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Abstract

Single-molecule fluorescence microscopy studies of bacteria provide unique insights into

the mechanisms of cellular processes and protein machineries in ways that are unrivalled

by any other technique. With the cost of microscopes dropping and the availability of fully

automated microscopes, the volume of microscopy data produced has increased tremen-

dously. These developments have moved the bottleneck of throughput from image acquisi-

tion and sample preparation to data analysis. Furthermore, requirements for analysis

procedures have become more stringent given the demand of various journals to make

data and analysis procedures available. To address these issues we have developed a

new data analysis package for analysis of fluorescence microscopy data from rod-like

cells. Our software ColiCoords structures microscopy data at the single-cell level and

implements a coordinate system describing each cell. This allows for the transformation of

Cartesian coordinates from transmission light and fluorescence images and single-mole-

cule localization microscopy (SMLM) data to cellular coordinates. Using this transforma-

tion, many cells can be combined to increase the statistical power of fluorescence

microscopy datasets of any kind. ColiCoords is open source, implemented in the program-

ming language Python, and is extensively documented. This allows for modifications for

specific needs or to inspect and publish data analysis procedures. By providing a format

that allows for easy sharing of code and associated data, we intend to promote open and

reproducible research. The source code and documentation can be found via the project’s

GitHub page.
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1 Introduction

Fluorescence microscopy has become a crucial tool in studying bacterial cell biology [1–8]. It

is minimally invasive, allows for the study of living bacteria in a controlled environment, and

enables the motion and sub-cellular topologies of any proteinaceous factor [9–24] or nucleic

acids [25–28] to be monitored. Through the multitude of genetically programmable fluores-

cent protein probes [29–36] and commercially available dyes [37–39, 39–41] with different

conjugation capabilities [42–46], virtually all components of bacterial cellular machinery

can be studied with high specificity and spatio-temporal resolution. Even the detection of

single fluorescent probes has become a routine experiment, revealing both dynamics and

heterogeneity.

However, with the introduction of fully automated [47] and autonomously operating

microscopes [48, 49], images can be acquired at increasingly high acquisition rates [50–52]. A

typical experiment conducted overnight spanning the dimensions of position, time and chan-

nels can easily generate thousands of images. This explosion of available multidimensional

data has made analysis the new bottleneck in single-cell fluorescence microscopy studies. Fur-

thermore, in the spirit of reproducibility and open availability of scientific results, more and

more peer-reviewed journals require deposition of source data and evaluation methods—a

process that is hampered by non-standardized evaluation routines and lab-specific software,

often based on commercial platforms.

The exception is current options for bacterial image analysis such as SuperSegger [53, 54],

Oufti [55] and MicrobeJ [56]. Although these data analysis tools are able to tackle a lot of the

problems inherent to (bacterial) live-cell image analysis, we have identified several drawbacks

which we aimed to address with ColiCoords. These drawbacks are related to the platform,

structure and philosophy of the data analysis routines, rather than their functionality for ana-

lysing images.

First, with available tools, it is difficult for users themselves to either inspect the exact math-

ematical procedures applied to their data or customize them. The source code of these analysis

packages are freely available and licensed under the GNU General Public License. Modifica-

tion of Oufti and SuperSegger, however, require a Matlab license, which is not available in

many institutions. MicrobeJ, on the other hand, can be freely modified, but users face a daunt-

ing task due to the shear size of the project and the lack of docstrings.

ColiCoords is written in the freely available language Python and the source code has been

released under the MIT license. The code is available on GitHub, is extensively documented

with both docstrings and online documentation, and its basic principles are described in this

paper. Being hosted on GitHub together with Continuous Integration for testing makes Coli-

Coords an ideal platform for other users to contribute and modify its code.

Second, most other currently available analysis options are based on a graphical user inter-

face (GUI). We would argue that GUIs are inherently limiting and obfuscate the exact data

analysis procedure. While GUI-based analysis is intuitive, it limits the use to the available

graphical elements, with little flexibility. Importantly, due to the large number of permutations

in the order of operations that can be executed via a GUI, the exact data analysis procedure is

typically not documented in detail and thus hard to reproduce.

In contrast, ColiCoords offers a basic foundation for single cell data analysis where users

can apply all functionality from Python itself, the SciPy [57] ecosystem, and community devel-

oped image analysis procedures. The workflow of ColiCoords is implemented in Jupyter Note-

books [58, 59], which act as a lab journal page, and in which all steps of data analysis and its

associated parameters can be executed and described, and the results plotted in interactive

graphs. This type of interactive analysis workflow is being adopted rapidly in the scientific
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community [60]. An example from the microscopy community is the smFRET analysis pack-

age FRETBursts [61].

In addition, ColiCoords is open-ended, meaning it can be used in a pipeline of analysis

where users can freely choose pre- and post-processing options (Fig 1). The input data can be

either image-based (brightfield, phase contract, fluorescence) or sparse data (super-resolution

localizations). Users are therefore free to choose preprocessing options for tasks such as seg-

mentation [55, 62–65] and super-resolution reconstruction [66–69]. Colicoords is out of the

box compatible with High-performance computing (HPC) as operations on a per-cell basis

can be computed in parallel.

The central feature of bacterial image analysis in ColiCoords is transforming input Carte-

sian coordinates (image pixel coordinates or super-resolution localizations) to cellular coordi-

nates. The coordinate system can be derived from different sources, including binary images,

brightfield images or even super-resolution membrane markers. With the coordinate system

in place, ColiCoords offers several different visualization and analysis methods, including

alignment of cells, radial, longitudinal or angular (poles) distributions, kymographs and super-

resolution reconstruction. (Fig 1).

2 ColiCoords principles and features

2.1 Coordinate definitions

The general principle of the coordinate system is shown in Fig 2. Here, a brightfield image of

an E. coli cell is shown with the coordinate system overlayed. By establishing a per-cell coordi-

nate system every pair of Cartesian coordinates (xp, yp) from either pixels or fluorescent foci

can be mapped to cell coordinates (lc, rc, ϕ); Fig 2A. The transformation is based on a second-

degree polynomial (p(x), xl� x� xr) (red line) which corresponds to the midline of the cell.

The parameters describing p(x) are initially based on guess values which can be refined after-

wards. To transform a point (xp, yp), the first step is to find the point (xc, yc) on p(x) which is

closest to (xp, yp), perpendicular to p(x). This is done by minimizing the squared distance

Fig 1. Overview of workflow pipeline using ColiCoords. Input data is either image data or sparse data (localizations). Input images need to be segmented to

identify cell location and orientation. Third party options for image segmentation include Ilastik [63], CellProfiler [62, 70] or Keras [65]/Tensorflow [64].

SMLM data have to be reconstructed by external software such as DAOSTORM [66, 67], ThunderSTORM [68], QuickPALM [69] or others prior to use.

ColiCoords can then be used to transform the Cartesian coordinates of the input data to cellular coordinates. The transformed data can be used to generate

output graphs, such as kymographs, histograms of the cell’s dimensions, axial distributions or to align cells.

https://doi.org/10.1371/journal.pone.0217524.g001
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between both points:

r2 ¼ ðxc � xpÞ
2
þ ðpðxcÞ � ypÞ

2
ð1Þ

@r2

@xc
¼ 0 ð2Þ

Solving Eq 2 gives a cubic equation which is solved analytically to ensure fast transforma-

tion of many data points. To account for points B at the poles of the cells the coordinate xc is

restricted to the domain [xl, xr]. The cellular coordinates (lc, rc, ϕ) can then be calculated from

xc and p(x). The longitudinal coordinate lc is given by the arc length along p(x) from xl to xc:

lc ¼
Z xc

xl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
dpðxÞ
dx

� �2

s

dx ð3Þ

This expression also gives the full length of the cell when xc is substituted by xr. The radial

coordinate rc is simply the euclidean distance between (xc, p(xc)) and (xp, yp):

rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxc � xpÞ
2
þ ðpðxcÞ � ypÞ

2
q

ð4Þ

The third coordinate is the angle ϕ (in degrees) and it uniquely defines points A along the

body of the cell by distinguishing between the top and bottom of the cell, as well as defining

the position of points B at the poles. The value of ϕ is 0 at the top of the cell and runs from 0 to

180 along the right pole, where ϕ is defined as the angle between the line perpendicular to p(x)

at xr and the line from (xc, p(xc)) to (xp, yp). For points below the midline of the cell, the value

of ϕ is 180, which then runs from 180 back to 0 along the left pole.

Note that the top area of the cell, as it is displayed in Panel (A) of Fig 2, is given by yp<
p(xp), since the origin of the Cartesian coordinates is at the top left, where the postive y-axis is

running down. By this definition, the coordinate of the midpoint of the top-left pixel is (0.5,

0.5), in line with the coordinate definitions in the image analysis software ImageJ [71, 72].

Fig 2. General description of the in-cell coordinate system. (A) Brightfield image of an E. coli cell with coordinate

system overlayed. Every point with coordinates xp, yp can be transformed to coordinates lc, rc, ϕ. (B) Images showing

the values of xc as well as cellular coordinates values lc, rc, ϕ.

https://doi.org/10.1371/journal.pone.0217524.g002
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2.2 Preprocessing and optimization

To analyse fluorescence microscopy data with ColiCoords some preprocessing of the input

data is required. Notably, ColiCoords is not designed to segment or detect cells in the raw

microscopy images. Binary (labelled) input images are required for ColiCoords processing to

identify the location of cells in the images. However, these binaries are only needed to localize

cells and initialize the coordinate system, and not to form the final optimized coordinate sys-

tem, and so consequently a high accuracy of segmentation is not required. Binary or seg-

mented images can be derived from brightfield, differential interference contrast (DIC), phase

contrast or fluorescence images by established tools such as CellProfiler [62], Ilastik [63], Oufti

[55] or Convolutional Neural Networks (e.g. implemented by TensorFlow [64] or Keras [65]).

An implementation of the U-Net segmentation architecture [73] is included in ColiCoords

together with examples on how to use it.

Fluorescence images should be (optionally) background or illumination corrected and dif-

ferent channels such as brightfield or DIC should be aligned if they are acquired with different

optics. ColiCoords allows the processing of any kind of image data as well as sparse data, such

as single-molecule tracking and single-molecule localization microscopy (SMLM) data. Based

on the provided binary images, single cells are automatically cut out from all image data, the

positions of the localizations are selected and transferred to the coordinates of the cropped

image. The orientation of the cell is calculated using the binary image by calculating the image

moments [74]. All data elements are then rotated to orient the cells horizontally. The result of

this process is a collection of single-cell Python-objects where all data are organized on a cell-

by-cell basis, and every cell has its own coordinate system which can be used to perform calcu-

lations, analysis or visualizations on the data element of choice. These sets of cells can then be

indexed and selected based on user-defined criteria (shape, size, fluorescent signal etc.) and

further analysed or inspected through interactive plots within the Jupyter Notebook

environment.

After initialization of the cell objects, the coordinate system needs to be refined to allow it

to more accurately describe the cell’s shape. ColiCoords implements the optimization of the

coordinate system based on different data sources by providing several objective functions

which, when minimized, give the best matching coordinate system for the respective data

source. Any image-type data (e.g. brightfield) can be used provided there is an anisotropic sig-

nal along the length of the cell, as well as localization (SMLM) data provided the localizations

describe the outline of the cell.

Fig 3 shows the iterative optimization process. In Panel (A) the ground truth binary image

(derived from measurement) is shown together with the cell’s coordinate system. The coordi-

nate system is described by a total of 6 parameters, 3 coefficients a0, a1, a2 which define the sec-

ond degree polynomial p(x), the left and right endpoints xl and xr, and the cell’s radius r. In the

figure, the polynomial p(x) is shown together with the isodistance line from p(x) with distance

r. As can be seen from the figure, the initial coordinate system does not accurately describe the

cell’s shape. To refine the coordinate system, first a radial distance image is calculated (Panel

(B)). This image is then thresholded with the initial guess value of r, which gives a new binary

image (Panel (C), black). Comparison of this image with the ground truth binary image gives

the χ2 value, which is minimized to optimize the fit of the coordinate system. The fitting in

ColiCoords is done via the package Symfit [75], which provides an API to the minimizers

implemented by scipy.minimize [57].

Other microscopy images can be used to optimize the coordinate system, where the only

constraint is that the signal needs to be isotropic along the length of the cell. This is shown for

binary, brightfield and fluorescence images in Fig 4. The figure shows the three different
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Fig 3. Optimization of the cell’s internal coordinate system. (A) Ground-truth binary image with cell midline and

outline calculated from initial guess parameters. (B) Radial distance image calculated from initial guess coordinates.

(C) Calculated binary image (black) obtained by thresholding the distance image superimposed on the ground truth

image (grey).

https://doi.org/10.1371/journal.pone.0217524.g003

Fig 4. Iterative optimization of the coordinate system. Optimization based on binary, brightfield and fluorescence

images are shown.

https://doi.org/10.1371/journal.pone.0217524.g004
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channels measured for a single cell. The binary is derived from the brightfield and is used for

initial guesses of the coordinate system. This initial guess coordinate system is shown in red in

the left column. This coordinate system is used to calculate a synthetic image, averaged along

the angular coordinate (middle). A comparison between this image and the measurement

gives a measure for how well the current parameters describe the shape of the cell. The optimal

parameters can be found via iterative optimization (right). For brightfield- or fluorescence

data-based optimization the radius r of the cell is determined in a second step by determining

the half-maximum point of pixel intensity.

Finally, ColiCoords can optimize the coordinate system based on SMLM data of a mem-

brane marker. This type of data can be obtained through various super-resolution techniques

such as Point Accumulation for Imaging in Nanoscale Topography (PAINT) [27, 76–78], Sto-

chastic Optical Reconstruction Microscopy (STORM) [79, 80] or PhotoActivated Localization

Microscopy (PALM) [81, 82] imaging.

The optimization process and a possible application thereof is illustrated in Fig 5. Panel (A)

shows a STORM super-resolution reconstruction of the membrane protein marker LacY-

eYFP. In the top panel, the coordinate system based on initial guesses (derived from binary

image; grey) is shown. The bottom panel shows the result upon optimization based on the

STORM-localizations data. Here, the radial distance rc for all localizations is calculated and by

comparison to the value for r the χ2 (squared differences) is calculated. Minimization of the χ2

gives the parameters for the coordinate system that best describes the bacterial membrane.

Interestingly, the localizations along the membrane show a periodic fine structure. To further

characterize this, the position along the perimeter of the cell was plotted in panel (B). The

zero-point position is defined as the beginning of the ‘top’ part of the membrane (lc = 0, ϕ = 0,

rc = r, panel (A)) and the positive directions runs clockwise along the cell outline.

To extract the size of the periodic structures observed, at first a spatial auto-correlation [83]

function was calculated and its low-frequency components were subtracted by means of a

Fig 5. Iterative optimization of the coordinate system based on STORM super-resolution data of the membrane

marker LacY-eYFP. (A) Top: STORM reconstruction on top of the E. coli binary image (grey) with initial guesses

coordinate system in red. Bottom: Coordinate system after optimization based on STORM localizations. (B) STORM

reconstruction along the perimeter of the cell showing localizations as a function of distance along the membrane. (C)

Spatial autocorrelation function of (B). (D) Fourier transform of (C) showing the largest amplitude at a periodicity of

56 nm.

https://doi.org/10.1371/journal.pone.0217524.g005
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sliding window, to reveal clear oscillations (panel (C)). By Fourier transforming this signal

(panel (D)) we found a periodicity of the signal of 56 nm, which we attribute to an artefact

resulting from the YFP fusion, as previously reported for MreB-YFP constructs [84].

In conclusion, optimization based on a SMLM super-resolution membrane marker is

expected to provide the most accurate approach for creating a coordinate system within the

cell (vide infra, section (D)). This allows for aligning and combination of multiplexed localiza-

tion data from many cells with high accuracy.

2.3 Batch processing

To demonstrate the ability of ColiCoords to analyse a dataset consisting of many cells, we

applied a typical analysis procedure to two sets of fluorescence microscopy images. The first

set of E. coli cells were incubated with the reactive dye Cy3B-NHS to label the outer membrane,

while the second set of cells expressed eGFP in the cytosol.

For each condition, a subset of 100 images were manually annotated through the use of a

custom GUI element. These annotated binary images were then combined and used to train a

convolutional neural network. An implementation of the U-Net architecture [73] neural net-

work was used, based on the Keras [65] API using Tensorflow [64] as backend.

The brightfield images were first scaled down to 256x256 to preserve graphics card

memory. A custom implementation of Keras’ Sequence was used for preprocessing

and augmentation. All input images were normalized using tanh-estimators [85] and aug-

mented 8-fold through permutations of horizontal mirroring, vertical mirroring and trans-

posing the images. This augmented data was randomly split into validation data and

training data.

After training the neural network, the network was applied to the whole set of images to

generate binary images. The images were then scaled back to 512x512 pixels. Next, binary

shapes were filtered from the segmentation mask by their shape and size. The resulting binary

images were used as input for ColiCoords, together with the corresponding brightfield and

fluorescence images. The cell objects were filtered based on the results of optimizations by

binary images and brightfield images as well as a measurement of the cell’s radius from the

brightfield image. This yielded a total of 2341 and 1691 cells for the Cy3B and eGFP datasets,

respectively.

The analysis output is shown in Fig 6. In panel A, an individual cell for each condition are

shown. Their radial distribution profile is shown in panel (B) (blue line), together with the

individual datapoints from each pixel as red points. In panel (C), all cells from each dataset

were aligned by transforming all pixel coordinates in the fluorescence images from each cell to

cellular coordinates. These cellular coordinates are then transformed back onto a model cell

with user-specified dimensions. The resulting point cloud is then used to generate an aligned

fluorescence image by convolution with a 2D gaussian. The final image is displayed with spline

interpolation. In panel (D), the average radial distribution for all cells is shown. The curves are

individually normalized in the x-direction by setting the brightfield-measured radius to 1

whereas the y-direction is normalized by the maximum of each curve. The shaded region

(standard deviation) therefore only reports on variations in the shape of the radial distribution

profile.

2.4 Synthetic benchmarks

In order to evaluate ColiCoords’ performance a synthetic dataset was generated and subse-

quently analyzed. By comparing the results for different conditions and optimization methods

the accuracy can be benchmarked.
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First, a set of 10000 synthetic cells were generated using ColiCoords’ synthetic_data
module. The geometric parameters describing these synthetic cells were chosen based on a set

of measured E. coli cells. These synthetic cells have a binary image data element by default. A

brightfield data element was added based on normalized brightfield radial distributions mea-

sured from E. coli. The ratio between the background intensity (no cells) of the brightfield and

the maximum of the scattered light from the bacterial membrane was measured and kept con-

stant to replicate realistic signal-to-noise ratios. The background light was set to one and then

multiplied by the chosen photon count number (500, 1000 and 10000), after which the result-

ing values where drawn from a Poisson distribution to simulate shot noise. Finally, normally

distributed noise was added with a standard deviation of 20 photon counts.

To each cell two homogeneously distributed membrane-localized STORM data elements

were added. The first data element describes localizations at the inner membrane. The mean

radial distance of the localizations was set according to where the inner membrane should be

with respect to the radius of the cell measured from the brightfield image based on measure-

ments with the construct LacY-eYFP. The standard deviation from the mean radius was set to

0.25 pixels (20 nm). A second STORM data element was added 100 nm further out with the

same standard deviation.

From this set of synthetic cells, images were reconstructed. An average of 10 ± 3 cells were

taken from the set and randomly rotated and placed in each image of 512x512 pixels (40 μm x

40 μm), ensuring at least 5 pixels distance between the cells’ binary images. The coordinates of

the cell’s STORM data element were combined into one big STORM localizations table.

These processes yielded 1000 ground-truth binary images together with 3 sets of 1000

brightfield images with different photon numbers (500, 1000, 10000 per pixel) and therefore

different signal-to-noise ratios (Example images in Fig 7A). The whole ColiCoords’ data analy-

sis pipeline was performed on this dataset to benchmark its performance.

First, the brightfield images were segmented. For all 3 signal-to-noise conditions, the first

400 images were used to train the neural network. After training, the network was applied to

the whole set of 1000 images to generate binary images.

Fig 6. Batch processing of several thousand cell objects. Two datasets were analyzed, one where cells are labelled on

the outer membrane with Cy3B-NHS and one with cell expressing eGFP in the cytosol. (A) Fluorescence images of

single E. coli cells, scale bar 750 nm. (B) Radial distribution profiles for the cells in (A). Individual datapoints from

every pixel in the image are shown as red points, together with the resulting radial distribution (blue line). (C) Aligned

and averaged fluorescence images for n = 2341 and n = 1691 cells, respectively. (D) Average radial distribution profiles.

The standard deviation is shown as a shaded region.

https://doi.org/10.1371/journal.pone.0217524.g006
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Next, the binary images were filtered. Bordering cells were removed and the remaining

binary objects were selected based on their size and ellipticity where the selection criteria were

obtained from the ground-truth binary images. The filtered and labelled binary images were

then used by ColiCoords together with the brightfield and STORM data to generate a set of

‘measured’ cell objects.

The ‘measured’ cell objects obtained were correlated to the original ground-truth cell

objects by first performing a cluster analysis on the input STORM table [86]. The ground-

truth cells were then identified by encoding the combined STORM intensity and comparing to

the ground-truth intensity of the STORM clusters. The corresponding measured cell was then

found by comparing the centre-of-mass positions of the STORM clusters and the filtered

binary images used as input. This yielded two sets of cells, one with ground-truth cells and one

with corresponding ‘measured’ cells for comparison.

Fig 7. Benchmarking of ColiCoords software with a synthetic dataset. (A) Examples of generated input data brightfield images for different photon counts (500,

1000 and 10000 average per pixel) and example of one processed single cell. Different data elements (Binary, Brightfield, STORM) are shown together with the

outline of the coordinate system (red/white line) where the coordinate system is optimized based on that data element. (B) Evaluation of the coordinate system of

n = 6569, 7127, 7245 cells out of 7245. Left: relative radial distance of all inner (cyan) and outer (magenta) membrane STORM localizations. The radial position is

normalized to the ground-truth inner membrane position. The ground-truth radial distance (light colours, filled histogram) is compared with radial distances

calculated with the coordinate system as calculated for the different data elements (binary, brightfield, STORM) for different brightfield image photon counts (dark

colours, line only). The absolute mean deviation (D) and the root mean squared deviation (D2) are shown in the graph. Right: Relative minimization objective

function χ2. The χ2 is calculated for the obtained coordinate system for each cell for the STORM data element for each condition. The obtained value is divided by

the ground-truth χ2 value, therefore a value of 1 indicates a perfectly fitted coordinate system (red line).

https://doi.org/10.1371/journal.pone.0217524.g007
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Cells which had too few STORM localizations compared to their ground-truth counterparts

were discarded due to them being too poorly segmented. Several cells had too many STORM

localizations due to localizations from neighbouring cells. These additional localizations were

also removed. This yielded a total of 6569, 7129 and 7245 cells out of maximum 7245 cells for

brightfield images with 500, 1000 and 10000 photons, respectively. This number is lower for

input images with lower signal-to-noise because some cells are segmented poorly by the neural

network.

Finally, the coordinate system of the cells was optimized using different approaches to

compare their accuracy. The cells in each condition were initialized with guesses derived from

segmented binary images and subsequently optimized based on the data elements binary,

brightfield and storm (inner membrane). This yielded a total of 9 sets of cells which are sum-

marized in Fig 7B. In the left column of each condition, the relative radial distances of all

STORM localizations in the dataset are plotted as calculated by its coordinate system. The

radial distances were normalized to the ground truth inner membrane distance to eliminate

cell-to-cell radius variations. The ground truth radial distances of the inner (cyan) and outer

(magenta) are shown in light colours and filled histogram. The calculated radial distances are

shown on top with dark colours where the outer line of the histogram is shown only.

From these graphs the effect of the accuracy of the coordinate system can be shown on the

resulting radial distribution graph. As can be seen, in the condition with the lowest number of

photons (500) and a coordinate system optimized on the binary data element, the resulting

radial distribution histogram is significantly wider than the ground-truth radial distribution.

Compared to binary images derived from higher signal-to-noise images, the result more accu-

rately describes the underlying ground-truth. This is further reflected by comparing the

obtained χ2 values from the optimization process. In the histogram on the right (second col-

umn) the relative χ2 of each cell derived from its optimized coordinate system is plotted. The

values are obtained by calculating the χ2 value for STORM optimization (mean squared differ-

ence in distance between coordinate system outline and STORM localizations) and dividing

this value by the ground-truth χ2 value to get a relative χ2. This value is an indication for the

goodness of the fit, where a value of one indicates a perfect fit (red line in histograms).

As can be seen in the histogram, for 500 photons and optimization based on the binary

image (Panel (B), top left), the median χ2 value of optimization is roughly 10-fold higher com-

pared to the ground-truth values. The inset (log scale x-axis and logarithmically increasing bin

size) shows a long tail in the distribution to higher relative χ2 values up to 500.

When comparing the binary optimization result for 1000 and 10000 photons, it can be seen

that the radial distribution histograms become narrower and more accurately match the

ground truth radial distribution. The distribution of relative χ2 values also reflect this with

median values of 5.8 an 3.8, respectively.

Moving one row down, the results are plotted for optimization based on the brightfield

image. The initial guesses for optimization derived from the binary images and therefore the

quality of the segmentation influences the final result. As can be seen from the radial distribu-

tion histograms, the coordinate system obtained more accurately describes the cell compared

to binary optimization. For 10000 photons the radial distribution graph very closely matches

the ground truth. In the relative χ2 distributions a second population can be seen which is

mostly present for lower photon numbers. This is a consequence of poor initial guesses and

the optimization therefore returns a different local minimum. The median relative χ2 values

are 4.1, 2.6 and 1.9, respectively.

The third row shows the result from optimization based on the inner membrane STORM

localization dataset. Since the STORM localizations are identical in all cells and are indepen-

dent of the brightfield image, any difference in the optimization result is due to the initial
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guesses. As expected, the obtained radial distribution histograms almost perfectly overlap with

the ground truth histograms. The obtained median relative χ2 values are all 0.99, however

some small outliers are found, where the population sizes of values >50 are 2, 3 and 9

respectively.

In Fig 7 for 10000 photons and brightfield optimization it can be seen that the ground-truth

result is matched closely but not completely. This is unexpected since the cells were generated

from a perfect second-degree polynomial shape and therefore it was expected that the optimi-

zation result would more accurately describe the cell’s shape. The χ2 value of the obtained

result was lower compared to the ground-truth, thus the problem is not that the algorithm

returned a local minimum instead of a global minimum. Therefore, switching to a global opti-

mization algorithm such as differential evolution [87] will not yield the desired improved

result.

Instead, it was found that in the optimizer’s implementation a choice of speed over accuracy

is the origin of the discrepancy. Specifically, in the bootstrapping process to calculate a simu-

lated brightfield image to compare with the measured image, the radial distribution of the

brightfield image is calculated by normal binning (histogram) compared to convolution with a

Gaussian kernel. This choice was made to keep the calculation times manageable, and optimiz-

ing of this procedure, possibly through a two step (course and fine) optimization process is

expected to yield improved results.

The STORM optimization results (lower row, Fig 7) do closely match the ground-truth

result. Any deviation originates from a small number of cells which do not converge to the cor-

rect solution. Since this population is larger for lower photon brightfield images, which has a

less accurate segmentation result, this is be attributed to poor initial guesses for the coordinate

system.

Finally, using an optimizer that is restricted by bounds on the optimization parameters is

likely to reduce the subpopulations in both brightfield and STORM optimization. These fea-

tures and the issues mentioned above will be addressed in a future performance update of

ColiCoords.

3 Conclusions

ColiCoords is an open-source software package to analyse fluorescence microscopy data of

rod-shaped cells. It allows for the transformation of Cartesian coordinates from any data

source to cellular coordinates. This transformation can then be used to obtain distributions of

fluorescence along the cell long or short axes or its perimeter and align the whole cell to allow

for the combination of data from many cells.

The open-source nature and Jupyter-notebook based workflow together with an open and

compact file format promotes open and reproducible analysis of microscopy data. As illus-

trated in this paper, ColiCoords facilitates the publication in the form of a ‘reproducible article’

[88], as recently featured in eLife, where data and code to generate the figures are bundled

together with the publication. The code and data to generate the figures in this article is avail-

able online (see Methods).

ColiCoords’ code is well documented and the main features are illustrated by example note-

books, which can be tested live on Binder. The software itself can be installed directly from

both the Anaconda and PyPi package managers.

Analysis of synthetic data has shown that we can determine the cellular coordinates of

SMLM super-resolution datapoints based on only the brightfield image of the cell with high

accuracy (5%). If the coordinate system is derived from super-resolution measurements of a

membrane marker, the accuracy is further increased (1%).
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Although the current state of ColiCoords is a mature project, future updates are planned to

be released, either by us or in collaboration with the community. Three major updates are

planned; first a performance update to increase speed and accuracy of the optimization pro-

cess, second a metadata update allowing the storage of image-associated metadata, and finally

an update to allow the organization of cell objects into a hierarchical structure to process line-

age and temporal information.

4 Methods

4.1 Cy3B-NHS staining

E. coli MG1655 cells were grown overnight in LB medium and subsequently diluted 1000

times in EZ rich medium (Teknova) with 0.2% glucose. The cells were grown until the culture

reached an OD600 value of 0.3 after which the cells were centrifuged at 3000 rcf for 5 minutes

and resuspended in PBS buffer. The amino-reactive dye Cy3B-NHS (GE Healthcare) was

added to a final concentration of 1 mM and incubated while protected from light at room tem-

perature for 1 hour [89]. Next, the cells were centrifuged at 3000 rcf for 10 minutes and the cell

pellet was resuspended in PBS.

4.2 eGFP staining

E. coli BL21(DE3) cells were grown overnight in LB medium and subsequently diluted 1000

times in EZ rich medium (Teknova) with 0.2% glucose. The growth media was supple-

mented with the appropriate antibiotics. When the cell culture reached an OD600 of 0.3,

eGFP expression was induced with IPTG at a final concentration of 200 μM for 30 minutes

at 37 ˚C.

For imaging, 3 μL of the bacterial culture was transferred to a microscope coverslip and

covered by an agarose pad [90, 91].

Imaging was done on an Olympus IX83 inverted microscope with an Olympus UAPON

100x NA 1.49 TIRF oil immersion objective. The excitation light (514 nm, Coherent) was

coupled into the objective via the ET—442/514/561 Laser Triple band set (69904, Chroma)

and the fluorescence was collected on a electron multiplying charge-coupled CCD camera

(512x512 pixel, C9100-13, Hamamatsu). The focal position was held constant by the Olympus

ZDC2 and images on multiple positions were collected automatically using Olympus’ CellSens

software.

4.3 Super-resolution imaging

LacY-eYFP expressing E. coli C41 cells were grown overnight in LB medium with appropriate

antibiotics and subsequently diluted 1000 times in EZ rich medium (Teknova) with 0.4% glyc-

erol. When the cell culture reached an OD600 of 0.3, Lacy-eYFP expression was induced with

0.01%(v) L-arabinose for 30 minutes at 37 ˚C. The cells were centrifuged at 3000 rcf for 5 min-

utes and resuspended in EZ rich medium with 0.2% glucose. 3 μL of the bacterial culture was

transferred onto a microscope coverslide and covered by an agarose gel pad.

Images were captured with an exposure time of 50 ms using the open source software

μManager [92, 93].

To obtain the final STORM reconstruction, 2000 frames were collected and processed with

the ImageJ plugin ThunderSTORM [68].

All data and code used to generate the figures in this article can be found at Zenodo (DOI:

10.5281/zenodo.2637790) and GitHub, respectively.
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ome topology and function by automated multidimensional fluorescence microscopy. Nature Biotech-

nology. 2006; 24(10):1270–1278. https://doi.org/10.1038/nbt1250 PMID: 17013374

53. Cass JA, Stylianidou S, Kuwada NJ, Traxler B, Wiggins PA. Probing bacterial cell biology using image

cytometry. Molecular Microbiology. 2017; 103(5):818–828. https://doi.org/10.1111/mmi.13591 PMID:

27935200

54. Stylianidou S, Brennan C, Nissen SB, Kuwada NJ, Wiggins PA. SuperSegger: robust image segmenta-

tion, analysis and lineage tracking of bacterial cells. Molecular Microbiology. 2016; 102(4):690–700.

https://doi.org/10.1111/mmi.13486 PMID: 27569113

55. Paintdakhi A, Parry B, Campos M, Irnov I, Elf J, Surovtsev I, et al. Oufti: an integrated software package

for high-accuracy, high-throughput quantitative microscopy analysis: Oufti: image analysis software.

Molecular Microbiology. 2016; 99(4):767–777.

56. Ducret A, Quardokus EM, Brun YV. MicrobeJ, a tool for high throughput bacterial cell detection and

quantitative analysis. Nature Microbiology. 2016; 1(7):16077. https://doi.org/10.1038/nmicrobiol.2016.

77 PMID: 27572972

57. Jones E, Oliphant T, Peterson P, et al. SciPy: Open source scientific tools for Python; 2001–. Available

from: http://www.scipy.org/.

58. Shen H. Interactive notebooks: Sharing the code. Nature News. 2014; 515(7525):151. https://doi.org/

10.1038/515151a
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