Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications B. Grimm, R. Porra, W. Rüdiger, H. Scheer (eds.)

> Vol. 25 of Advances in Photosynthesis and Respiration Govindjee (series editor)

Published 2006 by Springer, ISBN 1-4020-4515-8

Supplement to chapter 22

Effects of Axial Coordination, Electronic Excitation and Oxidation on Bond Orders in the Bacteriochlorin Macrocycle, and Generation of Radical Cation on Photo-Excitation of in vitro and in vivo Bacteriochlorophyll a Aggregates: Resonance Raman Studies (Y. Koyama, Y. Kakitani, L. Limantara, R. Fujii)

Effects of Axial Coordination, Electronic Excitation and Oxidation on Bond Orders in the Bacteriochlorin Macrocycle, and Generation of Radical Cation on Photo-Excitation of in vitro and in vivo Bacteriochlorophyll *a* Aggregates: Resonance Raman Studies

Yasushi Koyama*¹, Yoshinori Kakitani¹, Leenawaty Limantara² and Ritsuko Fujii¹

¹Faculty of Science and Technology, Kwansei Gakuin University,
2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
²Faculty of Science and Mathematics, Satya Wacana Christian University,
JI. Diponegoro 52-60, Salatiga 50711, Indonesia

*Correspondence:

Prof. Yasushi Koyama Faculty of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan Phone: +81-79-565-8408 Fax: +81-79-565-9077 E-mail: ykoyama@kwansei.ac.jp

Running title: Raman Studies on Bacteriochlorin Macrocycles

of BChl a and in the different electron	nic states of BPhe a. Nu	imber of solvents tested	are shown in parentheses.
the ring-breathing frequencies,	not classified	cla	issified
electronic states and species		5-coordinated	6-coordinated
$v_r = S_0 BChl a$	1594–1611 (20)	1605–1611 (12)	1594–1599 (8)
v_r^+ D ₀ BChl <i>a</i> (radical cation)	1584–1599 (13)	1595–1599 (7)	1584 - 1588(6)
v_r " T ₁ BChl <i>a</i>	1578–1591 (13)	1585–1591 (8)	1578–1581 (5)
v_r , S ₁ BChl <i>a</i>	1567–1568 (3)		
$v_r = S_0 BPhe a$	1606 - 1610 (19)		1
v_r " T ₁ BPhe <i>a</i>	1586–1589 (4)		Ι
v_r , S ₁ BPhe <i>a</i>	1582–1587 (6)		1

Table SI. The regions of the ring-breathing frequencies (cm⁻¹) in the different electronic and coordination states of

Fig. S1. The Raman spectra of BChl *a* in the T_1 state in (a) acetonitrile, (b) acetone, (c) 2-butanone, (d) 3-pentanone, (e) 2-octanone, (f) diethyl ether, (g) propyl ether, (h) 2-propanol, (i) 1-butanol, (j) 1-hexanol, (k) 1-decanol, (l) pyridine and (m) THF. (n) The Raman spectrum of BChl *a* in the D₀ (radical-cation) state generated by photo-excitation of BChl *a* aggregates in methylene chloride. The Raman spectra were obtained by a one-color, pump-and-probe method using the 420 nm, 5 ns pulses; each transient Raman spectrum was obtained as a difference spectrum of high power minus low power.

Fig. S2. The Raman spectra of radical cation (the D_0 state) electrochemically generated by one-electron oxidation of BChl *a* in (a) propionitrile (b) 1-butyronitrile, (c) acetone, (d) 2-butanone, (e) 3-pentanone, (f) 2-octanone, (g) methylene chloride, (h) 2-propanol, (i) methanol, (j) ethanol, (k) 1-propanol, (l) 1-butanol, and (m) THF. (Asterisks indicate Raman lines due to the solvents.) A thin-layer Raman cell was built, and the 418.5 nm pulses were used for Raman measurements.

Fig. S3. The Raman spectra of unlabeled (a) BChl *a* and (b) BPhe *a* in the S₀, T₁ and S₁ states. The stationary-state S₀ Raman spectra were recorded by a conventional method using the CW 457.9 nm line (by which only the ground, S₀ state can be probed). The T₁ Raman spectra were recorded by a one-color, pump-and-probe method using the 420 nm, 5 ns pulses; and the S₁ Raman spectra were recorded by another one-color, pump-and-probe method using the 351 nm, ~50 ps pulses. Both the T₁ and S₁ Raman spectra were obtained as difference spectra of high power minus low power. [The S₁(Q_y) lifetime in the range 2.3–3.6 ns and the quantum yield of intersystem crossing in the range of 0.7–0.9 (Connolly JS, Samuel EB and Janzen AF (1982) Effects of solvent on the fluorescence properties of bacteriochlorophyll *a*. Photochem Photobiol 36: 565–574) lead to a time constant of intersystem crossing in the range of 2.6–5.1 ns. Thus, the S₁ and T₁ Raman spectra can be time-resolved by the above pump-and-probe pulses with different duration.]

Fig. S4. Assignment of Raman lines of (a) BChl a and (b) BPhe a in the S₀, T₁ and S₁ states. Symbols 'asym' and 'sym' indicate asymmetric and symmetric stretching, respectively. 'Me sd (dd)' indicates the methyl symmetric (degenerate) deformation, and ' $\delta(C_m-H)$ ' indicates the in-phase deformation of the methine C_m-H .

a and (b) BPhe a in the S₀, T₁ and S₁ states. Here, 'C_a-C_m' collectively include both C_a-C_m and C_a'-C_m, whereas Fig. S5. Carbon-carbon and carbon-nitrogen stretching force constants determined for the macrocycles of (a) BChl 'C_a-N' collectively include both C_a-N and C_{a'}-N.

Fig. S6. Normalized EPR signals for radical cation (the D_0 state) generated by photoexcitation (using the 532 nm, 5 ns pulses) of BChl *a* aggregates in carbon tetrachloride (×), and those in the carotenoid-less LH1 (**■**) and LH2 (**▲**) complexes from *Rba. sphaeroides* R26 and R26.1. Those generated by photo-excitation of the carotenoidless RC (\circ) is also shown for comparison.

Fig. S7. (1) The S₀ Raman spectra, (2) the picosecond transient-Raman spectra, and (3) the nanosecond transient-Raman spectra for the carotenoid-less (a) LH1, (b) LH2 and (c) RC complexes from *Rba. sphaeroides* R26, R26.1 and R26, respectively. The S₀ Raman spectra and the picosecond transient-Raman spectra were obtained by a one-color pump-and-probe method using the 351 nm, ~50 ps pulses. The low-power spectra were regarded as the S₀ Raman spectra, whereas difference spectra of high power minus low power were regarded as Raman spectra were obtained by a one-color pump-and-probe method using the 355 nm, 12 ns pulses. Difference spectra of high power minus low power were regarded as Raman spectra of transient species generated within 12 ns.