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Abstract

We propose a robust decision tree induction method that mitigates the problems
of instability and poor generalization on unseen data. In the spirit of model
imprecision and robust statistics, we generalize decision trees by replacing internal
nodes with two types of ensemble modules that pool together a set of decisions into
a soft decision: (1) option modules consisting of all reasonable variable choices at
each step of the induction process, (2) robust split modules including all elements
of a neighbourhood of an optimal split-point as reasonable alternative split-points.
We call the resulting set of trees cultivated random forest as it corresponds to an
ensemble of trees which is centered around a single tree structure, alleviating the loss
of interpretability of traditional ensemble methods. The explicit modelling of non-
probabilistic uncertainty about the tree structure also provides an estimate of the
reliability of predictions, allowing to abstain from predictions when the uncertainty
is too high. On a variety of benchmark datasets, we show that our method is often
competitive with random forests, while being structurally substantially simpler and
easier to interpret.

1 Introduction

Decision trees are one of the most common prediction methods. Their popularity mostly
stems from their interpretability and methodological simplicity. Decision tree successively
partition the covariate space into smaller subspaces that are purer with respect to the
target values H. Most practical algorithms, such as CART [6] and C45 [27], use a greedy
procedure that chooses the covariate and split-point with the largest gain in purity at each
step. Decision trees are adaptive to arbitrary underlying functions and can perform well
in several domains. A major downside of decision trees is their instability with respect to
small perturbations of the training data, see already [4]. Slight changes in the training set
can lead to entirely different tree structures, raising suspicion about the validity of their
implied interpretations as well as their generalizibility to unseen data.
The instability can be traced back to the all-in decision at each node [8]. Adding or
removing observations might lead to the choice of a different splitting point or even
different variable to split on. Through the recursive structure, all decisions depend on the
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previous ones. Thus small changes in the top layer of the tree can lead to dramatically
different subtrees. Decisions can only partially be reversed post-hoc through pruning away
dubious subtrees, making individual choices very influential.
Ensemble methods such as bagging [4], random forests [5] and boosting [16] solve the
instability and generalizibility issues at the cost of giving up the interpretational simplicity:
Instead of a single tree model, a sequence of trees is generated, each built on alterations
of the original data. The final prediction is then the a combination of these individually
weak decision trees.
In this article, we take a conceptually different approach. Instead of trying to find an
optimal single tree or generating an ensemble of multiple decision trees, we model the
uncertainty about the tree structure directly. To this end we introduce ensemble modules
that pool a set of decisions into a soft decision. Ensemble modules capture the uncertainty
about both the variable to use and the choice of an exact splitting position. The resulting
model, that we call cultivated random forest (CRF), corresponds to an ensemble of trees,
carrying over the desired stability and generalizability of ensemble methods. However,
through a notion of neighbourhood interpretability is preserved. In many domains such
as the clinical, the ability to inspect what a prediction is based upon is crucial in order to
reveal spurious or nonsensical relationships [9], potential gender and racial biases [10] and
give practitioners the option to intervene with the decision system in a guided way. This is
also important to build acceptance from practioners. Additionally, through the framework
of model imprecision, CRF is able to give an estimate of the reliability of predictions,
that can be used to abstain from a predictions, if the uncertainty is too high. This is
especially important, when the decision system is integrated in a larger work-flow and
also alternative means of decision exist such as domain experts. With this, CRF offers a
good trade-off between high accuracy, interpretability and accountability.
In section 2 basic notations and principles of decision tree learning are recalled. In section
3 we introduce ensemble modules and the resulting CRF model. Benchmark results on
several binary classification datasets are shown in section 4, and section 5 concludes.

2 Decision tree learning

Decision Trees. Decision trees use a graph of decision rules to map a ?-dimensional
covariate vector x8 = (G8,1, ..., G8,?) to a decision about the target value H8. In the following
all covariates are assumed to be numeric and the target to be binary thus H ∈ {0, 1}. Trees
consist of a root node, a set of internal nodes and a set of leaf nodes. Starting from the
root node where the whole dataset X = {x8}#8=1 consisting of # covariate vectors is present,
subsets of observations are moved to its childnodes based on decision rules, recursively
partitioning X into smaller rectangles. Here only univariate binary decisions of the form
3 (x, C0, 9) = � (G 9 ≤ C0) are considered, thus each decision leads to exactly two childnodes.
For ease of notation 3 (x, C0, 9) will be in the following oversimplified as 3 (x) and assumed
that C0 and 9 are attached.
In this article, we also utilize the idea of fractional observerations [27, 29]: if a decision
can not be made with certainty, observations are split up into fractions and moved to
both childnodes. Each observation is attached a value F8,; ∈ [0, 1] that represents the
fraction of the 8’th observations that is present in the ;’th node. Once a leafnode is
reached, a decision is made based on its attached prediction value Ĥ for the target variable
H, typically either the majority class or class distribution. A leaf node can be written as a
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Figure 1: Option Tree vs. Ensemble module. Decisions are shown as rectangles, implied
current leaf nodes as diamonds. The numbers inside the diamonds reflect the target
distribution ?(H = 1|x). (a) Option Tree. Different subtrees follow from each option split
(b) Ensemble module, consisting of a set of decisions followed by pooling of the resulting
leafnodes with similar target distribution. The decision nodes inside the dashed rectangle
can be summarized as a single robust split module.

product of decision rules by L(x,DL) =
∏
3∈DL 3 (x), where DL = {31, ..., 3;} is the path

of ; decisions, that have to be fulfilled 1 to reach this node [17].

Tree induction. Given a training sample where we are given X and the labels H, the
goal is to build a decision tree that is able to classify unseen samples. Many different tree
inducers have been proposed, for an overview we refer to [30]. Usually, at each step during
training the decision that minimizes some measure of impurity in the implied childnodes
is chosen and applied to the data points, partitioning the training data. In this article,
the Gini impurity is used as in CART [6]. This recursive process is repeated until no split
reduces impurity further or a stopping criterion is reached.

Decision tree instability. Instability in decision tree learning is a well known problem
[20, 4]. At each node a single decision is required, while there can be considerable
uncertainty about the correct choice. This dilemma leads to a high degree of instability.
In this article, we focus on:

Variable uncertainty: At each node, a binary decision tree needs to decide on exactly one
covariate for further partitioning. If the implied purity of several covariates is similar, this
all-in approach neglects the uncertainty about our choice.

Splitting point uncertainty: Given the covariate to split on, a cut-point C0 needs to be
chosen. If the impurity surface is flat, a sharp decision is not justified. This uncertainty
translates to a lack of smoothness that is found in decision trees [20].

Other sources of uncertainty include paramter uncertainty, such as the correct maximum
tree depth, and the choice of the best subtree. This is typically addressed through pruning
techniques. Good overviews can be found in [23, 30].

Ensemble methods and option trees. Random forests address the aforementioned
stability issues with the bagging of randomized trees. In the standard version each tree is
build independently on a bootstrap sample of X using only a subset of covariates. The
predictions of this sequence of trees are combined through averaging or voting. Ensemble

1If the path to this leaf node goes to the left side at a node 9 we take 3 9 (x) into DL while we take
1 − 3 9 (x) if it goes to the right. More details can be found in the supplementary materials.
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methods work well in practice because they reduce several problems of single decision trees:
they introduce smoother decision boundaries, mitigate the variable selection uncertainty
and lead to better generalization performance.
Another approach to address the variable uncertainty is to use multiple decisions at each
node if the implied purity is similar. This was first introduced by Buntime [8] as option
trees. In Fig.1 (a), an option tree is shown. At each node several decisions are allowed.
The resulting subtrees are subsequently grown and evaluated separately and the final
prediction is an aggregate over all subtrees. The option tree approach was combined in
[15] with boosting into the alternating decision tree (ADT) model. ADTs were shown
to posses decent predictive performance and relatively small model sizes. An interesting
property is that option trees and ADT can be seen as structurally sparse representation
of an ensemble. As a part of the structure is shared by all subtrees, a whole ensemble of
trees can be described by a single tree structure [14].

3 Cultivated Random Forest

In this work, ensemble learning is viewed from the point of robust statistics and model
imprecision. Instead of a single model, we are looking at a set of models that correspond to
a set of different choices in the model construction process. Typically, in robust statistical
models, these are distributional assumptions or priors in the Bayesian setting. In the
context of decision trees, model imprecision was applied to the probability distributions
in the leafnodes to robustify entropy based splits [22, 2]. Here we instead use this
framework to express our uncertainty about the structure of the tree itself and capture
the uncertainty involved with the choices made during the tree induction process. To
this end, we generalize the decision tree model by replacing internal nodes with ensemble
modules M = {31, ..., 3ℎ} that consist of the set of ℎ decisions that are reasonable at a
given step of the induction process. To preserve the binary tree structure, the decisions
are then pooled and observations split up into fractions. Usually the left child node is
the True part of the decision rule. For ensemble modules we require the decisions to be
directed as in [32]. In binary classification we define the right childnode to have the higher
implied target probability ?(H = 1|G). For multinomial and other target distributions,
more sophisticated merging algorithms are required, as in [26][31]. For the case that all
decisions are weighted equally and we use the average as pooling function, the fraction
going to the left childnode is given by k(x,M) = |M|−1 ∑

3∈M 3 (x). If only a fraction of
an observation is present in this leaf, we simply take fractions of this fraction.
The whole process is shown in Fig. 1 (b). A set of decisions is considered inside the
ensemble module and then pooled into two child nodes. Note that the decision G2 > 3
is directed, such that the right childnode has the higher target probability ?(H = 1|G).
The name ensemble module stems from the insight that the fraction of an observation to
be present in a given leaf node can be written by replacing the ; binary decisions in the
path to a leafnode with ; ensemble modules ML = {M1, ...,M;}, and pooling after each
ensemble module, as

L(x,ML) =
∏
M∈ML

(
1

|M|
∑
3∈M

3 (x)
)
=

1

|�× |
∑

�L∈�×

©«
∏
3∈�L

3 (x)ª®¬
=

1

|�× |
∑

�L∈�×
L(x, �L)

(1)
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Figure 2: (a): Compact representation of a robust split module. (b,c) Example Classifica-
tion of (G1, G2) = (5, 4) assuming q = 1. (b) standard binary tree, (c) tree with robust split
module. Nodes are drawn as circles. Numbers and colouring represent F8,; , the fractions
of the example observation that reach each node.

with D× = {M1 × ... ×M;}. So in fact, by pooling the decisions at each ensemble module,
the fractional observations in each leafnode can be written as average over an ensemble of
trees that is spanned by the Cartesian product of the ensemble modules. The derivation
can be found in the supplementary materials. By that CRF is a structurally sparse
representation of an ensemble of size |D× |. The main difference to random forests is
that the trees in the ensemble are not grown independently, but instead are chosen as
all reasonable choices along the induction process. Individual trees are therefore not
constructed as weak learners that are decorrelated in order to improve the final classifiers
generalizibility. On the contrary, the trees share the largest part of the tree structure with
other trees in the ensemble but deviate on average just in a few decisions. We expect
that generalization performance will be lower in certain domains where the decorrelation
aspect of random forest is important to capture all underlying mechanisms present in
the data. But we argue that in many applications this aspect is overcompensated by the
simplification and resulting interpretability. We introduce two types of ensemble modules,
that will be defined formally in the next sections:

� Option modules that consist of all reasonable variable choices at the each respective
step.

� Robust split modules that given the best split-point with respect to impurity for
each covariate also consist of reasonable alternative thresholds.

Both module types of ensemble modules can be combined. This is shown in Fig.1 (b) by
replacing the single decision that is part of the option module G1 ≤ 4 with a robust split
module.

Robust split module. [7] show that an ensemble of decision trees using bagging without
replacement can be described as a neighborhood around the optimal split-point. Imagine
the simple example where we are given one numeric covariate G with associated labels
H. The underlying true function is H = � (G > C0), however G is observed with noise.
Depending on the degree of noise and the sample size, when using bootstrap samples
of the original data, the decisions will be distributed around the true split point C0. In
this simple example the ensemble can be summarized as %(C>), where % is a unknown
distribution function. Therefore, it should be possible to describe large parts of a bagged
tree ensemble through the neighbourhood of splits.
The splits found in our induction process are unlikely to be optimal, so the theoretical
results from [7], just discussed, can be only understood as a heuristic. As no prior
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knowledge about the split’s distribution is available we choose a non-parametric approach
and use the closest points in the covariate space to construct a neighbourhood T (C0)
around C0. Let (G(8) , F (8)) be the 8’th ordered covariate value and its fraction present in
the current node to split, then we define the robust split module as

T (C0) = {C− 9 = G(8− 9) ≤ . . . ≤ C−1 = G(8−1) ≤ C0 = G(8) ≤ C1 = G(8+1) ≤ . . . ≤ C< = G(8+<)}

with

9 = (arg max
9̃

8−1∑
@=8− 9̃

F (@) < :) + 1 ; < = (arg max
9̃

8+ 9̃∑
@=8+1

F (@) < :) + 1.

Intuitively, on both sides we take : ”full” observations into the set. This expresses our
assumption that we can not be too sure about the exact position of the split and should
also consider all slightly different splits as equally likely, mimicking the behaviour of
bagging. As split-points are constituted by observations, fractional observations directly
imply fractional split-points. Let q(C) denote the weight that can be interpreted as the
”representation strength” defined by the point mass of the data points in the current leaf
for a cut-point C, given by the recursive function

q(C) =




∑#
8=1 F (8) � (G(8) = C), if C ∉ {C− 9 , C<}

: −∑ 9−1
;=1 q(C−;), if C = C− 9 (2)

: −∑<−1
;=1 q(C;), if C = C< .

In (2) an exception is made for the boarder cases C− 9 and C<. As those often can
not be included fully they are simply asssigned the remaining of : on this side. This
neighbourhood is constructed such that

∑
C∈T (C0) q(C) ≤ 2: + q(C0) in each robust split

module. For an observation reaching a robust split module ;, the fraction that is moved
to the left side is given by the gating function

k(x,T (C0)) = 1∑
C∈T (C0) q(C)

∑
C∈T (C0)

q(C)� (G ≤ C).

The fraction present in the left childnode is then F (8),;4 5 C = F (8)k(G(8) ,T (C0)) and the
fraction in the right childnode F (8),A86ℎC = F (8) (1 − k(G(8) ,T (C0))). This directly implies
that for each observation the sum of the fraction over all (current) leaf nodes equals 1
at each moment in training and prediction. Cases close to the decision boundary will be
present in both childnodes for further training. This is shown in Fig.2 for an example
data point. Instead of being present in only one node, the data point is present in three
current leafnodes. This reflects our uncertainty as the observation is close to the decision
boundaries and slightly different model choices would have let to different decision.
During induction, the exact position of C0 will therefore not influence the tree structure
substantially, leading to more stable structures, as we withdraw from making a definite
decision at this point. Importantly, as T is centered around C0, the interpretation of
the robust split module is similar to a common binary decision. When looking at a
node instead of the sharp interpretation ’if G 9 ≤ C0’ we can interpret each robust split
module as ’if G 9 is less than around C0’ (G 9 / C0). This offers a nice trade-off between
smoothness and interpretability. The parameter : controls the degree of smoothness that
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Figure 3: Decision Surface for the simulated dataset of (a) The first split using CRF,
(b) full random forest model (c) CART tree with depth 2. Details can be found in the
supplementary materials.

we enforce on the model. In the extreme case of : = # the gating function k equals the
univariate empirical cumulative distribution function. Our choice is motivated by the
results in [7], who show that split-points using bagging without replacement lie within
a #1/3 neighborhood around the optimal C0. Due to the suboptimality of found splits
in practice, we found a slightly bigger neighbourhood of : = (∑#

8=1 F (8))1/2 to work well.
Note that : is not optimized in the tree induction.

Option module. To address the variable uncertainty, we introduce option modules,
similar to option trees and ADT. Let ℎ 9 denote the weighted impurity using covariate 9 for
splitting and ℎ<8= the minimal impurity value found in the current step. Then, for a given
threshold [; , for the next split all covariates G 9 with { 9 |ℎ 9 ≤ ℎ<8= + [;} are taken into the
set as reasonable options. As the decisions made in the top layers of the tree are the most
influential on the tree structure, the parameter [; is set to diminish with increasing depth,
here by [; = [0/B;3, where B; is the tree depth in node ; and [0 is a pre-specified parameter.
Thus in the top layers more covariates are taken into option modules, while in the bottom
layers extra covariates are only added if the decision is very tight.2 Option modules can
easily be combined with robust split module using robust split modules instead of single
splits for each covariate. ℎ 9 can then be set as average impurity of all elements in T (C0).
This approach shares similarity with the idea of inner ensembles, where bootstrap samples
are used to decide on the best next single split [1, 21]. q(T (C0)) is then normalized to
sum up to one, to give each covariate the same weight. The combination of the two types
of modules is shown in Fig.3 on simulated data, where the two classes are drawn from
2-dimensional mixture of normals. In this example, CRF approximates the behaviour of
random forest quite well with respect to the decision surface and the smoothness that is
introduced. The smoothness stems from the robust split modules. Also both covariates
are used in the first split, as the decision is tight. In contrast to multivariate split methods,
such as oblique trees [25], the decisions are not jointly optimized. This can be seen as a

2We also tested using Hoeffding bounds to select alternative covariates [12, 24].The Hoeffding bound
is inversely proportional to = and in our experiments too few covariates were considered in the top levels
of the tree and too many in the bottom levels. However a more theoretically motivated choice of [ that
expresses the trade-off between reflecting all choices and the reduced interepretability would still be
desirable.
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form of regularization, as the decisions are required to be individually predictive. The
decision surface for CART in Fig.3 (c) shows the lack of smoothness in standard decision
trees, making it impossible to capture the underlying relationship in this simulation.

Predictions. For a leafnode the attached prediction value is set as the mean of y weighted
by its fractions present in this node Ĥ 9 = (

∑#
8=1 F8,;)−1

∑#
8=1 F8,;H8. At prediction time, test

cases will have non-zero weights in several leafnodes. The output from our model for a
given observation 8 and the set of < leafnodes is the set Y̌ = {( Ĥ1, F8,1), ..., ( Ĥ<, F8,<)}.
For obtaining a real valued point estimate, we can simply use the weighted average over
the set Y̌ with ?(H |G8) =

∑<
9=1 F8, 9 Ĥ 9 . Note that the size of Y̌ is the number of leafnodes,

not the number of trees that are represented by our ensemble. For interpretation, this
allows to look at the leaf nodes with the highest fractions and have a symbolic description,
what the prediction is based on. It can also be informative to look at the spread of Y̌
as a measure for reliability of this prediction. A natural measure is the variance of the
fractional predictions. The reliability reflects the degree of conflict between the decisions
in the ensemble modules. If an observation is often close to the decision boundary, or
if decisions inside option modules are contradictory, the prediction is found unreliable.
Consider the example where half the fractions of an observations fall into leafs with
prediction value 0 and the other half into leafs with prediction value 1. Both the variance
and the final prediction for this observation will be 0.5. This prediction shows a high
degree of uncertainty in two layers: about the predicted value ?(H |G) = 0.5 and given
?(H |G) the stochastic uncertainty about the outcome. On the other hand, if an observation
always falls into leafs with predicted values of 0.5, we are quite certain that we should
predict 0.5 and the uncertainty concerns only the outcome. A nice property for set-valued
predictions is the option to abstain from a prediction if the uncertainty is too high [11].
This is important in practice, when a high cost is associated with a wrong prediction.
For example in clinical applications it might be better to remeasure covariates in case of
potential measurement error or consider a further test altogether if the model prediction
is unreliable for a given patient. Also expert knowledge should be taken into account for
uncertain predictions, if available.

4 Experiments

To test the predictive capabilities of our proposed method, we carried out 10-fold cross
validation on two sets of data sets:

Gene expression data. The goal is to predict a binary disease outcome, based on
the genetic expression profile. These data sets are characterised by an extreme ? >> =
situation with thousands of covariates and small sample sizes.

Binary classification benchmark datasets. The datasets are taken from the UCI
repository [13]. Data are coming from various domains, including small and medium sized
data sets with varying number of covariates, and varying degrees of target imbalance.

Evaluation settings. All datasets together with seeds (that were generated randomly
for the experiments) and a data description are available in the supplementary material
to enhance an easy reproducibility. As some of the datasets are imbalanced, we chose the
area under the ROC curve (AUC) as evaluation metric. We compare CRF against random
forest as the ensemble benchmark and to CART as the baseline for an interpretable model.
All methods were run with standard settings from the R-libraries randomForest and rpart
respectively [28]. We test 4 different versions of CRF:
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Dataset random forest CRF-full CRF-split CRF-option CRF-shallow CART
Colon [3] 0.850 0.887 0.874 0.808 0.887 0.859

Gene DLBC [18] 0.951 0.955 0.901 0.78 0.955 0.721
Expression Leukaemia [19] 1 1 1 1 1 0.838

Prostate [18] 0.955 0.968 0.938 0.847 0.968 0.851
Australian Credit 0.932 0.936 0.921 0.928 0.937 0.903

Benchmark Banknote 1.000 0.998 0.998 0.999 0.995 0.966
Data Blood Transfusion 0.685 0.750 0.731 0.691 0.745 0.729

Climate Model 0.930 0.940 0.920 0.909 0.936 0.771
Diabetes 0.828 0.831 0.814 0.800 0.830 0.797
EEG-Eye-State 0.985 0.935 0.940 0.934 0.794 0.724
Haberman 0.682 0.724 0.696 0.681 0.723 0.626
Indian Liver 0.752 0.749 0.724 0.709 0.749 0.667
Ionosphere 0.982 0.957 0.940 0.960 0.949 0.905
Magic 0.937 0.920 0.901 0.904 0.887 0.808
Parkinsons 0.980 0.950 0.949 0.932 0.953 0.890
QSAR Biodeg 0.933 0.923 0.900 0.878 0.906 0.838
Spambase 0.986 0.980 0.971 0.973 0.962 0.894
SPECTF 0.850 0.837 0.764 0.724 0.841 0.721
Steel Plates 0.992 1.000 1.000 1.000 0.987 1.000
Vertebral 0.995 0.958 0.956 0.966 0.947 0.927
Wisconsin Breast 0.992 0.992 0.987 0.991 0.992 0.948
Wilt 0.987 0.987 0.989 0.984 0.958 0.960

Table 1: Average AUC using 10-fold CV over 22 Datasets. Results are marked in bold
where versions of CRF performs comparably or better than random forest.

1. CRF-full with both types of ensemble modules with a max-depth of 14.

2. CRF-split using only neighborhood moduleswith a max-depth of 14.

3. CRF-option using only option modules with a max-depth of 14.

4. CRF-shallow with a max-depth of 6 leading to a maximum of 126 nodes/ensemble
modules and both types of ensemble modules.

Each version uses a minimum node size for splitting of 6, a data depenendet parameter
: =
√
=; , where =; is the sum of weights in node ; and W0 = 0.3. All algorithms could be

tuned, so we believe it to be a fair comparison to run them with standard settings, especially
as random forests are known to be quite robust with respect to the parameter choices.
More details about the different implementations can be found in the supplementary
materials.

Predictive performance. Table 1 shows the AUC of the competing methods using the
above setting. All versions of CRF outperform CART on all tested datasets. On 16 out
of the 22 tested Datasets CRF-full performs comparably or better than Random Forest,
if one is willing to trade off 0.01 in AUC. In 9 Datasets CRF-full shows slightly better
performance. Performance is especially good in small data sets, where the uncertainty
in the tree induction process is high. Noteworthy is the good performance on the gene
expression datasets. CRF is able to account for the extremely high uncertainty due
to the small samples and has s generalization performance on par with random forest,
whereas CART clearly struggles. Also on difficult and perhaps noisy data sets such
as Blood Transfusion and Haberman with overall low AUC values, CRF shows strong
performance. Here the decorrelated trees in random forests might become too weak, leading
to suboptimal ensemble performance. On 5 of the datasets CRF performs significantly
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Figure 4: Accuracy, given the option to abstain from a vote, with varying thresholds
the prediction spread f(?(H |x)). The dashed line shows the proportion that can be
reliably predicted and the full line the accuracy for the predicted cases. (a) Diabetes, (b)
Parkinsons.

worse than random forest. A likely explanation is that for these datasets the optimal
decision surface is truly multimodal, which CRF in its current state is unable to capture
well.

Influence of treedepth. CRF-shallow performs almost identical to CRF-full on most
datasets. However on some datasets performance drops significantly, implying that deeper
trees are necessary in some of the datasets. This result is also interesting, as it suggests
that over-fitting is not a huge problem in CRF. Note that no form of pruning is applied
on the deeper trees.

Robust split modules. Using only the robust split module deteriorates the AUC on
most datasets, but still outperforms CART on all tested datasets. On 9 datasets the
performance is similar to random forest. Note that CRF-split offers almost the same easy
interpretability as a standard decision tree.

Option modules. CRF-option still improves on standard CART in most datasets,
but the lack of smoothness provided by the robust split modules decreases performance
significantly. It is also notable that on some datasets the decrease is quite big, especially
the genetic datasets with small sample sizes. The uncertainty about the split-point is here
the highest and neglecting it results in worse generalization performance due to instability.
Also the setting of [ and choice of [0 might be suboptimal on these datasets.

Abstaining from predictions. Fig.4 shows the accuracy if the classifier is given the
option to abstain if the prediction spread f(?(H |x)) > C for different thresholds C. On
the Diatebes and Parkinsons data, abstaining from about 40% of the predictions gives
an substantial increase of 8% in accuracy. For the abstained predictions other means of
decisions (such as expert opinions) might be better suited, or data recollected in case of
possible meassurement error. Together with the interpretability aspect, this makes our
method especially well suited for medical and clinical applications.

To summarise, in this section we showed, that CRF can perform remarkably well on many
datasets despite restricting the ensemble to a neighborhood around a single tree.
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5 Conclusion

We introduced a new framework for the construction of tree ensembles: instead of growing
a sequence of trees, we construct a set of trees corresponding to reasonable choices in
the construction process. The resulting cultivated random forests (CRF) are structurally
simpler than regular random forests, which can be beneficial both for diagnosing their
validity as well as memory efficiency. The empirical results suggest that CRF is competitive
to random forests on many of the tested data sets. An further advantage is that CRF
gives an estimate of the reliability of each prediction that can be used to abstain from
predictions. This might also be interesting in further research, when building ensembles of
randomized CRF, where weak learners can abstain from predictions. We believe that the
framework of model imprecision in decision tree learning is well worth exploring further,
as it is flexible and the CRF can be generated ”on the fly”. Next steps include more
data adaptive ways to construct neighbourhoods, as well as exploring weighting schemes
when pooling covariates in option modules. Also suitable pruning methods should be
investigated, as it is likely to limit the complexity further and might lead to an increase in
accuracy. A shortcoming of our method, that we will adress in the future, is the implicit
assumption of uni-modal impurity surfaces in the covariates. While being beneficial for
interpretation this might harm predictitve performance for those data sets, where this
assumption does not hold.

6 Broader Impact

We believe that our framework of tree structured ensemble learning makes a step towards
much needed transparency in machine learning. As machine learning emerges in more and
more areas of daily life it affects large parts of society directly. Black-box models may be
used to predict insurance claims, calculate credibility scores for credit applicants or in
prosecution of potential criminals, with potentially negative consequences for individuals.
In our opinion the possibility to give a reasoning behind a prediction should be a minimal
requirement in these areas. The same is true in clinical applications, where statistical
models might decide on the optimal treatment and consequences of error may be fatal.
Here practitioners should need to have the possibility to have insight in the reasoning
behind a prediction, in order to challenge its validity. Also the ability to estimate its own
reliability becomes more and more important in order to build trust in the predictions
made by machine learning models. Here our approach is only a first step and more
sophisticated ways should be explored to estimate a model’s reliability.
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(a)
G1 ≤ 5

G2 ≤ 3 G2 ≤ 4

(b)
G1 ≤ {4, 5, 6}

G2 ≤ {2, 3, 4} G2 ≤ {3, 4, 5}

Figure 5: Example for the paths to leafnodes

Supplement A - Details of Cultivated Random Forest

A leaf node can be written as a product of decision rules by L(x,DL) =
∏
3∈DL 3 (x),

where DL = {31, ..., 3;} is the path of ; decisions, that have to be fulfilled. For the 4
leafnodes shown in Fig. 1 (a) the corresponding paths DL are:

1. {3 (x, 5, 1), 3 (x, 3, 2)}
2. {3 (x, 5, 1), 1 − 3 (x, 3, 2)}. Note 1 − 3 (x, 3, 2) corresponds to the decision � (G2 > 3).
3. {1 − 3 (x, 5, 1), 3 (x, 4, 2)}
4. {1 − 3 (x, 5, 1), 1 − 3 (x, 4, 2)}

If instead ensemble modules are used as shown in Fig. 1 (b) the corresponding pathsML
are:

1. {k(G,M1), k(x,M2)}
2. {k(G,M1), 1 − k(x,M2)}
3. {1 − k(G,M1), k(x,M3)}
4. {1 − k(G,M1), 1 − k(x,M3)}

with M1 = {3 (x, 4, 1), 3 (x, 5, 1), 3 (x, 6, 1)},M2 = {3 (x, 2, 2), 3 (x, 3, 2), 3 (x, 4, 2)} and
M3 = {3 (x, 3, 2), 3 (x, 4, 2), 3 (x, 5, 2)}. Then we can write the fraction present in a given
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leafnode as:

L(x,ML) =
∏
M∈ML

(
1

|M|
∑
3∈M

3 (x)
)

=
1∏

M∈DL |M|
©«

∑
31∈M1

31(x) ·
∑

32∈M2

32(x) · ... ·
∑
3;∈M;

3; (x)ª®¬
=

1

|�× |
∑

31∈M1,...,3;∈M;

31(x) · ... · 3; (x)

=
1

|�× |
∑
�∈�×

(∏
3∈�

3 (x)
)

=
1

|�× |
∑

�L∈�×
L(x, �L)

with D× = {M1 × ... ×M;}.

Supplement B - Simulation

The data used for the illustrative example in Figure 3 of the main paper was generated as
following: for 8 = 1, · · · , 300:

H8 ∼ B(0.5)

G8 |H8 = 1 ∼ N2
( ( −1−1 , ) ( 0.752 0

0 0.752

) )
G8 |H8 = 0 ∼ N2

(( 11 )
,
(
0.752 0
0 0.752

) )
The simulation is used to highlight the smoothness of the decision boundaries of different
classifiers, when the true underlying relationship requires smooth boundaries.

Supplement C - Benchmark Experiments

Data

The UCI data sets were selected under following criteria:

� Public availability.

� Binary classification.

� Mostly numeric or categorical features with low cardinality.

The last criteria has the following reasoning. One of the main improvements of CRF
compared to CART is the robust split module, that requires numerical attributes. Hence
categorical attributes are transformed to dummy variables, while random forests and
CART have different ways built in to handle categorical attributes with larger cardinality.
However the CRF framework can straightforwardly be extended to more naturally handling
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of categorical features (for example using the approach from CART), which will be one
of the next steps in further research. So to achieve a good comparison of the main
improvements of CRF we focus on datasets with mostly numeric covariates.
For the genetic datasets fully preprocessed datasets were chosen, so that no further
preprocessing needed to be applied.

Dataset Covariates N Class 1 Class 2
Australian 14 690 383 307
Banknote 4 1372 762 610
Blood Transfusion 4 748 570 178
Climate Model 20 540 46 494
Diabetes 8 768 500 268
EEG-Eye-State 14 14980 8257 6732
Haberman 3 306 225 81
Indian Liver 10 583 416 167
Ionosphere 34 351 126 225
Magic 10 19020 12332 6688
Parkinsons 22 195 48 147
QSAR Biodeg 42 1055 699 356
Spambase 57 4601 2788 1813
SPECTF 44 267 55 212
Steel Plates 33 1941 1268 673
Vertebral 6 620 420 200
Wilt 5 4839 4578 261
Wisconsin Breast Cancer 30 569 357 212

Table 2: Characteristics of the 18 binary classification benchmark data sets from the UCI.

Dataset Covariates N Class 1 Class 2
Colon 2000 62 40 22
DLBC 2647 77 19 58
Leukaemia 7128 72 47 25
Prostate 2135 102 50 52

Table 3: Characteristics of the 4 gene expression data sets.

Table 2 shows characteristics of the UCI datasets and Table 3 for the genetic datasets.
The datasets cover a wide range of domains as well as varying size and number of covariates.
Also different situations of class imbalance are covered. The folder of data sets used is
attached. The target variable can be found in the last column of each data set.

Implementations

We used R (v. 3.5.3) to perform the benchmarking. To this end 10-fold crossvalidation
was performed, using the same seed for data splitting for each method.
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Random Forest Random forest was fit using the randomForest (v. 4.6-14)
package from CRAN. We ran the algorithm with standard settings, which corresponds
to 500 trees that are grown until purity and ?/3 covariates, where ? is the number of
covariates in total, tried at each node.

CART For fitting the CART algorithm, we used the rpart (v. 4.1-15) package from
CRAN. The standard settings are a minimum number of observations for splitting of 20
and a maximum depth of 30. To prevent overfitting a pre-pruning mechanism is build in:
a split is not made if the impurity meassure is reduced by less than 0.01. We also tried
cost-complexity pruning implemented in rpart, however the results got worse on average,
compared to prepruning.

Cultivated Random Forest We implemented a prototype version in R. All code
to run the experiments together with a full implementation of CRF will be published
online at the time of publication, as described above.
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