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Abstract

In this thesis we investigate international major conventional weapons net-

works between 1950-2013. After an introduction to statistical network theory

and some descriptive analysis of the data at hand, we introduce a modelling

approach based on previous work of Krivitsky and Handcock on Separable

Temporal Exponential Random Graph Models, however, we deviate from their

approach and use Generalized Additive Mixed Models (GAMM), for estimating

the independent formation and dissolution parts of the model. Thereby we

estimate smooth effects for covariates and lag-network statistics with the

approach of Hastie and Tibshirani on Varying Coefficient Models and use

country specific random intercepts in modelling the trading dyads.

Using this approach, we find relations between the formation and dissolution

of major arms trades over time and some of the considered covariates. Dif-

ferent ways of model evaluation are presented and applied to our estimated

model.
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Introduction Sevag Kevork

1 Introduction

International arms trade is a topic of high public, political, and scientific interest. Deci-

sions to trade weapons and equip other countries with arms can be highly controversial,

be based on various, often case specific, political considerations, and can have severe

consequences.

As discussed by Hough et al. [2015], there is nothing new about the trading with weapons

in the global marketplace, but this trade has changed over the years in many ways. For

example, in the decades immediately following the Second World War, developed nations’

trade in arms with the developing world, often consisted of supplying already outdated

military equipment left over from the preceding conflict. By the 1980s, states in the

developing world were demanding and receiving some of the most sophisticated weapons

systems available, as they do today.

Another important development is, that the trade’s expansion in recent times has been

greatly facilitated by the twin trends of globalisation and economic liberalisation. Just

as barriers and restrictions in other areas of economic activity have been lowered and

eased as part of a global trend towards embracing free markets and deregulation, the

same is true in relation to the arms trade. Similarly, advances in information and

communications technology have enabled transactions to be conducted faster and more

easily, and improvements in transportation – land, sea and air – have greatly aided the

physical delivery of weapons.

It is therefore of huge general interest to scientifically understand mechanisms, that are

related to such decisions and find factors that are connected to the establishment of arms

trade relations.

In this thesis, we focus on international trade of major conventional weapons (MCW) over

a period of 60 years and analyze publicly available data of the Stockholms International

Peace Research Institute [SIPRI, 2017] based on statistical network modelling. We choose

such an approach because trade data (in particular at country level) exhibits a specific

network structure, that it characterized by multiple, pairwise trade relations that may

or may not be established between all the different pairs of actors. Standard statistical

(regression) models can not be directly applied to datasets of such structure, since their

main assumption is always based on conditional independence of the, to be modelled,

responses, e.g. the binary information of the existence of a trade relation or their specific
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trade value. This assumption is, in such a network context, highly questionable, since

the existence of a trade relation between two nations is most probably directly related to

other trade activities of the involved countries.

Section 2 of this thesis, gives a general introduction to network data and its definitions.

Section 3 will give an introduction to the data set been used in this thesis, discussing the

structure of it, and providing descriptive results of the arms trade data set. In Section

4 we are going to introduce the ERGM exponential random graph model, the TERGM

temporal ergm and finally, the STERGM separable temporal ergm, and discuss about

their properties, also giving a short introduction of markov chain properties. In Section

5 we are going to introduce classical statistical regression models, by taking a closer

look at the estimated spline smoothers. In Section 6, we will motivate and introduce

our modelling approach combining the definitions of STERGMs and classical regression

models, and finally, in Section 7 we will present and interpret the results.

2 Network Analysis

In the following, we will give a short introduction into the statistical analysis of network

data and define some basic terminology that will be used during the rest of this thesis.

The section is mainly based on Kolaczyk and Csárdi [2014].

In its most general sense, a network is just a collection of somewhat interconnected things.

To deal with such an abstract entity from a mathematical point of view, networks are in

general identified with the structure of graphs.

Speaking of networks in general, it is possible to distinguish between directed and undi-

rected networks. Undirected networks just focus on the existence of any relation between

two actors (e.g. friendship networks for several people), whereas directed networks

consider the direction of the relation between two actors. Since trade networks are in

general directed, we will focus on such networks, beginning with the formal definition of

a (directed) graph:

Definition 1: A graph G is defined as a pair of sets of vertices V and edges E,

G := (V,E). V is typically a finite set and E ⊂ V × V . The elements of V are called

vertices or nodes, while the elements of E are called edges or ties. When we think of

a network as a graph the vertices represent the actors / things in the network and the

edges indicate a (directed) relation / connection between two actors. Such relations can

be binary or valued, depending on the context.
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In our case, the elements of the set of vertices V are symbolizing the countries in the

world, which we denote these as vi, vj ∈ V with their indices i and j. In our context, the

actors in the network are the countries, and the set of edges the relation between two

countries (actors). This relation as mentioned above can be either directed or undirected.

In the context of arms trade network, this relation indicates, whether a country i exports

major conventional weapons to country j or not. That’s why arms trade network is a

directed network. The case that country i is selling weapons to country j, does not imply

that j is also selling weapons to i.

As next, we are going to define some terms for a graph G = (V,E), which are crucial

in network analysis. For an edge eij = (vi, vj) = (i, j) from actor i to j, we call vi the

tail and vj the head of edge eij . We will also refer to vi as the sender and to vj as the

receiver in the network. An important restriction that we make, is that a graph has

no loops eij = (vi, vi), i.e. edges with tail and head on the same vertex. This means,

we are not going to pay attention to weapons produced for a country’s own use. The

number of actors in a network NV = |V | is usually called the order of a network, and

the number of observed edges NE = |E| is called its size. A directed network of order

NV has N := N2
V −NV possible edges if we are not interested in loops. Based on those

two statistics we can define the density of a network or graph:

Definition 2: Let G = (V,E) be a finite (NV ≤ ∞), directed graph. The density ρ(G)

of G is defined as

ρ(G) :=
NE

N
.

The density of a network is the proportion between the actual number of edges and the

possible number of edges. A full graph, i.e. a graph with every possible edge, has density

ρ = 1, while an empty graph is defined as a graph without any edges, ρ = 0.

Two vertices vi and vj are called adjacent if they are connected by an edge eij = (vi, vj).

The rather abstract structure of a graph (and consequently a network), can be completely

specified by the definition of the so-called adjacency matrix :

Definition 3: Let G = (V,E) be a finite, directed graph and V = (v1, . . . , vNV
) be an

enumeration of the set of vertices in G. The matrix A := (aij) ∈ RNV ×NV is called the

adjacency matrix. Its entries aij indicate the relation between vi and vj in the network.
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If (vi, vj) ∈ E, aij > 0. For binary networks A is given by

aij =

{
1 if (vi, vj) ∈ E,
0 else.

i, j ∈ {1, . . . , NV }.
In the case of weighted / valued networks, the entries for observed edges aij get replaced

by their specific values. Such values can, for example, specify the strength of the connec-

tion between two vertices.

So far, we mainly focused on statistics that characterize the structure of a whole observed

network and described a way of storing network data. Focusing on the single actors

in a network, one is often interested in their centrality or popularity within a network.

Therefore we define:

Definition 4: Let G = (V,E) be a finite, directed graph and v ∈ V . Then, the numbers

degin(v) := |{(v1, v2) ∈ E : v2 = v}|

degout(v) := |{(v1, v2) ∈ E : v1 = v}|

are called the in-degree and out-degree of vertex v.

Thus, the in-degree of a node v is defined as the number of edge heads ending at

v. On the other hand, the out-degree is defined as the number of tails connected to v.

Vertices with high in- or out-degrees can be seen as central, important actors in a network.

An another term introduced is the definition of a dyad. A dyad is a group of two actors

and their relation. For directed networks we are going to differentiate between three kind

of dyads: a dyad (ij) is reciprocal if there is an edge going from i to j and from j to i, i.e.

eij , eji ∈ E. A dyad is asymmetric if there is only one edge between the two actors, i.e.

eij ∈ E ∨ eji ∈ E where ∨ is defined as exclusive. Lastly, a dyad is called null if there is

no edge between two actors i and j i.e. eij , eji 6∈ E.

Most of the (observable) real-world networks are not static but evolving in time. New

actors can join a network, edges can form, change in strength or disappear. Despite it is

generally conceivable to observe networks in continuous time by registering any change in

vertices or edges at its actual timepoint, it is often more realistic to observe a time-series

of networks on a discrete grid. Data on such time evolving networks can then be stored

in adjacency matrices At, t = 1, . . . , T .
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3 Data Structure and Descriptive Analysis

The international arms trade data for major conventional weapons was provided by the

Stockholms International Peace Research Institute [SIPRI, 2017]. This initiative collects

all officially registered arms trade activities of major conventional weapons between

international actors and documents them in an online database. SIPRI has developed a

unique system in order to measure the volume of international transfers of arms, which

is listed in trend indicator value (TIV), a measure based on production costs see [Holtom

et al., 2012]. There are many advantages using TIV instead of monetary value as cash

flow, according to SIPRI using monetary value as cash flow such as USD would lead to

distorted information. TIV has the advantage to be consistent over time, which makes it

possible to compare the arms flow of different periods.

In our analysis we focus on all countries that have at least one registered trade activity

between 1950 and 2013 and use any yearly, registered, trade between two countries as

binary directed trade information. This leads to a raw data set of yearly, binary, pairwise

information for 257 actors. When we examine our data set, one will recognize that not

only countries are involved in the network, but also international organizations like the

UN and NATO, extremist/terrorist groups like AL-Qaida, ISIS, and fiercely disputed

regions like Eastern Ukraine or Nagorno-Karabakh can be involved in the network. Due

to missing values in covariates (no informations for at least one covariate in all analyzed

years), we focus our investigation of 218 countries, the excluded organizations and fiercely

disputed regions are given as a list in appendix 9.

In the following section we present some basic descriptive statistics for the yearly trade

networks in our considered dataset. In this connection the following questions are of

interest:

• How the network changes over time?

• How is this change quantifiable?

One of the interesting issues is the change of density of the arms trade network over

time. However, the number of nations differ over the entire period, some nations may

not more exist that respectively been situated in a certain year. This problematic can

be counteracted as follows: In each year, we only consider the nations they were active

involved in the arms transfer network. This approach has the consequence, that the

density values for each year will be calculated from networks with different number of
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actors. The number of possible edges in a network grow exponentially (not linear) with

increasing number of nodes (actors), that’s why by comparison of the density values we

should additionally take the size of the network into account for the concerned year. The

corresponding time series are shown in Figure 1.

The left plot of Figure 1, shows the time series of the number of actors in the network for

each year, as we can see, there is a steady increase of actors between 1950-1980. While in

1950, observing about 50 actors in the network, there are about 120 actors in 1980. On

the following next ten years we have falling number of actors with the low points between

1991 and 1993, it is conspicuous, that this period has to do with the disintegration of the

Soviet Union.

The right plot of Figure 1,shows the time-series of network’s density. Even as we are

careful while interpreting this plot, since the number of actors changes over time.

To illustrate our point of view, we consider the density of the arms trade network from

year 1951-2006. We can recognize, that both of the networks have a density of about

0.03, respectively. Both networks are shown in Figure 2. We can see immediately, that

both networks have fundamental different structure, because of the different number of

actors in the networks respectively. In Figure 4 we visualize some arms trade networks

through changing times.
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Figure 3 visualizes the size, i.e. the number of edges, of the yearly trade networks. It is

therefore the time series of the yearly number of observed, registered arms trades between

two nations.
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(right), equal density with different number of actors
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Figure 4: Arms Trade Network through changing times
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3.1 Assignation of the key actors

In this section we will identify the countries, who played a central key role in arms trade

network over the period 1950-2013. In order to take the disintegration of the Soviet

Union into account, we will divide our entire period into periods from 1950-1991 and

1992-2013.

One measurement criteria for the relevance of a nation in arms trade network is the ac-

cumulated TIV over the observed period, distinguishing between import and export TIVs.

In Table 1 and Table 2 we list the top 10 supplier and recipient nations over the periods

1950-1991 and 1992-2013, respectively. It is conspicuous the big dominance of some

nations in export of major conventional weapons. From 1950-1991, hold the USA and

the Soviet Union together almost twice so high export TIV as all the nations together.

We have a similar picture for USA and Russia according their export TIV for the period

1992-2013, although with Germany and France, we have two nations with more engage-

ment in arms export.

The picture changes for the top 10 recipient nations. The biggest recipients for the

period 1950-1991 are India and Germany, and for 1992-2013 India and China, however

the import TIVs are distributed more evenly on several nations.

Country TIV

1 Soviet Union 453346.43

2 United States 399666.61

3 United Kingdom 106784.90

4 France 76981.93

5 Germany 38859.38

6 China 29080.99

7 Czechoslovakia 28850.87

8 Italy 19376.97

9 Switzerland 9978.70

10 Netherlands 9484.59

Country TIV

1 United States 185312.88

2 Russia 109621.57

3 Germany 39139.71

4 France 32751.90

5 United Kingdom 28070.28

6 China 17952.36

7 Netherlands 10997.93

8 Italy 10211.12

9 Ukraine 9849.26

10 Israel 9211.44

Table 1: The left table lists the top 10 supplier nations for the period 1950-

1991 and the right the top 10 supplier nations for the period 1992-2013
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Country TIV

1 India 65237.31

2 Germany 51418.49

3 Iraq 44838.28

4 Japan 42891.52

5 Egypt 40913.41

6 Iran 39710.55

7 Poland 37521.23

8 Syria 35549.60

9 China 34102.77

10 German Democratic R. 30829.97

Country TIV

1 India 43094.62

2 China 38575.73

3 South Korea 26143.63

4 Turkey 25115.59

5 Saudi Arabia 22778.87

6 Greece 19915.27

7 United Arab Emirates 18311.78

8 Egypt 17326.19

9 Japan 16822.00

10 Pakistan 16553.95

Table 2: The left table lists the top 10 recipient nations for the period 1950-

1991 and the right the top 10 recipient nations for the period 1992-2013

Another measurement criteria for the relevance of a nation in arms trade network is

its out- and in-degree over the observed period, i.e. it presents the number of different

selling / buying countries over a given observation period. It equals the nation-specific

out- or in-degree of the binary trade network, aggregated over the observation period.

The results are shown in Table 3 and Table 4.

Country Has Supplied

1 United States 127

2 France 109

3 United Kingdom 106

4 Germany 83

5 Italy 83

6 Canada 77

7 Soviet Union 69

8 Switzerland 59

9 Netherlands 51

10 Sweden 47

Country Has Supplied

1 United States 115

2 France 95

3 Russia 87

4 Germany 84

5 Italy 78

6 United Kingdom 73

7 Ukraine 69

8 Israel 67

9 Canada 58

10 China 58

Table 3: The left table lists the top 10 supplier nations according to their

out-degree for the period 1950-1991 and the right the top 10 supplier nations

for the period 1992-2013
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Country Was Supplied

1 Iran 23

2 Iraq 23

3 Egypt 21

4 India 20

5 Indonesia 20

6 Morocco 20

7 Nigeria 18

8 Soudan 17

9 Thailand 17

10 Argentina 16

Country Was Supplied

1 USA 26

2 Indonesia 23

3 UAE 23

4 Malaysia 22

5 Pakistan 22

6 Thailand 21

7 Brazil 20

8 Peru 20

9 India 19

10 Iraq 19

Table 4: The left table lists the top 10 recipient nations according to their

in-degree for the period 1950-1991 and the right the top 10 recipient nations

for the period 1992-2013

Actually it is difficult to make up the central key actors in the international arms trade.

According to the underlying criteria we choose, we obtain different list of samples.

3.2 Assignation of the relevant effects

In this section we will identify some network characteristic structures such as: Do we

have reciprocative trade? How many nations do we have that only buy weapons but dont

sell? Which characteristic structures change over time and which stay stable?

Our goal, is implying the detected structures in the form of network statistics in our

modelling approach in section 6, to generate the most suitable model we can.

Figure 5 indicates the proportion of onesided and reciprocative edges to the overall

existing edges. We can see, that in each observed year, the proportion of onesided edges

clearly predominate the proportion of reciprocative edges. This characteristical structure

is identical for the entire period and thats why should be considered in our modelling

approach. Another peculiarity in the arms trade network for the observed period is that

major part of the nations exclusively import major conventional weapons, without taking

part in exporting them.
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Figure 5: Proportion of onesided (red) and reciprocative (blue) edges to the

overall existing edges

The left plot of Figure 6 depicts the average out-degree distribution over the entire

period, we can see that the arms trade network exhibits a large proportion of actors

with out-degree of nulls over the entire period, the left plot depicts the average in-degree

distribution, conspicuous is especially the large average in-degree=1 actors. Obviously

it is characteristic for the arms trade network that actors are supplied from one nation.

Figure 7 indicates the number of nations with an out-degree of 0,1,2,3 and in-degree of

0,1,2,3 for the period of 1950-2013, respectively.
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Figure 6: Average out-degree distribution (left) and the average in-degree

distribution for the period 1950-2013
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Figure 7: Time series of in- and out- degree values over the entire period

4 Network Modelling Approaches

In this section we will introduce some network modelling approaches, such as the family

of exponential graph models, that will be of use for our proposed modelling framework

introduced in Section 6.

4.1 The Exponential Random Graph Model

The ERGM Robins et al. [2007] takes the adjacency matrix of an observed network Y obs

as the realization of a matrix valued random variable Y . Recall definition (3) in Section

2 a network of NV nodes is defined as adjacency matrix A = Y = (yij) ∈ RNV ×NV , where

yij ∈ {0, 1} for all i, j ∈ {1, . . . , NV }. Where yij = 1 means that there is an edge going

from i to j, while yij = 0 indicates that this edge does not exist. Since our model does

not involve loops, we have yii = 0 for all i ∈ {1, . . . , NV }. So we can define Y

Y(NV ) :=
{
y ∈ RNV ×NV : yij ∈ {0, 1}, yii = 0

}
as the set of all existing networks of order NV without loops, that depends i.a. on

the number of specific configurations or patterns in the edges of the networks (and

potentially additional covariates) and thereby considers potential dependence structures

in the occurence of edges. With this definition, we can define Y as a matrix valued
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random variable, with the probability function

P(Y = y) =
exp(θT · Γ(y))∑

y∈Y(N) exp(θ
T · Γ(y))

(1)

where

• θ ∈ Rq is a q-dimensional vector of parameters

• Γ(y) is a q-dimensional vector of statistics based on the adjacency matrix y

• κ(θ, y) :=
∑

y∈Y(N) exp(θ
T · Γ(y)) is a normalizing factor that ensures that (1) is a

legitimate probability distribution

Specification of Y , including the number of vertices, n, is an important yet often over-

looked aspect of model (1). At its largest, for a fixed n, Y may contain up to N = 2n(n−1)

networks, a very large number even for moderate-sized n, which makes calculation of

κ(θ, y) the primary barrier to inference using this model.

An alternative specification of the model (1) clarifies the interpretation of the coefficients.

To articulate this alternative, we first introduce the notion of a vector of changestatistics.

Such a vector is a function of three things: A particular choice Γ(.) of statistics defined

on a network, a particular network y, and a particular pair of different vertices (i, j). We

define the vector of change statistics as

δΓ(y)ij = Γ(y+
ij)− Γ(y−ij)

where y+
ij and y−ij represent the networks realized by fixing yij = 1 or yij = 0, respectively,

while keeping all the rest of the network exactly as in y itself. In other words, δΓ(y)ij is

the change in the value of the network statistic Γ(y) that would occur if yij were changed

from 0 to 1 while leaving all of the rest of y fixed.

In terms of the change statistic vector, model (1) may be shown to imply the following

distribution of the Bernoulli variable Yij , conditional on the rest of the network:
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Pθ(Yij = 1|Y c
ij = ycij)

Pθ(Yij = 0|Y c
ij = ycij)

=
Pθ(Yij = 1 , Y c

ij = ycij)

Pθ(Yij = 0 , Y c
ij = ycij)

=
Pθ(Y = y+

ij)

Pθ(Y = y−ij)

=
exp(θT · Γ(y+

ij))

exp(θT · Γ(y−ij))

= exp(θT · (Γ(y+
ij)− Γ(y−ij))

⇒ logit(Pθ,y(Yij = 1|Y c
ij = ycij)) = θT · δΓ(y)ij (2)

When the network statistics involve covariates X in addition to y, we may add X to the

notation and write δΓ(y,X)ij .

Equation (2) reveals two facts: First, the probability on the left hand side depends on ycij
only through the change statistics δΓ(y)ij , not on Γ(y+

ij) or Γ(y−ij) themselves. In many

cases, it is much easier to calculate δΓ(y)ij than it is to calculate Γ(y+
ij) or Γ(y−ij), and

this fact can lead to efficient computational algorithms.

Second, Equation (2) says that each component of the δ vector may be interpreted as the

increase in the conditional log-odds of the network, per unit increase in the corresponding

component of Γ(y), resulting from switching a particular Yij from 0 to 1 while leaving

the rest of the network fixed at Y c
ij .

Exponential family random graph models (ERGMs) are a natural way to represent

dependencies in cross-sectional graphs and dependencies between graphs over time,

particularly in a discrete-time context. Hanneke define and describe a Temporal ERGM

(TERGM) postulating an exponential family model for the transition probability from at

time t to a network at time t+ 1. In section 4.2 we review discrete-time ERGM-based

network models, and discuss the specification of such models.

4.2 The Temporal Exponential Random Graph Model

As discussed by Hanneke et al. [2010], we consider a discrete-time dynamic network

model in which the network at time t is a single draw from an ERGM conditional on the

network at time t− 1. Specifically, one way to simplify a statistical model for evolving
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networks, is to make a Markov Chain assumption (see section 4.2.1) on the network from

one time step to the next. If Y t is the matrix representation of a single-relation network

at time t, then we might make the assumption that Y t is independent of Y 1, . . . , Y t−2

given Y t−1. Put another way, a sequence of network observations Y 1, . . . , Y t has the

property that

P(Y 2, Y 3, . . . , Y t|Y 1) = P(Y t|Y t−1) · P(Y t−1|Y t−2) · · · P(Y 2|Y 1)

We recall again definition (3) in Section 2 a network of NV nodes is defined as adjacency

matrix A = Y = (yij) ∈ RNV ×NV , where yij ∈ {0, 1} for all i, j ∈ {1, . . . , NV }. Where

yij = 1 means that there is an edge going from i to j, while yij = 0 indicates that this

edge does not exist. Since our model does not involve loops, we have yii = 0 for all

i ∈ {1, . . . , NV }. Further let Y t ∈ Y be a random variable representing the state of the

network at the discrete time point t and yt ∈ Y be its realization.

The one-step transition probability from yt−1 to yt is then defined to be

P(Y t = yt|Y t−1 = yt−1; θ) =
exp(θT · Γ(yt, yt−1))∑
y∈Y(N) exp(θ

T · Γ(yt−1))
, yt, yt−1 ∈ Y (3)

where

• θ ∈ Rq is a q-dimensional vector of parameters

• Γ() : Y2 → Rp is the sufficient statistic for the transition from network yt−1 at time

t− 1 to network yt at time t with q ≤ p

• κ(θ, yt−1) :=
∑

y∈Y(N) exp(θ
T · Γ(yt−1)) is a normalizing factor that ensures that

(3) is a legitimate probability distribution

TERGMs are a natural elaboration of the traditional ERGM framework. They are

essentially stepwise ERGM in time.

The class of models specified by (3) is very broad and a key component of model

specification is the selection of Γ. However, the choices in this dynamic situation are

richer and can be any valid network statistics evaluated on yt especially those that

depend on yt−1. Hanneke et al. [2010] focused on a choice of Γ that had the property of

conditional dyadic independence that

P(Y t = yt|Y t−1 = yt−1; θ) =
∏

(i,j)∈Y

P(Y t
i,j = yti,j |Y t−1 = yt−1; θ)
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the distribution of Y t in which edge states are independent, but only conditional on the

whole of Y t−1, and where Y is the set of potential edges between them.

However, caution must be used in interpreting their parameters. Consider the simplest

such statistic, the edge count

Γ(yt, yt−1) = |yt|

That means, a higher coefficient on Γ will, for any yt−1, produce a Y t distribution in which

networks with more edges have a higher probability. But, this term would accomplish

it in two ways simultaneously: it would both increase the weight of those networks in

which more edges were formed on previously empty dyads and increase the weight of

those networks in which more extant edges were preserved (fewer dissolved). That is, it

would both increase the incidence (the rate at which new edges are formed) and increase

the duration (how long they tend to last once they do).

Hanneke et al. [2010] gave an example of a statistic that controls the rate of evolution of

the network: a measure of stability. This statistic counts the number of edge variables

whose states did not change between time steps, which is then divided by the maximum

number of edges an actor could have (a constant):

Γ(yti,j , y
t−1
i,j ) =

1

n− 1

∑
(i,j)∈Y

(yti,jy
t−1
i,j + (1− yti,j)(1− yt−1

i,j ))

That means, a higher coefficient on it will slow the evolution of the network down and a

lower coefficient will speed it up. From the point of view of incidence and duration, it

will do so in two ways: a higher coefficient will result in networks that have fewer new

edges formed and fewer extant edges dissolved, incidence will be decreased and duration

will be increased.

The two-sided nature of these effects tends to muddle parameter interpretation, but a

more substantial issue arises if selective mixing statistics, like those described by Koehly

and Pattison [2005] are used. The coupling between the incidence of edges and their

duration not only makes such terms problematic to interpret, but has a direct impact on

modeling.

In section 4.3 we will describe and motivate the concept of separability of formation and

dissolution in a dynamic network model, and describe the Separable Temporal Exponential

Random Graph Model (STERGM).
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4.2.1 Markov Chains

As discussed by Fahrmeir et al. [1981] discrete-time stochastic process is a sequence of

random variables X = {Xn : n ∈ I} where I is a discrete index set, and to be the set of

nonnegative integers I = {0, 1, 2, . . .}, so

X = {Xn : n = 0, 1, 2, . . .}

We will denote the state space of X by S, where S is the set of all possible values of any

of the Xi’s. The state space is also assumed to be discrete, and we let |S| denote the

number of elements in S, called the cardinality of S. So S could be ∞ or some finite

positive integer.

A discrete-time stochastic process X is said to be a Markov Chain if it has the Markov

Property :

Markov Property (version 1):

For any s, i0, . . . , in−1 ∈ S and any n ≥ 1,

P(Xn = s|X0 = i0, . . . , Xn−1 = in−1) = P(Xn = s|Xn−1 = in−1)

In words, the distribution of Xn given the entire past of the process only depends on

the immediate past. Note that, we are not saying that, for example X10 and X1 are

independent. They are not. However, given X9, for example, X10 is conditionally in-

dependent of X1. Graphically, we may imagine being on a particle jumping around in

the state space as time goes on to form a (random) sample path. The Markov property

is that the distribution of where I go to next depends only where I am now, not on

where I have been. This property is a reasonable assumption for many real-world processes.

Note that, as with the notation of independence, in applied modeling the Markov property

is not something we usually try to prove mathematically. It usually comes into the model

as an assumption, and its validity is verified either empirically by some statistical analysis

or by underlying a-priori knowledge about the system being modeled.

A useful alternative formulation of the Markov property is:

Markov Property (version 2):

For any s, i0, . . . , in−1 ∈ S and any n ≥ 1 and m ≥ 0

P(Xn+m = s|X0 = i0, . . . , Xn−1 = in−1) = P(Xn+m = s|Xn−1 = in−1)
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In words, this says that the distribution of the process at any time point in the future

given the most recent past is independent of the earlier past. We should prove that the

versions of the Markov property are equivalent, because version 2 appears on the surface

to be more general. We do this by showing that each implies the other. It is clear that

version 2 implies version 1 by setting m = 0. We can use conditioning and induction

argument to prove that version 1 implies version 2, as follows.

Version 2 is certainly true for m = 0 (it is exactly version 1 in this case). The induction

hypothesis is to assume that version 2 true holds for some arbitrary fixed m and the

induction argument is to show that this implies it must also hold for m + 1. If we

condition on Xn+m then

P(Xn+m+1 = s|X0 = i0, . . . , Xn−1 = in−1)

=
∑
s′∈S

P(Xn+m+1 = s|Xn+m = s′, X0 = i0, . . . , Xn−1 = in−1)

× P(Xn+m = s′|X0 = i0, . . . , Xn−1 = in−1).

For each term in the sum, for the first probability we can invoke version 1 of the Markov

property and for the second probability we can invoke the induction hypothesis, to get

P(Xn+m+1 = s|X0 = i0, . . . , Xn−1 = in−1)

=
∑
s′∈S

P(Xn+m+1 = s|Xn+m = s′, Xn−1 = in−1)

× P(Xn+m = s|Xn−1 = in−1).

Note that in the sum, in the first probability we left the variable Xn−1 in the conditioning.

We can do that because it doesn’t affect the distribution of Xn+m+1 conditioned on

Xn+m. The reason we leave Xn−1 in the conditioning is so we can use the basic property

that

P(A ∩B|C) = P(A|B ∩ C) · P(B|C)

for any events A, B and C. With A = {Xn+m+1 = s}, B = {Xn+m = s′} and C =

{Xn−1 = in−1}. we have

P(Xn+m+1 = s|X0 = i0, . . . , Xn−1 = in−1)

=
∑
s′∈S

P(Xn+m+1 = s,Xn+m = s′|Xn−1 = in−1)

= P(Xn+m+1 = s|Xn−1 = in−1).

So version 2 holds for m+ 1 and by induction for all m.
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4.3 The Separable Temporal ERGM

Intuitively, those processes and factors that result in edges being formed, are not the

same as those that result in edges being dissolved.

Furthermore, it is often the case in practice that information about cross-sectional proper-

ties of a network has a different source from that of the information about its longitudinal

properties (i.e duration), and it is useful to be able to consider them separately Krivitsky

and Handcock [2014].

Thus, it is useful for the parameterization of a model to allow seperate control over

incidence and duration of edges and separate interpretation.

Consider a class of discrete-time models for network evolution, which assumes that these

processes are separable from each other within a time step. We consider in this section a

sub-class of models based on the ERGM family.

We represent networks as sets of edges, so given y, y′ ∈ Y, the network y ∪ y′ has the

edge (i, j) if, and only if, (i, j) exists in y or y′ or both, the network y ∩ y′ has (i, j) if,

and only if, (i, j) exists in both y and y′, and the network y \ y′ has (i, j) if, and only if,

(i, j) exists in y but not in y′. The relation y ⊇ y′ holds, if, and only of, y has all of the

edges that y′ does, and conversely for y ⊆ y′.

yt−1
i,j → (y+

i,j, y
−
i,j) → yt

i,j

0 → (0,0) → 0

0 → (1,0) → 1

1 → (1,0) → 0

1 → (1,1) → 1

Table 5: Possible transitions of a single edge variable

Consider the evolution of a random network at time t − 1 to time t, and define two

intermediate networks, the formation network Y +, considering of the initial network

Y t−1 with edges formed during the time step added and the dissolution network Y −,

considering of the initial network Y t−1 with edges dissolved during the time step removed

(with y+ and y− being their realization, respectively). Then given yt−1, y+, and y−, the

network yt may be evaluated via a set of operation, as

yt = y+ \ (yt−1 \ y−) = y− ∪ (y+ \ yt−1) (4)
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Since it is the networks yt−1 and yt that are actually observed, y+ and y− may be

regarded as latent variables, but it is possible to recover them given yt−1 and yt, because

an edge variable can only be in one of four states given in Table 5. Each possibility has

a unique combination of edge variable states in yt−1 and yt, so observing the network

at the beginning and the end allows the two intermediate states to be determined as

y+ = yt−1 ∪ yt and y− = yt−1 ∩ yt.
If Y + is conditionally independent of Y − given Y t−1 then

P(Y t = yt|Y t−1 = yt−1; θ) = P(Y + = y+|Y t−1 = yt−1; θ)×

P(Y − = y−|Y t−1 = yt−1; θ) (5)

We refer to the two factors on the right hand side as the formation model and the

dissolution model, respectively. Suppose that we can express θ = (θ+, θ−) where the

formation model is parametrized by θ+ and the dissolution model by θ−.

Definition: We say that a dynamic model is seperable if Y + is conditionally independent

of Y − given Y t−1 and the parameter space of θ is the product of the individual parameter

spaces of θ+ and θ−.

We refer to such a model as separable, because it represents an assumption that during

a given discrete time step, the process by which the edge form does not interact with

the process by which they dissolve (Krivitsky and Handcock [2014]): both are separated

(in the conditional independence sense) from each other conditional on the state of the

network at the beginning of the time step.

For the sake of completeness, we will further introduce how the formation model and the

dissolution model can in the ERGM context be modeled, however for our final model

approach introduced in section 6 will not be relevant.

For the components of the seperable model, we specifically model the formation model

P(Y + = y+|Y t−1 = yt−1; θ+) =
exp(θ+ · Γ+(y+, yt−1))

δΓ+(θ+, yt−1)
; y+ ∈ Y+(yt−1)

and the dissolution model

P(Y − = y−|Y t−1 = yt−1; θ−) =
exp(θ− · Γ−(y−, yt−1))

δΓ−(θ−, yt−1)
; y− ∈ Y−(yt−1)
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with their normalizing constants δΓ+(θ+, yt−1) and δΓ−(θ−, yt−1) summing over Y+(yt−1)

and Y−(yt−1), respectively.

Thus, the STERGM class is a subclass of a first order Markov TERGM of Hanneke et al.

[2010] described in Section 4.2. However, the essential issue is the specification of models

within these classes. What is gained is ease of specification, tractability of the model,

and substantial improvement in interpretability.

In the next Section we are going to introduce classical regression models, in order to

come to our final model selection combining both STERGM and classical regression

definitions.

5 Classical Regression Models

In this Section we are going to discuss the generalized linear model, that generalizes

linear regression by allowing the linear model to be related to the response function via a

specific link function. Then we will introduce some techniques for editing nonparametric

functions, the so-called smoothing splines, which create approximate functions to capture

important patterns in the data. Furthermore, we are going to discuss the generalized

additive model, as introduced by Hastie and Tibshirani [1987], is a generalized linear

model with a linear predictor including a sum of smooth functions of covariates. At last

we are going to introduce the generalized additive mixed models, which we will combine

its definition with the definition of STERGM to come to our final model approach the

so-called Separable Temporal Logistic Additive Mixed Models.

5.1 The Logit Model

In our context we are interested in binary response variable Yij , for which an edge exists

or does not exist between two actors. We denote the random variable with capital letters,

while the specific realizations are denoted by lower-case characters. Binary logistic

regression is a type of regression analysis where the response variable is a dummy variable

[0: no edge between two actors ; 1: an edge between two actors]. The aim of binary

regression is to model and estimate the effects of given covariates Xij .

Why we should not use for the modeling the probability of the occurence of an edge with

the linear model?
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Consider the linear model :

yij = β0 + β1xij1 + . . .+ βpxijp + εij (6)

with the linear predictor:

ηij = β0 + β1xij1 + . . .+ βpxijp = x′ijβ (7)

where:

• yij is the response dummy variable, = 1 edge occurs, = 0 if not

• β = (β0, β1, . . . , βp)
′ are the coefficients on the covariates

• xij are the covariates

• εij ∼ N(0, σ2) is the error term

Use of the linear model generally gives us the correct answers in terms of the sign and

significance level of the coefficients. The predicted probabilities from the model are

usually where we run into trouble. There are 3 problems with using the linear model :

1. The error terms are heteroscedastic (heteroscedasticity occurs when the variance of

the response variable is different with different values of the independent variables):

var(εij) = πij(1 − πij), where πij is the probability that event = 1. Since πij

depends on xij the classical regression assumption that the error term does not

depend on the xij is violated

2. εij is not normally distributed because πij takes only two values, violating another

classical regression assumption

3. The predicted probabilities can be greater than 1 or less than 0, which can be a

problem if the predicted values are used in a subsequent analysis. This amounts to

an interpretation that a high probability of the event occuring is considered a sure

thing

The logit model solve these problems, the common way to fit a model with binary response

is to link the probability πij to the linear predictor ηij through

πij = P(yij = 1|xij1, . . . , xijp)

= h(ηij) = h(β0 + β1xij1 + . . .+ βpxijp) (8)
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where h(.) is the response function with a distribution from the exponential family, such

that for any β and any xij one gets h(η) ∈ [0, 1]. Since we can assume that h(.) is strictly

monotonically increasing function, so there exists an inverse function g(.) = h−1(.), called

a link function, and can be written as

ηij = β0 + β1xij1 + . . .+ βpxijp = g(πij)

choosing the logistic distribution function

F (η) =
exp(η)

1 + exp(η)

we get the logit model

πij = h(ηij) =
exp(ηij)

1 + exp(ηij)

which yields, for the link function

g(πij) = log

(
πij

1− πij

)
= ηij = β0 + β1xij1 + . . .+ βpxijp

by multiplying the g(.) function with the exponential function yields(
πij

1− πij

)
= exp(β0) · exp(β1xij1) · · · exp(βpxijp) (9)

This expression defines a multiplicative model for the odds. For example, if we were

to change the j-th predictor by one unit while holding all other variables constant, we

would multiply the odds by exp(βj). To see this point suppose the linear predictor is x′ijβ

and we increase xij by one, to obtain x′ijβ + βj . Exponentiating we get exp(x′ijβ) times

exp(βj). Thus, the exponentiated coefficient exp(βj) represents an odd ratio. Translating

the results into multiplicative effects on the odds, or odds ratios, is often helpful, because

we can deal with a more familiar scale while retaining a relatively simple model.

Solving for the probability function of Yij we get

P(Yij = 1|Xij = xij) = h(ηij) =
exp(ηij)

1 + exp(ηij)
(10)

Then, we can compute the odds of occurence of edge (i, j), conditional on the covariates:

P(Yij = 1|Xij = xij)

P(Yij = 0|Xij = xij)
=

P(Yij = 1|Xij = xij)

1− P(Yij = 1|Xij = xij)

=

(
exp(ηij)

1 + exp(ηij)

)/(
1

1 + exp(ηij)

)
=

(
exp(ηij)

1 + exp(ηij)

)
· (1 + exp(ηij))

= exp(ηij)
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This implies the equation:

logit(P(Yij = 1|Xij = xij)) = ηij (11)

Thus, the effect of the j-th predictor on the probability πij depends on the coefficient βj

and the value of the probability.

5.2 Smoothing Splines

In this section we will introduce some techniques for editing nonparametric functions. It

is obvious to assume that the relation between response and the covariates will not be

linear. Therefore, we will need some nonparametric functions, such as smoothing splines

to capture important patterns in the data. The most important property of smooth

functions are their nonparametric nature, and as a consequence, we do not assume a

rigid form of dependence between the response Yij and the covariates Xij1, . . . , Xijp.

Even though there are several smoothing technique approaches, in this thesis we will

discuss the techniques of spline smoothers, such as the Polynomial Splines, B-Splines, and

P-Splines. This section is mainly based on Fahrmeir et al. [2013], Hastie and Tibshirani

[1987], and Wood [2011].

5.2.1 Polynomial Splines

We assume by a given data in the form of (yij , xij), i, j = {1, . . . , NV }, i 6= j, where

yij are the observations of the response variable and xij are the corresponding metric

covariates. Taking yij as dyads in a network on NV nodes we obtain N = N2
V − NV

observations. We can assume that the response variable can be described by a function

f(·) and an error term εij .

yij = f(xij) + εij (12)

The first approach is to approximate the relation between the target value and the

covariate with a polynomial function

f(xij) = γ0 + γ1xij + . . .+ γlx
l
ij

where l ∈ N and γk ∈ R, k ∈ {0, . . . , l}. This approach can be realized by the least square

method. However, in most cases a pure polynomial approach does not provide satisfying

results. An example illustrating this approach is given in Fahrmeir et al. [2013]. While

polynomials with low degrees do not capture the true relation of the data sufficiently,
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polynomials with high degrees provide wiggly fits of the data.

In order to find a way out of this dilemma, Fahrmeir et al. [2013] suggest to divide the

codomain into m parts c = k0 < · · · < km = d, and capture the relation between the x

and y on each interval [kj , kj+1), j ∈ {0, . . . ,m− 1} with a l-th degree polynomial. The

problem with this approach is that, since the estimates are done independently for each

interval, the piecewise estimated functions are not necessarily connected. A method for

how one can gain functions, which are estimated on intervals [kj , kj+1) but still provide

continuous transitions will be introduced in the next chapters.

5.2.2 B(asic)-Splines

The problem resulting from the previous paragraph is that piecewise estimated polynomi-

als usually provide smooth functions, which are neither continuous nor differentiable on

the entire codomain. The main idea f B-splines is a construction to guarantee that piece-

wise estimated functions on knots k1, . . . , km−1 are composed in a sufficient, (l− 1)-times

differentiable way. In order to estimate f(.) with B-splines, we have to represent the

smooth function in such a way that y = f(x) + ε becomes a linear model. This is done

by choosing specific basic functions B1(x), . . . , Bd(x), d = m+ l − 1. Thus, we can write

f(x) =
d∑
j=1

γjBj(x) (13)

B-splines are defined as non-zero functions on only a few intervals [ki, kp], i, p ∈ {0, . . . ,m},
with i 6= p. Which results good numerical properties Fahrmeir et al. [2013]. Let

Bj(x) =

{
f(x) , if x ∈ [kj , kj+l+1)

0 , else

where f : R→ R+ is constructed from polynomial pieces and

d∑
j=1

Bj(x) = 1

The function f(.) is composed of l + 1 polynomial pieces of degree l, which are put

together in a l − 1-times differentiable way. Figure 8 illustrates single B-Spline
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2. Theory

The estimation of “geo is regularized the same way as the estimation of the co-

e�cient vector “1, . . . , “q with a penalty ⁄geo“
T
geoKgeo“geo or equivalent Gauss

priors.

2.3. Splines

This section outlines basic statistical methods for nonparametric modeling.

Therefore, their key concepts will be revealed.

2.3.1. B(asic)-Splines Basis functions

B(asic)-Splines are a flexibly modeling strategy to describe the influence of

a continuous variable with good numerical properties [Fahrmeir et al., 2009].

The function f(z) is approximated by piecewise polynomials. There are addi-

tional smoothness requirements at the knots of the function f(z). B-Splines

basis functions are constructed in a way that the polynomial pieces with the

favored degree are su�ciently smooth at a desired knot. A B-Spline basis func-

tion consists of (l + 1) polynomial pieces with degree l, which are composed

of l ≠ 1 times continuously di↵erentiable. Figure 2.1 illustrates single B-Spline

Figure 2.1.: One single B(asic)-Spline basis function of degree l = 0, 1, 2, 3 at
equidistant knots illustrated by [Fahrmeir et al., 2009].

basis function of degree l = 0, 1, 2, 3 on equidistant knots as the results from

6

Figure 8: One single B(asic)-Spline basis function of degree l = 0, 1, 2, 3 at

equidistant knots illustrated by Fahrmeir et al. [2013]

basis function of degree l = 0, 1, 2, 3 on equidistant knots as the results from these

considerations.

All B-Spline basis functions are built for visualization of polynomial splines based on the

underlying knots. The complete B-Spline basis of degree l = 0, 1, 2, 3 are depicted at

equidistant knots in Figure 9.

2.3. Splines

these considerations.

All B-Spline basis functions are built for visualization of polynomial splines

based on the underlying knots. The complete B-Spline basis of degree l =
0, 1, 2, 3 are depicted at equidistant knots in figure 2.2.
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Figure 2.2.: B(asic)-Spline basis function of degree l = 0, 1, 2, 3 at equidistant
knots.

With the help of this basis it is possible to represent f(z) by a linear combi-

nation with d = m + l ≠ 1 basis functions

f(z) =
dÿ

j=1
“jBj(z)

A great benefit of the B-Spline basis is based on its local precision. Contrary

to other basis functions, B-Spline basis functions are only over l + 2 adjacent

knots di↵erent from zero. Additionally they are bounded above in order to

7

Figure 9: B(asic)-Spline basis function of degree l = 0, 1, 2, 3 at equidistant

knots

By looking at the basis functions in 9 with a single B-spline degree, we can verify the
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actual definition of linear B-spline basis functions

B1
j (x) =

x− kj
kj+1 − kj

I[kj ,kj+1](x) +
kj+2 − x

kj+2 − kj+1
I[kj+1,kj+2](x)

where the 1 in B1
j (x) points out the linear form of the piecewise defined polynomials. We

van come to the conclusion that B1
j (x) consists of two linear pieces.

In general, B-splines basis functions for higher degrees can be defined recursively

Bl
j(x) =

x− kj
kj+1 − kj

Bl−1
j (x) +

kj+l+2 − x
kj+l+2 − kj+1

Bl−1
j+1(x)

Due to the linear form of (13) we can define X and γ as

X =


B1(x12) . . . Bd(x12)

... . . .
...

B1(x(NV −1)NV
) . . . Bd(x(NV −1)NV

)

 , γ =


γ1

...

γd


thus, we can write (12) in linear form

y = Xγ + ε (14)

where y = (y12, . . . , y(NV −1)NV
)′ and ε = (ε12, . . . , ε(NV −1)NV

)′. As a consequence, the

parameter vector γ can be estimated by the ordinary least square method

γ̂ = (X ′X)−1X ′y (15)

As already mentioned above, the design matrix X holds some beneficial characteristics.

The most important one stermsfrom the local definition of the basis functions, which

mainly yield matrix entries of 0. The only non-zero entries occur along the diagonal of

the matrix. These kind of matrices are helpful, since solving (15) with these matrices is

numerically efficient.

However, the parameter vector γ can not be interpreted in a reasonable way. Instead, we

are interested in the form of the estimated function f̂(.), which is a result of γ̂

f̂(x) = Bγ̂

where B = (B1(x), . . . , Bd(x))

There are several reasons why B-splines turn out wiggly, such as the selection of the

basis dimension or the selection of the knots. It is reasonable that a smooth, but not too

wiggly function would be preferred over a spline estimator, but how can we control the
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wiggliness of a smoother? A common technique is by controlling the degree of smoothing

by penalized B-splines.

5.2.3 P(enalized)-Splines

P(enalized)-splines differ from the methods discussed in the previous section, since instead

of minimizing

||y −Bγ||2

we are going to minimize

||y −Bγ||2 + λ

∫
C
f ′′(x)2dx (16)

with regard to γ, where C is the codomain of x and f ′′(x) is the second derivative of

function f(x). The second derivative of a function yields information about a functions

curvature see O’Sullivan [1986], and therefore by minimizing (16) we penalize models

that are too wiggly. With the smoothing parameter λ one can control the trade-off

between the model’s fit and smoothness. While λ = 0 results in spline estimates without

penalization and hence wiggly models, λ→∞ leads to the linear regression of the data.

See section 5.2.4 for the discussion finding a fitting smoothing parameter λ, but for now

we treat λ as given.

We can show that we can write the penalty in (16) as∫
C
f ′′(x)2dx = γTSγ (17)

where S ∈ Rd×d is a matrix that can be expressed by the basis functions Bj(x). Recall

that we define function f(x) as

f(x) =
d∑
j=1

γjBj(x)

which yields

f ′′(x) = γTB′′(x)

for the second derivative. Since f ′′(x) is a scalar and scalars are their own transpose we

can write
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∫
C
f ′′(x)2dx =

∫
γTB′′j (x)B′′j (x)Tγ dx

= γT
∫
C
B′′j (x)B′′j (x)Tdx︸ ︷︷ ︸

:=S

γ

As a consequence, instead of minimizing (16) we can minimize

||y −Bγ||2 + λγ′Sγ

with regard to γ. Minimizing this equation with the least square method yields

LS(γ) = (y −Bγ)′(y −Bγ) + λγ′Sγ

= y′y − 2y′Bγ + γ′B′Bγ + λγ′Sγ

and further we get for the first and second derivation

∂LS(γ)

∂γ
= −2B′y + 2B′Bγ + 2λSγ (18)

∂2LS(γ)

∂γ∂γ′
= 2B′B + 2λS (19)

B′B + λS is positive definite and therefore invertible see Fahrmeir et al. [2013]. We get

a solution to our minimization problem by solving equation (18) for γ, and this yields

the least square estimator for γ

γ̂ = (B′B)−1B′y (20)

However these derivatives lead to rather complex systems of equations. Eilers and Marx

[1996] suggest a simple approximation of the derivatives, which can be used for the

construction of the penalty terms. Instead of (16) we are going to minimize

||y −Bγ||2 + λ
d∑
j=3

(∆2γj)
2 (21)

Besides easy computation, this approach has the advantage of being able to penalize

linear B-splines in a reasonable way. The spline functions estimated in section 6 are

going to apply this approximation.

After having discussed how to estimate γ, we will discuss in the next section, how we

can establish an appropriate smoothing parameter λ.
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5.2.4 Choice of the Smoothness Parameter λ

The optimal choice of the smoothness parameter λ is an important aspect. The smooth-

ness parameter λ controls the smoothness of estimated functions and ensures a suitable

compromise between bias and variability of an estimator. For λ → ∞ exists a widely

linear estimation of the function f(x). Contrary to λ→ 0 exists a quite rough estimation

of the function f(x).

The problem occurs that bias and variability of a smoothness method are simultaneously

depended on the smoothness parameter λ and both cannot be minimized at the same

time. Therefore, a suitable equalization must be found.

On the one hand, the Mean Squared Error (MSE) is a good possibility:

MSE(f̂(x)) = E
[(
f̂(x)− f(x)

)2]
=

(
E
[
f̂(x)− f(x))

])2

︸ ︷︷ ︸
bias

+V ar(f̂(x))︸ ︷︷ ︸
variability

The MSE is added additively by the squared bias and the variance. Finally, the λ is

taken where the MSE is minimal.

On the other hand, there is the Cross-Validation (CV) to find the optimal smoothness

parameter λ. Respectively one observation is deleted in cross validation. Within the next

step the smoothness parameter λ is estimated with the remaining n − 1 observations.

Finally, f(xi) is predicted for the deleted observation. Denoted by f̂ (−i)(xi) is the

estimation, which occurs without the observation (xi, yi) and receives Cross-Validation

criterion Stone [1974]:

CV =
1

n

n∑
i=1

(
yi − f̂ (−i)(xi)

)2

The minimization of the CV criterion leads in the sense of prediction error to an optimal λ.

A further alternative method to achieve the optimal smoothness parameter λ is by the

Akaikes Information Criterion (AIC) Akaike [1974]:

AIC = n.log(σ̂2) + 2(df + 1)
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where σ̂2 =
∑

(yi − f̂(xi)/n. The AIC has to be minimized concerning the smoothness

parameter.

5.3 The Additive Model

The class of additive models is an extension of linear models, where the linear regression

can be seen as an approach to estimate E(Y |X1, . . . , Xp), by assuming the model structure

to be

yij = β0 + β1xij1 + . . .+ βpxijp + εij

with parameters β0, . . . , βp and i.i.d. εij ∼ N(0, σ2). For additive models, we generalize

the linear predictor with smooth functions f(.)

yij = β0 + f1(xij1) + . . .+ fq(xijq) + εij (22)

Since the arms trade model will also include binary covariates as well, which do not have

to be smoothed, we can rewrite our equation above as

yij = f1(xij1) + . . .+ fq(xijq) + Zijβ + εij (23)

where β′ = (β1, . . . , βp) is a vector of parameters and Zij = (xij1, . . . , xijp) is the vector

of covariates we assume to have a linear effect.

An advantage of the linear model towards other models is that it is additive in the

predictors’ effects. This yields the following opportunity: If a linear model is fitted, it is

possible to investigate the predictors’ effects separately, since we assume the covariates

to be independent of each other. If one holds all but one predictor fixed and takes a

look at the variation of the fitted response, then it does not depend on the values of

the other predictors. When taking a look at additive models we can observe that they

retain this important feature of linear models. Their predictors’ effects are additive as

well, which yields the conclusion that once the additive model is fitted, we are able to

examine the functions of the covariates separately. Therefore, we can analyze the roles of

the predictors in modeling the response variable individually.

5.4 The Generalized Additive Model

A generalized additive model Hastie and Tibshirani [1987] is a generalized linear model

with a linear predictor involving a sum of smooth functions of covariates. As a consequence,

the linear predictor now expresses the outcome of some known monotonic function of

the expected value of the response, while the response follows any exponential family
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distribution. Therefore, we extend the linear predictor (7) with smooth functions

f1(.), . . . , fq(.) to

yij = ηij = f1(xij1) + . . .+ fq(xijq) + β0 + β1xij1 + . . .+ βkxijk + εij

= f1(xij1) + . . .+ fq(xijq) + ηlinij + εij

= ηaddij + εij (24)

where f1(xij1), . . . fq(xijq) are smooth functions of the metric covariates x1, . . . , xq, and

the errors εij are independent of the xij , with E(εij) = 0 for all N2
V −NV observations.

β′ = (β1, . . . , βp) and Zij = (xij1, . . . , xijp) are defined as in the previous section. The

smooth functions are estimated in a nonparametric fashion. A generalized additive model

differs from an additive model. Its additive predictor is linked with the expected value

by a known smooth monotonic link-function.

The smooth functions f1(xij1), . . . fq(xijq) are represented by a linear combination of

basic-functions

fj =

dj∑
l=1

γjlBl(xj), j = 1 . . . q

There are different types of basic-functions for Bl, l = 1 . . . dj . Common examples are

B-Splines or P-Splines see Section 5.2.

A covariate can always be represented by

fj = Zjγj

with the coefficient vector γj = (γ1 . . . γj) and the design matrix Zj . The additive model

in matrix notation

y = Z1γ1 + . . . Zqγq +Xβ + ε

The estimation occurs either with the penalized least squares criterion for normal

distributed response

PKQ(λ) = (y − Zγ)T (y − Zγ) + λγTKγ

Thereby denotes Z a matrix whose entries are the basic-functions evaluated at the

observations

Z =


Bl

1(z1) . . . Bl
d(z1)

...
...

Bl
1(zn) . . . Bl

d(zn)

 .
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Simple GAMs are estimated with the penalized least-squares estimator

γ̂ = (ZTZ + λK)−1ZT y

or with the Fisher Scoring algorithm Fahrmeir et al. [2013]. Generalized additive models

require more complex methods as the backfitting algorithm Hastie and Tibshirani [1987].

For a more detailed overview of generalized additive models see Hastie and Tibshirani

[1987] and Fahrmeir et al. [2013].

5.5 The Generalized Additive Mixed Model

Before we introduce the generalized additive mixed model (GAMM), we will give a short

introduction to linear mixed models (LMM), and also to generalized linear mixed models

(GLMM) for a better understanding. This Section is mainly based on Wood [2006].

5.5.1 The Linear Mixed Model

The linear mixed model can conveniently be written as

y = XB + Zb+ ε, b ∼ N(0, ψθ), ε ∼ N(0,Λσ2) (25)

where ψθ is a positive definite covariance matrix for the random effects b, and Z is

a matrix of fixed coefficients describing how the response variable, y, depends on the

random effects. ψθ depends on some parameters, θ, which will be the prime target of

statistical inference about the random effects. Finally, Λ is a positive definite matrix

which usually has a simple structure depending on few or no unknown parameters.

We could combine the residual vector and random effects into a single, non-independent,

variable-variance residual vector, e = Zb + ε. It is obvious that e is a zero mean

multivariate normal vector, and its covariance matrix must be ZψθZ
T + Iσ2. Hence (25)

can be written as:

y = Xβ + e, e ∼ N(0,Σθσ
2)

where Σθ = ZψθZ
T /σ2 + I, and the subscript, θ, emphasizes the dependence of Σθ on

the covariance parameter vector, θ. So if θ were known then we could estimate β using

the methods of least squares criterion.
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5.5.2 The Generalized Linear Mixed Model

The generalized linear mixed model (GLMM) follow from linear mixed model. Let

µb ≡ E(y|b). Then a GLMM has the form

g(µb) = Xiβ + Zib, b ∼ N(0, ψθ) and yi|b ∼ exponential family distribution

where g is a monotonic link function, and the covariance matrix, ψθ, of the random

effects, is parametrized in terms of a parameter vector θ. The yi|b are independent.

The likelihood for a GLMM is obtained by considering the joint distribution of the

response and the random effects:

fβ,θ,φ(y, b) ∝ |ψθ|−1/2exp

(
log f(y|b)− 1

2
bTψ−1

θ b

)
where f(y|b) is the joint distribution of the response conditional on the random effects.

The marginal distribution of y, and hence the likelihood, is obtained by integrating out

the random effects

L(β, θ) ∝ |ψθ|−1/2

∫
exp

(
l(β, b)− 1

2
bTψ−1

θ b

)
db

where l(β, b) is considered as function of β and b the likelihood of the GLM that would

result from treating both β and b as fixed effects.

5.5.3 The Generalized Additive Mixed Model

A GAMM is just a GLMM in which part of the linear predictor is specified in terms of

smooth functions of covariates. Extending the Equation (24) we get for the generalized

additive mixed model the following form

yij = ηlinij + f1(xij1) + . . .+ fq(xijq) + Zib+ εij (26)

where yij is the response variable, ηlinij is the linear predictor β0 + β1(xij1) + . . . βp(xijp)

with β′ = (β0, . . . , βp) vector of fixed parameters, and xij1, . . . , xijp the covariates, which

are assumed to be linear. f1, . . . , fq are smooth functions of the metric covariates

xij1, . . . , xijq, Zi is a row of a random effects model matrix, b ∼ N(0, ψθ) is a vector of

random effects coefficients, with unknown positive definite covariance matrix ψθ, with

parameter θ, ε ∼ N(0,Λ) is a residual error vector, with ith element εi, and the covariance

matrix Λ, which is usually assumed to have some simple pattern.
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The generalization from GLMs to GAMs required the development of theory for penalized

regression as described in Section 5.2, in order to avoid overfitting, but GLMM methods

require no adjustment in order to cope with GAMMs, it is possible to write any of

the penalized regression smoothers considered, as components of a mixed model, while

treating their smoothing parameters as variance component parameters, to be estimated

by Likelihood methods.

6 Modelling of Arms Trade Networks

To model the international major conventional weapons trade network, we have yearly,

pairwise, binary trading information of major conventional weapons and, additionally,

covariate informations for 218 countries from 1950 − 2013 available. Given the trade

data, it is possible to evaluate the (indirectly observed) formation y+ and dissolution

y− networks for the years 1951 − 2012. The formation networks can be evaluated as

y+t
ij = ytij |y

t−1
ij and the dissolution networks as y−tij = ytij ∩ y

t−1
ij . To estimate the models,

it is convenient to create two long response vectors by connecting all yearly, rowwise

stacked, binary formation / dissolution adjacency matrices (removing the missing en-

tries of the main diagonals). For modelling the formation and dissolution processes,

we condition on the previous observed trading networks and therefore, it is possible to

compute arbitrary statistics of the previous observed networks for each trading dyad and

use them as covariates in the logistic regression models. Focusing only on the network

yt−1 for modelling the formation and dissolution networks at timepoint t (which equals

a Markov-1 assumption see Section 4.2.1) some reasonable statistics for modelling y+t
ij

or y−tij are e.g. the lag-1 trading information of actor i to actor j, i.e. yt−1
ij , the lag-1

reciprocal trade information yt−1
ji , the number of export activities (the out-degree) of

actor i in the last year, i.e.
∑

k y
t−1
ik , and the number of import activities of actor j in

the last year
∑

k y
t−1
kj . Those statistics are often referred to as (lag-1) two-node statistics,

since they are based on counts or the existence of (specific) pairwise trade patterns.

Furthermore, it is possible to include lag-1 three-node statistics as covariates in the model:

We are going to consider the number of transitive (“indirect”) trade relations between two

nations in the last year, i.e.
∑

k y
t−1
ik yt−1

kj , the number of last years reverse transitive trade

relations,
∑

k y
t−1
jk yt−1

ki , the number of shared suppliers in the last year,
∑

k y
t−1
ki y

t−1
kj ,

and the number of shared customers in the last year,
∑

k y
t−1
ik yt−1

jk . Figure 10 illustrates

these described patterns, for each trading dyad (i, j) we count their observed numbers at

timepoint t−1 and used them as a covariates for modelling the trading dyad at timepoint t.
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Figure 10: Three-Node Statistics

Additionally, it is possible to include sender- and receiver-specific covariates, e.g. the

log-GDPm or polity scores of the countries, as well as binary information whether the

sender and / or receiver have defence agreements in the specific years. A third type of

covariates are observation (or dyad-) specific information, e.g. the year of the specific

trade observations. Table 6 presents all covariates used in our modelling of the small

arms trade formation and dissolution networks and their specific types.

Description Abbreviation Type

lag-1 trade yt−1
ij trade.bin.lag binary

lag-1 reciprocal trade yt−1
ji trade.bin.recip.lag binary

lag-1 defence alliances yt−1
ij daml binary

intra-state conflict sender in year t coml.sender quasi-continuous

intra-state conflict receiver in year t coml.receiver quasi-continuous

lag-1 number of transitive trade pattern trade.lag.trans quasi-continuous

lag-1 number of reverse transitive trade pat-

terns

trade.lag.revtrans quasi-continuous

lag-1 number of shared suppliers trade.lag.samesource quasi-continuous

lag-1 number of shared buyers trade.lag.samebuyer quasi-continuous

lag-1 in-degree receiver in.deg.lag.rec quasi-continuous

lag-1 out-degree sender out.deg.lag.sen quasi-continuous

year of observation / modelled network year quasi-continuous

([1950, 2013])

log GDPm sender in year t logGDPm.sender continuous

log GDPm receiver in year t logGDPm.receiver continuous

MC military capability of sender mc.sender continuous

MC military capability of receiver mc.receiver continuous

absolute difference of polity score of sender

and receiver in year t

abs.polity.diff quasi-continuous

([0, 20])

Table 6: Covariates used in the formation and dissolution model, their ab-

breviations and types
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As discussed before, we are going to use Mixed Additive Logistic Regression for analyzing

the formation and dissolution processes in the international major conventional weapons

trade networks from 1951 until 2012. The basic idea of generalized additive models

is to extend the classic framework of generalized linear models by estimating effects

of continuous covariates nonparametrically. Instead of assuming linear effects for the

continuous covariates in the linear predictor, nonlinear, smooth effects are estimated for

(at least some of) those continuous covariates, typically via a representation of the effects

through smoothing splines. This already leads to a very versatile class of models, however,

it is, like in the case of generalized linear models, possible to additionally incorporate

random effects into models to account for e.g. a longitudinal or clustered structure in the

data. Such models are called generalized additive mixed models (GAMMs), see Section

5.5 or Wood [2006].

In our application case of modelling the entries of the formation and dissolution adjacency

matrices of the international MCW trades, we are going to estimate two seperate mixed

additive logistic regression models with dummy effects for each binary, and non-linear,

smooth effects for each (quasi-)continuous covariate from Table 6. Additionally, we

incorporate gaussian random intercepts for the specific sender and receiver countries of

the modelled trading dyads. Estimating effects for the lag-network statistics, thereby,

aims at considering the special network structure of the data, while the sender- and

receiver-specific covariates are included to analyze potential relations between the observed

countries’ characteristics and the formation and dissolution processes. By, including

additional random intercepts for sender and receiver countries, we take the countries’

different degrees of involvement into the international MCW trade networks into account.

The covariate lag-1 trade plays a somewhat special role in the formation and dissolution

models. Due to the definition of the formation and dissolution networks, the entries of

the formation and dissolution adjacency matrices are already predetermined for one of

the groups of the (binary) covariate, each: The formation network y+t at timepoint t

was defined as the network that contains all edges of the observed network yt−1 and

additionally all the newly formed edges at timepoint t. Consequently, all entries of the

formation models’ adjacency matrix y+t
ij with lag-1 trade, i.e. yt−1

ij = 1, are per definition

1. The dissolution model, by contrast, was defined as the network that consists out of

the edges of the observed network yt−1, but with all ties that are dissolved at timepoint

t removed. All entries y−tij of the dissolution networks’ adjacency matrix at timepoint t

without lag-trade, i.e. with yt−1
ij = 0, are consequently predetermined to be 0. Instead of

focusing on all entries of the years’ formation and dissolution adjacency matrices, we can

therefore focus on two distinct subsets of our dataset in modelling the formation and
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dissolution processes. The inclusion of a categorical covariate into a logistic regression

model, that doesn’t feature observations of both response classes in one of its categories,

leads to so-called (quasi-) complete separation. The estimation of an effect for the class

that separates the response leads to huge (in absolute value) point, estimates with inflated

standard errors. The estimation algorithm (in general based on likelihood optimization),

doesn’t converge for the specific parameter, the best possible estimate for it would be

+/−∞. All other estimated parameters, however, are still valid estimates for the effects

of the other covariates, and describe their effects in all classes of the categorical covariate

that contain both levels of the response. By anticipating the separation of the responses

induced through the definition of the formation / dissolution networks, we gain stability

in the estimation algorithms and achieve more clarity in the description our modelling

approach. In the formation model we look at all trade relations that did not exist in the

last year and model their log-odds to form, whereas, in the dissolution model we focus

on all edges that did exist in the last year and model their log-odds to persist.

Summarizing it in a formal way, our assumptions in modelling the international major

conventional arms trade networks from 1951 until 2012 are the following:

1. The processes of the formation of new edges from timepoint t − 1 to t and the

persistence of edges that existed at t− 1 in t do not interact with each other, i.e.

the conditional probability of observing a network yt at timepoint t equals the

product of the conditional probabilities of the associated formation and dissolution

networks.

2. For each of the processes we assume that the relevant (for the formation network

all entries Y +t
ij , with yt−1

ij = 0, and for the dissolution network all entries Y −tij with

yt−1
ij = 1) entries Y

+/−
ijt of the adjacency matrices are conditionally independent

realizations of a Bernoulli trial with a specific, to be modelled, success probability,

i.e.

Y
+/−
ijt |y

t−1, xijt, b
+/−
sen, i, b

+/−
rec, j

ind∼ B(1, π
+/−
ijt ),

with

(b
+/−
sen, i, b

+/−
rec, j) ∼ N(0, diag(τ2 +/−

sen , τ2 +/−
rec )),

and we model the log-odds of the success probabilities through a linear predictor

η
+/−
ijt , i.e.

log
( π

+/−
ijt

1− π+/−
ijt

)
= η

+/−
ijt .

The linear predictors of the formation and dissolution model contain the same

covariates, presented in Table 6, but it is of course possible to estimate different
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effects on the formation of new and the persistence of existing ties within the two

independent models. The linear predictor of our formation model is:

η+ijt = β+
0 + β+

recipy
t−1
ji + β+

damly
t−1
ij + f+out.deg

(∑
k

yt−1
ik

)
+ f+in.deg

(∑
k

yt−1
kj

)
+ f+trans

(∑
k

yt−1
ik yt−1

kj

)
+ f+rev.trans

(∑
k

yt−1
jk yt−1

ki

)
+ f+shared.supp

(∑
k

yt−1
ki yt−1

kj

)
+ f+shared.cust

(∑
k

yt−1
ik yt−1

jk

)
+ f+intra.conf.sen

(
xti, intra.conf.sen

)
+ f+intra.conf.rec

(
xtj, intra.conf.rec

)
+ f+gdpm.sen

(
xti, gdpm

)
+ f+gdpm.rec

(
xtj, gdpm

)
+ f+mil.cap.sen

(
xti,mc.sen

)
+ f+mil.cap.rec

(
xtj,mc.rec

)
+ f+abs.polity.diff

(
xtij, abs.pol.diff

)
+ f+out.deg×year

(∑
k

yt−1
ik , t

)
+ f+in.deg×year

(∑
k

yt−1
kj , t

)
+ f+year

(
t
)

+ b+sen, i + b+rec, j ,

and the linear predictor of the dissolution model is:

η−ijt = β−
0 + β−

recipy
t−1
ji + β−

damly
t−1
ij + f−out.deg

(∑
k

yt−1
ik

)
+ f−in.deg

(∑
k

yt−1
kj

)
+ f−trans

(∑
k

yt−1
ik yt−1

kj

)
+ f−rev.trans

(∑
k

yt−1
jk yt−1

ki

)
+ f−shared.supp

(∑
k

yt−1
ki yt−1

kj

)
+ f−shared.cust

(∑
k

yt−1
ik yt−1

jk

)
+ f−intra.conf.sen

(
xti, intra.conf.sen

)
+ f−intra.conf.rec

(
xtj, intra.conf.rec

)
+ f−gdpm.sen

(
xti, gdpm

)
+ f−gdpm.rec

(
xtj, gdpm

)
+ f−mil.cap.sen

(
xti,mc.sen

)
+ f−mil.cap.rec

(
xtj,mc.rec

)
+ f−abs.polity.diff

(
xtij, abs.pol.diff

)
+ f−out.deg×year

(∑
k

yt−1
ik , t

)
+ f−in.deg×year

(∑
k

yt−1
kj , t

)
+ f−year

(
t
)

+ b−sen, i + b−rec, j ,

in general the same, but with all effects β+, f+, and b+ replaced by their counter-

parts β−, f−, and b−.

Hence, we have a class of generalized additive mixed model in the form of

η+/− = ηlin(+/−) + f1(X1) + . . .+ fq(Xq) + Zb (27)

where η+/− is the response variable for the formation and the dissolution models respec-

tively, ηlin is the linear predictor β0 + β1(x1) + . . . βp(xp) with β′ = (β0, . . . , βp) vector of

fixed parameters, and x1, . . . , xp the covariates, which are assumed to be linear. f1, . . . , fq

are smooth functions of the metric covariates x1, . . . , xq, Z is a row of a random effects

model matrix, b ∼ N(0, ψθ) is a vector of random effects coefficients.

We can expand our model (27) with a special model (see Hastie and Tibshirani [1993]) in

which the coefficients are allowed to change smoothly with the value of other variables,
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which we call effect modifiers. Then, a varying-coefficients model with random effects

has the form

η+/− = ηlin(+/−) + fyear(T ) + δ1(T )X1 + . . .+ δq(T )Xq + Zb (28)

where T changes the coefficients of the metric covariates X1, . . . Xq through the functions

δ1(), . . . , δq(). The dependence of δj() on T implies a special kind of interaction between

each T and Xj . In our case T is the metric covariate year.

7 Results

After introducing our proposed modelling approach, we can continue with the results of

applying it to the observed major conventional arms trade data. For all our computations

we used the statistical programming language R, version 3.3.0 [R Core Team, 2013]. In

addition to its basic functionality we used some supplementary software packages for our

evaluations: For the handling of network data and the computation of network statistics

the package igraph, version 1.0.1 [Csardi and Nepusz, 2006], for the estimation of the

additive mixed logistic regression models for the formation and dissolution processes the

package mgcv, version 1.8.15 [Wood, 2011], and for the ROC-curves in subsection 7.2

the package pROC, version 1.8 [Robin et al., 2011].

7.1 Results Network Model

This subsection is splitted into two parts, at first we present the results of the formation

model, afterwards the results of the dissolution model. In the following subsection we are

going to present different ways to evaluate the model and assess its fit to the observed

network data. We estimated the formation and dissolution model by using the function

bam() of the package mgcv, parameter estimation and (data driven) selection of the

smoothing parameters was achieved by optimizing the Restricted-Maximum-Likelihood

(REML). For representation of the smooth effects we used (univariate) cubic p-splines

with second-order difference penalty and 30 equidistant knots. The smooth interaction

surface was estimated via bivariate tensor-product p-spline with 102 knots, again with

cubic basis functions and second-order difference penalty. To check the sensitivity of our

model on the hyperparameters setting, we estimated the model with more flexible settings

(more knots), however the results stay, in general, the same. We therefore conclude that

the described setting provides enough flexibility to capture the general structure in data

and the penalization (smoothness selection) works reliable.
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7.1.1 Formation Model

Table 7 presents the estimated intercept and the dummy effects of all binary covariates in

the formation model, Fig. 11 shows the estimated varying-coefficient smooth effects of the

(quasi-) continuous covariates and the distributions of the predicted random intercepts.

The solid lines in Fig. 11 represent the estimated smooth effects, the light-blue area

represents +/− 2 times the estimated standard errors. For the interpretation of those

estimated parameters it is useful to remind oneself what we try to describe with the

formation model: For each trading dyad without observed trade at timepoint t− 1 we

model the log-odds of a trade at timepoint t, i.e.

P (ytij = 1)

1− P (ytij = 1)

through the specified linear predictor. To interpret the estimated intercept β̂+
0 = −15.365

we can use the response function of the logistic regression model:

1

1 + exp(−(−15.43))
≈ 0.0000002

equals the predicted probability of a new tie to form with all other components of the

linear predictor set to zero. This gives a reasonable first impression of the general

probability of trading ties to arise, since the parametric coefficients all refer to binary

covariates (and consequently the value 0 of the covariates is in the observed part of the

covariate space) and the other estimated / predicted (smooth and random) effects are all

zero for at least one somewhat reasonable value of the covariates.

The standard procedure of interpreting the p-th estimated (parametric) effect in logistic

regression models is not to interpret the respective β̂p directly, but exp(β̂p) since it repre-

sents the Odds Ratio, the ratio of the odds of two observations that differ (only) in the

p-th covariate by one unit. This can also be described as the multiplicative effect on the

odds of the observation with xp = 0 if xp is instead 1, what is a useful interpretation for

effects of binary covariates. Since we have random intercepts for the sender and receiver

country of the trading dyads included in our models it is necessary to consider that the

estimated effects in the mixed additive logistic regression model are observation-specific

(in our case dyad-specific) effects, i.e. conditional on the predicted random intercepts of

the respective sender and receiver countries. The correct interpretation of the estimated

effect for a reciprocal trade (a trade from country j to i) at timepoint t− 1 is therefore:

Focusing on a specific trading dyad, the odds of a trade at timepoint t between country i

and j are approximately exp(0.396) ≈ 1.5 times higher if there was a trade from j to i at
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timepoint t− 1 compared to the situation in which no trade from j to i was observed

(and consequently no trade at all in the dyad (i, j)). This effect has to be interpreted

ceteris paribus, i.e. with all other covariates fixed.

For the defence alliance dummy-effect (daml) presented in Table 7 we can interpretate

it in the following way: Focusing on a specific trading dyad, the odds of a trade at

timepoint t between country i and j are approximately exp(1.548) ≈ 4.7 times higher if

there was a defence alliance between the countries i and j at timepoint t− 1, compared

to the situation in which no defence alliance was observed. This effect has to be also

interpreted ceteris paribus, i.e. with all other covariates fixed.

Estimate Std.Error z.value p-value

(Intercept) -15.43 0.408 -37.73 0.000

trade.bin.recip.lagTRUE 0.396 0.103 3.85 0.000

daml1 1.548 0.057 27.09 0.000

Table 7: Parametric Coefficients Formation Model

The smooth effect of year in Fig. 11, has to be interpreted as in the nonparametric

context, i.e. the estimated odds ratio of a newly formed trade for a specific pair of sender

and receiver countries for year 2013 and 1978 is approximately

P (trade|year=2013, bsen, i, brec, j)
1−P (trade|year=2013, bsen, i, brec, j)

P (trade|year=1978, bsen, i, brec, j)
1−P (trade|year=1978, bsen, i, brec, j)

≈ exp(1.7− 0) ≈ 5.5,

i.e. the odds of a new trade between country i and j are ceteris paribus approximately

5.5 times higher in 2013 than in 1978.

For the interpretation of the varying-coefficient smooth effects (the first 12 plots) in Fig.

11 has to be interpreted in the following way: for a given constant value of the metric

covariate (notice that the codomain of the metric covariates have to be on the same scale

in order to get meaningful interpretations):

• fyear(t) is the nonlinear effect of year

• δij1 (t)xij1 is a function of from year varying effect, for a given constant value of

xij1

• β0 + fyear(tl) + δij1 (tl)xij1 is the odds for a trading dyad in the formation model
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Figure 11: Varying-Coefficient Smooth Effects Formation Model

The first six smooth plots in Fig. 11 show the estimated varying-coefficient smooth effects

of the quasi-continuous lag-network statistics in the formation model (see Section 6 for

details).

Let us consider the first plot the transitivity, we see that the transitivity pattern of the

network has a positive effect over the entire period, for example in year 1951, we have

an effect of approximately exp(1.5) ≈ 4.5 and in 2013 an effect of exp(1.24) ≈ 3.49, i.e.

the transitivity is positively related in 1951 and 1997 to the odds of formation (forming

new trading ties), on the contrary the reverse transitivity is negatively related to the

odds of formation in the entire period. For the covariate samesource we have at the

beginning an effect of approximately exp(3.5), and an effect of exp(1) in the last period

of our observation. For samebuyer we have positive effects from 1951 till 1960, having

negative effects from 1960 till 1990, and getting positive in the last period, in degree

of the receiver has more or less constant positive effect over the entire period, but we

have a big effect of senders’ out degree at the beginning of our period, becoming constant

from 1980 till 2013, for the senders’ and receivers’ intrastate conflicts we have more or

less constant effects over the entire period. For the gdpm of the sender and receiver we

have big effects, although for the senders’ gdpm we have a decreasing positive effect from

exp(7.5) in 1951 to exp(3.5) in 2013. For the covariate military capability for both sender

and receiver we have negative effects. For defence alliances we have a negative effect at

the beginning of the period compared to no defence alliances, becoming slightly positive

at the end of the period compared to no defence alliances.
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Figure 12: Guassian Quantiles for the Random Intercepts Formation Model

The presented QQ-plots of the predicted random effects look quite nice, the assumption of

gaussian random intercepts for sender and receiver countries seems to be quite reasonable.
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7.1.2 Dissolution Model

Table 8 presents the estimated intercept and the dummy effects of all binary covariates,

while Fig. 13 shows the estimated coefficient-varying smooth effects and Fig. 14 the

distribution of the predicted random intercepts in the dissolution model. For interpretation

purposes it is again helpful to remind what is being modelled with the dissolution model:

For each trading dyad with an observed trade relation in t− 1 we are modelling the odds

of the trade relation to persist at timepoint t.

Estimate Std.Error z.value p-value

(Intercept) -3.380 0.542 -6.228 0.000

trade.bin.recip.lagTRUE 0.181 0.109 1.658 0.05

daml1 0.445 0.069 6.408 0.000

Table 8: Parametric Coefficients Dissolution Model

The estimated intercept β̂−0 = −3.38 indicates a quite low probability of trading re-

lations to persist, with all other terms of the linear predictor being zero, it equals
1

1+exp(−3.38) ≈ 0.967.

Focusing on a specific trading dyad, the odds of a trade to persist at timepoint t between

country i and j are approximately exp(0.181) ≈ 1.19 times higher if there was a trade

from j to i at timepoint t− 1 compared to the situation in which no trade from j to i was

observed. This effect has to be interpreted ceteris paribus, i.e. with all other covariates

fixed.

Furthermore, the odds of a trade to persist at timepoint t between country i and j are

approximately exp(0.445) = 1.56 higher if there was a defence alliance agreement between

those countries, compared to countries with no defence alliance agreements.

The interpretation of the smooth effects in Fig.13 have an analogous approach as in

Section 7.1.1 discussed above. Whereby these effects are small, and in the most cases

constant over time.
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Figure 13: Varying-Coefficient Smooth Effects Dissolution Model

The QQ-plots in Fig.14 of the predicted random effects do not exhibit strong deviations

from the assumption of gaussian distributions, so the assumption of gaussian random

intercepts for sender and receiver countries seems to be quite reasonable..
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7.2 Evaluation

One of the major aims in modelling networks is to capture the specific network structure

of the observed data within the specified and estimated model. A common way to

evaluate how well this was achieved is to sample several networks based on the estimated

model and compare those sampled networks to the original observed one based on their

characteristics / network statistics. In our application case we are following Hanneke et al.

[2010] and perform a cross-validation style evaluation: For each timepoint t we estimate

our model based on all observed networks except the networks of timepoint t and t+ 1.

Based on this model we sample C networks of international major conventional arms

trade in year t and calculate various network statistics. We then compare the distribution

of the network statistics of those sampled networks with the network statistics on the

actual observed network for all timepoints t. The sampling of the c-th network for

timepoint t based on a separable logistic network regression model, which can be achieved

with the following pseudo code:

1. Sample Formation Network y+t, c:

• If yt−1
ij == 1 set y+t, c

ij = 1

• If yt−1
ij == 0 sample y+t, c

ij from B(1, π̂
+, −(t,t+1)
ijt )

2. Sample Dissolution Network y−t, c:

• If yt−1
ij == 0 set y−t, cij = 0

• If yt−1
ij == 1 sample y−t, cij from B(1, π̂

−, −(t,t+1)
ijt )

3. Evaluate yt, c = y+t, c \ (yt−1 \ y−t, c),

with π̂
+, −(t,t+1)
ijt and π̂

−, −(t,t+1)
ijt being the predicted success probabilities for dyad (i, j)

in year t of the formation or dissolution model fitted on all data except the data of

timepoint t and t+ 1.

Fig. 15 presents the results of the described evaluation approach based on C = 1000

network samples per year. For each year we computed the order, the size, the density

statistic and the average in-degree of the vertices for each of the sampled and the observed

networks. Additionally, we analyze the reciprocal structure in the networks by calculating

the fraction of trading dyads with ties in both directions of all dyads with at least one tie,

and the transitive structure of the networks by calculating the fraction of all triads with
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three pairwise (undirected) trade relations of all triads with at least two pairwise trade

relations. The yearly distribution of the statistics of the sampled networks is presented

by boxplots, the time-series of network statistics on the observed trading networks is

presented by a red line.
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Figure 15: CV-Style Evaluation: Yearly distributed of network statistics for

C = 1000 networks sampled from the estimated full model. Time-series of

network statistics for observed networks (red)

In general it seems like sampling from the models produces trading networks that show a
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quite similar structure to the true, observed ones. We seem to be able to capture the

general time trends in order, size, in-degree, reciprocity and transitivity.

Looking at the order statistic we perform better in the earlier part of our observation

period (till 1991), and then in the last part of our observation, it makes sense since

the order of our networks grows continuously, we overestimate the actual number of

involved actors in the early 90s, but we capture it at the end of our observation. For

the size statistic, seems we are able to estimate the number of trading ties well. The

other statistics seem also able to deliver good estimates, except the density, which is

comprehensible thus density is related to the possible number of edges in the network,

thats why it is obvious that we underestimate it especially after the 90s in our observation

period.

Instead of looking at the network structure of sampled networks from our model, our

second evaluation approach focuses on the two independent formation and dissolution

parts of the model and evaluates their discriminatory power in their respective responses.

For each year we estimate, again, the formation and dissolution model on all data except

from year t and t+ 1 and calculate ROC-curves for the relevant responses (formation /

dissolution adjacency matrix entries without / with lag-1 trade) of year t. ROC-curves are

a well established method to evaluate binary classifiers, the idea is to plot the sensitivity

(true positive rate) against 1− specificity (false positive rate) for various classification

thresholds q (assign class 1 if π̂ > q). The higher the sensitivity, while keeping the

false positive rate low, the better the investigated classifier. The area under the curve

(AUC) is then often used as a general performance measure of the classifier and can be

interpreted as the probability that the model assigns a higher class-1 probability to an

observation from class 1 than to an observation of class 0 for any pair of observations

uniformly sampled from the two classes.

Fig. 16 presents the yearly ROC curves of the formation and dissolution models, we can

see that the formation model seems to fit the data better than the dissolution model,

however both models seem to be quite good in discriminating between the response

groups with AUC scores of around 0.9 for the formation and around 0.7 for the dissolution

models. All years’ AUC values of the formation and dissolution model are presented in

Table 9 in the Appendix.
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Figure 16: Yearly CV ROC-Curves: Formation and Dissolution Models

In our last evaluation step we now focus on extreme residuals of our estimated formation

and dissolution models. This can either help us to detect “unusual observations” based

on our models, or to find limitations of our model by investigating the observations

with big residuals based on expert knowledge and thereby detecting factors that lead

to those observations but are not considered within the models. For this purpose it is

adequate to look at the raw residuals of the logistic regression models, i.e. the difference

of the observed values (binary adjacency matrix entries y
+/−
ijt ) and the predicted success

probabilities π
+/−
ijt . Table 9 and Table 10 present the five biggest / smallest raw residuals

of the formation model, they can be interpreted as being the most unexpectedly observed

trade relations and, on the contrary, the most probable but not observed trade relations,

based on the estimated formation model.

raw.resd year gdpm.s gdpm.r polity.sen. polity.rec. sender receiver

0.99 1964 0 9142 0 2 Zimbabwe Zambia

0.99 2010 0 0 0 0 Montenegro Serbia

0.99 2010 0 34578 0 2 Serbia Cambodia

0.99 2012 0 19375 0 5 Serbia DR Congo

0.99 2004 17959 2158 7 -5 Georgia Gambia

Table 9: Biggest residuals formation model: unexpectedly emerged trade

relations
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In Table 9 we see, for instance, that a trade relation between Zimbabwe and Zambia

was observed in 1964, while we assigned, based on the formation model, a probability

close to zero for it to arise. The smallest residual of the formation model, presented

in Table 10, belongs to the trading dyad Germany and United States in the year 2005.

We assign a probability of approximately 0.84 for observing a trade, however no trade

between those actors was registered during that year. Those presented observations are,

however, only the most extreme examples. To get the full picture it would be necessary

to have a look at many more big, in absolute value, residuals. The formation model has

e.g. 1807 observations with resulting raw residuals between 0.95 and 1, it would now

be possible to analyze those trading dyads based on the involved actors, their observed

network statistics, and arbitrary other factors.

raw.resd year gdpm.s gdpm.r polity.sen. polity.rec. sender receiver

-0.84 2005 2614550 12564300 10 10 Germany USA

-0.77 2007 1784665 13149344 10 10 Italy USA

-0.70 1981 6027685 91430 10 -10 USA Iraq

-0.70 1984 997087 73362 10 -9 UK Iraq

-0.69 2004 2499782 12196382 10 10 Germany USA

Table 10: Smallest residuals formation model: most probable, not emerged

trade relations

Table 11 and 12 present the 5 biggest / smallest residuals of the dissolution models, they

can be interpreted as the most unexpectedly persistent trade relations and the most

unexpectedly dissolved trade relations.

raw.resd year gdpm.s gdpm.r polity.sen. polity.rec. sender receiver

0.94 1979 46993 0 -2 0 Singapore Brunei Darussalam

0.92 1977 498522 14770 -10 -6 Saudi Arabia North Yemen

0.92 1982 21584 1919 -7 -7 Libya Central African Rep.

0.91 1985 54048 24697 10 -6 New Zealand North Yemen

0.91 1991 438040 0 10 0 Australia Tonga

Table 11: Biggest residuals dissolution model: unexpectedly persistent trade

relations
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raw.resd year gdpm.s gdpm.r polity.sen. polity.rec. sender receiver

-0.99 2002 160371 5110871 10 -7 Israel China

-0.99 2003 11789128 2326411 10 9 USA India

-0.98 2013 621234 4661976 10 9 Netherlands India

-0.98 1997 9869378 3859120 10 -7 USA China

-0.97 1984 6626666 73362 10 -9 USA Iraq

Table 12: Smallest residuals dissolution model: unexpectedly dissolved trade

relations

In Table 11 we observe, that a trade relation between Singapore and Brunei Darussalam

in 1979 has been persisted, although based on the dissolution model we assigned a

probability close to zero to persist. The smallest residual of the dissolution model, in

Table 12, has the trading dyad between Israel and China in year 2002, where we assign a

probability of approximately 0.99 for persisting a trade, however this trade was dissolved.
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8 Summary and Outlook

The proposed Separable Temporal Logistic Network Regression approach seems to perform

quite well on modelling the discrete time-series of major conventional weapons trade

networks. Under the assumption of independent formation and dissolution processes and

conditionally independent Bernoulli events for the entries of the two yearly adjacency

matrices, it is possible to use the very flexible and established class of mixed additive

logistic regression for modelling the binary trade networks. Our presented and evaluated

model seems to fit the observed data well, networks sampled based on the model show

similar characteristics than the originally observed ones. It exhibits some interesting

relations between sender- and receiver-specific covariates, and the odds of e.g. forming

new trade relations. Additionally, we are able to consider the network structure of

previous years in our model, thereby we found i.a. a strong positive relation between

reciprocal trade in the last year and the formation and persistence of trade relations.

However, due to the flexibility of the used additive logistic regression model and its ready

to use-implementation in the R-package mgcv, it would be easily possible to extend and

further adapt the presented model. This could e.g. be done by incorporating additional

covariates. To us, the used assumptions in modelling seem to be quite reasonable and the

proposed modelling strategy could in general be used for different application scenarios

as well. The assumption of independent formation and dissolution processes becomes

probably more and more reasonable, the denser the grid of (discrete) observed networks is.

Nevertheless, a comparison of our modelling approach with other approaches for modelling

time-evolving networks would be very interesting in itself and could, additionally, serve

as a sensitivity analysis for our substantive results.
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9 Appendix

List of Countries / Actors

In the following table, all countries for which the major conventional weapons-data was

gathered are listed. The entry in the ’Years’ column indicates the period within the

corresponding country is included into the network. A blank entry denotes that the

corresponding country existed during the whole period (1950− 2013).

ID Country Years ID Country Years

1 Abkhazia since 1992 31 Burundi since 1962

2 Afghanistan 32 Cambodia since 1953

3 Albania 33 Cameroon since 1960

4 Algeria since 1962 34 Canada

5 Andorra 35 Cape Verde since 1975

6 Angola since 1975 36 Central African Republic since 1960

7 Antigua and Barbuda since 1981 37 Chad since 1960

8 Argentina 38 Chile

9 Armenia since 1991 39 China

10 Aruba 40 Colombia

11 Australia 41 Comoros since 1975

12 Austria 42 Congo, Democratic Repubic of since 1960

13 Azerbaijan since 1991 43 Congo, Republic of since 1960

14 Bahamas since 1973 44 Cook Islands since 1965

15 Bahrain since 1971 45 Costa Rica

16 Bangladesh since 1971 46 Cote dIvoire since 1960

17 Barbados since 1966 47 Croatia since 1991

18 Belarus since 1991 48 Cuba

19 Belgium 49 Cyprus since 1960

20 Belize since 1981 50 Cyprus, Northern since 1983

21 Benin since 1961 51 Czech Republic since 1993

22 Bhutan 52 Czechosloviakia until 1992

23 Biafra 1967-1970 53 Darfur

24 Bolivia 54 Denmark

25 Bosnia and Herzegovina since 1992 55 Djibouti since 1977

26 Botswana since 1966 56 Dominica since 1978

27 Brazil 57 Dominican Republic

28 Brunei Darussalam 58 Ecuador

29 Bulgaria 59 Egypt

30 Burkina Faso since 1960 60 El Salvador
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ID Nation Jahre ID Nation Jahre

61 Equatorial Guinea since 1968 96 Kenya since 1963

62 Eritrea since 1993 97 Kiribati since 1979

63 Estonia since 1991 98 Korea, North

64 Ethiopia 99 Korea, South

65 Fiji since 1970 100 Kosovo since 2008

66 Finland 101 Kuwait since 1961

67 France 102 Kyrgyzstan since 1991

68 Gabon since 1960 103 Laos

69 Gambia since 1965 104 Latvia since 1991

70 Georgia since 1991 105 Lebanon

71 German Democratic Republic 1949-1990 106 Lesotho since 1966

72 Germany 107 Liberia

73 Ghana since 1957 108 Libya since 1951

74 Greece 109 Liechtenstein

75 Grenada since 1974 110 Lithuania since 1990

76 Guatemala 111 Luxembourg

77 Guinea since 1958 112 Macedonia, FYROM since 1991

78 Guinea-untilsau since 1973 113 Madagasacar since 1960

79 Guyana since 1966 114 Malawi since 1964

80 Haiti 115 Malaysia since 1957

81 Honduras 116 Maldives since 1965

82 Hungary 117 Mali since 1960

83 Iceland 118 Malta since 1964

84 India 119 Marshall Islands since 1986

85 Indonesia 120 Mauritania since 1960

86 Iran 121 Mauritius since 1968

87 Iraq 122 Mexico

88 Ireland 123 Micronesia since 1986

89 Israel 124 Moldova since 1991

90 Italy 125 Monaco

91 Jamaica since 1962 126 Mongolia

92 Japan 127 Montenegro since 2006

93 Jordan 128 Morocco since 1956

94 Katanga 129 Mozambique since 1975

95 Kazakhstan since 1991 130 Myanmar
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ID Nation Jahre ID Nation Jahre

131 Namibia 166 Sierra Leone since 1961

132 Nauru since 1968 167 Singapore since 1965

133 Nepal 168 Slovakia since 1993

134 Netherlands 169 Slovenia since 1991

135 New Zealand 170 Solomon Islands

136 Nicaragua 171 Somalia since 1960

137 Niger since 1960 172 Somaliland since 1991

138 Nigeria since 1960 173 South Africa

139 Niue since 1974 174 South Ossetia

140 Norway 175 South Sudan since 2005

141 Oman 176 Soviet Union until 1991

142 Pakistan 177 Spain

143 Palau since 1994 178 Sri Lanka

144 Palestine 179 Sudan since 1956

145 Panama 180 Suriname since 1975

146 Papua New Guinea since 1975 181 Swaziland since 1968

147 Paraguay 182 Sweden

148 Peru 183 Switzerland

149 Philippines 184 Syria

150 Poland 185 Taiwan

151 Portugal 186 Tajikistan since 1991

152 Qatar 187 Tanzania since 1961

153 Romania 188 Thailand

154 Russia since 1992 189 Timor-Leste since 2002

155 Rwanda since 1962 190 Togo since 1960

156 Saint Kitts and Nevis since 1983 191 Tonga since 1970

157 Saint Lucia since 1979 192 Trans-Dniester since 1990

158 Saint Vincent and the Grenadines since 1979 193 Trinidad and Tobago since 1962

159 Samoa since 1962 194 Tunisia since 1956

160 San Marino 196 Turkey

161 Sao Tome and Principe since 1975 197 Turkmenistan since 1991

162 Saudi Arabia 197 Tuvalu since 1978

163 Senegal since 1960 198 Uganda since 1962

164 Serbia since 1992 199 Ukraine since 1991

165 Seychelles since 1976 200 United Arab Emirates since 1971
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ID Nation Jahre ID Nation Jahre

201 United Kingdom 210 Viet Nam, South until 1976

202 United States 211 Western Sahara since 1976

203 Uruguay 212 Yemen

204 Uzbekistan since 1991 213 Yemen, North

205 Vanuatu since 1980 214 Yemen, South

206 Vatican (Holy See) 215 Yugoslavia, SFRo until 1992

207 Venezuela 216 Zambia since 1964

208 Viet Nam since 1976 217 Zanzibar since 1963

209 Viet Nam, North until 1976 218 Zimbabwe

List of excluded countries

In the following table, we decided to exlude some countries from our network data, thus

these countries listed below do not have any trade informations in the whole period

(1950− 2013)

1 Abkhazia 11 Niue

2 Andorra 12 Saint Lucia

3 Antigua and Barbuda 13 San Marino

4 Cook Islands 14 Sao Tome and Principe

5 Darfur 15 Somaliland

6 Dominica 16 South Ossetia

7 Kosovo 17 Trans-Dniester

8 Liechtenstein 18 Vatican (Holy See)

9 Monaco 19 Viet Nam, North

10 Nauru 20 Zanzibar

69



Appendix Sevag Kevork

Table of AUC values

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

AUC Form 0.99 0.99 0.98 0.98 0.97 0.98 0.97 0.98 0.98 0.96

AUC Diss 0.82 0.75 0.66 0.76 0.73 0.85 0.83 0.75 0.77 0.74

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

AUC Form 0.97 0.97 0.98 0.96 0.98 0.96 0.96 0.97 0.97 0.98

AUC Diss 0.75 0.79 0.75 0.73 0.79 0.73 0.79 0.77 0.70 0.76

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980

AUC Form 0.97 0.97 0.97 0.97 0.96 0.98 0.97 0.96 0.96 0.96

AUC Diss 0.74 0.81 0.77 0.77 0.75 0.74 0.74 0.74 0.74 0.76

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

AUC Form 0.96 0.96 0.97 0.96 0.97 0.96 0.96 0.96 0.96 0.96

AUC Diss 0.76 0.74 0.77 0.76 0.78 0.74 0.79 0.75 0.78 0.80

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

AUC Form 0.96 0.94 0.94 0.95 0.95 0.95 0.96 0.95 0.96 0.95

AUC Diss 0.77 0.70 0.80 0.78 0.76 0.77 0.72 0.76 0.77 0.76

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

AUC Form 0.95 0.95 0.95 0.95 0.96 0.95 0.96 0.95 0.95 0.95

AUC Diss 0.76 0.77 0.77 0.78 0.77 0.75 0.77 0.77 0.74 0.72

2011 2012

AUC Form 0.96 0.95

AUC Diss 0.77 0.70
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