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a b s t r a c t 

To form an episodic memory, we must first process a vast amount of sensory information about the to-be-encoded event and then bind these sensory representations 

together to form a coherent memory trace. While these two cognitive capabilities are thought to have two distinct neural origins, with neocortical alpha/beta oscil- 

lations supporting information representation and hippocampal theta-gamma phase-amplitude coupling supporting mnemonic binding, evidence for a dissociation 

between these two neural markers is conspicuously absent. To address this, seventeen human participants completed an associative memory task that first involved 

processing information about three sequentially-presented stimuli, and then binding these stimuli together into a coherent memory trace, all the while undergo- 

ing MEG recordings. We found that decreases in neocortical alpha/beta power during sequence perception, but not mnemonic binding, correlated with enhanced 

memory performance. Hippocampal theta/gamma phase-amplitude coupling, however, showed the opposite pattern; increases during mnemonic binding (but not 

sequence perception) correlated with enhanced memory performance. These results demonstrate that memory-related decreases in neocortical alpha/beta power and 

memory-related increases in hippocampal theta/gamma phase-amplitude coupling arise at distinct stages of the memory formation process. We speculate that this 

temporal dissociation reflects a functional dissociation in which neocortical alpha/beta oscillations could support the processing of incoming information relevant 

to the memory, while hippocampal theta-gamma phase-amplitude coupling could support the binding of this information into a coherent memory trace. 
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. Introduction 

An episodic memory is a personal detail-rich, long-term memory that

s anchored to a unique point in time and space ( Tulving, 2002 ). The

ormation of these memories are thought to rely on both neocortical al-

ha/beta and hippocampal theta/gamma oscillations ( Hanslmayr et al.,

016 ), both of which are prevalent in a wide range of human episodic

emory tasks (for reviews, see Hanslmayr and Staudigl 2014 ; Nyhus and

urran 2010 ). 

Neocortical alpha/beta desynchrony is thought to be beneficial for

nformation representation ( Hanslmayr et al., 2012 ). This idea is de-

ived from the tenets of information theory, which propose that un-

redictable states (e.g., a desynchronised network, where the firing

f one neuron cannot predict the firing of another) convey substan-

ially more information than predictable states. In direct support of

his idea, neocortical alpha/beta power decreases (a proxy for neural

esynchrony; Buzsáki et al., 2012 ; Murthy and Fetz, 1996 ) have been

hown to correlate with the enhanced fidelity of neural representations
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resent in BOLD signal ( Griffiths et al., 2019 a). Moreover, interfering

ith these power decreases via transcranial magnetic brain stimula-

ion impairs episodic memory formation ( Hanslmayr et al., 2014 ). To-

ether, these findings (see also Fellner et al. 2013 , Griffiths et al. 2021 ,

arlsson et al. 2020 , Long and Kahana 2015 , Martín-Buro et al. 2020 ,

ederberg et al. 2007 ) suggest that alpha/beta power decreases are in-

imately tied to the successful representation of information pertaining

o episodic memories. 

Hippocampal theta and gamma oscillations also play a pivotal role in

pisodic memory formation ( Bahramisharif et al., 2018 ; Heusser et al.,

016 ; Staudigl and Hanslmayr, 2013 ; Tort et al., 2009 ). The phase of

heta is thought to determine whether long-term potentiation (LTP) or

ong-term depression (LTD) occurs ( Hasselmo et al., 2002 ), and gamma

ynchronisation compliments this process by driving neurons to fire

t the frequency optimal for spike-timing dependent plasticity (STDP;

i and Poo, 1998 ; Jutras et al., 2009 ; Nyhus and Curran, 2010 ). By

ombining these two phenomena, hippocampal theta-gamma phase-

mplitude coupling is well-suited for mnemonically binding disparate
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ources of information into a coherent memory trace ( Griffiths and

uentemilla, 2019 ; Hanslmayr et al., 2016 ; Lisman and Jensen, 2013 ). 

In conjunction, neocortical alpha/beta desynchrony and hippocam-

al theta/gamma synchrony are thought to provide the optimal con-

itions for episodic memory formation ( Hanslmayr et al., 2016 ). To-

e-encoded information is first represented in the neocortex and sup-

orted by neural desynchrony ( Griffiths et al., 2019 a). These represen-

ations are then passed to the hippocampus, undergoing compression

o that they are supported by only a small handful of hippocampal cell

ssemblies ( Quiroga et al., 2005 ). In this compressed state, these rep-

esentations can then be readily associated with other elements of the

ngoing episode via STDP (which benefits from neural synchrony; Bi

 Poo, 1998 ; Nyhus and Curran, 2010 ). Ultimately, the holistic pro-

ess reflects an oscillatory division of labour in which neocortical al-

ha/beta desynchrony first supports the representation of relevant in-

ormation in the cortex, before hippocampal theta/gamma synchrony

akes precedence and binds concepts together ( Griffiths et al., 2019 b;

anslmayr et al., 2016 ; Parish et al., 2018 ). 

On a cognitive level however, many paradigms probing human

pisodic memory formation involve substantial overlap in information

epresentation and mnemonic binding, making it difficult to conclude

hat their associated neural phenomena are truly dissociable. Here, we

ddressed this problem by using a paradigm that invokes a temporal

hift in the ratio of these cognitive processes. Seventeen participants

ere briefly presented with a sequence of three stimuli (always con-

isting of an object, a feature and a scene), and then given a small

indow to intentionally bind these stimuli together for a later asso-

iative memory test ∗ . We hypothesised that memory-related changes

n neocortical alpha/beta activity would show a distinct temporal dy-

amic to memory-related changes in hippocampal theta/gamma activ-

ty, where (1) memory-related neocortical alpha/beta power decreases

ould be most prevalent during the perception of the sequence (from

ere on termed “sequence perception ”), as this requires extensive pro-

essing of the details of each item prior to binding, and (2) memory-

elated increases in hippocampal theta-gamma phase-amplitude cou-

ling would be most prevalent when participants intentionally asso-

iate the stimuli together (from here on termed “mnemonic binding ”),

iven that theta-gamma coupling is a proxy for forms of long-term po-

entiation. Indeed, the results reported below support these hypotheses,

uggesting that neocortical alpha/beta desynchrony and hippocampal

heta/gamma synchrony arise at distinct stages of the memory forma-

ion process. 

. Materials and methods 

.1. Participants 

Twenty-eight participants were recruited (mean age = 25.4; age

ange = 20–33; 68% female; 82% right-handed). These participants

eceived course credit or financial reimbursement in return for their

articipation. One participant was excluded for excessive head move-

ent (greater than 2 standard deviations above group mean). Four par-

icipants were excluded for poor data quality (more than 50% of tri-
∗ While it is impossible to conclude with absolute certainty that perception 

nd mnemonic binding are completely separable in any memory task, here we 

an conclude that there is a substantial shift in the ratio of the two processes. 

timulus perception will only be taking place while there is stimulus to perceive 

i.e., during the presentation of the sequence), while mnemonic binding will 

e most prevalent when all sequence items have been presented and processed 

i.e., after the final stimulus has been processed by the cortex). While this leaves 

oom for some binding to occur towards the very end of the presentation of the 

ast stimulus, this would be minimal in comparison to what follows during the 

binding window ” (see figure 1 a, outlined in red). Direct contrasts of the MEG 

ignals between sequence perception and mnemonic binding will empirically 

est this hypothesised shift in ratio. 
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ls rejected for artifacts). Six participants were excluded for extreme

emory performance (fewer than 15 trials in one of the three memory

onditions). This left seventeen participants for further analysis (mean

ge = 24.9; age range = 20–32; 65% female; 82% right-handed). Ethical

pproval was granted by the Research Ethics Committee at the Univer-

ity of Birmingham (ERN_15-0335), complying with the Declaration of

elsinki. 

.2. Experimental design 

Each participant completed a visual associative memory task (see

ig. 1 a). During encoding, participants were presented with a line draw-

ng of an object, a pattern, and a scene (each for 1500ms, with a jittered

00ms ( ± 100ms) fixation cross shown between each stimulus). Partic-

pants were then given a short interval (3000ms) to create a mental

mage incorporating the three stimuli to help them recall the stimuli

or a later memory test. Specifically, during this window, we explic-

tly asked participants to create a unique fusion of the three stimuli,

nd suggested that they may benefit from creating bizarre or unusual

ental images. We gave participants the freedom to integrate the stim-

li as they saw fit, but gave the suggestion that the pattern could be

lended with the object line-drawing, and the object could be placed

n the scene (taking Fig. 1 a as an example: participants may imagine a

potted blue-and-orange giraffe taking the tram to work). Participants

ere then asked to rate how difficult they found the task of associat-

ng the triad. This question was used to keep participants attending to

he task, rather than provide a meaningful metric for analysis. The next

rial began after the participant had responded to the difficulty ques-

ion. After associating 48 triads, participants started the distractor task.

n the distractor task, participants attended to a fixation cross in the

entre of a black screen. The fixation cross would flash momentarily

 ∼100ms) from light grey to either white or dark grey approximately

very 20 s. The participants were instructed to count the number of

imes the fixation cross changed to white (ignoring the times it turned

ark grey) and report this value at the end of the task (approximately

.5 min later). The retrieval task followed the distractor. Here, partic-

pants were presented with the line drawing (for 3000 ms) and asked

o recall the mental image they made during the encoding phase. Then,

articipants were presented with three patterns (one correct and two

ures; lures were other stimuli of the same type, shown in the same

lock, to ensure we tested associative, rather than recognition, memory)

nd asked to identify the pattern associated with the line drawing. After

esponding, participants were presented with three scenes (one correct

nd two lures from the same block) and again asked to identify the

attern associated with the line drawing. After responding, participants

ere then asked to indicate how confident they were about their choices.

hey could select ‘guess’ (i.e., they guessed their choice), ‘unsure’ (i.e.

hey could not remember the item, but had a feeling it was the correct

hoice), or ‘certain’ (i.e. they could vividly remember the item). Partic-

pants were asked to recall all 48 triads learnt in the earlier encoding

hase. 

Given that participants were tasked with creating unique memories

n each trial, all of which had a strong spatial component (i.e., the scene

timulus) and a unique timestamp (i.e., the position of the trial in the

lock), the memories formed in this experiment fit the classic descrip-

ion of an episodic memory. 

Participants completed four blocks of this task (192 trials in total).

he order in which the pattern and scene were presented during per-

eption was swapped between each block (where a “block ” is defined as

 complete cycle of encoding, distractor and retrieval tasks). On blocks

here scenes preceded patterns during perception, the presentation or-

er at retrieval was also reversed. 

For all responses, participants used two non-magnetic, single-finger

ptical response pads. The left pad allowed participants to cycle through

he possible responses, and the right pad allowed participants to confirm

heir selection. 
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Fig. 1. Overview of task and analytical approach (a) Paradigm schematic. Participants were presented with a sequence of three visual stimuli. The sequence 

always began with a line drawing of an object, and was then followed by a pattern and a scene (each with a brief fixation cross shown between). Participants were 

then given a short interval to create a mental image incorporating the three stimuli, before being asked to rate how difficult it was to create the association. After 

a distractor task, participants were presented with the object as a cue and asked to recall both the pattern and the scene, each from a choice of three stimuli. After 

selection, participants had to rate how confident they felt about their response. The epochs representing “sequence perception" are outlined in blue, and the epoch 

representing “mnemonic binding ” is outlined in red. (b) Analysis schematic. For each participant, spectral power and theta-gamma phase-amplitude coupling were 

modelled using a general linear model including predictors for the number of items recalled, scene and feature memory recall, and head motion. The resulting 

beta coefficient (standardised by dividing by the error of the fit) for the central predictor (i.e., number of items recalled) was extracted, pooled across participants, 

and subjected to a one sample t-test to determine whether the number of items recalled predicted changes in spectral power and/or theta-gamma coupling. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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.3. Behavioural analysis 

For each trial, memory performance was coded as either ‘complete’

i.e., they remembered both the scene and the pattern), ‘partial’ (i.e.

hey remembered only one of the associates), or ‘forgotten’ (i.e. they

emembered neither the scene nor the pattern). Any selection where

he participant indicated that they guessed was marked as a ‘miss’. 

.4. MEG acquisition 

MEG data was recorded using a 306-channel (204 gradiometers, 102

agnetometers) whole brain Elekta Neuromag TRIUX system (Elekta,

tockholm, Sweden) in a magnetically shielded room. Participants were

laced in the supine position for the duration of the experiment. Data

as continuously recorded at a sampling rate of 1000 Hz. The head

hape of each participant (including nasion and left/right ear canal) was

igitised prior to commencing the experiment. Continuous head position

ndicators (cHPI) were recorded throughout. The frequencies emitted by

he cHPI coils were 293 Hz, 307 Hz, 314 Hz and 321Hz. Magnetometer

ata was excluded from the main analysis as they contained substantial

oise that could not be effectively removed or attenuated. 

.5. MEG preprocessing 

All data analysis was conducted in Matlab using Fieldtrip

 Oostenveld et al., 2011 ) in conjunction with custom scripts. First, the

ata was lowpass filtered at 165 Hz to remove the signal generated by

he HPI coils. Second, the data was epoched around each event of in-

erest. At encoding, the epochs reflected the time windows where each

timulus was presented (from here on termed ‘sequence perception’) and
3 
hen the ‘associate’ prompt was presented (termed ‘mnemonic bind-

ng’). Sequence perception epochs began 2000 ms before stimulus on-

et and ended 3500 ms after onset (that is, 2000 ms after stimulus off-

et [total epoch duration: 5500 ms]). Mnemonic binding epochs began

000ms before stimulus onset and ended 5000 ms after onset (that is,

000 ms after stimulus offset [total epoch duration: 7000ms]). Note

hat the length of these epochs extended beyond the phase of interest

o account for potential filter artifacts, particularly for the case of our

ross-frequency coupling analyses, but were subsequently restricted to

hase of interest when conducting statistical analysis. Third, indepen-

ent components analysis was conducted, and any identifiable eye-blink

r cardiac components were removed. Fourth, the data was visually in-

pected, and any artefactual epochs or sensors were removed from the

ataset (mean percentage of trials removed: 18.0%; range: 5.7–32.2%).

.6. Movement correction 

To identify participants with extreme head motion during MEG

ecordings, the recorded data was first highpass filtered to 250Hz to

solate the cHPI signal. Second, the variance of the signal for each sen-

or was computed across every time point of the continuous recording.

hird, the variance was mean averaged across sensors to provide a sin-

ular estimate of change in cHPI signal across the duration of the exper-

ment. Fourth, the mean variance and its standard deviation was calcu-

ated across participants. Lastly, participants with extreme head motion

ere identified as those with variance greater than two standard devi-

tions above the group mean. These participants were excluded from

urther analysis. 

To help attenuate motion-related confounds in the spectral power

nd phase-amplitude coupling analyses, a trial-by-trial estimate of mo-
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ion was calculated. First, the data was highpass filtered at 250 Hz. Sec-

nd, the data was epoched into trials matching those outlined in the

ection above. Third, the envelope of the signal in each epoch was cal-

ulated (to avoid issues of mean phase angle difference in cHPI signal

cross trials). Fourth, the envelope was averaged over time to provide

 single value for each epoch and channel. Fifth, the dot product was

omputed across sensors between the first epoch and every other epoch

algebraically: 
𝑛 ∑

𝑖 =1 
𝑎 𝑖 𝑏 𝑖 , where n is the number of channels, 𝑎 𝑖 is the power

t sensor 𝑖 during the first trial, and 𝑏 𝑖 is the power at sensor 𝑖 during the

rial of interest). This provided a single value (between zero and infinity)

or each trial that described how similar the topography of that trial was

o the first trial – the higher the value, the more similar the topographies

re between the two trials (with the assumption that the more dissimi-

ar a cHPI topography is to the starting topography, the more the head

as deviated from its starting position). These values were entered as a

egressor of no interest in the central multiple regression analyses. 

.7. Time-frequency decomposition and statistical analysis 

Sensor-level time-frequency decomposition was conducted on the se-

uence perception and mnemonic binding epochs. For low frequencies,

he preprocessed data was first convolved with a 6-cycle wavelet (-0.5

o 3 s [to 2 s for perceptual epochs to avoid the subsequent stimulus], in

teps of 50ms; 2–40Hz; in steps of 1Hz). For high frequencies, Slepian

ultitapers were first used to estimate power (-0.5 to 3 s [to 2 s for per-

eptual epochs], in steps of 50 ms; 40 to 100 Hz, in steps of 4 Hz). For

his latter analysis, frequency smoothing was set to one quarter of the

requency of interest and temporal smoothing was set to 200ms. Sec-

nd, planar gradiometers were combined by summing the power of the

ertical and horizontal components. Third, for perceptual trials only,

ower was then averaged over the three stimulus presentation windows

f each triad to provide mean power during perception of the triad. Any

riads where one or more epochs had been rejected during preprocess-

ng were excluded at this stage. We averaged spectral power across the

hree windows as we reasoned that this approach would be most sen-

itive to changes in spectral power that predicted the number of items

ater recalled. To successfully recall a stimulus, we assume that an al-

ha/beta power decrease must arise in two of the windows – the ini-

ial line drawing (i.e., the retrieval cue) and the to-be-recalled stimulus.

s such, focusing analyses on a single stimulus is less sensitive to later

emory performance than an aggregate measure created by averaging

cross the epochs. Fourth, the background 1/f characteristic was sub-

racted using an iterative linear fitting procedure. 

To isolate oscillatory contributions, 1/f activity was attenuated in

he time-frequency data by subtracting the linear fit of the 1/f char-

cteristic ( Griffiths et al., 2019 b; Manning et al., 2009 ; Zhang and Ja-

obs, 2015 ). To this end, a vector containing values of each derived

requency ( A ) and another vector containing the power spectrum, av-

raged over all time-points and trials of the relevant memory condition

 B ) were log-transformed to approximate a linear function. The linear

quation 𝐴𝑥 = 𝐵 was solved using least-squares regression, where 𝑥 is

n unknown constant describing the 1/f characteristic. The 1/f fit ( 𝐴𝑥 )

as then subtracted from the log-transformed power spectrum ( 𝐵). As

his fit can be biased by outlying peaks ( Haller et al., 2018 ), an iterative

lgorithm was used that removed probable peaks and then refitted the

/f. Outlying peaks in this 1/f-subtracted power spectrum were identi-

ed using a threshold determined by the mean value of all frequencies

hat sat below the linear fit. The MEG power spectrum is the summation

f the 1/f characteristic and oscillatory activity (i.e., at no point does

scillatory activity subtract from the 1/f), therefore all values that sit

elow the linear fit can be seen an estimate error of the fit. Any peaks

hat exceed the threshold were removed from the general linear model,

nd the fitting was repeated. Notably, as power for the low frequen-

ies (2-40Hz) and high frequencies (40–100Hz) was calculated using

ifferent methods (wavelets and Slepian multitapers, respectively), the
4 
wo bands have disparate levels of temporal and spectral smoothing. To

void a spurious fitting due of the 1/f because of these differences, the

/f correction was conducted separately for these two bands. 

For statistical analysis, a trial-based multiple regression was run for

ach participant. Four regressors were used to predict observed power

or every channel x frequency x time point independently. These four

egressors were (1) number of items recalled, (2) whether the scene was

ecalled, (3) whether the pattern was recalled, (4) the change in head

osition [based on the motion calculation outlined above]. The first re-

ressor was of primary interest, the second and third regressors isolated

pectral power changes that are unique to scene-specific and pattern-

pecific encoding processes (respectively), and the fourth regressor ac-

ounted for changes in spectral power driven by head movement (see

he next paragraph for notes on multicollinearity). The beta weight of

he first regressor, obtained for a given channel x frequency x time point,

as then standardised by dividing the standard error of the fit (provid-

ng a t -value) to attenuate the impact of poor model fits on the final

nalysis. Here, a positive t -value would indicate that spectral power in-

reases with more items recalled, and a negative beta coefficient would

ndicate that spectral power decreases with more items recalled. The

eta coefficients for each participant were pooled across the sample and

ntered into a one-tailed cluster-based permutation test (focused upon

-30Hz post-stimulus [0–1500ms] activity; 2000 permutations, alpha

hreshold = 0.05, cluster alpha threshold = 0.05, minimum neighbour-

ood size = 3; ( Maris and Oostenveld, 2007 ) to examine whether the

bserved fits consistently deviated from the null hypothesis ( t = 0) across

articipants. Clusters that produced a p-value less than 0.05 were con-

idered significant. Cohen’s d z was used as the measure of effect size

or these clusters ( Lakens, 2013 ), where 𝑑 𝑧 = 

𝑡 √
𝑛 
, 𝑡 = mean t-statistic

ithin the cluster, 𝑛 = number of participants. 

Following the visualisation of spectral power during the mnemonic

inding window, we observed an unexpected increase in low-frequency

ower correlating with enhanced memory performance. To statistically

ppraise this, we used the same statistical procedure as above with a

ingle alteration: the use of two-tailed statistical tests, which reflects

ur lack of directional hypotheses in this analysis. 

Notably, it is plausible to suggest that the three memory regressors

re, to some extent, correlated and that this would introduce multi-

ollinearity into the regression models. To test this, we calculated the

ariance Inflation Factor (VIF)-a measure of the magnitude of multi-

ollinearity. Rule of thumb suggests that a VIF greater than 10 is con-

idered high and could compromise the model ( Kutner et al., 2004 ). The

IF between number of items recalled and scene recall success was, on

verage, 2.615 (s.d. 2.621), and the VIF between number of items re-

alled and pattern recall success was, on average, 1.027 (s.d. 0.033). As

hese values fall below the threshold of 10, multicollinearity is not an

pparent concern. 

An additional analysis was conducted to confirm that alpha/beta

ower did indeed decrease following the onset of the sequence stimuli.

ere, spectral power was computed as described in the first paragraph

f this sub-section (‘ Time-frequency decomposition and statistical analy-

is’ ). Power was then averaged across trials and baseline-corrected via

-transformation. To this end, for each channel and frequency, the mean

nd standard deviation of pre-stimulus power (-500ms to stimulus on-

et) across time was computed, and then for every time point, spectral

ower was normalised by subtracting the pre-stimulus mean, and then

ividing by the pre-stimulus standard deviation. This returned a power

pectrum in which any negative value indicates that power dropped rel-

tive to baseline. The time-frequency spectra for each participant were

ooled across the sample and entered into a one-tailed cluster-based

ermutation test (2000 permutations, alpha threshold = 0.05, cluster

lpha threshold = 0.05, minimum neighbourhood size = 3; Maris and

ostenveld, 2007 ) to examine whether post-stimulus power decreased

i.e., z < 0) relative to baseline beyond what might be expected by

hance. 
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.8. Source analysis 

The preprocessed data was reconstructed in source space us-

ng individual head models and structural (T1-weighted) MRI scans

or all but two individuals who did not wish to return for an

RI scan. For these two individuals, a standard head model and

RI scan was used (taken from the Fieldtrip toolbox; for details,

ee http://www.fieldtriptoolbox.org/template/headmodel ). The head

hape (together with the HPI coil positions) of each participant was

igitised using a Polhemus Fasttrack system. The timelocked MEG data

as reconstructed using a single-shell forward model and a Linearly

onstrained Minimum Variance beamformer (LCMV; van Veen et al.,

997 ). The lambda regularisation parameter was set to 1%. The source

odel consisted of virtual electrodes spaced 10mm apart in all planes,

nd covered the entire brain. 

.9. MEG phase-amplitude coupling computation and statistical analysis 

For the phase-amplitude coupling analyses, we focused our analysis

irectly on source-reconstructed hippocampal virtual sensors. Given the

epth and size of the hippocampus (it makes up around ∼1% of the MEG

ourcemodel), it makes most sense to move directly to source space and

nalyse source-localised measures of hippocampal activity. 

To calculate the extent to which hippocampal gamma activity cou-

led to hippocampal theta phase, the modulation index (MI) was cal-

ulated ( Tort et al., 2010 ). First, the peak theta and gamma frequen-

ies were calculated by estimating power across all hippocampal virtual

ensors (bilaterally, as defined by the automated anatomical labelling

AAL] atlas) using the same time-frequency decomposition method re-

orted above † . The Matlab function findpeaks() was then used to ex-

ract the most prominent peak within the theta (2–7Hz) and gamma

40–80Hz) bands for each participant. Across participants, the mean

heta peak was at 5.1Hz (standard deviation: 1.0Hz; range: 3.1–7.0Hz),

nd the mean gamma peak was at 66.1Hz (standard deviation: 4.6Hz;

ange: 59.0-73.0Hz) [see Supplementary Fig. 1 for all plots; see Sup-

lementary Fig. 2 for time-series]. Second, the time-series of the hip-

ocampal virtual sensors were duplicated, with the first being filtered

round the theta peak ( ± 0.5Hz) and the second being filtered around

he gamma peak ( ± 5Hz). Third, the Hilbert transform was applied to

he theta- and gamma-filtered time-series, with the phase of the former

nd power of the latter being extracted. Fourth, the time-series data was

e-epoched, beginning 500ms after the onset of the stimulus/fixation

ross and at the onset of the next screen. This attenuated the possibil-

ty that an event-related potential and/or edge artifacts from the fil-

ering/Hilbert transform could influence the phase-amplitude coupling

easure ( Aru et al., 2014 ). Fifth, gamma power was binned into 12

quidistant bins of 30°, according to the concurrent theta phase. This

inning was conducted for each trial and sensor separately. Sixth, the

I was computed by comparing the observed distribution to a uniform

istribution. Seventh, the resulting MI values were subjected to a trial-

ased multiple regression conducted in the same manner as for the spec-

ral power analyses. However, two additional regressors were added

o this model: (1) hippocampal peak theta power [per trial, averaged

cross 500ms to 3000ms], (2) hippocampal peak gamma power [per

rial, averaged across 500ms to 3000ms]. These regressors addressed
† Though the notion of localising deep regions such as the hippocampus was 

nce controversial, an ever-growing number of studies have suggested that it is 

chievable. Ruzich et al. (2019) uncovered 29 studies that used gradiometers 

lone to localise hippocampal signals, while Dalal et al. (2013) demonstrated 

hat MEG signals directly correlate with simultaneously recorded intracranial 

ippocampal recordings. As such, the theoretical notion that the hippocampus 

annot be measured using MEG has been refuted by numerous empirical demon- 

trations to the contrary. 
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5 
he potential confound of concurrent power influence phase estimates

 Aru et al., 2014 ). Eighth, these results were averaged over hippocam-

al virtual sensors and these participant-specific t-values were subjected

o a permutation-based one-sample t-test contrasting memory-related

hanges in phase-amplitude coupling to the null hypothesis ( t = 0). No-

ably, as we had focused our analyses on the peak theta and gamma fre-

uencies, and used the average PAC values across virtual sensors, only

 single statistical comparison was made. Therefore, no cluster-based

ultiple comparison correction was required. As the p-values reported

ere are estimated by permutation rather than from the parametric test,

he t-values and degrees of freedom we report should only be used for

eference. 

To explore how phase-amplitude coupling changed as a function of

equence position (that is, does coupling increase as the sequence pro-

resses?), we computed the modulation index as above and then con-

ucted a variant on the original regression model. Here, for each stimu-

us epoch, we modelled phase-amplitude coupling as the product of five

egressors: (1) a constant, (2) the position of each item in the sequence

modelled as values ‘1’, ‘2’, and ‘3’), (3) the power of the phase-giving

i.e., theta) frequency, (4) the power of the power-giving (i.e., gamma)

requency, and (5) motion. As above, our regressor of interest (here:

equence position) was averaged over hippocampal virtual sensors and

he participant-specific t-values were subjected to a permutation-based

ne-sample t- test. 

We examined the spatial specificity of this effect by using the same

ipeline as above to assess theta-gamma phase-amplitude coupling in

he frontal, occipital, parietal, and temporal lobes (individually; as de-

ned by the wfupickatlas toolbox for SPM). This analysis (plus source

isualisation) help confirm that theta-gamma coupling observed in the

ippocampus ROI originated from the hippocampus itself, rather than

bled in ” from another region. 

To compliment this analysis, we also ran a searchlight-based anal-

sis. Here, we aimed to contrast the magnitude of the memory-related

ippocampal coupling effect with memory-related coupling effects out-

ide the hippocampus (in searchlights including approximately the same

umber of voxels; assuaging concerns that the lobe-based ROIs were too

road to detect local coupling effects). To this end, we iterated through

very source voxel, identified its immediate neighbours (those imme-

iately in front of and behind the voxel in 3-dimensional space [mini-

luster size: 27 voxels; for comparison, hippocampal ROI = 25 voxels]),

nd took the mean memory-related hippocampal phase-amplitude cou-

ling within this mini-cluster. For each mini-cluster, this mean value

as then contrasted against chance, and the resulting t-statistic was

dded to a distribution describing the magnitude of memory-related

hase-amplitude coupling across the brain. A p-value was then dervied

y comparing hippocampal coupling to the whole-brain distribution (as

one in a permutation test), allowing us to infer the extent to which

ippocampal phase-amplitude coupling deviated from what was typical

ithin the brain. 

An additional analysis was conducted to confirm that hippocampal

heta/gamma coupling did increase during the mnemonic binding win-

ow. Here, the modulation index was calculated in the same manner as

escribed above, and then z-transformed using the mean and standard

eviation of a surrogate distribution, where the gamma time-series was

andomly shuffled across trials relative to the theta phase and the mod-

lation index was re-computed (that is: the theta time-series of a given

rial was randomly paired with the gamma time-series of a different

rial; 50 permutations). This returned a z -score in which any positive

alue would indicate hippocampal theta-gamma coupling was greater

han what would be expected by chance. The z-transformed modula-

ion index for each participant was pooled across the sample and en-

ered into a one-tailed permutation test (2000 permutations) to examine

hether hippocampal phase-amplitude coupling exceed chance during

nemonic binding. 

http://www.fieldtriptoolbox.org/template/headmodel
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. Results 

.1. Behavioural results 

Participants, on average, correctly recalled both the associated pat-

ern and associated scene on 38.3% of trials, recalled only one associ-

ted stimulus on 34.4% of trials, and failed to recall either associate on

7.3% of trials. Participants correctly recalled the associated pattern on

9.2% of trials, and correctly recalled the associated scene on 82.1% of

rials (both of which are well above chance performance [33.3%]). A

aired-samples t-test revealed that memory for scenes was substantially

reater than memory for patterns ( p < 0.001, Cohen’s d z = 4.31). To

ttenuate the impact of differing memory performance for the two stim-

lus types in the subsequent analyses, two regressors were included in

ll models that served to suppress variance attributable to scene-specific

nd feature-specific memory. 

.2. Neocortical alpha/beta power decreases during sequence perception 

redict enhanced memory performance 

After establishing that alpha/beta power did indeed decrease from

aseline following the presentation of the sequence stimuli (p corr <

.001, Cohen’s d z = 1.22, cluster size = 28,260, mean t-statistic within

luster = -5.03; see Fig. 2 a), we set out to test our first hypothesis: are

emory-related decreases in alpha/beta power more prevalent during

he perception of the sequence than during mnemonic binding? 

To this end, we estimated single-trial spectral power, and then used

articipant-specific regression models to estimate the extent to which

pectral power changes as a function of the number of items later re-

alled. The resulting beta co-efficients (standardised by the standard er-

or of the fit, resulting in participant-specific t -values) were then pooled

cross participants and entered into a cluster-based permutation test.

his cluster-based analysis revealed a significant effect where a decrease

n the magnitude of alpha/beta power correlated with an increase in

he number of items later recalled (p corr = 0.032, Cohen’s d z = 0.60,

luster size = 1013, mean t -statistic within cluster = -2.47; see Fig. 2 b

nd 2 d). This cluster extended over the posterior sensors, bilaterally,

etween 8 and 15Hz (see Fig. 2 b). Source reconstruction confirmed this

ocalisation, implicating bilateral early occipital regions (see Fig. 2 e).

arsimonious results were found during retrieval (see Supplementary

ig. 3), and when breaking the memory effects down by stimulus type

see Supplementary Fig. 4). 

No memory-related changes in theta power (2-7Hz; p corr = 0.101),

slow ” gamma power (40–60Hz; no cluster formed), or “fast ” gamma

ower (60–100Hz; no cluster formed) were observed during the presen-

ation of the sequence. 

No change in alpha/beta power was observed when participants

ere asked to engage in mnemonic binding (p corr > 0.5; see Fig. 2 c). Sim-

larly, no memory-related changes in theta power (2-7Hz; p corr = 0.130),

slow ” gamma power (40–60Hz; no cluster formed), or “fast ” gamma

ower (60–100Hz; no cluster formed) were observed when participants

ere asked to engage in mnemonic binding. 

A direct contrast of spectral power between sequence perception and

nemonic binding demonstrated that the inverse relationship between

lpha power and subsequent memory performance was significantly

ore pronounced during perception (p corr = 0.014, Cohen’s d z = 0.60,

luster size = 794, cluster t-statistic = -2.49; see Fig. 2 f). Together, these

ndings suggest that alpha/beta power decreases during sequence per-

eption, but not during mnemonic binding, scale with the number of

tems that are later recalled. 

.3. Hippocampal theta/gamma phase-amplitude coupling during 

nemonic binding, but not sequence perception, predicts successful episodic 

emory formation 

We then probed how hippocampal theta/gamma phase-amplitude

oupling relates to episodic memory formation. Here, we identified
6 
he participant-specific peaks in hippocampal theta and gamma power

see Fig. 3 a) and then used the modulation index ( Tort et al., 2010 )

o approximate theta-gamma phase amplitude coupling. In the first in-

tance, we asked whether theta-gamma phase amplitude coupling ex-

eeds what would be expected by chance. Indeed, during mnemonic

inding, theta-gamma coupling was greater than chance for trials which

articipants later successfully recalled at least one associate (2 items re-

alled: t(16) = 1.84, p = 0.044, d = 0.45; 1 item recalled: t(16) = 2.02,

 = 0.037, d = 0.49), though no effect was observed when the associ-

ted stimuli were later forgotten ( p > 0.5). During sequence perception,

heta-gamma coupling never exceeded chance in any memory condi-

ion (all items: t(16) = 0.85, p = 0.198, d = 0.21; 2 items recalled:

(16) = 0.20, p = 0.429, d = 0.05; 1 item recalled: t(16) = 0.79, p = 0.222,

 = 0.19; no items recalled: t(16) = 0.19, p = 0.431, d = 0.05). 

We then used the same regression-based approach used for the spec-

ral power analyses above to quantify how theta-gamma coupling dif-

ered as a function of the number of items recalled. During mnemonic

inding, increases in hippocampal theta/gamma phase-amplitude cou-

ling scaled with the number of items later recalled (t(16) = 2.24,

 = 0.020, Cohen’s d z = 0.54; see Fig. 3 b–d). There was no significant

emory-related change in theta-gamma coupling during sequence per-

eption ( p > 0.5; see Fig. 3 e). This lack of change was not attributable to

he fact that coupling during sequence perception was estimated using

horter epochs, as we continued to observe significant coupling during

nemonic binding when the binding epochs were shortened to match

he length of the sequence perception epochs (t(16) = 1.85, p = 0.043,

ohen’s d z = 0.45). A direct contrast in PAC between sequence per-

eption and mnemonic binding revealed that memory-related increases

n PAC are more pronounced during mnemonic binding (t(16) = 1.93,

 = 0.040, Cohen’s d z = 0.47; see Fig. 3 f). In conjunction, these findings

uggest that memory-related theta/gamma phase-amplitude coupling is

estricted to periods of mnemonic binding. 

To ensure that the hippocampal effect observed during mnemonic

inding was not a result of spatial smearing from some other region, we

e-ran this analysis using four additional regions of interest: the frontal

obe, parietal lobe, temporal lobe (excluding the hippocampus), and the

ccipital lobe. None of these regions exhibited significant theta-gamma

hase-amplitude coupling during mnemonic binding (frontal: p = 0.308,

arietal: p = 0.250, temporal: p = 0.078, occipital: p = 0.169). Further-

ore, a searchlight-based analysis revealed that hippocampal phase-

mplitude coupling was substantially greater than other searchlight-

ased regions-of-interest that matched the size of the hippocampus

 p = 0.024; see Fig. 2 d for visualisation of source map; see Supple-

entary Fig. 6 for histogram of searchlight statistics). Together, these

esults suggest that the memory-related enhancement in hippocampal

heta/gamma phase-amplitude coupling is indeed originating from the

ource-reconstructed hippocampus, as opposed to “bleeding in ” from

eighbouring regions. 

Notably, theta-gamma coupling seemed to be substantially greater in

he right, relative to the left, hippocampus. We are, however, hesistant to

raw conclusions about this difference as LCMV beamformers often fail

o separate correlated sources (e.g., left and right hippocampal signals),

nd hence generate illusory lateralisation effects ( O’Neill et al., 2021 ).

s such, here we simply focus on the region, rather than the hemisphere,

here the effect arose. 

As can be seen in Fig. 3 b, there is an apparent memory-related shift in

he phase at which gamma couples to theta during mnemonic binding.

s the modulation index used above is insensitive to such shifts, we

tatistically appraised this effect using a circular-to-linear correlation.

las, no consistent change was found ( p = 0.435) suggesting that gamma

ctivity does not precess along the phase of theta as a function of the

umber of items later recalled. 

While these results all support the idea that theta-gamma coupling

s specific to mnemonic binding, a question remains as to why, on a

europhysiological level, theta/gamma phase-amplitude coupling was

ore prevalent during mnemonic binding relative to sequence percep-
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Fig. 2. Neocortical alpha/beta power decreases during sequence perception scale with the number of items later recalled. (a) Time-frequency plot of 1/f 

corrected spectral power (averaged across all trials and the cluster channels marked in panel b; z -transformed using the mean and standard deviation of the spectral 

power 500ms prior to stimulus onset) during sequence presentation and subsequent binding. Alpha/beta power only decreased during sequence presentation. (b) 

Time-frequency plot (left) and topoplot (right) of the negative relationship between alpha/beta power during sequence perception and the number of items later 

recalled. Colour depicts the magnitude of the “number of items recalled ” regressor coefficient (in t -values). The darker the blue, the greater the magnitude of the 

negative relationship between spectral power and number of items recalled. The time-frequency plot uses the average of all channels included in the significant 

cluster (visualised by crosses in the topoplot to the right). The topoplot depicts values for time-frequency bins included in the significant cluster (i.e., 8–15 Hz; 

300–1300 ms). (c) Time-frequency plot of the correlation between alpha/beta power during mnemonic binding and the number of items later recalled, plotted over 

the same channels as those visualised in panel b. No significant effect was observed. (d) Time-series plot of the spectral power at the individual alpha frequency 

(IAF) of each participant, after 1/f correction, for each memory condition. The more items later recalled, the greater the power decrease [p corr = 0.034 at IAF]. (e) 

Source localisation of the effect in panel b. The memory-related alpha/beta power decreases during sequence perception peak in the occipital cortex. (f) Boxplot of 

memory-related decreases in alpha/beta power during sequence perception and mnemonic binding (averaged across electrodes, frequencies and time bins included 

in the cluster observed during sequence perception). Across participants, memory-related decreases in alpha/beta power were significantly greater during sequence 

perception than during mnemonic binding. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

7 
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Fig. 3. Increases in hippocampal theta-gamma coupling during mnemonic binding scale with the number of items later recalled. (a) Exemplar plots of peak theta and 

gamma frequencies during mnemonic binding for two participants (red line depicts hippocampal power; dotted red line depicts frequencies interpolated due to line 

noise; grey line depicts fitted 1/f component; grey area depicts identified peak). (b) Hippocampal gamma power as a function of hippocampal theta phase, for each 

memory condition, during the mnemonic binding window. When more items were later recalled, gamma power fluctuated in line with theta phase more noticeably. 

(c) Memory-related hippocampal theta-gamma coupling as a function of theta and gamma frequencies. Theta-gamma coupling appeared to peak at approximately 

the peak theta and gamma frequencies, supporting the idea that this coupling arises between two narrow-band oscillatory signals. (d) Theta-gamma coupling peaked 

in the hippocampus. To emphasise coupling patterns that were consistent across both hemispheres, the two hemispheres have been averaged together, and the 

averaged result visualised in the left hemisphere of the source plot. (e) Hippocampal gamma power as a function of hippocampal theta phase, for each memory 

condition, during sequence perception. No memory-related differences in coupling were observed. Moreover, no significant increase in coupling was observed as the 

sequence progressed [t(16) = 1.34, p = 0.099, Cohen’s d z = 0.33; see Supplementary Fig. 5]. (f) Boxplot of memory-related increases in theta/gamma coupling during 

sequence perception and mnemonic binding (averaged across source-reconstructed hippocampal virtual electrodes). Across participants, memory-related increases 

in theta/gamma coupling were significantly greater during mnemonic binding than during sequence perception (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.). 
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ion. Specifically, could this be driven by independent changes in the

heta oscillation or gamma oscillations? To address this, we contrasted

he power of these oscillations between mnemonic binding and sequence

erception, guided by the principle that a change in power would reflect

 change in the driving oscillation. When contrasted the peak hippocam-

al theta, we saw significant reductions in power for sequence percep-

ion relative to mnemonic binding (t(16) = 1.84, p = 0.042, Cohen’s

 z = 0.45). However, no difference was observed in the gamma band

t(16) = 1.31, p = 0.105, Cohen’s d z = 0.32). This would suggest that

he absence of theta/gamma phase-amplitude coupling during sequence

erception is, in part, attributable to a diminished theta oscillation. 

.4. A double dissociation between the timing of memory-related decreases 

n neocortical alpha/beta power decreases and memory-related increases in 

ippocampal theta/gamma phase-amplitude coupling 

Lastly, we formalised the interaction between memory-related neo-

ortical alpha/beta power decreases and hippocampal theta-gamma

hase-amplitude coupling. To this end, we conducted a 2 × 2 repeated

easures ANOVA with encoding stage (perception vs. binding) and

etric (alpha/beta power decreases vs. theta-gamma coupling) as fac-

ors. This revealed a significant interaction where memory-related al-
8 
ha/beta power decreases and memory-related theta-gamma coupling

ncreases are dependent on the nature of the ongoing cognitive task

F(1,16) = 9.14, p = 0.008, partial eta squared = 0.36]. There was

o main effect of cognitive task [F(1,16) = 0.99, p = 0.33, partial

ta squared = 0.06], nor metric [F(1,16) = 0.20, p = 0.50, partial eta

quared = 0.03]. These results, in conjunction with those reported in

he sections above, suggest that a double dissociation exists between

eocortical alpha/beta power decreases and hippocampal theta-gamma

hase-amplitude coupling, with the former being most pronounced dur-

ng periods of information processing and the latter being most pro-

ounced during periods of mnemonic binding. 

. Discussion 

Reductions in neocortical alpha/beta power and enhancements

n hippocampal theta-gamma phase-amplitude coupling are thought

o play dissociable roles in the formation of episodic memories

 Hanslmayr et al., 2016 ), with the former supporting information rep-

esentation and the latter supporting mnemonic binding. As such, one

ould expect that these neural phenomena are temporally dissociable,

ith alpha/beta power decreases arising first (supporting the process-

ng of incoming information) and theta-gamma phase-amplitude cou-
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ling arising later (supporting mnemonic binding, which can only arise

fter the information has initially been processed in the cortex). Here,

e found just that. Memory-related decreases in neocortical alpha/beta

ower principally arose during sequence perception, while memory-

elated increases in hippocampal theta/gamma phase-amplitude cou-

ling principally arose during a time window in which participants

ould mnemonically bind the sequence together. This double disso-

iation suggests that alpha/beta power decreases and hippocampal

heta/gamma phase-amplitude coupling arise at two distinct stages in

he memory formation process. 

The representation of information relating to a to-be-encoded mem-

ry is thought to be supported by neocortical alpha/beta power de-

reases ( Hanslmayr et al., 2012 ). Information theory proposes that un-

redictable states, such as desynchronised neural networks, carry more

nformation than predictable states ( Shannon and Weaver, 1949 ). In

ine with this hypothesis, we found that memory-related reductions in

lpha/beta power (an index for neural desynchrony) only arose when

articipants were required to process information about a sequence, and

ot when the sequence was being bound together (i.e., when no further

nformation was presented for processing). The restriction of alpha/beta

ower decreases to time points where information can be processed adds

urther support to the idea that alpha/beta power decreases correlate

ith the representation of information relevant to episodic memories

 Griffiths, et al., 2019 a; Hanslmayr et al., 2012 ). 

Alternatively, one could view this neocortical alpha activity as a

orrelate of attention ( Jensen and Mazaheri, 2010 ; Klimesch et al.,

007 ). For example, when participants attend more intently to the stim-

li, one might expect to observe both an alpha power decrease (e.g.,

limesch et al. 1998 ) and an increased likelihood of successful memory

ormation ( Chun and Turk-Browne, 2007 ). Such an interpretation, how-

ver, is by no means adversarial to the idea that reductions in neocortical

lpha/beta power reflect enhanced information representation. Indeed,

s a participant attends more intently to a stimulus, one could expect

hat the stimulus is more clearly represented within the cortex. While

e cannot disentangle these overlapping theories here, future studies

ould address this by asking whether an alpha/beta power decrease is

redictive of information representation after controlling for the influ-

nce of attention. 

During mnemonic binding, hippocampal theta-gamma phase-

mplitude coupling scaled with memory performance. Mechanistically

peaking, these increases may reflect a heightened degree of long-term

otentiation (LTP) within the hippocampus. By coupling gamma oscilla-

ions resonating at a frequency optimal for spike-timing dependent plas-

icity (STDP; Bi and Poo, 1998 ; Nyhus and Curran, 2010 ) to the phase

f theta optimal for LTP ( Hasselmo et al., 2002 ), the potential for build-

ng synaptic connections between hippocampal neurons is increased

reatly. Based on such ideas, one could speculate that the memory-

elated theta-gamma coupling observed during the binding window re-

ects the transformation of the three discrete sequence stimuli into a

ingular cohesive episodic memory. 

In contrast, hippocampal theta-gamma phase-amplitude coupling

uring sequence perception did not relate to memory. This may be at-

ributable to the diminished theta oscillation observed during sequence

erception relative to that observed during mnemonic binding, which

onsequently may impair coupling between the theta and gamma bands.

ne could speculate that if the role of theta is to support mnemonic bind-

ng, then it may be naturally reduced during periods of the task where

inding demands are less (e.g., during sequence perception). Going fur-

her, it may even be actively suppressed to avoid interfering with other

ask processes. Of course this is speculation, but these ideas could be

ested by artificially perturbing theta activity during sequence percep-

ion and exploring its impact on behaviour. 

If neocortical desynchrony and hippocampal synchrony are dissocia-

le, does this mean that they act in complete independence of one an-

ther during encoding? Here, we would argue “no ”. Mnemonic binding

annot occur if the relevant information has not been perceived, as there
9 
s no information to bind. Therefore, one could expect that the underly-

ng neural correlates of mnemonic binding are contingent on the prior

eural processing of relevant information. In line with such ideas, prior

ork has shown that the magnitude of hippocampal gamma synchro-

isation can be predicted by preceding neocortical alpha/beta power

ecreases ( Griffiths et al., 2019 b; see Supplementary Fig. 7 for com-

lementary findings within the data reported here). As such, one could

peculate that neocortical desynchrony and hippocampal synchrony cor-

elate with distinct cognitive processes (as evidenced above), but both

eural phenomena (and the associated cognitive processes) must arise

nd interact to create an episodic memory. 

We did not observe any memory-related fluctuations in theta power

uring the binding window. This is somewhat surprising; numerous pre-

ious studies have reported fluctuations in theta power correlating with

ater memory performance (for reviews, see Herweg et al. 2019 and

yhus and Curran 2010 ). However, given that theories regarding theta

nd long-term potentiation ( Bi and Poo, 1998 ; Hanslmayr et al., 2016 ;

yhus and Curran, 2010 ) emphasise the importance of phase for LTP,

ather than power, one could speculate that theta power has less to

o with enhanced mnemonic binding, and as such, should not sub-

tantially correlate with successful memory formation. Similarly, we

id not observe memory-related fluctuations in gamma power dur-

ng mnemonic binding despite numerous studies demonstrating this

reviously ( Burke et al., 2013 ; Griffiths et al., 2019 b; Long and Ka-

ana, 2015 ; Osipova et al., 2006 ). However, this can be explained by

he fact that theta-gamma coupling was observed during this same win-

ow. If memory-related increases in gamma power are restricted to cer-

ain phases of theta, and theta is not stimulus-locked across trials, then

cross-trial averages of gamma power will sum to zero. As such, the

bsence of a ‘pure’ gamma effect here is not surprising. 

It is worth noting that a growing amount of evidence suggests

hat ocular activity may be tied to the neural correlates of memory.

or example, saccades that arise during the visual exploration of an

bject are known to induce a theta phase reset in the hippocampus

 Jutras et al., 2013 ), while pupil dilation is known to correlate with cor-

ical alpha/beta power following the presentation of a fear-conditioned

timulus ( Dahl et al., 2020 ). As such, it is possible that ocular activ-

ty mediates our observed link between neocortical alpha/beta activity,

ippocampal theta/gamma activity, and successful memory formation.

nfortunately, we did not acquire any measures of ocular activity and

ence cannot address this idea here, but future studies may benefit from

xploring the potential mediating effect of ocular activity on human

emory formation. 

In sum, these results demonstrate that decreases in neocortical al-

ha/beta power and increases in hippocampal theta/gamma phase-

mplitude coupling are temporally dissociable in episodic memory for-

ation ( Hanslmayr et al., 2016 ). 
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