional recurrent network generates outputs only for the last question bundle in

the input sequence, whereas the transformer is truely a sequence to sequence model,

generating an output for each position in the input sequence.

6.6.1 Bidirectional GRU

The idea of the network-architecture (similar as in Liu et al. (2021)) is to use bidi-

rectional GRU-layers, that extract the information, which is relevant to represent the

students knowledge from a sequence of question-response pairs. The output is of the

same length and each position could be interpreted as the knowledge obtained by this

user interaction with respect to all other interactions, future and past. An attention

mechanism maps then the questions from the target bundle against the output of the

GRU layers and retrieves those outputs, which align well with the current target ques-

tion, to make the final prediction for a correct answer.

Figure 15: Bidirectional Recurrent Network with Attention

The model takes as input the sequences of question and response embeddings of

dimension dmodel = 128, as described in section 6.5, where the response information at

step t corresponds to the question information at step t − 1. Additionally there is a

third sequence B1, ..., BW , that indicates the question bundle of each question. This

36

6.6 Model Architectures

sequence is used to determine the size of the last question bundle:

c =
W∑
i

1[BW=Bi] (6.5)

Where 1[BW=Bi] is 1 if BW = Bi and else 0.

The question sequence is then truncated to c target questions Qtarget = QW−c+1, ..., QW

that all share the same question bundle. In case c > 1 this leads to the problem, that

the last c− 1 responses refer to the target questions QW−c+1, ..., QW−1 and can not be

used to predict the probabilities that the questions in Qtarget will be answered correctly.

Therefore, these responses are overwritten with a padding-value:

Rt =

PAD if W − t > c,

Rt else
(6.6)

After this step, every possibility for data leakage is eliminated, because any response

information regarding the questions in Qtarget is removed. Note, that for the simplest

case with a bundle of size c = 1, it holds W − t ≤ c for all t = 1, ...W and it is not

necessary to overwrite any values.

The sequences of response and question information are then aligned and summed up

to a sequence of interaction embeddings Ie = ST,Q1 + R2, ..., QW−1 + RW , where ST

is a learnable start-token, and fed into a stack of N = 2 bidirectional GRU’s (encoder):

−→
out = GRUforward(

−→
Ie)

←−
out = GRUbackward(

←−
Ie)

gruout = [
−→
out;
←−
out]

(6.7)

For each layer there are two distinct GRU’s, each with dmodel units, that process the

sequence forward and backward. The outputs of the forward and backward GRU are

then concatenated along the last axis, such that the final output gruout is of shape

(W − 1, 2dmodel). The first layer takes the sequence of interaction embeddings and the

subsequent layers use the output from the previous layer as input.

An attention mechanism is then used to align each question in Qtarget with the output-

sequence of the bidirectional GRU. For every question in Qtarget the output is a weighted

sum of the encoders output, where the weights are large, for positions that are similar

to the target question and small for positions that are dissimilar:

atti =

W−1∑
j=1

αijgru
out
j (6.8)

The index i = 1, ..., c refers to the sequence of target questions Qtarget and the index

j = 1, ...W − 1 refers to the output sequence of the GRU layers.

37

6.6 Model Architectures

The weights αij are normalized scores, which are computed with an alignment model,

that has weight matrices Wq ∈ Rdmodel×dmodel and Wv ∈ R2dmodel×dmodel :

scoreij = tanh(Qtargeti ∗Wq + gruoutj ∗Wv)

αij =
exp(scoreij)∑W
k=1 exp(scoreik)

(6.9)

Each output of the attention mechanism atti is concatenated with its corresponding

target-question Qtargeti and a fully connected feed forward network is applied to ev-

ery position i. This network has a single hidden layer with 2dmodel units and a relu

activation function:

fcout = fullyconnected([att;Qtarget]) (6.10)

Finally a linear layer reduces the dimension to a single output for each question in

Qtarget and the sigmoid function is applied to squeeze the outputs between 0 and 1, i.e.

the probability that the question will be answered correctly:

p = sigmoid(linear(fcout)) (6.11)

The forward pass as described here, only operates on a single example. In practice,

these computations are done simultaneously for batches of B = 8192 sequences of length

W = 300 and the following loss is computed:

loss(x) =
1

B

B∑
n=1

cn∑
i=0

BCE(yn,W−i, pn,W−i) (6.12)

Where cn is the amount of questions, that are in the same question bundle as the

question at position W and BCE(yn,W−i, pn,W−i) is the binary cross entropy for the

target and predicted values of the (W − i)-th question in the n-th input sequence.

The following hyper-parameters yielded reasonable results:

Number of encoder layers N = 2

Model dimension dmodel = 128

Sequence length W = 300

Step size of the sliding window S = 1

Batchsize B = 8192

learning-rate α = 0.0005

Table 3: Hyper-parameters: Bidirectional GRU

38

6.6 Model Architectures

6.6.2 Transformer

The model uses the vanilla Transformer architecture, as described in Chapter 4. The

Encoder processes the sequence of user interactions and generates an output of the same

length. In contrast to the bidirectional GRU, a masking mechanism keeps the output

in causal order with respect to the question bundles. The decoder takes the sequence of

questions as input, attends on its own and on the encoder’s output to predict at each

step, whether the question was answered correctly.

Figure 16: Transformer model for Knowledge Tracing

The decoder uses two separate masks, where one prevents the questions from attend-

ing to future question bundles and the other one determines, which positions from the

encoders output can be used for each prediction. Loosely speaking the encoder extracts

the students knowledge from the history of interactions and the decoder learns what

39

6.6 Model Architectures

kind of knowledge concept a given question requires and looks in the encoders output

how profound the users knowledge is.

The model takes the same input as the bidirectional GRU: the sequences of question

and response embeddings of dimension dmodel = 128, as described in section 6.5, where

the response information at step t corresponds to the question information at step t−1.

Additionally there is a third sequence B1, ..., BW , that indicates the question bundle of

each question. The response and question sequences are again aligned and added to a

sequence of interaction embedding Ie = ST,Q1 + R2, ..., QW−1 + RW , where ST is a

learnable start token embedding.

Encoder

Each encoder layer is composed of two sub-layers. A multi-head self-attention mecha-

nism, where each interaction can attend to interactions from the same and from previous

question bundles. Note, that interactions at position t can attend to future positions,

if the interaction at step t + 1 comes from the same question bundle. The other sub-

layer is a fully connected feed-forward network, applied to every position independently.

There are residual connections around both sub layers followed by a layer normalization.

Dropout is used as regularization to avoid overfitting:

attn = dropout(MHA(x, x, x, interaction-mask))

out1 = layernorm(attn+ x)

fc = droput(fullyconnected(out1))

out2 = layernorm(fc+ out1)

(6.13)

The input to the first layer is the sequence of interaction embeddings Ie and in the

subsequent layers the input is the output from the previous layer. The interaction-mask

can be computed from the sequence of bundle-ids as described below.

Decoder

The Decoder receives the encoders output and the sequence of question embeddings as

input. A multi-head self-attention mechanism is applied to the input-sequence and the

output is then used as query in another multi-head attention mechanism, where key

40

6.6 Model Architectures

and value are the encoders output:

attn = dropout(MHA(x, x, x, question-mask))

out1 = layernorm(attn+ x)

attn2 = dropout(MHA(out1, encoder-out, prediction-mask))

out2 = layernorm(attn2 + out1)

fc = droput(fullyconnected(out2))

encout = layernorm(fc+ out2)

(6.14)

In the first attention mechanism, the question-mask prevents questions from attend-

ing to questions from future question bundles. This is essentially the same as the

interaction-mask) in the encoder, but shifted for the start token ST , which is not nec-

essary for the sequence of questions, since there is always at least one question. The

prediction-mask in the second attention mechanism ensures, that the output from the

first block can only attend to interactions from previous bundles. Note that questions

can not attend to the encoders output at the same or earlier positions, if they come

from the same question bundle.

Masking

There are three different attention blocks, one in the encoder and two in the decoder.

Each block operates with a different mask. The Interaction mask is used in the encoder,

the question and prediction mask in the decoder. Given a sequence of question bundles

b1, ..., bW , the masks are computed as follows:

1. initialize a W ×W matrix M with ones below the diagonal and zeros otherwise

2. compute the matrix A, where ai,j =

{
1, if bi = bj and j > i

0, else
.

3. compute the matrix B = S ∗AT ∗ ST , where S is a shift matrix with ones on the

sub-diagonal and zeros otherwise.

4. the question-mask is M +A

5. the interaction-mask is S ∗ CM ∗ ST

6. the prediction-mask is M −B

The model was trained with batches of size B = 128 and sequences of length W = 300.

The gradients are computed on the last S = 100 positions of each sequence. Where S is

the step size of the sliding window as in section 6.4. Therefore, every prediction has a

sufficiently long history to attend on when making predictions, just as in a productive

environment. Another reason is the overlap in the generated sequences, which occurs if

41

6.7 Training and Evaluation

S < W . Truncating the loss function to the last S steps ensures that the gradient is not

computed multiple times on the same target, which would cause an overrepresentation

of some questions.

The gradients are computed according to the following loss:

loss(x) =
1

B

B∑
n=1

W∑
i=W−S

BCE(yn,i, pn,i) (6.15)

Where BCE(yn,i, pn,i) is the binary cross entropy of the target and predicted values of

the i-th question in the n-th sequence.

Number of encoder/decoder layers N = 2

Model dimension dmodel = 128

number of attention heads h = 8

Sequence length W = 300

Step size of the sliding window S = 100

Batchsize B = 128

learning-rate α = 0.0005

Table 4: Hyper-parameters: Transformer

6.7 Training and Evaluation

The models were trained on kaggle notebooks, using one cloud TPU v3-8 (see section

6.7.3 below) with tensorflow and python. The Adam optimizer (section 6.7.2) was used

throughout all experiments and the target metric is the area under the receiver operator

characteristic curve (section 6.7.1). An ablation study evaluates the models for different

hyper-parameter configurations (section 6.7.4)

6.7.1 Evaluation Metric

Binary classifiers, as the models described above, predict the probability that the target

takes the value zero or one. However, most evaluation metrics rely on contingency

tables, that are built on binary predictions, not probabilities. For this one needs to

choose a threshold c and probabilities above the threshold are treated as positives and

values below as negatives.

Target Positive Target Negative

Predicted Positive # True Positive (TP) # False Positive (FP)

Predicted Negative # False Negative (FN) # True Negative (TN)

Table 5: Contingency table

42

6.7 Training and Evaluation

Two popular metrics are for example the

• False positive rate: FPR = FP
FP+TN

• and true positive rate: TPR = TP
TP+FN .

Note, that these metrics depend on the chosen threshold and are therefore ambiguous

within a single model. For example, if one sets the threshold to c = 1, i.e. every predic-

tion belongs to the negative class, there would be not a single positive prediction and it

would hold FPR = TPR = 0. On the other hand, a threshold of c = 0 would set every

prediction to the positive class and the metrics would be FPR = TPR = 1. In general,

the true/false positive rate increases monotonically as the threshold decreases.

Figure 17: Receiver operator characteristic curve and AUC

Different values of the thresholds can be used, to plot the true positive rate against

the false positive rate, resulting in the so called receiver operating characteristic (ROC)

curve. Figure 17 displays an exemplary ROC-curve, where some thresholds are high-

lighted. The information of this curve can be compressed into a single scalar value, by

computing the area under the curve (AUC), which is displayed in blue in Figure 17.

The possible values of the AUC range from 0 to 1, where 1 represents a perfect classifier

and 0.5 an uninformed classifier. From a probabilistic view, the AUC is equivalent to

the probability, that the classifier will rank a randomly chosen positive example higher

than a randomly chosen negative example.(Fawcett 2006)

43

6.7 Training and Evaluation

6.7.2 Optimization

Both models were trained with the Adam-optimizer as it is ”computationally efficient,

has little memory requirement, invariant to diagonal rescaling of gradients, and is well

suited for problems that are large in terms of data/parameters” (Kingma & Ba 2015).

The name Adam is derived from adaptive moment estimation and aims to combine the

advantages of two earlier proposed methods: Adaptive Subgradient Methods (AdaGrad;

Duchi et al. (2011) and Root Mean Square Propagation (RMSProp, Tieleman & Hinton

(2012)). AdaGrad maintains an adaptive per-parameter learning rate and is especially

suited for sparse gradients. RMSProp also uses an adaptive learning rate for each

parameter, that is based on the running average of the gradients magnitude.

The Adam optimizer requires first-order gradients and computes adaptive learning rates

for each parameter from the first and second moments of the gradients. The algorithm

requires 4 parameters:

• The learning rate α

• The exponential decay rates for the moment estimates β1, β2

• A small constant for numerical stability ε

The moment vectors are initialized with m0 = 0 and v0 = 0. For a stochastic objective

function f(θ), i.e a neural network with weights θ, the gradient update at each step t is

computed as follows:

gt ← ∇θft(θt−1) (6.16)

mt ← β1mt−1 + (1− β1)gt (6.17)

vt ← β2vt−1 + (1− β2)g2
t (6.18)

m̂t ← mt/(1− βt1) (6.19)

v̂t ← vt/(1− βt2) (6.20)

θt ← θt−1 − αm̂t/
√
v̂t + ε (6.21)

In 6.16 the gradients with respect to the objective function at step t are computed. The

first and second biased moments are updated in 6.17 and 6.19, where g2
t indicates the

elementwise square. The moment estimates are corrected for the bias in 6.19 and 6.20.

Finally, the parameters are updated according to the step size α in 6.21.

The parameters were set to β1 = 0.9 and β2 = 0.999, as recommended in (Kingma &

Ba 2015). For the learning rate a simple schedule was used, that increases linearly over

4000 warm-up steps to α = 0.0005. It was found, that this guarantees a stable training

for both, the recurrent and transformer model and for a wide range of different model

sizes. The so called Noam learning rate schedule, proposed in Vaswani et al. (2017),

which decays the learning rate proportionally to the inverse square root of the step

number after the warm-up steps, did not work out very well and either resulted in a

44

6.7 Training and Evaluation

very long training process, or a unpredictable rapid increase in the loss, from which the

model could only recover very slowly or not at all.

6.7.3 Hardware

All computations were done using python and tensorflow on kaggle-notebooks. The

available hardware was a single NVIDIA TESLA P100 GPU and a Cloud TPU-v3-8.

The hardware usage was limited to 30 hours each per week. While TESLA P100 GPU’s

are already very powerful devices, the TPU were more than 5 times as fast. Therefore

all models were trained solely on TPU’s.

These TPU’s have a total of 8 cores and were trained with an synchronous distribution

strategy. This means, that all trainable variables are replicated across the cores and are

kept in sync using all-reduce algorithms (Patarasuk & Yuan 2009): Each core computes

the gradients for 1
8 of the batch and the parameters are updated according to the mean

of those 8 gradients.

6.7.4 Ablation Study

In this section multiple configurations of the presented models are fit to the data, to

get some insights how certain components affect the models performance. All scores are

obtained through the submission API of the challenge, which ensures that the model

submits a prediction before seeing the answer for it, eliminating the possibility of data

leakage. The API streams a total of 2.5 million questions and requires the predictions

to finish within 9 hours using a single Tesla P100 GPU.

If not stated otherwise, the parameters are the same as in table 4 and 3. The models

were trained on 92mio questions and a holdout data-set with 6mio questions was used to

determine the models performance during training. The models were trained until the

AUC stopped improving on the holdout data-set and the weights from the best epoch

were restored. The models are then fine-tuned with a learning rate ten times smaller

than the initial learning rate. And again, training was stopped, when the AUC stopped

improving on the validation set. This procedure consistently improved the models per-

formance by a small margin.

For the Transformer model three hyper-parameters are considered: the number of

encoder and decoder layers N , the model dimension dmodel, and the amount of attention

heads in every attention mechanism h. The dropout rate was set to 0.1.

45

6.7 Training and Evaluation

S N dmodel h AUC params

100 2 64 8 0.793 1.9 ∗ 106

100 2 128 8 0.801 4.1 ∗ 106

10 2 128 8 0.803 4.1 ∗ 106

100 4 128 8 0.801 4.8 ∗ 106

100 2 256 8 0.803 9.5 ∗ 106

100 2 256 16 0.802 9.5 ∗ 106

100 3 256 8 0.803 10.8 ∗ 106

100 4 256 8 0.803 12.1 ∗ 106

Table 6: Results Transformer

As illustrated in table 6, the results are similar throughout all hyper parameter con-

figurations. The smallest model with d = 64 performed significantly worse than the

others. The sampling strategy used a sequence length of W = 300 for all models during

training and for inference. The step size S of the sliding window did not effect the

transformers model in a meaningful way. Reducing it to 10, which results in roughly 10

times as many training examples, increased the score only by 0.002. This demonstrates

the sample efficiency of the Transformer.

For the recurrent network the hyper-parameters are the amount of recurrent layers

N and the model dimension dmodel. The dropout rate was set to 0.1:

S N dmodel AUC params

1 2 256 0.795 9.2 ∗ 106

1 2 128 0.798 4.0 ∗ 106

5 2 128 0.786 4.0 ∗ 106

1 3 128 0.799 4.3 ∗ 106

Table 7: Results Recurrent Network

Overall, the recurrent models performed slightly worse than the transformer. Most

importantly, it was necessary to set the step size S of the sliding window to 1, to

achieve similar results as the transformer. In concrete terms, this means the models

had to be trained on ≈ 92 million distinct sequences of length W = 300, which blew

up the training time compared to the transformer. More precisely, the training took

approximately 10 hours (2 hours for the Transformer). This is also the reason, why only

a small amount of different parameter configurations has been trained.

46

6.8 Winning solution

6.8 Winning solution

The winning solution (Jeon 2021) used a truncated version of the transformer encoder,

that reduces the computational effort of the matrix multiplication of query and key.

For a query of L time steps, the complexity of QK is O(L2). Because of that, the

computational effort is to large for very long sequences. The winning solution solved

this problem, by using only the transformer-encoder with a single hidden layer. The

query is truncated to only the last position in the sequence. I.e. Q is of shape (1, d) and

K and V are of shape (L, d). Therefore, the attention mechanism computes only L dot

products instead of L2. The output of the multi-head attention is then of shape (1, d).

To maintain the length of the sequence, this output is added to every position of the

original input sequence. Finally, a LSTM-layer is added on top and the last hidden state

is fed through a feed forward network and the output is the probability of answering the

question at the last position correctly. In fact, the sequence length used in the winning

model is 1728 and a ensemble of 5 models scored as high as 0.820 on the leader board.

Figure 18: Winning solution (Jeon 2021)

47

7 Discussion and Outlook

7 Discussion and Outlook

The Riiid! Answer Correctness Prediction Challenge 2020 demonstrated, that sequen-

tial deep learning methods are capable of detecting the complex patterns in the human

learning process. Both, recurrent neural networks and transformer models dominated

the final leader-board of the challenge. Other competitive methods relied on gradient

boosting methods with dozens of carefully hand-crafted features. The problem with

engineered features is, that they require comprehensive domain knowledge. For the

task of knowledge tracing, this is not a severe issue, since everyone went through the

process of learning something and can use such personal experiences to create features

that might be useful. From a larger perspective however, the outcome of the challenge

is yet another landmark in favor of deep learning models, that once more demonstrated

the power of automated feature extraction.

For the task of knowledge tracing, a major weakness of the bidirectional recurrent

model is the inefficiency during training. The output at every time step contains in-

formation about the whole input sequence and therefore the gradients could only be

computed for the last time step of every training sequence. In contrast to that, the

Transformer models maintain a causal order in the output sequence and the gradients

could be computed for multiple time steps at once, resulting in a much faster training

process. In concrete terms, the recurrent network required almost 100 times as many

training-samples as the Transformer to achieve similar results. This could be coun-

teracted, by a much larger batchsize that enlarged the models throughput. However,

the training still took about 5 times as long. This was a hurdle especially in the early

development phase, where one wants to try many different approaches.

The transformer model is well known for its highly parallelizable architecture. In com-

bination with powerful TPU’s, that are optimized for large scale matrix multiplications,

competitive models could be trained in less than two hours. A drawback of the Trans-

former model is its quadratic complexity with respect to the sequence length. The

model presented in section 6.6.2 was limited to a maximum sequence length of 300.

However, the winning solution suggests, that longer sequences are the key for further

improvements.

Since its introduction in 2017, transformer models have become the de-facto standard

for many tasks. Especially in the field of natural language processing (NLP), RNN’s

have practically been replaced by transformer models. Bidirectional Encoder Repre-

sentation from Transformers (BERT; (Devlin et al. 2019)) and Generative Pre-trained

Transformers (GPT, (Radford & Narasimhan 2018)) are pre-trained models, that can

be fine tuned to achieve state of the art results for many NLP tasks, such as question

answering (Radford et al. 2019) or text summarization (Khandelwal et al. 2019). These

results are particularly impressive, given the fact that the pre-training is done in an

48

7 Discussion and Outlook

unsupervised fashion.

Due to the enormous availability of text data and the computational efficiency of the

transformer architecture, it has become possible to train models of unprecedented size

with over 100 Billion parameters and the models and datasets are still growing, showing

no signs of saturating performance. (Dosovitskiy et al. 2021)

In addition to that, Transformers have also been applied to computer vision tasks. Tou-

vron et al. (2021) achieve state of the art results on the Imagenet dataset (Deng et al.

2009), relying on a convolution-free Transformer. Dosovitskiy et al. (2021) found out,

that for large scale training (14M-300M images) the Transformer trumps the inductive

bias of convolutional networks, which relies on locality and translation invariance.

49

8 Conclusion

8 Conclusion

This thesis covered the fundamentals of modern deep learning models for sequential

data. Recurrent neural networks were introduced by bringing in loops to the computa-

tional graph of feed forward networks. It was demonstrated, that the backpropagation

algorithm generalizes straight forward to the unfolded graph of RNN’s. However, the

problem of vanishing gradients makes it difficult for vanilla RNN’s to capture long term

dependencies. To address this issue, two approaches were presented: LSTM and GRU

models. Both rely on gating mechanisms, that control the flow of information into and

out of the recurrent cell.

The encoder-decoder architecture allows the modeling of arbitrary sequence to se-

quence mappings. For this, the encoder RNN compresses the information of the input

sequence into a fixed size vector and the decoder RNN uses this vector to generate the

target sequence. This approach however, suffers from a bottleneck that is introduced

by the fixed length representation of variable length sequences. Attention mechanisms

overcome this problem by aligning every position in the target sequence with positions

from the source sequence.

The transformer architecture builds on top of the attention mechanisms used in

encoder-decoder RNN’s, but dispense completely with recurrence. The central compo-

nent of the Transformer is called multi head self-attention. This mechanism implements

the sequence to sequence mapping as weighted sums over linear projections of the input

sequence. This method allows the model to directly look at any position in the input

sequence, bridging arbitrary long distances. Since transformer models do not rely on

sequential processing, they are highly parallelizable and can be trained efficiently on

large scale datasets.

Finally, the discussed theory was applied to real world data as part of the Riiid!

Answer Correctness Prediction Challenge 2020. It was demonstrated, that sequential

deep learning models achieve state-of-the-art results in the field of knowledge tracing.

The Transformer excelled with a rapid training process and accurate results. The RNN

required much more training samples than the Transformer and thus more time to train.

Ultimately the performance of both architectures was very similar. Furthermore, the

winning solution suggests that it might be beneficial to merge recurrent layers and self

attention mechanisms within the same model.

50

References

References

Ba, J., Kiros, J. & Hinton, G. E. (2016), ‘Layer normalization’, arXiv 1607.06450.

Bahdanau, D., Cho, K. & Bengio, Y. (2015), Neural machine translation by jointly

learning to align and translate. 3rd International Conference on Learning Represen-

tations.

Bengio, Y., Simard, P. & Frasconi, P. (1994), ‘Learning long-term dependencies with

gradient descent is difficult’, IEEE transactions on neural networks 52, pp. 157–66.

Bontempi, G., Ben Taieb, S. & Le Borgne, Y.-A. (2012), ‘Machine learning strategies for

time series forecasting’, Lecture Notes in Business Information Processing 138, pp.

62–78.

Cheng, J., Dong, L. & Lapata, M. (2016), Long short-term memory-networks for ma-

chine reading, in ‘Proceedings of the 2016 Conference on Empirical Methods in Natu-

ral Language Processing’, Association for Computational Linguistics, Austin, Texas,

pp. 551–561.

Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H. & Bengio,

Y. (2014), Learning phrase representations using rnn encoder-decoder for statisti-

cal machine translation, in ‘Conference on Empirical Methods in Natural Language

Processing (EMNLP 2014)’.

Choi, Y., Lee, Y., Cho, J., Baek, J., Kim, B., Cha, Y., Shin, D., Bae, C. & Heo, J.

(2020), ‘Towards an appropriate query, key, and value computation for knowledge

tracing’, arXiv 2002.07033.

Corbett, A. T. & Anderson, J. R. (1995), ‘Knowledge tracing: Modelling the acquisition

of procedural knowledge.’, User Modeling and User-Adapted Interaction 4(4), pp. 253–

278.

de Prado, M. L. (2018), Advances in Financial Machine Learning, 1st edn, Wiley Pub-

lishing.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. & Fei-Fei, L. (2009), Imagenet: A

large-scale hierarchical image database, in ‘2009 IEEE conference on computer vision

and pattern recognition’, pp. 248–255.

Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. (2019), BERT: Pre-training of deep

bidirectional transformers for language understanding, in ‘Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies’, Vol. 1, pp. 4171–4186.

51

References

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,

Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J. & Houlsby, N.

(2021), An image is worth 16x16 words: Transformers for image recognition at scale,

in ‘International Conference on Learning Representations’.

Duchi, J., Hazan, E. & Singer, Y. (2011), ‘Adaptive subgradient methods for on-

line learning and stochastic optimization’, Journal of Machine Learning Research

12, 2121–2159.

Fan, H., Jiang, M., Xu, L., Zhu, H., Cheng, J. & Jiang, J. (2020), ‘Comparison of long

short term memory networks and the hydrological model in runoff simulation’, Water

12(1).

Fawcett, T. (2006), ‘An introduction to ROC analysis’, Pattern Recognition Letters

27(8), pp. 861–874.

Fulcher, B. & Jones, N. (2016), ‘Automatic time-series phenotyping using massive fea-

ture extraction’, arXiv 1612.05296.

Gers, F., Schmidhuber, J. & Cummins, F. (2000), ‘Learning to forget: Continual pre-

diction with lstm’, Neural computation 12, pp. 2451–2471.

Goodfellow, I., Bengio, Y. & Courville, A. (2016), Deep Learning, MIT Press. http:

//www.deeplearningbook.org.

Graves, A., Mohamed, A.-r. & Hinton, G. (2013), Speech recognition with deep recurrent

neural networks, in ‘2013 IEEE International Conference on Acoustics, Speech and

Signal Processing’, pp. 6645–6649.

Hammer, B. (2000), ‘On the approximation capability of recurrent neural networks’,

Neurocomputing 31(1), pp. 107–123.

He, K., Zhang, X., Ren, S. & Sun, J. (2016), Deep residual learning for image recog-

nition, in ‘2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR)’, pp. 770–778.

Hochreiter, S. (1998), ‘The vanishing gradient problem during learning recurrent neural

nets and problem solutions’, International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems 6, pp. 107–116.

Hochreiter, S. & Schmidhuber, J. (1997), ‘Long short-term memory’, Neural Computa-

tion 9(8), pp. 1735–1780.

Hornik, K., Stinchcombe, M. & White, H. (1989), ‘Multilayer feedforward networks are

universal approximators’, Neural Networks 2(5), pp. 359–366.

52

http://www.deeplearningbook.org
http://www.deeplearningbook.org

References

Hyndman, R. & Athanasopoulos, G. (2018), Forecasting: Principles and Practice, 2nd

edn, OTexts, Australia.

Ioffe, S. & Szegedy, C. (2015), Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift, in ‘Proceedings of the 32nd International

Conference on Machine Learning’, Vol. 37, pp. 448–456.

Jabreel, M. & Moreno, A. (2019), ‘A deep learning-based approach for multi-label emo-

tion classification in tweets’, Applied Sciences 9.

Jeon, S. (2021), ‘Last query transformer rnn for knowledge tracing’, arXiv 2102.05038.

Khandelwal, U., Clark, K., Jurafsky, D. & Kaiser, L. (2019), ‘Sample efficient text

summarization using a single pre-trained transformer’, arXiv 1905.08836.

Kingma, D. P. & Ba, J. (2015), Adam: A method for stochastic optimization, in ‘3rd

International Conference on Learning Representations’.

Liu, Q., Huang, Z., Yin, Y., Chen, E., Xiong, H., Su, Y. & Hu, G. (2021), ‘Ekt: Exercise-

aware knowledge tracing for student performance prediction’, IEEE Transactions on

Knowledge and Data Engineering 33(1), pp. 100–115.

Löning, M., Bagnall, A. J., Ganesh, S., Kazakov, V., Lines, J. & Király, F. J. (2019),

‘sktime: A unified interface for machine learning with time series’, arXiv 1909.07872.

Luong, T., Pham, H. & Manning, C. D. (2015), Effective approaches to attention-based

neural machine translation, in ‘Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing’, Lisbon, Portugal, pp. 1412–1421.

Pandey, S. & Karypis, G. (2019), A self-attentive model for knowledge tracing, in ‘EDM

2019 - Proceedings of the 12th International Conference on Educational Data Mining’,

pp. 384–389.

Pardos, Z. & Heffernan, N. (2011), Kt-idem: Introducing item difficulty to the knowl-

edge tracing model, in ‘In Proceedings of the 19th International Conference on User

Modeling, Adaptation and Personalization’, pp. 243–254.

Pascanu, R., Mikolov, T. & Bengio, Y. (2013), On the difficulty of training recurrent

neural networks, in ‘Proceedings of the 30th International Conference on International

Conference on Machine Learning’, Vol. 28, pp. 1310–1318.

Patarasuk, P. & Yuan, X. (2009), ‘Bandwidth optimal all-reduce algorithms for clusters

of workstations’, Journal of Parallel and Distributed Computing 69(2), pp. 117–124.

Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L. J. & Sohl-

Dickstein, J. (2015), Deep knowledge tracing, in ‘Advances in Neural Information

Processing Systems’, Vol. 28, pp. 505–513.

53

References

Radford, A. & Narasimhan, K. (2018), ‘Improving language understanding by generative

pre-training’, OpenAI .

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D. & Sutskever, I. (2019), ‘Language

models are unsupervised multitask learners’.

Ravanelli, M., Brakel, P., Omologo, M. & Bengio, Y. (2018), ‘Light gated recurrent units

for speech recognition’, IEEE Transactions on Emerging Topics in Computational

Intelligence 2(2), pp. 92–102.

Riiid (2014), https://www.crunchbase.com/organization/riiid. Accessed: 2021-

04-29.

Schipp, A. (2021), ‘Frankfurter allgemeine zeitung’,

https://www.faz.net/aktuell/gesellschaft/menschen/

welche-probleme-es-beim-homeschooling-gibt-17149736.html. Accessed:

2021-04-29.

Schuster, M. & Paliwal, K. (1997), ‘Bidirectional recurrent neural networks’, IEEE

Transactions on Signal Processing 45, pp. 2673–2681.

Shin, D., Shim, Y., Yu, H., Lee, S., Kim, B. & Choi, Y. (2021), Saint+: Integrating

temporal features for ednet correctness prediction, in ‘LAK21: 11th International

Learning Analytics and Knowledge Conference’, pp. 490–496.

Sutskever, I., Vinyals, O. & Le, Q. V. (2014), Sequence to sequence learning with neural

networks, in ‘Proceedings of the 27th International Conference on Neural Information

Processing Systems’, Vol. 2, pp. 3104–3112.

Tieleman, T. & Hinton, G. (2012), ‘Lecture 6.5—RmsProp: Divide the gradient by a

running average of its recent magnitude’, COURSERA: Neural Networks for Machine

Learning.

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A. & Jegou, H. (2021),

‘Training data-efficient image transformers & distillation through attention’, arXiv

2012.12877.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,

L. u. & Polosukhin, I. (2017), Attention is all you need, in ‘Proceedings of the 31st

International Conference on Neural Information Processing Systems’, pp. 6000–6010.

Werbos, P. (1990), ‘Backpropagation through time: what it does and how to do it’,

Proceedings of the IEEE 78, pp. 1550–1560.

Williams, R. J. & Zipser, D. (1989), ‘A learning algorithm for continually running fully

recurrent neural networks’, Neural Computation 1(2), pp. 270–280.

54

https://www.crunchbase.com/organization/riiid
 https://www.faz.net/aktuell/gesellschaft/menschen/welche-probleme-es-beim-homeschooling-gibt-17149736.html
 https://www.faz.net/aktuell/gesellschaft/menschen/welche-probleme-es-beim-homeschooling-gibt-17149736.html

References

Youngduck, C., Youngnam, L., Dongmin, S., Junghyun, C., Seoyon, P., Seewoo, L.,

Jineon, B., Chan, B., Byungsoo, K. & Jaewe, H. (2020), Ednet: A large-scale hierar-

chical dataset in education, in ‘International Conference on Artificial Intelligence in

Education’, pp. 69–73.

Yudelson, M., Koedinger, K. & Gordon, G. (2013), Individualized bayesian knowledge

tracing models, in ‘International Conference on Artificial Intelligence in Education’,

pp. 171–179.

Zhaoping, L. (2014), Understanding Vision: Theory, Models and Data, Oxford Univer-

sity Press.

55

	Introduction
	Machine Learning with (Time) Series
	Recurrent Neural Networks
	Backpropagation through Time
	Modern Architectures for Recurrent Neural Networks
	Vanishing and Exploding Gradients
	Long Short-Term Memory
	Gated Recurrent Units

	RNN Applications
	Bidirectional RNN's
	Encoder-Decoder
	Attention-Mechanisms

	The Transformer
	Self-Attention
	Multi Head Attention
	Transformer Architecture
	Positional Encoding

	Knowledge Tracing
	Bayesian Knowledge Tracing
	Deep knowledge Tracing

	Riiid AIEd Challenge 2020
	Dataset Description
	Problem Definition
	Preprocessing
	Sampling Strategy
	Input-representation
	Model Architectures
	Bidirectional GRU
	Transformer

	Training and Evaluation
	Evaluation Metric
	Optimization
	Hardware
	Ablation Study

	Winning solution

	Discussion and Outlook
	Conclusion

