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Highlights 

• Encoding-related alpha/beta power decreases are reinstated during retrieval 

• No evidence to suggest these reinstated power decreases reflect stimulus identity 

• These power decreases may reflect reinstatement of a neurophysiological operation 

Abstract 

Episodic memory retrieval is characterised by the vivid reinstatement of information about a personally-

experienced event. Growing evidence suggests that this reinstatement is supported by reductions in the 

spectral power of alpha/beta activity. Given that the amount of information that can be recalled depends on 

the amount of information that was originally encoded, information-based accounts of alpha/beta activity 

would suggest that retrieval-related alpha/beta power decreases similarly depend upon decreases in 

alpha/beta power during encoding. To test this hypothesis, seventeen human participants completed a 

sequence-learning task while undergoing concurrent MEG recordings. Regression-based analyses were then 

used to estimate how alpha/beta power decreases during encoding predicted alpha/beta power decreases 

during retrieval on a trial-by-trial basis. When subjecting these parameter estimates to group-level analysis, 

we find evidence to suggest that retrieval-related alpha/beta (7-15Hz) power decreases fluctuate as a function 

of encoding-related alpha/beta power decreases. These results suggest that retrieval-related alpha/beta 

power decreases are contingent on the decrease in alpha/beta power that arose during encoding. Subsequent 

analysis uncovered no evidence to suggest that these alpha/beta power decreases reflect stimulus identity, 

indicating that the contingency between encoding- and retrieval-related alpha/beta power reflects the 

reinstatement of a neurophysiological operation, rather than neural representation, during episodic memory 

retrieval. 

1. Introduction 

Episodic memory refers to detail-rich, durable memories of personally-experienced events (Tulving, 

2002). During the formation of these memories, large quantities of information about the event need to be 

represented and encoded by the cortex, while the later retrieval of these memories similarly hinges upon the 

representation of this previously-encoded information within the cortex. As such, an intuitive contingency 

exists in which the amount of information encoded dictates the amount of information that can later be 

retrieved (Tulving & Thomson, 1973). However, it is unclear whether such a relationship is observable on the 

neural level. Do the neurophysiological phenomena that facilitate information representation during episodic 

memory formation predict the magnitude of neurophysiological phenomena that facilitate information 

representation during subsequent retrieval? Here, we examine this idea. 

To successfully encode and retrieve details about an episodic memory, the neural signal representing 

these details needs to be elevated above the noise generated by ongoing, task-irrelevant neuronal activity 
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(Harris & Thiele, 2011). One potent form of background noise comes from “noise correlations” – that is, the 

synchronised firing of neurons unrelated to the signal of interest. When task-irrelevant neurons synchronise 

their firing, their summed activity conceals the comparatively small activity generated by the signal of interest. 

Therefore, the desynchronisation of these task-irrelevant neurons can enhance information representation 

within the neocortex by reducing background noise (Hanslmayr et al., 2012, 2016). Given that these noise 

correlations share a strong positive correlation with local field potential (LFP; Cui et al., 2016), one could 

speculate that the ubiquitous reduction in alpha/beta power that arises during task engagement (e.g., Crone 

et al., 1998; Krause et al., 1994; Pfurtscheller et al., 1996) may reflect a reduction in underlying noise 

correlations. In line with this idea, growing evidence suggests that alpha/beta power decreases support the 

representation of information encoded within, and retrieved from, episodic memories (Griffiths, Mayhew, et 

al., 2019; Karlsson et al., 2020; Martín-Buro et al., 2020). For example, a simultaneous EEG-fMRI study 

demonstrated that the magnitude of alpha/beta power decreases directly correlated with the amount of 

stimulus-specific information represented within the BOLD signal during both perception and episodic 

memory retrieval (Griffiths, Mayhew, et al., 2019). Notably, these alpha/beta power decreases did not 

represent stimulus-specific information, but rather provided the conditions which benefit information 

representation (for complementary evidence, see Weisz et al., 2020). One could therefore hypothesise that 

reductions in alpha/beta power serve to reduce noise rather than boost signal. As such, it seems that decreases 

in alpha/beta power reflect a neurophysiological phenomenon that provides beneficial conditions for 

information representation within the cortex (Hanslmayr et al., 2012). 

Given that information represented within the cortex during retrieval is contingent on the information 

originally encoded (Tulving & Thomson, 1973), we hypothesised that retrieval-related alpha/beta power 

decreases are similarly contingent on encoding-related alpha/beta power decreases. To test this, seventeen 

participants completed a sequence learning task while undergoing concurrent MEG recordings (see figure 1a). 

We then modelled alpha/beta power during retrieval as a function of alpha/beta power during initial encoding 

(see figure 1b). In line with our hypothesis, we found evidence to suggest that, on a trial-by-trial basis, 

alpha/beta power decreases during episodic memory retrieval can be predicted by the associated alpha/beta 

power decreases observed during encoding.  

2. Methods  

2.1. Data statement 

The data analysed here is taken from a previous dataset (Griffiths et al., 2020). Exclusion criteria match those that 

were pre-registered for the previous study. 

2.2. Participants 

Seventeen participants were included in the final analysis (mean age = 24.9; age range = 20-32; 11 female, 6 male; 

14 right-handed, 3 left-handed). These participants received course credit or financial reimbursement in return for their 

participation. An additional eleven participants were excluded (n=1 for excessive head movement, n=4 for poor data 
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quality, n=6 for having fewer than 15 forgotten triads in the pre-processed data). These exclusion criteria matched those 

reported by Griffiths and colleagues (2020). Ethical approval was granted by the Research Ethics Committee at the 

University of Birmingham (ERN_15-0335), complying with the Declaration of Helsinki.  

2.3. Experimental design 

Each participant completed a visual associative memory task (see figure 1a). During encoding, participants were 

presented with a line drawing of an object (either “animate” or “inanimate”; 50% of trials belonged to each category, 

evenly distributed throughout the experiment), a feature (“polka-dot” or “chequered”), and a scene (“indoor” or 

“outdoor”). Each stimulus was presented for 1500ms, with a jittered 600ms (±100ms) fixation cross presented between 

each stimulus. Participants were then given a short interval (3000ms) to create a mental image incorporating the three 

stimuli to help them recall the stimuli during a later memory test. After associating 48 triads, participants started the 

distractor task. In the distractor task, participants attended to a fixation cross in the centre of a black screen. The fixation 

cross would flash momentarily (~100ms) from light grey to either white or dark grey approximately every 20 seconds. 

The participants were instructed to count the number of times the fixation cross changed to white (ignoring the times it 

turned dark grey) and report this value at the end of the task (approximately 2.5mins later). This task was attentionally 

demanding, prohibiting rehearsal of the encoded triads. A retrieval task then followed the distractor. Here, participants 

were presented with the line drawing (for 3000ms) and asked to recall the mental image they created during the encoding 

Figure 1. Overview of behavioural task and analytical approach. (a) Paradigm schematic. Participants were presented with a 
sequence of three visual stimuli. The sequence began with a line drawing of an object, followed by a feature and a scene (each 
with a brief fixation cross shown between). Participants were then given a short interval to create a mental image incorporating 
the three stimuli, and asked to rate how difficult it was to create the association. After a distractor task, participants were presented 
with the object as a cue and asked to recall the pattern and the scene. After selection, participants had to rate how confident they 
felt about their response. Windows outlined in red depicted the epochs analysed. (b) For every participant, a multiple regression 
model was created in which alpha/beta power on a given retrieval trial was predicted based on alpha/beta power at encoding, 
head motion, linear drift, and a constant. The parameter estimate describing the linear relationship between alpha/beta power at 
encoding and alpha/beta power at retrieval was extracted for every sensor-frequency pair of every participant, and these estimates 
were subjected to inferential statistical analysis. We hypothesised that a positive linear relationship would be observed across 
participants, indicating that the alpha/beta power during encoding predicts alpha/beta power during retrieval. Furthermore, we 
hypothesised that this effect would be restricted to successfully recalled items, as unsuccessful retrieval does not elicit meaningful 
memory-related fluctuations in alpha/beta power.  
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phase. Then, participants were presented with three patterns (one correct and two lures) and asked to identify the 

pattern associated with the line drawing. After responding, this process was repeated for the scene stimuli, again using 

the correct stimulus and two lures. Lastly, participants were asked to provide a rating of how confident they felt about 

their selections, with the options of “guess” (where participants felt they guessed their answer), “unsure” (where 

participants were inclined towards one particular stimulus, but could not explicitly remember the pairing), and “certain” 

(where participants could explicitly remember the associated stimulus). Participants were asked to recall all 48 triads 

learnt in the earlier encoding phase (where retrieval trial order was randomised with respect encoding trial order). 

Participants completed four blocks of this task (that is, the task alternated between encoding and retrieval four times). 

For all responses, participants used two non-magnetic, single-finger optical response pads. The left pad allowed 

participants to cycle through the possible responses, and the right pad allowed participants to confirm their selection.  

2.4. Behavioural analysis 

For each trial, recall performance was denoted as either ‘complete’ (i.e. they remembered both the scene and the 

pattern), ‘partial’ (i.e. they remembered only one of the associates), or ‘forgotten’ (i.e. they remembered neither the 

scene nor the pattern). Any trial where the participant indicated that they guessed the answer was marked as ‘forgotten’. 

A two-sample t-test was used to determine whether recall performance varied as a function of stimulus type (i.e. scene 

versus feature). This t-test reveal a substantial bias in recall performance (p < 0.001, Cohen’s dz = 4.31), suggesting that 

scenes were more likely to be recalled on ‘partial’ trials than features. As a result, ‘partial’ trials were excluded from 

subsequent analyses as we would be unable to separate the effect of recalling a scene versus a feature from the effect 

of recalling two items versus recalling one item. 

2.5. MEG acquisition 

MEG data was recorded using a 306-channel (204 gradiometers, 102 magnetometers) whole brain Elekta Neuromag 

TRIUX system (Elekta, Stockholm, Sweden) in a magnetically shielded room. Participants were placed in the supine 

position for the duration of the experiment. The MEG was continuously recorded at a sampling rate of 1000Hz. The head 

shape of each participant (including nasion and left/right ear canal) was digitised prior to commencing the experiment. 

Continuous head position indicators (cHPI) were recorded throughout. The frequencies emitted by the cHPI coils were 

293Hz, 307Hz, 314Hz and 321Hz. Magnetometer data was excluded from the main analysis as they contained substantial 

noise that could not be effectively removed or attenuated. 

2.6. MEG preprocessing 

All data analysis was conducted in Matlab using Fieldtrip (Oostenveld et al., 2011) and custom scripts. First, the data 

was lowpass filtered at 165Hz to remove the signal generated by the HPI coils. Second, the data was epoched around 

each event of interest. At encoding, the epochs reflected the time windows where each stimulus was presented. At 

retrieval, the epochs reflected the time window when the object cue was presented. Encoding epochs began 2000ms 

before stimulus onset and ended 3500ms after onset (that is, 2000ms after stimulus offset). Retrieval epochs began 

2000ms before stimulus onset and ended 4500ms after onset (that is, 2000ms after stimulus offset). Third, independent 

components analysis was conducted, and any identifiable eye-blink or cardiac components were removed. Fourth, the 

data was visually inspected, and any artefactual epochs or sensors were removed from the dataset (mean number of 

“completely recalled” triads included in the central analyses: 52.2 [S.D. 21.0]; mean number of “forgotten” triads included 
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in the central analyses: 38.7 [S.D. 14.0]). A dependent-samples t-test indicated that there was a marginal difference in 

the number of recalled and forgotten triads [t(16) = 1.79, p = 0.091].  

2.7. Movement correction 

To help attenuate motion-related confounds in the spectral power analyses, a trial-by-trial estimate of motion was 

calculated. First, the data was highpass filtered at 250Hz. Second, the data was epoched into trials matching those 

outlined in the section above. Third, the envelope of the signal in each epoch was calculated (to avoid issues of mean 

phase angle difference in cHPI signal across trials). Fourth, the envelope was averaged over time to provide a single value 

for each epoch and channel. Fifth, the dot product was computed across sensors between the first epoch and every other 

epoch (algebraically: ∑ 𝑎!"
!#$ 𝑏!, where n is the number of channels, 𝑎! is the power at sensor 𝑖 during the first trial, and 

𝑏! is the power at sensor 𝑖 during the trial of interest). This provided a single value (between zero and infinity) for each 

trial that described how similar the topography of that trial was to the first trial – the higher the value, the more similar 

the topographies are between the two trials (with the assumption that the more dissimilar a topography is to the starting 

topography, the more the head has deviated from its starting position). These values were entered as a regressor of no 

interest in the central multiple regression analyses. 

2.8. Time-frequency decomposition 

Sensor-level time-frequency decomposition was conducted on the two epochs (encoding and retrieval). First, the 

preprocessed data was convolved with a 6-cycle wavelet (0 to 1.5 seconds for each stimulus during encoding; 0 to 3 

seconds for retrieval, in steps of 50ms; 3 to 40Hz; in steps of 0.5Hz). The encoding epochs were intentionally focused on 

the time windows in which the stimuli were presented (and not on the “associate” cue, i.e., the interval when participants 

created a mental image) because alpha/beta power during these windows have previously been shown to be predictive 

of later successful recall (Griffiths et al., 2020). Alpha/beta power during the “associate” cue, however, was not correlated 

with later memory performance. As it did not correlate with behavioural measures of memory recall, it is not expected 

to correlate with the neural phenomena linked to memory recall either. Second, planar gradiometers were combined by 

summing the power of the vertical and horizontal components. Third, for encoding epochs only, power was then averaged 

over the three stimulus presentation windows of each triad to provide mean power during the encoding of the triad. Any 

triads where one or more epochs had been rejected during preprocessing were excluded at this stage. We averaged 

spectral power across the three windows as we reasoned that this approach would be most sensitive to changes in 

spectral power that predicted the quantity of information later recalled. Fourth, post-stimulus power for the encoding 

and retrieval epochs were averaged across time. We did this as we had no expectation of when alpha/beta power during 

encoding would overlap with alpha/beta power during retrieval.  

Of course, one may reasonably wonder why the time-series was decomposed into a time-frequency representation 

only to be averaged over time, and why the time-series was not transformed into a frequency spectrum instead (e.g. via 

FFT). In brief, we used the wavelet-based approach to ensure analytical consistency between this analysis and the later-

described “time-generalisation” analysis (section 2.11), which cannot be conducted on data which lacks a temporal 

dimension. Notably however, if one replaces the time-averaged wavelet-based measure of power with an FFT-derived 

measure, the results replicate (see supplementary materials). 

2.9. Multiple regression analysis 
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Our central analyses were inspired by the multi-level regression-based approach frequently used in fMRI research, 

where participant-level effects are first estimated using general linear models, and the resulting parameter estimates are 

subjected to group-level inferential statistics (see figure 1b). To this end, three first-level linear regression models were 

run for each participant: one model described how retrieval success related to spectral power at retrieval (the “memory 

performance” model), one described how encoding spectral power related to retrieval spectral power during successful 

memory retrieval, and one model described how spectral power during encoding related to spectral power during 

unsuccessful memory retrieval (the “spectral power” models). We split the “spectral power” models based on memory 

performance for two reasons: (1) so that we would be able to assess with correlation between encoding power and 

retrieval power without concern that memory performance might introduce an artificial correlation between the two 

measures of power, and (2) so that we would be able not to only examine whether there was a significant difference in 

the encoding-retrieval correlation between remembered and forgotten triads (i.e. an interaction term between memory 

performance and encoding-retrieval correlation across all trials), but also observe whether the encoding-retrieval 

correlation for the two memory conditions deviated significantly from chance independently of one another. 

For the first linear model, five regressors and a constant were used to predict spectral power during the retrieval 

epoch. The first regressor described whether the triad was successfully recalled or not. If the triad was recalled in its 

entirety, a value of ‘1’ was used. If none of the triad was recalled, a value of ‘0’ was used. The second regressor described 

motion at retrieval, and served to supress variance introduced by this potential confound. The third regressor reflected 

the trial number at retrieval, and served to supress variance introduced by signal autocorrelation over time. The fourth 

and five regressors reflected the time taken to select the associated feature and scene, respectively. This served to 

suppress trial-by-trial variance relating to response preparation, which has also been linked to beta band activity 

(Jenkinson & Brown, 2011).  Note that these latter four regressors were included to account for participant-specific 

variance, rather than group-level variance. The outcome variable was spectral power at retrieval for a given channel-

frequency pairing. The model was fitted for every channel-frequency pairing individually, using the ordinary least squares 

(OLS) algorithm (see equation 1).  

𝑦 = 𝑏𝑋 + 𝜀  (equation 1) 

In this equation, 𝑦 reflects the outcome variable (spectral power at retrieval), 𝑋 represents the predictor matrix 

(memory performance, motion, trial number, and reaction time per trial), 𝑏 represents the to-be-determined parameter 

estimate, and 𝜀 represents the random error term. The parameter estimate for the regressor “memory performance” 

was then standardised by dividing the standard error of the fit, bringing every parameter estimate into the same unit 

space and facilitating across-participant comparisons. 

One could argue that this model is a rather convoluted approach to assessing memory-related changes in spectral 

power, and a simple t-test on participant means is sufficient (as done elsewhere; e.g. Griffiths et al., 2016; Michelmann 

et al., 2016). However, these previous studies used scalp EEG, where electrodes move together with the head. This is not 

the case with MEG – here, the head moves independently of the sensors. Such movement can often correlate with 

cognitive performance (e.g. a slumping in the chair as the task progresses correlating with cognitive fatigue), and hence 

is essential to partial out (see supplementary figure 1 for an empirical demonstration of this effect). The linear modelling 

approach used here addresses this MEG-specific confound. 

The second and third linear models were specific to memory performance, with the second model only containing 

triads that were successfully recalled, and the third model only containing triads that were forgotten. Seven regressors 
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and a constant were used to predict spectral power during the retrieval epoch. The first regressor described alpha/beta 

power at encoding. The second and third regressors described motion at encoding and retrieval, and served to supress 

variance introduced by these potential confounds. The fourth and fifth regressors reflected trial numbers at encoding 

and retrieval, and served to supress variance introduced by signal autocorrelation over time. The sixth and seventh 

regressors reflected the time taken to select the associated feature and scene, respectively. These were used to suppress 

trial-by-trial variance relating to response preparation, which has also been linked to beta band activity (Jenkinson & 

Brown, 2011). The outcome variable matched that of the first model, and the model estimation was conducted in the 

same manner as reported above.  

2.10. Statistical analysis 

For statistical analysis of the memory performance model, the standardised parameter estimates were contrasted 

against the fit expected by chance. This chance-level fit was estimated by randomly permuting the values of the outcome 

vector relative to the predictor matrix 1000 times, and then calculating the mean of these chance-level fits. The t-values 

for each participant were contrasted against the chance-level fits in a dependent-samples, cluster-based permutation 

test (2000 permutations, alpha threshold = 0.05, cluster alpha threshold = 0.05, minimum neighbourhood size = 3; Maris 

& Oostenveld, 2007). Note that replacing the permuted chance null hypothesis with an absolute zero null hypothesis 

produces synonymous results.  

For statistical analysis of both spectral power models, a region of interest was defined based on the cluster 

uncovered when analysing the memory performance model. This helped focus our analysis on spectral power related to 

episodic memory processes, and not to other co-occurring cognitive phenomena such as perception or attention. The 

parameter estimates of each participant were averaged across all channel-frequency pairings included in the cluster, 

leaving a single average parameter estimate for each participant and each model. For the initial analysis, these parameter 

estimates were contrasted against the chance-level fit in a dependent samples t-test (for successfully recalled and 

forgotten models separately). Then, the parameter estimates of the two models were directly contrasted in permutation-

based, dependent samples t-test. In this permutation test, the labels were randomly shuffled between the two conditions, 

and the t-statistic was generated for this permutation. This process was repeated 2000 times, and a histogram of these 

permutated t-statistics was generated. A p-value was then derived by determining the number of permutated t-statistics 

that were greater than the t-statistic generated by the “true” data. This approach has an advantage over traditional t-

tests in that in makes fewer assumptions about the distribution of the underlying data, which, in the case of MEG data, 

may not be Gaussian (Maris & Oostenveld, 2007). 

One may sense that this latter analysis is circular – the contrast of parameter estimates for hits and parameter 

estimates for misses is conducted using a region of interest derived from a previous analysis of hits and misses. However, 

this is not the case. The original contrast of the memory performance model approximates the “retrieval success effect”, 

where the mean spectral power for hits is contrasted with the mean spectral power for misses. As such, one can view the 

cluster as being those features sensitive to differences in mean spectral power between conditions. When we 

subsequently build the spectral power regression models for hits and misses separately, the mean spectral power for 

each memory condition is captured by the constant included in their respective models. With the mean spectral power 

captured in the constant (and, therefore, explicitly not in the parameter estimates of the specified regressors), the 

contrast of the parameter estimates between hits and misses can be viewed as an orthogonal contrast to the “retrieval 

success” contrast that was conducted first.  
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2.11. Time-generalisation analysis 

To understand the temporal dynamics of the central effect, we computed a time-generalisation matrix to explore 

how alpha/beta power at every time point during encoding correlated with alpha/beta power at every time point during 

retrieval. Here, the analysis matched that of the multiple regression approach described above with one key exception: 

power was not averaged over time. Instead, the linear models were computed for every channel x frequency x time-at-

encoding x time-at-retrieval combination (restricted to channels and frequencies included within the memory-related 

cluster; power at encoding was averaged over the three stimuli prior to modelling, as done in the previous analysis). The 

derived standardised parameter estimates were then averaged over channels and frequencies to provide a two-

dimensional matrix describing how alpha/beta power at encoding correlated with alpha/beta power at retrieval for every 

time point during encoding (dimension 1) and every time point during retrieval (dimension 2). As before, this was done 

separately for remembered and forgotten trials. 

To identify time windows in which a substantial correlation between encoding and retrieval alpha/beta power exists, 

the time generalisation matrices were contrasted against the fits expected by chance (calculated as in the previous 

section) in a dependent-samples, cluster-based permutation test (2000 permutations, alpha threshold = 0.05, cluster 

alpha threshold = 0.05, Maris & Oostenveld, 2007). This was done for remembered and forgotten trials separately. 

Another dependent-samples, cluster-based permutation test then assessed the difference in fits between remembered 

and forgotten trials. 

2.12. Linear discriminant analysis 

To examine whether alpha/beta power contained category-specific information, linear discriminant analysis (LDA) 

was conducted on the time-series data of the encoding epochs. Specifically, LDA was used to identify whether the 

stimulus subcategories could be distinguished from one another [i.e. animate vs. inanimate subcategories for the object 

stimuli; polka-dot vs. chequered subcategories for the feature stimuli; indoor vs. outdoor subcategories for the scene 

stimuli]. LDA analysis was conducted using the MPVA light toolbox (Treder, 2020). LDA was first run on broadband 

amplitude to test whether the electrophysiological signal in its entirety contained category-specific information. For ease 

of reading, we describe the process for comparing “animate vs. inanimate” object stimuli, however the pipeline 

generalises to that used for the “polka-dot vs. chequered” and “indoor vs. outdoor” contrast. First, the dimensionality of 

the data was reduced. Sensor-level data was converted into components using Principle Component Analysis (PCA) and 

the 50 components that explained the most variance in the data were selected. We elected to take 50 components as 

this provided a reasonable trade-off between having sufficient components to detect differences and having a sufficient 

ratio of trials to components to avoid over-fitting (approximately three trials to one feature). Second, the trials were split 

based on their subcategory (i.e. “animate” or “inanimate”). Third, trial numbers between the two subcategories were 

balanced by taking all trials from the subcategory with a smaller number of instances, and then, for every one of these 

trials, selecting the trial of the opposite category that occurred nearest in time to this trial. This approach minimised 

differences between the subcategories that could be ascribed to signal autocorrelation. Fourth, the data was randomly 

partitioned into five folds (with an equal number of trials from both categories included within a fold). Fifth, weights that 

best separated the two subcategories were determined based on data in four of these folds (i.e. the training set), and 

then applied to the fifth fold (i.e. the testing set). This process was repeated in a cross-validated manner, using each fold 

as the testing set in turn. This process was conducted for every sample point separately. Classification performance was 

calculated by assigning each test trial a decision value (d-value; Treder, 2020; where a positive value indicates evidence 
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for category 1 [i.e. animate stimuli], and a negative value indicates evidence for category 2 [i.e. inanimate stimuli]). The 

sign of the decision values for category 2 were then flipped, meaning a positive value indicates evidence for the correct 

category, and a negative value indicates evidence for the incorrect category. The performance of the classifier for each 

participant was pooled and entered into a group-level within-subject t-test, where they were contrasted against chance 

(estimated by permuting test labels relative to the test data across trials and deriving the associating performance) in a 

dependent-samples, cluster-based permutation test (using parameters as before).  

To test whether alpha/beta power contained category-specific information, this analysis pipeline was re-run from 

the beginning using alpha/beta power in place of broadband amplitude. Alpha/beta power was estimated by taking the 

absolute of the envelope of the narrowband filtered signal (IIR filter: 7-15Hz, ensuring that all frequencies included in the 

main cluster effect were included in this analysis). To further elucidate the role of alpha/beta in decoding, an additional 

analysis was conducted on broadband amplitude after bandstop filtering (IIR filter: 7-15Hz). 

3. Results  

3.1. Alpha/beta power decreases during retrieval correlate with memory performance 

After verifying that alpha/beta power does indeed decrease following stimulus onset (see supplementary 

materials), we probed whether this alpha/beta power decrease is functionally relevant to memory retrieval. 

To this end, spectral power during the retrieval epoch was modelled as a linear combination of memory 

performance (entire sequence recalled vs. none of the sequence recalled), head motion, trial number and 

reaction time for every participant. The resulting parameter estimate which described how memory 

performance predicted spectral power was then extracted for each participant, and a group-level contrast was 

conducted to see whether these coefficients consistently deviated from chance across participants. Here, the 

successful retrieval of a triad was accompanied by a decrease in alpha/beta power relative to forgotten triads 

[pclus = 0.022, summed t-statistic = -931.24, cluster size = 345, Cohen’s dz = 0.65]. The reported cluster was 

observed over left posterior sensors, and had a frequency range of 7-15.5Hz (see figure 2a and 2d). This 

matches numerous previous studies linking alpha/beta power decreases to successful memory retrieval (e.g. 

Griffiths et al., 2020; Griffiths, Mayhew, et al., 2019; Karlsson et al., 2020; Khader & Rösler, 2011; Martín-Buro 

et al., 2020; Michelmann et al., 2016; Waldhauser et al., 2016).  

3.2. Encoding-related alpha/beta power decreases predict subsequent retrieval-related alpha/beta power 

decreases  

We then addressed our key hypothesis: is the retrieval-related decrease in alpha/beta power dependent 

on the alpha/beta power decrease during encoding? To this end, spectral power during the retrieval epoch 

was modelled as a linear combination of spectral power during the encoding epoch, head motion, trial number 

and reaction time. The resulting standardised parameter estimates for every channel-frequency pairing within 

the memory-related cluster were averaged to provide a single value describing the correlation between 

encoding- and retrieval-related spectral power for remembered items (for each participant separately). These 

values were entered into a group-level contrast to see whether these parameter estimates consistently 
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deviated from chance across participants. Here, we observed a significant positive correlation between 

encoding and retrieval alpha/beta power on a trial-by-trial level [t(16) = 2.66, p = 0.008, Cohen’s dz = 0.65; see 

figure 2b (hits in red, misses in grey)], indicating that fluctuations in alpha/beta power during successful 

retrieval can be predicted by fluctuations in alpha/beta power during the initial encoding. Unrestricted cluster-

based analysis produced synonymous results: a significant positive correlation was observed between 

encoding and retrieval alpha/beta power on a trial-by-trial level [pclus = 0.022, summed t-statistic = 52.28, 

cluster size = 20, Cohen’s dz = 0.63]. This cluster was present over the posterior sensors, and had a frequency 

range of 9-14.5Hz (see figure 2e for topography), complimenting the preceding finding by demonstrating that 

retrieval-related alpha/beta power decreases can be predicted by prior encoding-related power decreases.  

Notably, this effect cannot be attributed solely to perceptual similarities between the object at encoding 

and retrieval; the correlation between encoding-related and retrieval-related alpha/beta power persists when 

Figure 2. Retrieval-related alpha/beta power decreases can be predicted based on encoding. (a) Frequency spectrum depicting 
difference in power as a function of memory performance. Alpha/beta power exhibits a significant decrease during successful 
sequence retrieval relative to unsuccessful retrieval. Dark line indicates mean standardised parameter estimate (averaged across 
participants and sensors included in the significant cluster); shaded error bar depicts standard error of standardized parameter 
estimate across participants; grey shaded region depicts frequencies included in the significant cluster. (b) Topography depicting 
difference in power (averaged across participants and frequencies included in significant cluster) as a function of memory 
performance. Alpha/beta power decreases are most prominent over left occipital and parietal sensors. Crosses indicate electrodes 
included in cluster when comparing the observed memory parameter estimate to chance.  (c) Frequency spectrum depicting how 
encoding power predicts retrieval power for hits (in orange) and misses (in grey). Encoding power within the alpha/beta band 
significantly predicts retrieval power for hits, but not misses. Dark line indicates mean standardised parameter estimate (averaged 
across participants and sensors included in the region of interest); shaded error bar depicts standard error of standardised 
parameter estimate across participants; grey shaded region depicts frequencies included in the region of interest. (d) Topography 
depicting the predictability of retrieval alpha/beta power (averaged across participants and frequencies included in region of 
interest) for remembered sequences. Predictability is widespread, with the greatest correlation over the same occipital regions 
observed in the memory-related contrast (see panel d). Crosses indicate electrodes included in unrestricted cluster analysis 
comparing the correlation between encoding and retrieval power for remembered sequences to chance. (e) Frequency spectrum 
depicting memory-related differences in how encoding power predicts retrieval power. Encoding power within the alpha/beta 
band predicts retrieval power to a significantly greater degree than misses. Dark line indicates mean standardised parameter 
estimate (averaged across participants and sensors included in the region of interest); shaded error bar depicts standard error of 
standardised parameter estimate across participants; grey shaded region depicts frequencies included in the region of interest. (f) 
Boxplot depicting the predictability of retrieval alpha/beta power based on encoding power, as function of memory performance. 
Across participants (as individual dots), remembered items showed a significant relation, whereas misses did not.  
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one only considers the encoding epoch where the feature or scene was presented [t(16) = 2.18, p = 0.017; 

t(16) = 1.69, p = 0.053; respectively; see supplementary materials for further details]. 

For forgotten triads, no correlation was found between encoding and retrieval alpha/beta power [t(16) 

= 0.87, p = 0.198, d = 0.21; see figure 2b]. Moreover, in a direct contrast of the parameter estimates for 

remembered and forgotten items, we found evidence to suggest that encoding alpha/beta power was a better 

predictor of subsequent retrieval power when the triad was remembered relative to when it was forgotten 

[t(16) = 1.99, p = 0.032, d = 0.48; see figure 2c and 2f]. Together, these results suggest that the encoding-

retrieval correlation for alpha/beta power is specific to when information is successfully encoded and 

subsequently recalled. 

Importantly, the absence of a significant effect for forgotten triads cannot be attributed differences in 

trial numbers between remembered and forgotten conditions: A subsampling procedure used to balance trial 

numbers between conditions revealed that, when trial numbers are matched, the significant correlation 

between encoding and retrieval alpha/beta power persists for remembered items [t(16) = 2.24, p = 0.016, d = 

0.54] and continues to be insignificant for the forgotten items [t(16) = 0.63, p = 0.265, d = 0.15]. 

Similarly, the absence of a significant effect for forgotten triads cannot be attributed to a lack of variance 

in the data (a phenomenon that can impede the measurement of correlations). A 2x2 repeated measures 

ANOVA using the factors of “epoch” (encoding vs. retrieval) and “memory” (remembered vs. forgotten) found 

no main effect of memory on the variance in power across trials [F(1,16) = 0.39, p = 0.541], nor an interaction 

between memory and epoch [F(1,16) < 0.01, p = 0.98]. This suggests that variance does not differ substantially 

between remembered and forgotten triads. Therefore, as an effect can be observed for the remembered 

triads which has similar variance to forgotten triads, the absence of an effect for forgotten triads cannot be 

attributed to limited variance across trials.  

3.3. Temporally-brief encoding-related alpha/beta power decreases predict temporally-extend retrieval-related 

power decreases 

To examine the temporal specificity of these effects, a time-generalisation matrix was computed in which 

alpha/beta power for every time-point at encoding was correlated with alpha/beta power for every time-point 

at retrieval using the same linear modelling approach as above (this time, averaged over channels and 

frequencies within the memory-related cluster).  For remembered items, the largest cluster revealed a 

significant correlation between encoding- and retrieval-related alpha/beta power which included encoding 

time-points from 100ms to 1500ms and retrieval time-points ranging from 125ms to 1950ms [pclus = 0.006, 

summed t-statistic = 3484.52, cluster size = 1425, Cohen’s dz = 0.59]. While temporally broad, inspection of 

the time generalisation matrix suggests that this cluster peaked at encoding time-points between 500 and 

1000ms and at retrieval time-points between 300 and 1800ms. These results indicate that the correlated 

alpha/beta power decreases have different time-courses during encoding and retrieval, which seemingly align 
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with the timing of previously-reported subsequent 

memory effects and retrieval success effects, 

respectively (e.g. Fell et al., 2008; Griffiths et al., 

2016; Hanslmayr et al., 2009; Karlsson et al., 2020; 

Martín-Buro et al., 2020; Michelmann et al., 2016).  

Critically, these memory-related decreases in 

alpha/beta power also overlapped with the 

significant reduction in alpha/beta power that 

accompanies stimulus perception and retrieval 

(see supplementary results, see supplementary 

figure 2), rather than the alpha/beta rebound that 

follows stimulus-induced suppression. This 

suggests that the correlation between encoding-

related and retrieval-related alpha/beta power 

relates to general reductions in alpha/beta power, 

rather than later rebounds in alpha/beta power. 

No significant cluster was observed for 

forgotten trials [largest cluster: pclus = 0.408, summed t-statistic = 433.09, cluster size = 214, Cohen’s dz = 0.49].  

When contrasting matrices between remembered and forgotten trials, a significant cluster was observed 

[pclus = 0.041, summed t-statistic = 1592.09, cluster size = 425, Cohen’s dz = 0.91], which included encoding 

time-points from 550ms to 1050ms and retrieval time-points ranging from 200ms to 1800ms (see figure 3). 

This result corroborates the prior findings, suggesting that the alpha/beta power decreases present differing 

time-courses during encoding and retrieval. Notably, the absence of an effect along the diagonal attenuates 

concerns that the observed relation between encoding and retrieval is due to perceptual overlap or attention 

to the stimulus, both of which should exhibit highly similar time-courses during stimulus presentation.  

The cluster observable at the onset of the retrieval cue (see figure 3) was no greater than what would be 

expected by chance under the null hypothesis [pclus = 0.293, summed t-statistic = 639.93, cluster size = 218, 

Cohen’s dz = 0.71]. 

3.4. No evidence for alpha/beta power decreases carrying category-specific information 

Lastly, we asked whether the changes in alpha/beta power directly reflect category-specific information. 

To this end, linear discriminant analysis (LDA) was conducted on 7-15Hz band-pass filtered amplitude 

(reflecting the observed alpha/beta activity) to decode whether the object presented was either animate or 

inanimate. Statistical analysis revealed that the two subcategories could not be reliably distinguished (pclus = 

0.245, summed t-statistic = 66.84, cluster size = 29, Cohen’s dz = 0.56; although one must remember that an 

Figure 3. Temporal specificity of the dependency of retrieval 
power on prior encoding power. Time-generalisation matrix 
depicting the extent to which encoding alpha/beta power (7-
15Hz; parieto-occipital channels in memory-related cluster) 
predicts later retrieval alpha/beta power for remembered items, 
more so than forgotten items.  Line plot beneath the matrix 
depicts how encoding power predicts retrieval power for every 
time point at retrieval (hits > misses; averaged across encoding 
time-points included in significant cluster). Shaded area depicts 
time-points included in significant cluster. Line plot left of the 
matrix depicts how encoding power predicts retrieval power for 
every time point at encoding (averaged across retrieval time-
points included in significant cluster). 
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absence of evidence for H1 does not inherently mean a presence of evidence for H0). The subcategories could, 

however, be decoded when using the broadband signal (pclus < 0.001, summed t-statistic = 639.88, cluster size 

= 161, Cohen’s dz = 0.96; see figure 4), and the broadband signal with a 7-15Hz bandstop filter (pclus < 0.001, 

summed t-statistic = 944.64, cluster size = 236, Cohen’s dz = 0.97), indicating that the absence of a decoding 

effect for alpha/beta power cannot be attributed to a general inability to decode these categories using MEG 

signal. Synonymous results were uncovered when the decoding the subcategories of feature and scene stimuli 

(see supplementary table 2). These results suggest that while stimulus category can be decoded using the 

recorded signal, alpha/beta power is not the driver of this result (replicating earlier reports; Griffiths, Mayhew, 

et al., 2019; Ng et al., 2013; Weisz et al., 2020).  

4. Discussion 

When recalling an episodic memory, information about the encoded event is rapidly reinstated within 

the cortex. Intuitively, the information that is retrieved must have been encoded previously (Tulving & 

Thomson, 1973), introducing a contingency between encoding and retrieval processes. Here, we ask whether 

such a contingency is observable on a neural level. Indeed, we uncovered evidence to suggest that decreases 

in alpha/beta power during successful memory formation predict the magnitude of alpha/beta power 

decreases during subsequent retrieval. Given that we found no evidence to suggest that these power 

decreases code for category-specific representations, it would seem that these decreases reflect a 

neurophysiological operation that is reinstated during memory retrieval.  

Alpha/beta power decreases following cognitive engagement are a ubiquitous phenomenon, 

transcending tasks (e.g. Hanslmayr et al., 2009; Obleser & Weisz, 2012; Pfurtscheller et al., 1994), stimulus 

modality (e.g. Crone et al., 1998; Krause et al., 1994; Pfurtscheller et al., 1994) and even species (e.g. Chatila 

et al., 1992; Haegens et al., 2011; Popov & Szyszka, 2020; Wiest & Nicolelis, 2003). Given the ubiquity, it stands 

to reason that these power decreases reflect a highly general process. Theories have proposed that these 

decreases support information representation by suppressing background noise or by increasing entropy 

Figure 4. Decoding stimulus content in MEG signal. Linear discriminant analysis was conducted on broadband amplitude (left), 
alpha power (middle), and bandstop-filtered amplitude as participants perceived the sequence. In all three cases, broadband 
amplitude could successfully distinguish stimulus subcategories (animate vs. inanimate for “object” stimuli; polka-dot vs. chequers 
for “feature” stimuli; indoor vs. outdoor for “scene” stimuli). In contrast, alpha power could not decode stimulus subcategory for 
any of the three conditions. These results suggest that while stimulus category can be decoded using the recorded signal, 
alpha/beta power is not the driver of this result. 
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within the network (Hanslmayr et al., 2012). Several studies have provided empirical support for these ideas 

by demonstrating that alpha/beta power decreases scale with the amount of information encoded as, or 

retrieved from, an episodic memory (Griffiths, Mayhew, et al., 2019; Griffiths et al., 2020; Karlsson et al., 2020; 

Martín-Buro et al., 2020). The current results add further support to this idea. The amount of information that 

can be retrieved from memory is contingent on the amount encoded (Tulving & Thomson, 1973). If alpha/beta 

power decreases support the representation of information, one would therefore expect to find this 

contingency reflected in the relationship between encoding-related and retrieval-related alpha/beta power. 

Indeed, we found exactly this: the magnitude of alpha/beta power decreases during episodic memory retrieval 

can be predicted by alpha/beta power decreases observed during encoding. These results support the idea 

that alpha/beta power decreases relate to a process aiding the representation of stimulus-specific information 

during episodic memory formation and retrieval.  

Our analysis of the central effect’s time course help to further contextualise the link between encoding- 

and retrieval-related alpha/beta power decreases. Here, we found that brief alpha/beta power decreases 

during encoding predicted extended alpha/beta power decreases during subsequent retrieval. Critically, the 

timing of these encoding-retrieval correlations overlaps with the timing of memory-related changes in 

alpha/beta power reported in previous studies. The brief alpha/beta power decreases we observe during 

encoding match the timing of the subsequent memory effect, where encoding-related power decreases arise 

around 500ms after stimulus onset and last approximately 500ms (e.g. Fell et al., 2008; Griffiths et al., 2016; 

Hanslmayr et al., 2009). Similarly, the extended alpha/beta power decreases we observed during retrieval 

match the timing of the retrieval success effect, including both the rapid-onset power decreases (Waldhauser 

et al., 2016) and those which last for extended periods of time (>1000ms; e.g. Karlsson et al., 2020; Martín-

Buro et al., 2020; Michelmann et al., 2016). Given this overlap, it seems reasonable to suggest that the 

observed contingency between encoding- and retrieval-related alpha/beta power decreases directly relates 

to the same neurophysiological phenomena associated with the subsequent memory and retrieval success 

effects. 

Research into episodic memory retrieval has long focused on the reinstatement* of neural 

representations (see Schreiner & Staudigl, 2020). This spans from early work demonstrating the reinstatement 

of modality-specific neural patterns (e.g. Nyberg et al., 2000; Wheeler et al., 2000) up to more recent work 

demonstrating the reinstatement of stimulus-specific neural patterns (e.g. Chen et al., 2016; Linde-Domingo 

et al., 2019; Staresina et al., 2012). A common interpretation of these findings is that these patterns reflect 

the neural representation of the memory within the cortex. That is, these patterns code for a recalled stimulus. 

However, our findings do not fit with this interpretation. While we were able to observe the reinstatement of 

alpha/beta power during retrieval, we were unable to decode stimulus identity within topographic patterns of 

 
* As defined by a recent consensus statement (Genzel et al., 2020). Specifically, “reinstatement” refers to the activation 
of patterns present during encoding at a later time point while the subject is in an awake state. 
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alpha/beta power (matching earlier reports: Griffiths, Mayhew, et al., 2019; Ng, Logothetis, & Kayser, 2013; 

Weisz et al., 2020). This disparity is emphasised when one considers that the reinstatement of alpha/beta 

power during retrieval could be detected at single channels and frequencies using traditional univariate 

approaches, while links between stimulus identity and alpha/beta power remained elusive despite using more 

advanced multivariate approaches. Therefore, the observed reinstatement of alpha/beta power is unlikely to 

reflect the reinstatement of stimulus-specific information.  

Instead, our results point towards the idea of the reinstatement of a neurophysiological phenomenon 

that supports the neural code of a stimulus (e.g., the suppression of neural noise as discussed above). 

Intuitively, a process that supports neural representations of stimuli during encoding would also be capable of 

supporting similar neural representations during subsequent retrieval. Therefore, when a neural 

representation is reinstated, the supportive processes could also be expected to be reinstated. Critically, this 

is not to say that prior studies cited above are measuring the reinstatement of supportive processes – several 

of these studies use multivariate approaches to identify fine-grained differences in neural activity for highly 

similar stimuli that cannot easily be attributed to a general, supportive process. Future studies, however, may 

benefit from acknowledging that both neural representations and the underlying neurophysiological processes 

can be reinstated during episodic memory retrieval (Tulving & Thomson, 1973) and tailor analysis accordingly.  

It is important to note that this conclusion (that is, alpha/beta power is unlikely to reflect the 

reinstatement of stimulus-specific information) does not generalise to alpha/beta oscillations in their entirety. 

Indeed, several studies have been able to reliably deduce stimulus identity within the phase component of 

alpha/beta band activity (Michelmann et al., 2016; Ng et al., 2013; Staudigl et al., 2015). These results are not 

contradictory with the current findings, as the phase of an oscillation is mathematically independent of the 

power of said oscillation. As such, it is completely plausible to suggest that the phase of alpha oscillations 

carries stimulus-specific information, while the power of said oscillation does not. 

With evidence to suggest that alpha/beta power fluctuations are reinstated during episodic memory 

retrieval, it is worth considering whether other neurophysiological phenomena show similar dependencies 

between encoding and retrieval (or, indeed, encoding and other processes such as consolidation). 

Hippocampal theta/gamma activity are both intimately tied to episodic memory encoding and retrieval (e.g. 

Colgin, 2016; Nyhus & Curran, 2010), and therefore have the potential to demonstrate some contingency 

between encoding and retrieval. For example, the coupling of gamma activity to particular phases of theta is 

thought to provide a mechanism capable of encoding temporally-organised sequences (Lisman & Idart, 1995; 

Lisman & Jensen, 2013), and the retrieval of the sequences is presumed to support the retrieval of temporal 

order. As such, one could anticipate that hippocampal theta-gamma coupling during retrieval is contingent on 

coupling during encoding, much like that reported here for alpha/beta power. However, evidence also 

suggests that encoding and retrieval are optimal at different phases of theta (Hasselmo, 2005; Kerrén et al., 

2018), and that distinct gamma bands underpin encoding and retrieval (Colgin et al., 2009; Griffiths, Parish, et 
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al., 2019). Given these differences between encoding and retrieval, there is also reason to believe that 

hippocampal theta/gamma activity does not show the same parametric contingency reported here. In short, 

while it may be plausible to predict a contingency between encoding and retrieval in other regions and 

frequency bands, such a dynamic cannot be assumed without further examination. 

It is worth considering that changes in spectral power do not directly equate to changes in underlying 

oscillatory power (Haller et al., 2018), and instead may reflect a change in the underlying 1/f characteristic of 

the electrophysiological signal (Miller et al., 2009). While several approaches have been developed to separate 

changes in 1/f-related activity from changes in oscillatory power (Haller et al., 2018; Wen & Liu, 2016), these 

approaches suffer signal-to-noise issues when used in single-trial based analyses (Griffiths, Mayhew, et al., 

2019) such as the regression models used here. However, the absence of a correction method is not a 

substantial problem in the data presented here. Changes in oscillatory power should present themselves as 

narrowband peaks in the power spectrum, whereas changes in 1/f-related activity should present themselves 

as broadband effects that fluctuates as a logarithmic function of frequency. When analysing remembered and 

forgotten items separately, we observed a combination of these two phenomena (see figure 2b) – both 

conditions showed a peak in the alpha/low beta ranges, and a tapering effect into the higher beta frequencies. 

Critically however, the direct contrast of these conditions produced a narrowband peak within the alpha/low-

beta band (see figure 2c). Therefore, it would seem reasonable to conclude that the memory-related (i.e. 

remembered > forgotten) overlap between encoding and retrieval power was linked to narrowband 

alpha/beta oscillations (matching earlier reports suggesting these power decreases are oscillatory in nature; 

Fellner et al., 2019), whereas the broadband overlap in power was linked to another phenomenon present in 

both the remembered and forgotten conditions, such as perceptual overlap between the to-be-encoded 

stimuli and the retrieval cue. 

In conclusion, we find evidence to suggest that alpha/beta power decreases during the retrieval of an 

episodic memory are contingent on the magnitude of alpha/beta power decreases that arose during the initial 

encoding of the memory trace. As alpha/beta power does not code for stimulus-specific information, but 

rather provides favourable conditions for information representation, these results suggest that 

neurophysiological operations are reinstated during episodic memory retrieval in order to support the 

representation of information about the retrieved memory.  
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Supplementary Results 

Stimulus onset induces alpha/beta power decreases during encoding and retrieval 

Post-stimulus reductions in alpha/beta power are well-documented (e.g. Pfurtscheller, Neuper, & Mohl, 1994), 
and in the main text, it is assumed that the central correlation between encoding and retrieval relates to the 
magnitude of this decrease. However, one can argue that, instead, it is the magnitude of subsequent rebound 
in power that correlates between encoding and retrieval. Though the results of the time-generalisation 
analyses suggest that the peak encoding-retrieval correlation is very shortly after stimulus onset (500-
1000ms), we nonetheless wish to rule out the possibility that the correlation is driven by the power rebound. 
To this end, power was estimated using 6-cycle wavelets (using the same parameters as in the main text). The 
post-stimulus power was then baseline-corrected by subtracting the mean of the pre-stimulus power (-500 to 
0ms), and then dividing by the standard deviation of this pre-stimulus power (individually for each trial, 
channel and frequency). This provided a z-score detailing the extent to which post-stimulus power changed 
relative to pre-stimulus power.  

During both encoding and retrieval, a significant decrease in post-stimulus power, relative to a pre-stimulus 
baseline [-500ms to stimulus onset], was observed (encoding: pclus < 0.001, summed t-statistic = -253751.8, 
cluster size = 56120, Cohen’s dz = 1.10; retrieval: pclus = 0.002, summed t-statistic = -128347.5, cluster size = 
28433, Cohen’s dz = 1.09). Descriptively speaking, both effects were observed in the upper alpha and beta 
bands (10-25Hz) over posterior sensors, commencing at around 100ms after stimulus onset and continuing 
for the duration of the epoch (see supplementary figure 2). For reference, the central analyses found a 
correlation between encoding-related and retrieval-related alpha/beta power (7-15Hz), over left posterior 
sensors, and the time-generalisation analyses indicated that this correlation was greatest between 500ms and 
1000ms post-stimulus. Therefore, it seems reasonable to conclude that the correlation between encoding-
related and retrieval-related alpha/beta power relates to task-induced reductions in alpha/beta power, rather 
than the subsequent rebound of these effects.  

FFT-based measures of power produce a synonymous encoding-retrieval alpha/beta correlation as wavelet-
based measures 

Here, we set out to see whether the results reported in the main text (section entitled: “Encoding-related 
alpha/beta power decreases predict subsequent retrieval-related alpha/beta power decreases”) replicate if the 
measure of power is switched from a wavelet-based derivation to a FFT-based equivalent. The approach to 
these FFT-based analyses were identical to the wavelet-based analyses, with the exception that the power 
spectrum was computed using FFT rather than wavelets, and the resulting power spectra were smoothed with 
a 2Hz Gaussian kernel to attenuate inter-subject differences in peak frequencies. 

As in the main text, we observed a significant decrease in alpha/beta power during successful retrieval relative 
to forgotten triads [pclus = 0.034, summed t-statistic = -426.10, cluster size = 152, Cohen’s dz = 0.68]. Moreover, 
we observed a significant positive correlation between encoding and retrieval alpha/beta power on a trial-by-
trial level for remembered triads [t(16) = 2.48, p = 0.015, Cohen’s dz = 0.60], but not for forgotten triads [t(16) 
= -0.54, p > 0.5, Cohen’s dz = 0.13]. Lastly, we saw a significant difference in the extent of the correlation 
between remembered and forgotten triads [t(16) = 1.91, p = 0.039, Cohen’s dz = 0.46]. 

Encoding-retrieval correlations as a function of stimulus category 

It is plausible to suggest that the encoding-retrieval correlations reported in the main test are the result of 
perceptual similarities between the object when it is presented at encoding and it’s repeated presentation at 
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retrieval. To test this, we re-ran the analyses for each stimulus category separately (that is: “how does 
alpha/beta power during feature encoding correlate with alpha/beta power during memory retrieval?”, and 
so forth). We found that alpha/beta power decreases during the encoding of the scene and features predicting 
alpha/beta power decreases during successful memory retrieval (t(16) = 2.18, p = 0.017; t(16) = 1.69, p = 0.053; 
respectively). As such, the encoding-retrieval effects cannot be attributed simply to stimulus properties of the 
object. 

Intriguingly, alpha/beta power decreases during object encoding had no clear influence on retrieval-related 
alpha/beta power for recalled triads (t(16) = 0.60, p = 0.289). While this further cements the idea that the 
encoding-retrieval effects cannot be attributed stimulus properties of the object (see also: “No evidence for 
alpha/beta power decreases carrying category-specific information” section in the results of the main text), 
one must wonder why such a correlation is not apparent here. Speculatively, it relates to the fact that both 
the feature and the scene stimuli are actively recalled during the presentation of the retrieval cue (leading to 
the recall of stimulus information and the purported associated alpha/beta power decrease), whereas the 
object stimulus simply must be recognised as the cue (and hence little information needs to be retrieved). As 
such, one can theorise that a strong correlation exists between encoding-related and retrieval-related 
alpha/beta power for feature and scene stimuli, as the amount of information initially encoded about these 
stimuli predicts the amount of information that can be later recalled. For object stimuli however, the amount 
of detail initially encoded is less important: regardless of whether large amounts of detail about the cue were 
originally encoded or whether nothing more than a semantic label of the object was encoded, the presentation 
of the object during retrieval leads to a putative alpha/beta power decrease equivalent to the decrease 
expected when the object was encoded in full detail.  
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Supplementary figure 1. Participant-specific correlations between alpha/beta power at retrieval 
and trial number. In some cases, there is a strong negative correlation between the two 
variables (e.g. participant 1, participant 14), and in others, there’s a strong positive correlation 
(e.g. participant 3, participant 5). Across the group, there is no consistent directional effect (see 
supplementary table 2), but these correlations indicate that nuisance variables (e.g. trial 
number) can account for substantial variance on the participant-level. Accounting for such 
variance, therefore, can boost the statistical power for the analyses of interest.  
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Supplementary figure 2. Spectral power in response to 
stimulus onset. (a) A reduction in alpha/beta power follows 
stimulus onset at encoding. The time-frequency plot reflects 
power over posterior sensors. The topographic plot reflects 
post-stimulus alpha/beta power (7-15Hz, 0.5-1s; 
approximating the frequency range of the central effect and 
the time course of the time-generalisation effect). (b) A 
reduction in alpha/beta power follows stimulus onset at 
retrieval. The time-frequency plot reflects power over 
posterior sensors. The topographic plot reflects post-stimulus 
alpha/beta power (7-15Hz, 0.2-1.5s; approximating the 
frequency range of the central effect and the time course of 
the time-generalisation effect). While there is a more 
pronounced power increase over the frontal sensors, the 
power decrease over the posterior sensors (where the 
correlation with encoding is observed) remains. 
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Supplementary Table 1. The fit of nuisance parameters to alpha/beta power at retrieval across participants. 

Parameter Estimate t-statistic p dz 

Linear (encoding) 0.45 0.333 0.11 
Linear (retrieval) -0.04 0.518 0.01 

Motion (encoding) 1.36 0.104 0.33 
Motion (retrieval) -1.00 0.152 0.24 

Feature RT 0.46 0.322 0.11 
Scene RT 0.26 0.397 0.26 

 

 

Supplementary Table 2. Decoding performance as a function of stimulus category and MEG signal derivative. 

Category Subcategories Measure Cluster T Cluster Size p dz 

Object Animate vs. Inanimate Broadband Amp. 639.88 161 < 0.001 0.96 

Alpha/beta Power 66.84 29 0.245 0.56 

Bandstop Filt. 944.64 236 < 0.001 0.97 

Feature Polkadot vs. Chequered Broadband Amp. 739.92 141 < 0.001 1.27 

Alpha/beta Power 76.58 30 0.205 0.62 

Bandstop Filt. 821.01 182 < 0.001 1.09 

Scene Indoor vs. Outdoor Broadband Amp. 376.43 103 0.002 0.87 

Alpha/beta Power 90.77 41 0.134 0.54 

Bandstop Filt. 700.55 166 < 0.001 1.02 

 

 


