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Abstract

In visual search tasks, repeating features or the position of the target results in faster

response times. Such inter-trial ‘priming’ effects occur not just for repetitions from the imme-

diately preceding trial but also from trials further back. A paradigm known to produce particu-

larly long-lasting inter-trial effects–of the target-defining feature, target position, and

response (feature)–is the ‘priming of pop-out’ (PoP) paradigm, which typically uses sparse

search displays and random swapping across trials of target- and distractor-defining fea-

tures. However, the mechanisms underlying these inter-trial effects are still not well under-

stood. To address this, we applied a modeling framework combining an evidence

accumulation (EA) model with different computational updating rules of the model parame-

ters (i.e., the drift rate and starting point of EA) for different aspects of stimulus history, to

data from a (previously published) PoP study that had revealed significant inter-trial effects

from several trials back for repetitions of the target color, the target position, and (response-

critical) target feature. By performing a systematic model comparison, we aimed to deter-

mine which EA model parameter and which updating rule for that parameter best accounts

for each inter-trial effect and the associated n-back temporal profile. We found that, in gen-

eral, our modeling framework could accurately predict the n-back temporal profiles. Further,

target color- and position-based inter-trial effects were best understood as arising from

redistribution of a limited-capacity weight resource which determines the EA rate. In con-

trast, response-based inter-trial effects were best explained by a bias of the starting point

towards the response associated with a previous target; this bias appeared largely tied to

the position of the target. These findings elucidate how our cognitive system continually

tracks, and updates an internal predictive model of, a number of separable stimulus and

response parameters in order to optimize task performance.
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Author summary

In many perceptual tasks, performance is faster and more accurate when critical stimulus

attributes are repeated from trial to trial compared to when they change. Priming of pop-

out (PoP), visual search with sparse search displays and random swapping of the target

feature between trials, is a paradigm in which such inter-trial effects can be traced back

over several recent trial episodes. While many studies have explored PoP paradigms, the

mechanisms underlying priming of the search-critical target feature, the target position,

and the response-critical information are not yet fully understood. Here, we addressed

this question by applying evidence accumulation (EA) decision models to the data from a

previously published PoP study. The modeling framework combines evidence accumula-

tion with Bayesian updating of the model parameters. Comparison of (> 1000) different

combinations of decision models and updating rules revealed that the featural and posi-

tional priming effects were best explained by assuming that attentional “weight” resources

are dynamically redistributed based on the recent history of target color and position,

whereas response decisions are biased based on the recent history of the response-critical

property of targets occuring at a particular (and nearby) position(s). These findings con-

firm that our cognitive system continually tracks, and updates an internal predictive

model of, a number of separable stimulus and response parameters in order to optimize

task performance.

Introduction

Selecting the most relevant, and deprioritizing irrelevant, visual information is important in

many everyday tasks. These priorities need to be flexibly updated based on current goals as

well as on prediction about what visual dimensions and features will need to be attended to

and processed in pursuing these goals. Visual search tasks provide a rich source of evidence for

studying the dynamics underlying this updating: Apart from more general goal-based, top-

down adjustments of the task set, the system settings are constantly adapted in response to the

stimuli encountered on sequential search trials. These adaptations give rise to inter-trial, or

selection, history effects, where performance on the task improves when some critical stimulus

property is repeated across trials and impaired if it changes (e.g. [1]). Such inter-trial effects

have been documented consistently for cross-trial repetitions/switches of specific target-defin-

ing features, such as color, spatial frequency [2,3], and size [4], for whole target-defining

dimensions (e.g. [5,6]), and for target position [7,8]. Importantly, models of the updating of

attentional control settings make predictions about these inter-trial effects that can be exam-

ined against the data (e.g. [9,10]), thus helping us understand the underlying computational

principles. Accordingly, the goal of the present study was to apply mathematical modeling–

specifically, evidence accumulation models to RT data to a ‘classical’ visual singleton, or ‘pop-

out’, search task (adapted from [3,8]), employing a novel approach, namely: taking into

account observers’ natural perceptual uncertainty in performing a given task and, associated

with this, the possibility of adaptive trial-by-trial updating of the model parameters, in order to

characterize the perceptual and cognitive mechanism/s of multiple types of (non-/spatial)

inter-trial ‘priming’ in this task.

Paradigms examining for inter-trial effects differ with regard to how long-lasting the

respective (feature-, dimension-, position-specific) inter-trial effects are. One paradigm that

has been documented to produce inter-trial effects of longer durations is known as ‘priming of
pop-out’ (PoP; e.g. [2,3,8,11]). In a previous modeling study [12], we used a paradigm in which
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a pop-out target was presented in a dense search array (consisting of 39 closely spaced items)

and the features of the (homogeneous) distractor items never changed across trials. In that

study, described in more detail below, we only found significant inter-trial effects from a single

trial back. By comparison, the PoP paradigm produces inter-trial effects that can be traced

back for approximately five to eight trials for (repetitions/switches of) the target-defining fea-

ture [3] as well as for the target position [8,13]. PoP studies typically use sparse search displays

(e.g., with three, widely spaced items only) and, importantly, random swapping across trials of

the search-critical target and distractor features (e.g., the target may be red amongst green dis-

tractors on one trial, and green amongst red distractors on the next trial). Of note, feature-

based inter-trial effects manifest specifically with sparse displays and target-distractor color

swapping, but not or to a lesser extent with dense displays or constant distractor color [13,14].

That is, in PoP paradigms, guidance based on the computation of local feature-contrast,

the major determinant of bottom-up saliency (e.g., see [15]), is relatively ineffective (because

there is little local feature contrast), and in contrast to the name ‘priming of pop-out’, the

target actually fails to be the first item to draw attention in a significant proportion of trials

(e.g., Rangelov et al. [16] estimate this proportion to be of the order of 20% to 70%, consistent

with eye-movement evidence such as from Becker [17]). Given that (bottom-up) saliency cod-

ing is a relatively non-reliable guide to finding the target, and that the target is consistently

defined in the color dimension, the search-guidance system comes to rely on other types of

information to optimize target selection under PoP conditions: in particular, top-down–color-

feature-based–guidance processes, along with reliance on positional information (also evi-

denced by eye movements often returning, on trial n, to the target location on trial n-1). The

roles of these, while traceable in dimension-based paradigms (feature-based especially with

color-defined targets; e.g., [5]), become much more prominent under PoP conditions, and

empirically, they exhibit a more persistent (n-back) effect than dimension-based priming

effects. Thus, the underlying mechanisms, that is, the neural machinery that is primed, are

likely to be different. Accordingly, attempting to model these (feature- and position-based

inter-trial) effects using our modeling framework provides a theoretically interesting extension

to our previous study.

Further, feature-based inter-trial effects in PoP paradigms are typically independent of, or

additive to, positional intertrial effects [8,18]. Some PoP studies also found inter-trial effects

for the response-critical target feature, such as whether a section (“notch”) of the (color pop-

out) target is cut off at the top or the bottom [19–21], while other studies failed to find such

effects [3,22]. Interestingly, Gokce et al. [19] found the effect of response repetition to be

dependent on position repetition: response repetition, from one trial back, expedited RTs sig-

nificantly only when the target position was also repeated (similar results have also been found

by [23–25]). One reason why some studies failed to find significant inter-trial effects for the

response feature may be that target position repetitions were relatively rare. For instance, in

the studies by Maljkovic et al. [3,22], the target occurred at one of twelve positions, randomly

chosen from trial to trial; that is, the target position would have repeated on only some 8% of

the trials, and there would have been a response repetition on only half these trials, making it

hard to resolve the interaction.

While there have been many previous studies on inter-trial effects in visual search, most of

these have focused on mean response times (RTs) (and error rates). However, more informa-

tion can be obtained from the shape of the RT distribution. For a variety of different tasks, the

shapes of RT distribution shapes are well predicted by evidence accumulation models [26,27],

with the ‘drift-diffusion model’ (DDM) being one particularly influential model of this type

[28–30]. The DDM assumes that a decision between two different perceptual hypotheses is

made by accumulating multiple pieces of evidence over time, summing the logarithm of the
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likelihood ratio, under the two different hypothesis, for these pieces of evidence, and making a

decision when the sum reaches a threshold (in either direction; see Fig 1). This model has four

important parameters: the drift rate, that is, a tendency to, on average, drift towards one or the

other boundary (representing the average strength of the pieces of noisy evidence in favor of

the respective hypothesis); the separation between the decision boundaries (boundary separa-

tion); a starting point (representing any initial bias, e.g., from a-priori priors or selection his-

tory); and a non-decision time (NDT, representing time spent on processes that are not part of

the perceptual decision making as such, such as preparation and execution of the motor

response). Another evidence accumulation model is the ‘Linear Approach to Threshold with

Ergodic Rate’ (LATER) model [31,32]. This model also assumes that evidence accumulates

until it reaches a threshold, but, unlike the DDM, it assumes that during a single perceptual

decision, evidence accumulates at a constant rate, with this rate varying randomly across

search episodes (see Fig 1).

In a previous study [12], we fit the DDM and LATER models to RT distributions from

three different pop-out visual search experiments, in order to examine which model parame-

ters were involved in different types of inter-trial effects occurring in the respective paradigms.

In two of these experiments, we used a block-wise frequency manipulation of the response-

critical feature (RCF) of the search displays. In one of these experiments, the response was

made based on whether a target was present or absent, and in the other based on whether the

Fig 1. Evidence accumulation models. The DDM assumes that evidence accumulates, from the starting point (S0), through random

diffusion in combination with drift at a constant rate r until a boundary (i.e., threshold, θ) is reached (illustrated in blue). The Linear

Approach to Threshold with Ergodic Rate (LATER) model (illustrated in red) makes the same assumptions, except that there is no random

diffusion, but instead the rate r varies across trials (so as to explain trial-to-trial variability in RTs). In addition, a non-decision time (NDT)

τ is added to the boundary crossing time on each trial, to capture time spent on everything else than the perceptual decision (e.g., the time

to prepare and execute a selected motor response).

https://doi.org/10.1371/journal.pcbi.1009332.g001
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target was defined in the color or the orientation dimension. In order to model inter-trial

effects, we assumed that the starting point and the drift rate of the evidence accumulation

model each could change after each trial based on two stimulus properties on that trial: the

RCF and the target-defining dimension (TDD). We considered a number of different updating

rules, different plausible rules of how these parameters could change, such that the RCF and

TDD each could influence either the starting point or the drift rate (or neither) of the evidence

accumulation process, and compared these in a factorial model comparison. This comparison

revealed that the best combination of updating rules for the RCF and the TDD (in terms of the

Akaike Information Criterion, AIC) involved updating the starting point based on the RCF,

using a form of Bayesian updating consistent with an interpretation of the starting point as the

logarithm of the prior odds, in this case the prior odds of the target being present versus absent

or of being defined by color versus orientation; and updating the drift rate based on the TDD,

using a ‘weighted-rate’ updating rule consistent with the ‘dimension-weighting account’ [5,6].

This model captured both the effects of the probability manipulation and the inter-trial effects

based on the RCF and the TDD quite well. However, the inter-trial effects were of relatively

short duration: significant inter-trial effects were resolvable only from a single trial back, as is

generally the case for ‘dimension-weighting’ studies [14]. Accordingly, we could not draw any

strong conclusions about how well our model would capture the dynamics of longer-lasting

inter-trial effects described in the literature [33,34] and the decay of the memory traces under-

lying these inter-trial effects over time. In the present study, we aimed to address this question

by applying our modeling framework to the PoP paradigm which is known to produce longer

lasting inter-trial effects.

As elaborated above, each type of inter-trial effect–faster RTs with repetition, compared to

change, of the target-defining feature, the target position, and the response-critical feature–

could be mediated by different mechanisms, such as more efficient target processing or

responding based on less evidence (i.e., a response bias). Depending on the underlying mecha-

nism, one can make different predictions about how RT distributions will differ across inter-

trial conditions, such as repetition versus switch of the target-defining color. In our modeling

framework, such differences in RT distributions across different inter-trial conditions are pre-

dicted by changes in the evidence accumulation model parameters based on stimulus and

selection history. Thus, by comparing different updating rules, which differ in terms of which

model parameters change based on the history of each stimulus attribute, and finding the

updating rule that best explains the RT distributions, we can make inferences about the likely

underlying mechanism for each type of inter-trial effect. To this end, we applied this approach

to the data set collected by Gokce et al. [19], which revealed all three types of inter-trial effects

considered above: faster RTs for repetitions (vs. changes) of the target-defining feature (color:

green vs. red), the target position, and the response-critical feature (the position of a “notch”,

top vs. bottom, in the target item).

Fig 2 illustrates the stimuli and inter-trial transitions used in Gokce et al. [19]. In that study,

participants were required to find a singleton target stimulus defined by an odd-one-out color

(the only green item amongst red items, or the only red item amongst green items) and

respond according to whether the target had a cut-off section (notch) at the top or the bottom.

The target and distractor stimuli were positioned on a virtual circle, forming either a regular

square or diamond arrangement on a given trial. Across consecutive trials n-1 and n, the tar-

get/distractor color polarity could either repeat (e.g.: trial n-1: red target amongst green dis-

tractors! trial n: red target amongst green distractors) or switch (e.g., trial n-1: red target

amongst green distractors! trial n: green target amongst red distractors), with equal proba-

bility. Independently of this, the target on a given trial (n) could appear at the same location as

on the previous trial (n-1), henceforth referred to as a TT trial; it could appear at a previously
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empty, or neutral location, henceforth labelled TN trial; or it could occur at a previous distrac-

tor location, TD trial; again, all three positional inter-trial transitions (see Fig 2 for an illustra-

tion) were equally likely. Finally, the ‘orientation’ of the response-critical notch in the target

item (top or bottom) could be either repeated or switched across consecutive trials, again with

equal probability. Given this, the data allowed for the examination of target feature-, position-,

and response-based inter-trial priming effects; note that with regard to positional intertrial

priming, the design made it possible to dissociate facilitatory (comparison TT vs. TN) and

inhibitory (TN vs. TD) priming with respect to the neutral (TN) condition.

In summary, by comparing different models of how RTs are affected by stimulus history, we

aimed to address a number of questions. The primary aim was to examine which types of updat-

ing can better predict the temporal profile of n-back inter-trial effects depending on whether

some target feature (i.e., the target color and/or the ‘orientation’ of the notch), or the position,

was repeated or changed. In addition, we aimed to investigate the degree of spatial specificity of

the inter-trial effects for the response-critical target feature and the target-defining feature (here

color), by comparing updating rules with differing degrees of position specificity of the parameter

updates. Finally, by comparing updating rules operating on different parameters of the evidence

accumulation model, we also aimed to contribute evidence towards understanding the underly-

ing mechanism for each type of inter-trial effect. Different updating rules implement different

hypotheses about what type of memory is carried over across trials and causing the priming

effects. This may be a stimulus-response (S-R) binding carried over from a previous trial, result-

ing in a bias towards repeating the same response or perceptual decision (e.g., about the target

location), or it may be a shift of attentional weight towards the target location or feature that is

carried over across trials. Thus, by finding the best updating rule for each type of inter-trial effect,

we aimed to clarify both the nature of the memory responsible for the inter-trial effect, the spatial

specificity of this memory, and the speed of memory decay.

Results

Behavioral results

Fig 3 depicts the mean RTs as a function of the response-critical target notch position (i.e.,

effectively, the response: same vs. different relative to the preceding trial) for trials with a

Fig 2. Illustration of the stimulus. Illustration of the search display and the positional inter-trial transitions. The circles were not part of the actual stimulus, but are

only shown to illustrate how the items were positioned on a circle. On each trial, four out of eight possible locations were occupied by the search items, allowing the

items to form either a square or a diamond arrangement.

https://doi.org/10.1371/journal.pcbi.1009332.g002
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repetition versus a switch of the target-defining color (same vs. different) across consecutive

trials, separately for the three inter-trial target location transitions (target at previous target

location, TT vs. at previously empty neutral location, TN vs. at previous distractor location,

TD). A repeated-measures ANOVA with color (repetition/switch), response (repetition/

switch), and target position (TT, TN, TD) as factors revealed all main effects to be significant

(response: F(1, 13) = 7.75, p = .015, Z2
p = 0.37, BFincl > 1000; color: F(1, 13) = 160.9, p< .001,

Z2
p = 0.93, BFincl > 1000; position; F(1.2, 15.6) = 72.82, p< .001, Z2

p = 0.85, BFincl > 1000,

Huynh-Feldt corrected degrees of freedom). RTs were faster when the target-defining color

repeated vs. changed (48-ms difference), and when the response-critical notch position

repeated vs. changed (16-ms difference). And RTs were significantly faster when the target

appeared at the same position compared to either a previous distractor location (TT vs. TD:

46-ms difference, Bonferroni-corrected t(13) = 9.28, pbonf < .001, BF10 > 1000) or a previously

empty (neutral) location (TT vs. TN: 30-ms difference, t(13) = 7.15, pbonf < .001, BF10 >

1000); there was also a significant cost when the target appeared at a previous distractor posi-

tion vs. a previously empty (neutral) position (TD vs. TN: –16-ms difference, t(13) = –9.48,

pbonf < .001, BF10 > 1000). In addition, the interactions RCF × position (F(1.4, 19) = 23.3, p<

.001, Z2
p = 0.64, BFincl > 1000 and RCF × color (F(1,13) = 6.19, p = .027, Z2

p = 0.32, BFincl =

0.56) were significant, although the RCF × color interaction was not supported by the Bayesian

analysis. Repeated-measures ANOVAs conducted separately for each positional inter-trial

transition condition with response (repetition/switch) and color (repetition/switch) as factors

revealed that the effects involving response (position of the target notch) were significant only

in the repeated target position (TT) condition (main effect of response: F(1,13) = 32.6, p<

.001, Z2
p = 0.72, BFincl > 1000, response × color interaction: F(1,13) = 6.0, p = .029, Z2

p = 0.32,

BFincl = 0.89), but not in the TN or TD conditions (all p> .3).

Model comparison results

In our modeling framework (see Fig 4), we treat each trial of the experiment as a perceptual

decision, which is modeled as an evidence accumulation process, and we allow the parameters

Fig 3. Response times. Mean response times for repeated/non-repeated color, target notch ‘orientation’ (the response- critical feature), and for the different positional

transitions: target at previous target position (TT), target at previously neutral (i.e., empty) position (TN), and target at previous distractor position (TD). Error bars

show the 95% confidence intervals. RCF: response-critical feature.

https://doi.org/10.1371/journal.pcbi.1009332.g003
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of that evidence accumulation process (i.e., the starting point, rate of evidence accumulation,

and non-decision time) to change from trial to trial based on recent stimulus history.

In particular, we consider three aspects of stimulus history: the cross-trial history of the

response-critical feature (RCF), of the target color, and of the target position. For each of

these, we consider different updating rules, each implementing a possible way in which one

model parameter could change based on this aspect of stimulus history (see detailed mathe-

matical description in the section of “Models and updating rules”). The aspect of stimulus his-

tory that an updating rule is based on is referred to as the updating variable (UV) of that rule.

Each of the updating rules belongs to one of four categories: Bayesian rules, step rules,

weighted rules, and binary rules. Binary rules have two different values of the updated parame-

ter, one on trials where the UV was repeated from the immediately preceding trial (n-1) and

the other on trials where it changed. Binary rules were included for comparison, serving as a

‘baseline’ to assess how much better inter-trial effects could be explained when taking into

account trial history further back than n-1; step rules, weighted rules, and Bayesian rules repre-

sent three different ways of doing this. Step rules assume that repetition effects were partially

carried over to future trials. For example, if the evidence accumulation rate was faster because

the target color had been repeated between trial n-1 and trial n, some of this repetition benefit

would be carried over to trial n+1 (and a smaller proportion carried over to trial n+2 and so

on). Weighted rules instead assume that each state of the UV had an associated weight which

determined the value of the updated parameter on trials where that state of the UV occurred.

After each trial, some of the weight was shifted to the state of the UV which occurred on that

trial, in such a way that the total weight remained constant, as if a limited resource was being

reallocated. There was also memory decay of previous weight reallocations. The Bayesian rules

were applied specifically to the starting point parameter, and assumed that the relative fre-

quencies of the different states of the UV were learned through Bayesian updating, with mem-

ory decay as in the dynamic belief model of Yu and Cohen [35]. These frequencies were

Fig 4. Illustration of the hierarchical modeling framework. Each hierarchical model consists of an evidence

accumulation model (either the drift-diffusion model or the LATER model) and either no updating or one updating

rule for each parameter of the evidence accumulation model (starting point S0, evidence accumulation rate r, and non-

decision time τ). Each updating rule belongs to one of the four categories shown in the middle layer of the figure, and

is applied to one of the three inter-trial updating variables shown in the blue box on the right side of the figure: the

response-critical feature (RCF), the target-defining color, or the target position. For some of the updating rules based

on the RCF or color, there are three different versions of the rule, differing in their degree of position-specificity (top

level of the hierarchy). These rules could be fully position-independent (PI), fully position-dependent (PD), with a

gradient-like dependence on the change of position (PG), or starting out fully position-dependent but then spreading

(PS). See the main text for detailed descriptions.

https://doi.org/10.1371/journal.pcbi.1009332.g004
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assumed to define a prior for the evidence accumulation process on each trial, implemented

by setting the starting point to the logarithm of the prior odds of the state of the UV on that

trial. For some of the updating rules based on the RCF and the target color, we also compared

four different versions of the rule, differing in their degree of position specificity as well as in

whether memories learned at a particular position would spread over time. These rules could

be fully position independent (PI), fully position-dependent (PD), with a gradient-like depen-

dence on the change of position (PG), or initially fully position-dependent but with spreading

over time (PS). The PI rule assumes that the influence from RCF or color on previous trials

does not depend at all on whether the target position was the same or had changed, while the

PD rule assumes no influence at all from a previous trial unless the same target position is

repeated. By contrast, the rule of PG suggests a stronger influence from a previous trial the

closer the target is to its previous position. Finally, the PS rule assumes that learning is initially

fully position specific but later spreads (e.g. because the exact position in which a particular

target appeared is gradually forgotten). For some of the position-based updating rules, there

are three different versions, with and without inhibition of previous distractor locations which

could be either fully matched with target location facilitation so that weight is only transferred

from distractor to target locations, or involve separate processes of transferring weight to the

target and away from distractors (including to and from empty locations). Further details

about the updating rules and the model fitting are provided in the Methods and models section

below.

We compared different updating rules based on how well the model, when using this updat-

ing rule, predicts RTs on all trials and determined the best of these updating rules in terms of

the Akaike Information Criterion (AIC; see Methods and models section for more details).

The AIC is a measure of the quality of a model, which takes into account goodness of fit (as

measured by the likelihood) and also penalizes models with more free parameters. Lower AIC

values indicate better model performance. In total, we compared 12 different updating rules

for updating based on the response-critical feature, eight for the target color and ten for the

target position (taking into account also the two different evidence accumulation models

DDM and LATER, there were thus a total of 2�12�8�10 = 1920 possible models).

Figs 5, 6 and 7 show the mean relative Akaike Information Criteria (AIC) for each of the

response feature-, target color-, and target position-related updating rules. For each of these

three updating variables, the AIC for each updating rule was evaluated for a model which used

the best updating rule, in terms of having the lowest associated AIC, for each of the other two

updating variables (see Methods and models section for further details). For each individual

participant and session, we subtracted the AIC of the overall winning model (based on all par-

ticipants and sessions) from the AIC of every other model for that participant and session, and

finally we averaged this relative AIC across all participants and sessions. This resulted in a rela-

tive AIC of zero for the winning model, while the relative AIC of other models indicate how

much worse they are compared to the winning model.

Target color-based updating models. To find the best rule for target color-based updat-

ing, we compared the different target color-based updating rules in terms of the mean relative

AIC (see Fig 5). The best rule was the position-independent weighted-rate rule (see updating

rule 7 in the “Models and updating rules” subsection of the Methods and models section for

details). This updating rule assumes that the evidence accumulation rate depends on how

much of a limited “weight” resource, which is distributed across both of the possible target col-

ors, is allocated to the target color. This weight is updated after each trial by shifting some

weight to the target color on that trial, with partial “forgetting” of old updates (see Fig 8 for an

example, Fig 9 for the predicted temporal profile with this updating rule, and Methods and

models section for more details).
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Target position-based updating models. Next, we compared the mean relative AIC of

position-based updating rules (see Fig 6). The best rule for position-based updating was the

weighted-rate with distractor inhibition rule (see updating rule 8 in the “Models and updating

rules” subsection of the Methods and models section for details). This updating rule assumes

that the evidence accumulation rate depends on how much of a limited weight resource, which

is distributed across all the possible target positions, is allocated to the target position. This

weight is updated after each trial by shifting weight to the target position on that trial from all

other positions, both distractor positions and empty positions, and shifting weight away from

the distractor positions on that trial to all other positions, both target positions and empty

positions, with partial forgetting of old updates (see Fig 10 for an example and Fig 11 for the

predicted temporal profile with this updating rule, and Methods and models section for more

details).

RCF-based updating models. Finally, we compared the mean relative AIC of response-

based updating rules (see Fig 7). The best rule was “Position Gradient (PG) Bayesian S0” (see

Fig 12 for an example and Fig 13 for the predicted temporal profile and updating rule 4 in the

“Models and updating rules” subsection of the Methods and models section for details). This

updating rule learns a different starting point for each possible target position, updating the

starting point primarily for the actual position where the target occurred, though with some

updating carried over to other positions, with the magnitude of the update decreasing with dis-

tance (we refer to this a gradient-like dependence on the change of position). Interestingly,

both the positionally non-specific version of the Bayesian starting point updating rule and the

completely position-specific version (which updates only a single position with no effect on

other positions) performed considerably worse.

Fig 5. Model comparison for color-based updating. Mean relative AIC for all different color-based updating rules when using the best updating rules for

response-critical feature (RCF) and position. The dashed vertical line separates rules that update based on color alone (left) and rules that also take the

target position into account (right). The different background colors mark rules that update either the rate (orange) or the non-decision time (green).

Error bars represent the standard error of the mean over participants and sessions. PI: position-independent; PD: full position-dependent; PG: a gradient-

like dependence on the change of position; NDT: Non-decision time.

https://doi.org/10.1371/journal.pcbi.1009332.g005
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Cross-validation. In order to examine to what extent the better fit of the best updating

rules compared to the ‘No-update’ rule was a result of overfitting, we performed cross-valida-

tion on the best model and the no-update model. Specifically, since each session consisted of

eight blocks of trials, we performed an eight-fold cross-validation, that is: for each block, we

evaluated the model’s prediction in that (‘test’) block after training the model on the remaining

seven (‘training’) blocks (the stimulus sequence in the test block was still used for updating, so

that the starting point and weight would start with the correct values at the beginning of the

next block, but participants’ performance in that block was not used for optimizing the model

parameters). Table 1 presents the average log-likelihood (logarithm of the likelihood) for the

best model as well as the model with no updating, each evaluated on the training set (averaging

the log-likelihood in each block across the seven folds in which that block was included in the

training set) as well as on the test set. The average log-likelihood was somewhat worse when

evaluated on the test set, indicative of some degree of overfitting, and this difference was larger

for the best model compared to the no-update model, suggesting there was some overfitting of

the updating rules, in addition to the evidence accumulation model. Importantly, however,

even when evaluated on the test set, the log-likelihood was substantially better for the best

model compared to the no-update model, indicating that the updating rules did capture pat-

terns in the data that generalize across blocks. This conclusion is further supported by the

cross-validated out-of-fold predictions for the temporal profiles of the inter-trial effects pre-

sented in S6 Appendix, which fit the pattern in the data nearly as well as the corresponding

predictions without cross-validation (depicted in Figs 9, 11 and 13 below).

Fig 6. Model comparison for position-based updating. Mean relative AIC for all different position-based updating rules when using the best updating rules for

response-critical feature (RCF) and color. The different background colors mark rules that update either the rate (orange) or the non-decision time (green). Error

bars represent the standard error of the mean over participants and sessions. DI: distractor inhibition; NDT: Non-decision time.

https://doi.org/10.1371/journal.pcbi.1009332.g006
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Temporal profiles of the inter-trial effects and model predictions

Having seen which updating rule best accounts for each type of inter-trial effect, in this section

we will explore what prediction those updating rules make for the temporal profile of each

inter-trial effect and how well this matches the temporal profiles in the experimental data. In

the next three subsections, we explore how well the model framework predicts the three differ-

ent types of inter-trial effect: (i) inter-trial effects related to repetition/switch of the target-

defining color, more precisely: repetition of both the target and distractor colors versus swap-

ping of the target and distractor colors; (ii) inter-trial effects related to the target position, for

which there are three different transition conditions: target at previous target position, target

at previously unoccupied (neutral) position, and target at previous distractor position; (iii)

inter-trial effects related to the response-critical feature, the position (top or bottom) of the

notch in the target item. All figures in the next three sections show normalized RTs, where the

overall mean RT has been subtracted from the mean in each condition, for each participant

and session (i.e., a positive normalized RT means that the response time is slower than overall

average in a particular condition, while a negative normalized RT means it is faster than overall

average). To make the model predictions directly comparable to the behavioral data, the mean

RTs (from the behavioral data) were also subtracted from the model predictions. All model

predictions are based on the best model, that is, using the factor level that resulted in the lowest

AIC for each of the factors (see the model comparison section above); accordingly, the relevant

figures below (Figs 9, 11 and 13) are all based on the exact same model (see S2 Appendix for

the parameters of the model fits), applying all of the winning updating rules (even though each

of these figures only illustrates the effects of one, or two in the case of Fig 13, of these rules).

Fig 7. Model comparison for response feature-based updating. Mean relative AIC for all different RCF-based updating rules when using the best updating rules for

color and position. The dashed vertical line separates rules that update based on the RCF alone (left) and rules that also take the target position into account (right).

The different background colors mark rules that update either the starting point (blue), the rate (orange) or the non-decision time (green). Error bars represent the

standard error of the mean over participants and sessions. PI: position-independent; PD: fully position-dependent; PG: a gradient-like dependence on the change of

position; NDT: Non-decision time; S0: Starting point.

https://doi.org/10.1371/journal.pcbi.1009332.g007
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Color-based inter-trial effects. Fig 8 illustrates the predictions of the best updating rule

for color-based inter-trial effects, that is, the “weighted-rate” rule, for the first eight trials of a

typical participant. The two colors start out receiving equal weight (each with a weight of 1 so

that the rate for each color is the baseline rate), and after each trial some weight is shifted to

the target color on that trial, while additionally there is partial forgetting so that the weights are

partially reset to their starting values (see modeling part of Methods and models section for

details). The figure illustrates how repetition benefits arise in the model: On trials 2, 3, and 5,

the same target color is repeated as on the previous trial; on these trials, the weight associated

with the target color is larger than one because some weight has just been shifted to that color;

on trials 4 and 6–8, by contrast, the target color has changed from the previous trial, resulting

in weight of less than one associated with the target color because some weight was just shifted

away from that color. The figure also illustrates influences from more than one trial back: the

weight associated with the target color is larger on trial 3 compared to trial 2, because this is

the second repetition in a row and the weight shifts accumulate; by contrast, the weight is con-

siderably lower on trial 5 because this color repetition was preceded by a sequence of three tri-

als with the other target color.

The color-based inter-trial effects were predicted well by this updating rule (shown in Fig

9). Response times are faster (by 56 ms, on average) when the color from trial n-1 is repeated

Fig 8. Example of color-based updating. Example of the weight changes to the different colors predicted by the weighted-rate updating rule for the first eight trials of a

typical participant (A), and the associated changes in the evidence accumulation rate on the same eight trials (B). The letters “T” and “D” denote the target color and,

respectively, the distractor color on each trial. The dashed line marks the baseline evidence accumulation rate. The evidence accumulation rate on each trial was the

baseline rate scaled by the weight associated with the target position on that trial.

https://doi.org/10.1371/journal.pcbi.1009332.g008

PLOS COMPUTATIONAL BIOLOGY Inter-trial effects in priming of pop-out: Comparison of computational updating models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009332 September 3, 2021 13 / 35

https://doi.org/10.1371/journal.pcbi.1009332.g008
https://doi.org/10.1371/journal.pcbi.1009332


on trial n. The same pattern is found for the repetition versus switch of the color from more

than one trial back, although the magnitude of the effect decreases with increasing lag. This

pattern is captured well by the model, although the model somewhat underestimates the effect

for longer lags (i.e., for influences from four or more trials back), while it, if anything, slightly

overestimates the effect at the shortest lags (influences from one to three trials back).

Position-based inter-trial effects. The best updating rule for target position-based inter-

trial effects (illustrated in Fig 10), that is, the “weighted rate with distractor inhibition” rule,

followed a similar logic to that for the color-based effects. All eight positions start with equal

weight (each with a weight of 1 so that the rate for each position is the baseline rate), and after

each trial some weight is shifted to the target position on that trial from all other positions (i.e.,

both distractor positions and unoccupied positions), and away from the distractor positions

on that trial to all other positions (i.e., both the target position and unoccupied positions; see

Fig 9. Temporal profile of the color-based inter-trial effects. Mean normalized RT for repeated vs. switched target color on (current) trial n compared to

(preceding) trial n-1 (lag 1), n-2 (lag 2) up to n-8 (lag 8). Normalized RTs were first averaged across the two sessions for each participant; the resulting (individual

mean normalized) RTs were then used to compute the overall means and confidence intervals, across participants. Filled circles depict the behavioral data, lines the

model predictions. Error bars represent 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1009332.g009
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modeling part of Methods and models section for details). This results in increased weight

associated with the previous target position and decreased weight associated with the previous

distractor positions, while the weight associated with the neutral positions does not change

Fig 10. Example of position-based updating. Example of the weight changes to the different positions predicted by the “weighted rate with distractor inhibition”

updating rule for the first eight trials of a typical participant (A), and the associated changes in the evidence accumulation rate on the same eight trials (B). The letters

“T” and “D” denote the target position and, respectively, the positions of the three distractors on each trial. The dashed line marks the baseline evidence accumulation

rate. The evidence accumulation rate on each trial was the baseline rate scaled by the weight associated with the target position on that trial.

https://doi.org/10.1371/journal.pcbi.1009332.g010
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much because they both lose weight to the target position and receive weight from the distrac-

tor positions. This explains why the model predicts facilitation of response times for “target at

previous target position” transitions (TT) and a cost for “target to previous distractor position”

transitions (TD) compared to when the target moves to a previously neutral (empty) position

(TN). The figure also illustrates influences from more than one trial back: both trial 4 and trial

7 are TD transitions, but the weight associated with the target position is much lower on trial

7, because the distractors had appeared at that position an additional two times in the recent

trial history.

The model also predicts well for the position-based inter-trial effects (Fig 11). Compared to

when the target on trial n appeared at a position which was neutral (unoccupied) on trial n-1

Fig 11. Temporal profile of the position based inter-trial effects. Mean normalized RT for different positional inter-trial conditions, target in previous target

condition (TT), target in previous distractor position (TD), target in previously neutral (unoccupied) position (TN), compared to trial n-1 (lag 1), n-2 (lag 2) up to n-8

(lag 8). Normalized RTs were first averaged across the two sessions for each participant; the resulting (individual mean normalized) RTs were then used to compute the

overall means and confidence intervals, across participants. Filled circles show the behavioral data, while lines show model predictions. Error bars represent 95%

confidence intervals.

https://doi.org/10.1371/journal.pcbi.1009332.g011
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(TN), RTs were faster (by 36 ms, on average) when the target appeared at the previous target

position (TT), and slower (by 17 ms) when the target appeared at a previous distractor posi-

tion. The same pattern of positional inter-trial effects is seen for transitions from more than

Fig 12. Example of response-based updating. Example of the starting point changes associated with the different positions predicted by the gradient-like dependence

on the change of position (i.e., “PG Bayesian S0” updating rule) for the first eight trials of a typical participant (A), and the starting point for the target position on the

same eight trials (B). The position of the triangles represent the target position on each trial, and the shape of the triangle indicates the response-critical feature (RCF,

i.e., whether the notch was on the top or bottom of the target item).

https://doi.org/10.1371/journal.pcbi.1009332.g012
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one trial back, though the size of the effect decreased with increasing lag. The model predicts

this pattern, although it predicts a slightly larger target-target transition benefit relative to the

distractor-target transition cost compared to the behavioral data.

Response-based inter-trial effects. The best updating rule for the response-based inter-

trial effects: “PG Bayesian S0” (illustrated in Fig 12) assumed that participants learned a sepa-

rate response bias (starting point of the evidence accumulation model) for each position, based

on the frequency with which each response has recently been associated with that position, but

that updating of the bias in the current target position on any trial partially carried over to

other positions in a gradient-like way. In the example shown in Fig 12, the starting point is

biased towards the boundary associated with a “notch on top” response after the first trial,

where the strongest bias is associated with the position where the target occurred but with

some bias also for other positions. On the second trial, the target position was repeated but the

notch position changed–so the bias learned from the first trial is nearly cancelled. However,

because of the memory decay, the new notch position had a somewhat stronger influence than

Fig 13. Temporal profile of the response feature-based inter-trial effects. Mean normalized RT for repetition vs. switch of the response defining target feature (notch

on top or bottom of the diamond shape), compared to trial n-1 (lag 1), n-2 (lag 2) up to n-8 (lag 8) for the different positional inter-trial conditions, target in previous

target condition (TT), target in previous distractor position (TD), target in previously neutral (unoccupied) position (TN). Normalized RTs were first averaged across

the two sessions for each participant; the resulting (individual mean normalized) RTs were then used to compute the overall means and confidence intervals, across

participants. Filled circles show the behavioral data, while lines show model predictions. Error bars represent 95% confidence intervals. RCF: response-critical feature.

https://doi.org/10.1371/journal.pcbi.1009332.g013

Table 1. Average log-likelihood, across participants and sessions, for the best model and the no-update model,

evaluated on the training set as well as on the test set, and the difference between the test and training set log-like-

lihood (right column). The bottom column shows the difference in log-likelihood between the best model and the

no-update model.

Training set Test set Difference (test—train)

No-update model log-likelihood 574 550 -24

Best model log-likelihood 639 585 -54

Δlog-likelihood 65 35 -30

https://doi.org/10.1371/journal.pcbi.1009332.t001
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the old one; so, instead of complete cancellation, the result was a small bias in the other direc-

tion. The next five trials all had the notch on the top, but with the target occuring in different

positions, resulting in a build-up of a bias towards that response associated with all positions.

Because inter-trial effects for the response primarily occurred when the target position was

repeated (see Fig 3), the RCF-based inter-trial effects are shown separately for the different

positional inter-trial transition conditions (Fig 13). The model predicts well in the repeated

target position condition (TT). However, for the other conditions, the model slightly overesti-

mates the inter-trial effects from one trial back and somewhat underestimates those for longer

lags. This happens because in the behavioral data, there are virtually no effects of repetition/

switch of the RCF from a single trial back when the target position does not repeat, while there

are some such effects from two and more trials back.

Discussion

In the present study, we applied the evidence accumulation framework that we had previously

used to model inter-trial effects in pop-out visual search tasks [12] to the data from a “priming

of pop-out” study [19]. The primary aims were to examine, through modeling, the mecha-

nisms underlying the temporal profile of n-back inter-trial effects on mean RTs and to investi-

gate the degree of spatial specificity of the inter-trial effects for the response-critical target

feature and the target-defining feature. Comparing 1920 different models (each possible com-

bination of 2 evidence accumulation rules, 12 updating rules for the response, 8 updating rules

for color and 10 for position) for each of 14 participants, we showed that the best models in

general predicted the temporal profiles of the inter-trial effects well (see Figs 9, 11 and 13),

with some interesting deviations that are discussed in more detail below.

Feature-, position-, and response-based inter-trial dynamics in PoP

Model comparisons suggest that the best model to predict the inter-trial effects related to the

response-critical feature (RCF, i.e., notch position) is to update the starting point of the evi-

dence accumulation process. This is consistent with what we found in our previous study [12],

where a factorial model comparison revealed that in three pop-out visual search experiments,

inter-trial effects for the RCF were best captured by updating of the starting point, both for a

simple detection task (requiring a target-present/-absent response) and a target discrimination

task (in which participants responded to the target-defining dimension, color/orientation).

Interestingly, for the priming pop-out task, the best updating rule was the version of “position

gradient” updating, which learns a different starting point for each target position, but updates

multiple positions after each trial, with the magnitude of the update decreasing with distance

from the target position. This performed better than either a completely position-independent

rule which learns a single starting point for all positions, or a completely position-specific rule

which learns a different starting point for each position and updates only the target position

after each trial. Based on an analysis of inter-trial effects from a single trial back, the superiority

of the “gradient” rule over the completely position-specific one may seem surprising, given

that there was no evidence of any inter-trial effects related to the RCF except when the target

position was repeated (see Fig 3). However, an analysis of the effect of the further-back history

of the RCF and target position (see Fig 13) reveals the reason for the superiority of the “gradi-

ent” rule: repetition/switch of the RCF from two trials back or more (trial m<n-1) influences

response times on trial n even when the target position was different (on trial m compared to

trial n). This ‘long-term’ aspect of the inter-trial effects–the fact that RCF-based effects from

trial n-1 are almost completely position-specific, but effects from trial m<n-1 are less position-

specific–was not adequately captured by our best updating rule. One possibility is that it
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reflects an episodic retrieval mechanism [4,36], that is, the response from the previous trial has

been bound into a memory of the response episode together with the position from the previ-

ous trial (an ‘event file’), so that when the same position is repeated the previous response is

automatically retrieved, resulting in faster responses when both the position and the response

are repeated. The reduced position specificity for inter-trial effects from more than one trial

back could then be a result of partial forgetting, that is, for episodes retrieved from a single

trial back the position is remembered with sufficient accuracy to make the effect fully position-

specific, whereas for older episodes the quality of the memory of the position has deteriorated,

causing the influence from that trial to spread to other positions. However, our “position

spreading” updating rule, which was designed to investigate this possibility, while it qualita-

tively predicted the same pattern of inter-trial effects seen in the data (i.e. highly position spe-

cific inter-trial effects from one trial back, but less position specific for more than one trial

back, see S3 Appendix), actually performed somewhat worse than the “position gradient” rule

in terms of AIC. This could mean that the pattern of inter-trial effects does not reflect an ini-

tially position-specific memory episode which later spreads; instead, it could also be that our

“position spreading” updating rule did not implement the spreading in the right way, as there

are many different ways in which position-specific learning followed by spreading might

potentially work.

For the feature-related priming of pop-out effect [3], the best updating rule used updating

of the evidence accumulation rate, based on, after each trial, shifting some of a shared “weight”

resource to the target color on that trial. In our previous study, a very similar “weighted-rate”

rule best explained inter-trial effects for the target dimension [12]. The small deviations of the

model fit from the behavioral data consisted in the model slightly underestimating the influ-

ence of older trial history (older than trial n-3). This deviation might possibly reflect a separate

updating mechanism, operating on a slower time scale, with slower memory decay. Priming of

pop-out with different speeds of memory decay has previously been proposed based on experi-

ments in which sustained repetition of one target color was followed by fewer trials with a dif-

ferent target color [37]. This resulted in initially stronger priming for the second, more

recently primed color, followed by a period of better performance for the first color, that is, the

longer build-up period resulted in slower memory decay. The possibility that there may be dif-

ferent priming mechanisms with different speeds of memory decay is also supported by a

modeling study showing that the temporal kernel for priming of the target-defining feature,

capturing how the priming effect decays with time, is better fitted by a sum of two exponential

functions, one with slower and one with faster decay, than a single exponential function [21].

The target position also plays an important role in inter-trial priming, as known as to the

positional priming of pop-out [8,19]. Our model comparisons suggested the best updating

rule, similar to the updating rule for the feature-related priming of pop-out, used updating of

the evidence accumulation rate, based on, after each trial, shifting some of a shared “weight”

resource to the target position and away from the distractor positions on that trial. The second

best alternative updating rule, which is close to the best one, for the positional priming of pop-

out is to update the component of the non-decision time in the evidence accumulation process

based on the target position repetition and switch. A further analysis (see S1 Appendix) based

on counting how often an updating rule appeared in the best model for an individual partici-

pant and session, showed that 71% of the best model fits for the position-based updating used

an updating rule operating on the rate while 29% used an updating rule operating on the non-

decision time (compared to 96% on rate and 4% on non-decision time for color and 82% on

starting point and 11% on non-decision time for the RCF). In most cases, the second best posi-

tion-based updating rule operated on the same parameter as the best rule (70% for the partici-

pants for who the best rule operated on the rate, and 100% for the participants for who the best

PLOS COMPUTATIONAL BIOLOGY Inter-trial effects in priming of pop-out: Comparison of computational updating models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009332 September 3, 2021 20 / 35

https://doi.org/10.1371/journal.pcbi.1009332


rule operated on the NDT) but using a different updating rule (in most cases either weighted

rate/NDT without distractor inhibition or with matched distractor inhibition). This relatively

high proportion of the best models using a rule based on non-decision time combined with

the relatively small difference in AIC between the best non-decision time updating rule and

the overall best rule suggests that there may be more than one mechanism underlying posi-

tion-based inter-trial effects. If the response related inter-trial effects reflect an episodic

retrieval mechanism as discussed above, then one possibility is that, in addition to the response

itself, the S-R mapping has also been bound into the same event file with the position, and the

second mechanism for position-based inter-trial effects (in addition to the attentional “weight-

ing” mechanism discussed above) could involve faster retrieval of the S-R mapping when the

target occurs at the same position. The reason why there was much less evidence of any second

mechanism for color-based inter-trial effects could then be that there was less strong binding

of the color, compared to the position, and response into the episode, which is also supported

by the weaker interaction between color repetition and response repetition compared to posi-

tion repetition and response repetition in the mean RTs. This might possibly be a consequence

of the singleton detection nature of the task, that is: participants were searching for a color sin-

gleton, which could be either of two colors both of which were also used as distractor colors,

rather than an item of a specific color, perhaps making them less likely to include the specific

color in the event file.

Taken together, the best model we found used updating of the starting point based on the

history of the responses and updating of the evidence accumulation rate based on the history

of the color and target position. This suggests that the response-critical feature repetition/

switch induces a response bias in the direction of recent responses given to (a stimulus at) the

exact same or a nearby position. By contrast, the target color repetition/switch alters the effi-

ciency of processing of the target. Similarly, inter-trial effects for position may reflect more

efficient processing of a recent target location and less efficient processing of recent distractor

positions. In both cases (target color and position), more attentional “weight” resources are

allocated to recent target properties. Of note, the present model comparison for the feature

priming of pop-out could not distinguish between effects of resources being moved to the tar-

get color and effects of resources being moved away from the distractor color, owing to the

design of the present experiment. In the behavioral study, as has been common practice in

experiments on priming of pop-out (e.g. [3,8]), the target color and distractor color were either

both repeated or they were swapped, so there was no condition in which only the target color,

but not the distractor color, was repeated or vice versa. However, previous experiments that

have examined the separate effects of repetition/switch of the target and the distractor color

have found repetition benefits for both, although of unequal size (e.g., [38]; Experiment 8 in

[3,39]).

For all updating comparisons, both the LATER and the DDM models made a consistent

prediction for the best updating rules, though, the LATER models outperformed the DDMs in

terms of AICs across. This was also the case in a previous study with the pop-out search task

[12]. One modification we did for the LATER model is that we included a non-decision time

to make it comparable to the DDM. This additional parameter may contribute in some degree

for the flexible fitting with the LATER. In addition, it should be noted that we used a closed-

form approximation of the RT distribution predicted by the DDM [40] to keep the computa-

tional demands at a manageable level. This approximation may not capture trial-to-trial vari-

ability of the non-decision time, which might also contribute to the difference in AIC between

the LATER model and the DDM. Nevertheless, the most critical outcome from both models is

that the best updating rules were consistent.
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It should be noted that here we used one single stage of evidence accumulation process,

while in reality each trial may have involved multiple stages of perceptual decisions. Even if the

target is the first item to be attended to, observers would need to both confirm that the item is

the target and also make a perceptual decision about the RCF (notch position). In addition, the

target is likely not to be the first item selected on a significant proportion of trials [16]. There-

fore, the model parameters, starting point, drift rate and non-decision time have to be inter-

preted with some caution. However, the temporal profile of inter-trial effects is likely to

depend more on the memory/forgetting mechanisms of the different updating rules than on

the details of the model of perceptual decisions on an individual trial, which would explain

why our simple model could still capture these temporal profiles quite well.

Of note, although the present modeling approach inherently assumes a one-stage architec-

ture of decision making, the results can be reconciled with current notions of the functional

architecture of pop-out visual search in so-called ‘compound’ tasks, which require a response

to a target feature (here: position of the notch in the target shape: top vs. bottom) that is sepa-

rate from the detection-critical feature (here: odd-one-out color of the target shape). Current

notions, in the Guided Search framework (e.g., [41–43]), envisage a two-stage architecture

with a preattentive stage determining which locations to select for focal-attentional processing,

followed by a post-selective stage of attentional analysis of the selected items. Attentional selec-

tion is based on the computation of ‘priority’ signals which themselves are ‘feature-blind’: they

signal that an item (at a high-priority location) is maximally different from the surrounding

items (‘feature contrast’), but not in what feature(s) it differs from these items. The latter is

established in post-selective processing, which determines whether the item in the focus of

attention is actually a target (rather than a non-target) and extracts any further features neces-

sary for choosing the required response (‘stimulus-response mapping’). Even though couched

in terms of a one-stage decision process, the present findings appear to be compatible with this

two-stage architecture:

(i) The fact that both target color- and position-based intertrial history affects the rate of

evidence accumulation is consistent with models of search guidance based on the computation

of a map of attentional priority signals: in a parallel-competitive process, that location is

selected for attentional processing (extraction of stimulus and response-critical features) for

which the priority signal crosses the attention-triggering threshold first. Within such a frame-

work, color history (top-down) modulates bottom-up feature (contrast) coding, with recent

target colors being up-weighted and distractor colors correspondingly down-weighted in a

manner that operates equally and in parallel across the respective feature map, giving rise to a

spatially non-specific feature repetition effect; and position history modulates the landscape of

the priority map via intra-map connections, with recent target locations being up-weighted

and distractor locations correspondingly down-weighted, giving rise to featurally non-specific

position repetition effects (e.g., [7,44]). Evidence that the combined dynamics is mediated via

separable (featural and positional) weighting mechanisms (modulating the feedforward con-

nections from the feature maps to the priority map and, respectively, the intra-map connec-

tions within the priority map) may also be gleaned from the fact that the decay factors differ

between the two types of repetitions effects. This is further supported by a reanalysis of Gokce

et al.’s [19], EEG data, which revealed that the (event-related) N2pc component is modulated

by both color- and position-based inter-trial transitions (see S5 Appendix): Repeating the

same target color resulted in a shorter peak latency of the N2pc, compared to switching the

colors. And positional inter-trial effects were expressed in the amplitude, rather than the tim-

ing, of the N2pc component: compared to targets at previously neutral locations (TN condi-

tion), the amplitude was smaller in the repeated target-position (TT) condition and larger in

the target-at-previous-distractor-location (TD) condition. This could mean that, while the
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attentional priority signal emerged as fast at a previous distractor as at a previous target loca-

tion (i.e., ‘attentional shifting was equally rapid), more ‘effort’ needed to be expended to ‘atten-

tionally engage’ a prioritized item at a previous distractor location–consistent with, for

example, [45]. In any case, these findings indicate that both color and position repetitions facil-

itate search at an early, attentional-selection stage.

And (ii) the fact that the effect of repetition of the response-critical feature is tied to the tar-

get location (i.e., it occurs only for TT transitions) would support accounts according to which

this effect arises at a post-selective (focal-attentional) stage which implements, and buffers, epi-

sodic bindings between target features (including its position) and the response selected based

on these features. See, for instance, Hommel et al.’s [46] episodic ‘theory of event coding’, or

TEC, which was designed to explain ‘partial repetition effects’, such as prolonged RTs to a tar-

get which occurs at the same location as that on the previous trial, but which requires a

changed response: the idea is that the position repetition re-activates the S-R binding (‘event

file’) established on the previous trial, invoking a bias towards giving the same response; this

gives rise to fast reactions when the response (or the response critical feature) repeats, but to

slowed reactions when there is a change (because in this case the induced bias needs to be

overcome; see also episodic-retrieval account of Huang et al. [4] and the more general ‘Binding

and Retrieval in Action Control (BRAC)’ framework recently proposed by Frings et al. [36]).

These notions are consistent with the present findings that RCF repetitions influence the start-

ing point of the evidence accumulation process in terms of a (repetition) bias–and that they do

so exclusively for target position repetitions, because episodic (S-R) event files are set up only

for attentionally selected and analyzed ‘target’ stimuli. Note that we did not model the possibil-

ity that response-repetition effects might also be dependent on feature repetition (i.e., that the

target-defining feature may also be part of the retrieved event), because the BF did not provide

conclusive evidence for an interaction between response repetition and feature repetition.

However, this may be due to lower uncertainty for target color (2 alternatives) than for target

position (8 alternatives) in our paradigm. Recent evidence suggests that reliance on retrieval

depends on uncertainty (e.g., [36,47]).

Of course, to what extent our one-stage decision models can completely capture what is

essentially a two-stage dynamic process needs to be seen in future modeling work, perhaps

bringing together models of tasks that require pre-attentive target selection with no (or mini-

mal) demands on post-selective processing (such as simple-detection tasks) and tasks that

require post-selective processing with no (or minimal) target selection (e.g., presenting targets

at validly pre-cued locations, as in [16]). However, S4 Appendix can ascertain that our single-

stage model captures much of the dynamics. In this appendix, we show that a multi-stage

model, with separate item-selection, target-confirmation, and response-selection stages, makes

very similar predictions for the respective temporal inter-trial effect profiles when the winning

position- and color-based updating rules are applied to the rate parameter of the item-selection

stage and the winning response-based updating rule is applied to the starting point of the

response-selection stage. We take this to indicate that our single-stage model provides a suffi-

ciently good approximation for the purpose of determining which updating rules best explain

the temporal profiles of the inter-trial effects.

Relation between featural and dimensional ‘priming’ in visual singleton

search

From a theoretical perspective, one final issue to be discussed concerns the relations between

target feature priming (PoP), which is characterized by long-lasting inter-trial effects, and

dimension priming (e.g., [5]), which is characterized by relatively short-lived inter-trial effects
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(modeled in our previous paper [12]). We believe that, due to the ‘nature’ of the displays typi-

cally used in the two paradigms (PoP: three or four regularly arranged items that are relatively

widely spaced, with the target being defined in a fixed dimension; dimension priming: multi-

item arrays of densely arranged items, maximizing local target feature contrast, with the tar-

get-defining dimension being variable), dimension priming impacts the computation of target

saliency (which is thought to be dimension-specific in nature; see also [48]), with minimal

involvement of top-down feature-based processes (see, e.g., [49,50]). Specifically, our dimen-

sion-weighting account (e.g., [5,6]) assumes that dimensional priming is implemented in

terms of the competitive up-/down-modulation of the weights of feature contrast signals com-

puted within the alternative, potentially target-defining dimensions in their transfer to the

supra-dimensional ‘priority’ map, which then drives the allocation of attention. In contrast,

given that the target is relatively non-salient in typical PoP paradigms (resulting in failure to

pop-out on a significant number of trials; e.g., [16,17]), feature-based top-down biasing (along

with positional cues as well as ‘Gestalt’-based processes; regarding the latter, see [13]) comes

prominently into play in PoP paradigms.

Thus, in typical PoP paradigms with color-defined targets, observers would have to posi-

tively establish which color the target is in order to be certain that the response is not made to

a distractor item. This would involve matching of a selected item to a ‘target template’ held in

working-memory (WM). If a match is established, the activation of the template is increased

(and perhaps that of the alternative template decreased, generating inter-trial effects at this

post-selective stage; see below). Thus, given that the template in turn biases early, entry-level

feature coding (as demonstrated in a plethora of studies, e.g.,[42,51]), the relative activation

state of the templates determines the ‘priming’ of the respective feature detectors, and thus the

computation of feature contrast within the (target-defining) color dimension. This in turn

would speed up the computation of priority for the target item, albeit unreliably. Given noise

in the contrast-computation process and given that the ‘wrong’ feature template might boost

distractor feature coding, it can happen that a distractor achieves a higher contrast than the

target (especially on a trial with a color swap), leading to selection of a non-target item. By

comparison, in dimension-priming paradigms, the target feature contrast is so high that the

wrong item gets virtually never selected; and observers can respond reliably “target-present”

based on the presence of a feature-contrast or ‘priority’ signal–without needing to know

exactly what feature defines the target (see, e.g., [52]), that is: the demands on target-template

matching are minimal, minimizing the biasing of entry-level target feature coding.

Thus, in both paradigms, ‘prediction’ of the target feature (PoP) or target dimension

(dimension priming) would be expressed in a speeding (of the rate of evidence accumulation)

at the pre-attentive, target-selection stage (as evidenced by ‘early’ attention-related N2pc effects

in both paradigms: e.g, PoP: [19]; see also current S5 Appendix); dimension priming: [53,54]).

Positional inter-trial effects are seen also with both paradigms (dimension priming: [53,54])

and produce N2pc effects (at least in PoP; see [19] and S5 Appendix). These effects would be

consistent with faster accumulation of selection-related, ‘priority’ evidence in both paradigms.

In addition, post-selective target-checking might be a contributory factor, though predomi-

nantly in PoP (where this stage becomes necessary for the reasons discussed above): assuming

that some template is in a higher state of activation (because it matched the target on the previ-

ous trial), again a match of the current target to that template might be expedited. Behavioral

evidence suggests that template checking operates in a more serial fashion (compared to the

parallel co-active computation of selection priority), that is, a selected item is checked only

against one template at the time (see [55]). Assuming that the winning template is carried over

to the next trial (i.e., the selected item is first matched against this template), this could give

rise to feature- (and dimension-) priming effects at this level. Dedicated modeling work would
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be required to ascertain whether this would be expressed in a shift of the starting point or the

rate of evidence accumulation at this post-selective stage.

In summary, we believe that both feature-priming and dimension-priming effects can be

accommodated within the same functional architecture of search guidance, such as the early

level of feature extraction (priming of feature detectors) and, respectively, the integration

(summation) of feature-contrast signals across dimensions by the priority map (modulating

the integration weights of dimensional signals, giving rise dimension priming). The fact that

the two types of priming have differential time courses (long n-back effects for feature priming,

relatively short-lived effects for dimension priming) would be consistent with the idea that the

two types of priming arise at different levels in the search architecture. In particular, we believe

that feature priming involves some interaction between target templates held in WM and early

feature coding, so that the inter-trial effects could arise at one or the other or both levels.

Conclusion

In conclusion, we found that our modeling framework, consisting of an evidence accumula-

tion model with trial-to-trial updating of the parameters based on stimulus history, can in gen-

eral accurately predict the pattern of RT variability resulting from priming from one to eight

trials back. The modeling results suggested that the RT benefits resulting from repetition of the

color or position of the target can be best understood as short-term memory based up-modula-

tions of the target’s perceptual priority (in the model captured by re-distribution of a weight

resource which modulates the evidence accumulation rate), while the benefits resulting from

repetitions of the response may instead reflect a bias towards the previous response (in the

model captured by a shift of the starting point), perhaps resulting from retrieval of an an event

file created on the previous trial. Interestingly, while the response based priming appears to be

nearly completely position-specific for priming from a single trial back (i.e., there was only a

response repetition benefit if the position was also repeated), it seems to be less position-spe-

cific for priming from more than one trial back, which could reflect forgetting of the precise

position in older event files.

Methods and models

Ethics statement

Written informed consent was obtained prior to the start of the experiment and anonymity of

observers’ data was guaranteed. The study was approved by the LMU Department of Psychol-

ogy Ethics Committee.

The behavioral data modeled here come from a previously published, combined behavioral

and EEG study [19]. While we describe the most important behavioral methods below, more

detail can be obtained from the original publication [19].

Participants

14 participants (8 female, mean age: 23, SD: 1.74 years), recruited from the participant panel of

the unit of Experimental Psychology, LMU Munich, took part in the study. All participants

had normal or corrected-to-normal visual acuity, and all reported normal color vision and

being right-handed. Participants were naïve as to the purpose of the study. Participants were

paid at a rate of 8 € per hour, or received course credits for their participation.
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Apparatus and stimuli

The search display consisted of four items, appearing in four out of eight possible stimulus

locations arranged equidistantly on a circular layout. The four items could appear in either a

diamond configuration, with items appearing on the top, bottom, leftmost and rightmost posi-

tions of the circle, or a square configuration. Each item was a diamond shape with a section

(“notch” on either the top or the bottom cut-off. The items were either red or green and one of

the four items, the target, was always differently colored from the other three (see Fig 2).

Procedure

The experiment was divided into two sections each consisting of eight blocks of 112 trials.

Each trial started with a fixation cross presented for 500 ms, followed by the stimulus display

presented for 200 ms. The trial then ended when the participant made a response or after one

second if the participant had not yet responded. The mapping between the notch positions

and the response buttons in the first session of the experiment was counterbalanced across par-

ticipants and it was reversed in the second session. On trials where no response was given

within one second and on trials with an incorrect response feedback was given (“Too slow”/

”Error”) and presented for 1 s.

Design and task

The task of the participants was to find the uniquely colored item, the target, and respond with

a left or right mouse button press depending on whether the notch on the target was on the

top or bottom. The target was red with green distractors and green with red distractors on an

equal number of trials. The position of the notch for each item was determined randomly on

each trial. The sequence of target positions was chosen in such a way that the target appeared

in each of the eight possible positions equally often, while transitions from trial n-1 to trial n
were equally often to the previous target location, a previous distractor location, or a previ-

ously empty location (by switching the item configuration between the diamond and square

configurations).

Bayes factors

Bayesian ANOVA and associated post-hoc tests were performed using JASP 0.10 (http://www.

jasp-stats.org) with default settings. All Bayes factors for main effects and interactions in the

ANOVA are ‘inclusion’ Bayes factors calculated across matched models. Inclusion Bayes fac-

tors compare models with a particular predictor to models that exclude that predictor. That is,

they indicate the amount of change from prior inclusion odds (i.e., the ratio between the total

prior probability for models including a predictor and the prior probability for models that do

not include it) to posterior inclusion odds. We used inclusion Bayes factors calculated across

matched models meaning that models that contain higher order interactions involving the pre-

dictor of interest were excluded from the set of models on which the total prior and posterior

odds were based. Inclusion Bayes factors provide a measure of the extent to which the data

support inclusion of a factor in the model. Bayesian t-tests were performed using the ttestBF

function of the R package ‘BayesFactor’ with the default setting (rscale = “medium”).

Models and updating rules

Each model consisted of an evidence accumulation model: either the LATER model or the

DDM, and three updating rules, each of which specified how one aspect of stimulus history

should affect the trial-to-trial change of a parameter of the evidence accumulation model, or in

PLOS COMPUTATIONAL BIOLOGY Inter-trial effects in priming of pop-out: Comparison of computational updating models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009332 September 3, 2021 26 / 35

http://www.jasp-stats.org/
http://www.jasp-stats.org/
https://doi.org/10.1371/journal.pcbi.1009332


some cases how two aspects of stimulus history jointly should affect parameter changes (the

“position-dependent” and “position-gradient” rules: rules 3–5 and 15–18 below). There was

one such updating rule for the response-defining feature, one for the target color, and one for

the target position, and in each case one of the factor levels specified that no updating at all

should take place. For the DDM, we used a closed-form approximation [43], adding a scaling

parameter that determined the size of the random component of the drift diffusion model.

This was necessary since our rule for updating the starting point made the scale non-arbitrary.

Models were fitted using maximum likelihood, using the R function ‘constrOptim’ to find the

minimum value of the negative log likelihood. Error trials and outliers were excluded from the

calculation of the likelihood, but were included when implementing the updating rules. Outli-

ers were defined as trials with RTs slower than 1.5 s or faster than 200 ms.

To make sure we found the best possible fit for each combination of updating rules, we

used an inner and an outer optimization process. The inner optimization process was run for

each combination of parameters that was tested by the outer optimization process, to find the

best possible values of the inner parameters for those values of the outer parameters. The inner

parameters were the parameters of the evidence accumulation model itself, except for the non-

decision time which was an outer parameter. For the LATER model, the inner parameters

were the starting point boundary separation, and the mean and standard deviation of the dis-

tribution for the rate. For the DDM, the inner parameters were the starting point boundary

separation, the rate, and the scaling parameter. The outer parameters were the non-decision

time and 0 to 3 parameters for each updating rule (see descriptions of the individual updating

rules below for details).

Below we describe the different updating rules. Because many of these could be applied to

more than one aspect of stimulus history, namely, target color, target notch position (the

response-critical feature or RCF), or target position, we refer to the aspect of stimulus history

based on which updating was performed using the generic term “updating variable” (or UV).

For color-based updating and RCF-based updating, the UV can take two different values (for

color: green target with red distractors or red target with green distractors; for the RCF: notch

on top or bottom of the target item). For position-based updating, it could take eight values

corresponding to the eight possible target positions.

Updating rule 1: No updating. With this updating rule, the updating variable contributed

no change of any model parameters from trial to trial. This serves as the baseline.

Updating rule 2: Position independent (PI) Bayesian S0. With this updating rule, the

starting point (S0) was updated based on the history of the updating variable. In line with Gold

and Shadlen [26] and Noorani and Carpenter [32], we assume that S0 is determined by the log-

arithm of the prior odds of two decision outcomes (H vs. ~H, the two possible perceptual deci-

sions regarding the value of the updating variable):

S0 ¼ log
PðHÞ

1 � PðHÞ
: ð1Þ

We further assume that the prior probability P(H), rather than being fixed, is updated trial-

wise according to Bayesian inference, because participants are learning the frequencies of dif-

ferent stimulus properties and using this knowledge as a prior when making perceptual deci-

sions. We model this updating using a Beta distribution as the starting distribution on the

prior (a hyperprior) and updating this based on the Bayes rule after each trial using the

PLOS COMPUTATIONAL BIOLOGY Inter-trial effects in priming of pop-out: Comparison of computational updating models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009332 September 3, 2021 27 / 35

https://doi.org/10.1371/journal.pcbi.1009332


Bernoulli likelihood:

PðHtjXt...1Þ / PðXtjHtÞ � PðHtjXðt� 1Þ...1Þ: ð2Þ

It started out unbiased, i.e., the two parameters of the Beta distribution initially had the

same value β0. In addition to the Bayesian updating, this updating rule also incorporated a for-

getting mechanism based on the Dynamic Belief Model (DBM; [35]), such that after each trial

there was a probability α that the prior was redrawn from the starting distribution P(H0):

PðHtþ1jXt...1Þ ¼ aPðHtjXt...1Þ þ ð1 � aÞPðH0Þ: ð3Þ

This updating rule contributes two parameters, α and β0, to the model.

Updating rule 3: Position-dependent (PD) Bayesian S0. This updating rule is the same

as rule 2, but learning a separate distribution for each of the eight possible target positions. All

eight distributions start as the same starting distribution, a Beta distribution with the two

parameters having the same value β0. However, after each trial, only the distribution associated

with the target position on that trial was updated according to Eq 2. The forgetting mechanism

(Eq 3) was applied to every position after each trial. This updating rule contributes two param-

eters, α and β0, to the model.

Updating rule 4: Position-gradient (PG) Bayesian S0. Similar to rule 2 and rule 3, this

updating rule is in a sense intermediate between the two. Instead of either updating completely

independently of position (like rule 2) or updating completely specific to a single position (like

rule 3), updating was applied to every position on each trial, but the magnitude of the update

decreased with the distance to the target position on that trial. The “partial” updates were

implemented by using a weighted average between the Bernoulli likelihood and an equally dis-

tributed likelihood (note that applying Bayes rule with an equally distributed likelihood leaves

the prior distribution unchanged and is therefore equivalent to not updating at all) for P(Xt|

Ht) in Eq 2, where the weight given to the Bernoulli likelihood decreases exponentially with

distance to the target position:

PðXtjHtÞ ¼ o
dpþ ð1 � odÞ=2; ðo < 1Þ; ð4Þ

where d is the distance from the position being updated to the target position, ranging from

d = 0 (the target position itself), through d = 1 (for each of the two neighbouring positions) to

d = 4 (for the position on the opposite side of the circle).

The forgetting mechanism (Eq 3) was applied (equally) to every position after each trial.

This updating rule contributes three parameters, α, ω and β0, to the model.

Updating rule 5: Position-spreading (PS) Bayesian S0. This updating rule was similar to

rule 3 in that the originally completely separate probability distributions were learned for each

position, but differed in that there was some degree of spreading of the learned distributions to

other positions between trials. The spreading was applied immediately after determining the

starting point biases on each trial, before updating the probability distributions based on the

stimulus on that trial, so that the updates from one trial back had not yet been subjected to the

spreading. The spreading was done by replacing the probability distribution associated with

each position with a weighted average of the probability distributions from every position,

Pi ¼
P

jwðdijÞPj=
P

jwðdijÞ; ð5Þ

where Pi is the probability distribution associated with a particular position in the search dis-

play, the sum was performed over all positions in the search display, and dij is the distance

between position i and j. The weight w decreased with the distance between positions
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according to a Gaussian distribution with zero mean and standard deviation σ:

w dij

� �
¼

1

s
ffiffiffiffiffiffi
2p
p e� d

2
ij=2s2

ð6Þ

This updating rule contributes three parameters, α, σ and β0, to the model.

Updating rule 6: Binary rate. Unlike updating rules 2–5 which all update the starting

point, this rule applies to updating the evidence accumulation rate. This rule assumes that the

rate only depends on whether there was a change of the updating variable from one trial back

and not on the earlier trial history. The rate was decreased by scaling with κ (<1), if the updat-

ing variable has changed:

rn ¼ k
ð1� dUVn ;UVn� 1

Þr ð7Þ

where dUVn ;UVn� 1
is the Kronecker delta function applied to the values of the updating variable

on trials n and n-1. This factor level contributes one parameter, κ, to the model.

Updating rule 7: Step rate. Like rule 6, this updating rule also assumes that the rate

decreases after a switch of the updating variable compared to after a repetition. However,

unlike rule 6, this rule assumes that these rate changes last for more than a single trial, but with

memory decay. Specifically, the rate was scaled with κ on each trial, where κ has a starting

value of (κ0 = 1), and then increases by Δ after each UV repetition and decreases by Δ after

each UV switch. Also, the same forgetting mechanism as in rule 3 was used, so that κ was par-

tially reset to the starting value (of 1) after each trial, thereby giving trials from further back

less influence:

knþ1 ¼ a � ðkn þ ð2dUVn ;UVn� 1
� 1Þ � DÞ þ ð1 � aÞ�k0

¼ a � ðkn þ ð2dUVn ;UVn� 1
� 1Þ � DÞ þ ð1 � aÞ ð8Þ

where dUVn ;UVn� 1
is the Kronecker delta function applied to the values of the updating variable

on trials n and n-1. This updating rule contributes two parameters, α and Δ to the model.

Updating rule 8: Weighted rate. Like rule 7, this rule assumed that the rate was influ-

enced by the entire history of the updating variable, with memory decay giving older trials less

influence. However, this rule differed in that it used a separate scaling factor κ(i) for each differ-

ent level of the UV, and the κ(i) always summed to a constant value, as if there was a shared

‘weight’ resource. After a trial on which a given value of the UV had occurred, some weight

was moved to the scaling factor associated with that value of the UV and the same amount of

weight was removed from all of the other scaling factors combined, removing an equal amount

from each one, such that the total change summed to zero. In addition, the same forgetting

mechanism used for rule 6 was applied. This updating rule was inspired by the dimension-

weighting account [5,6]. Specifically, each scaling factor started as κ(i) = 1, and after each trial

they were updated as:

k
ðiÞ
nþ1 ¼ a

 

kðiÞn þ di;jD �
�
1 � di;j

� D

N � 1

� �!

þ 1 � að Þ; ð9Þ

where δi,j is the Kronecker delta function, j is the index for the scaling factor associated with

the value of the UV that occured on that trial and N is the total number of different possible

values for that UV (two for the RCF and color, eight for position). This updating rule contrib-

utes two parameters, α and Δ to the model.

Updating rule 9: Weighted rate with distractor inhibition. This updating rule is similar

to rule 8 but specific to position related updating. In addition to shifting weight to the target
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position, weight is shifted away from each of the three distractor positions. Like in rule 8 this is

done in such a way that the sum of all changes is zero:

k
ðiÞ
nþ1 ¼ aðk

ðiÞ
n þ di;jDt � ð1 � di;jÞð

Dt

N � 1
Þ �

P
k�Dn
ðdi;k

Dd

3
� 1 � di;k
� �Dd

5
Þ þ 1 � að Þ; ð10Þ

where δi,j is the Kronecker delta function, j is the index for the scaling factor associated with

the value of the UV that occured on that trial, N is the total number of different possible values

for the UV, and k is summed over the three distractor positions on trial n. This updating rule

contributes three parameters, α and Δt and Δd to the model.

Updating rule 10: Weighted rate with matched distractor inhibition. This updating

rule is similar to rule 9 but the increase in weight to the target position was exactly matched

with the decrease in weight for the distractor positions and the weight of neutral (empty) posi-

tions was not changed:h matched distractor inhibition.

k
ðiÞ
nþ1 ¼ a kðiÞn þ di;jD �

P
k�Dn

di;k
D

3

� �� �

þ 1 � að Þ ð11Þ

where δi,j is the Kronecker delta function, j is the index for the scaling factor associated with

the value of the UV that occured on that trial, and k is summed over the three distractor posi-

tions on trial n. This updating rule contributes two parameters, α and Δ to the model.

Updating rule 11: Binary NDT. This updating rule is similar to rule 6 in that it only takes

into account whether there was a change of the UV from a single trial back, and ignores the

older history, but instead of updating the evidence accumulation rate it is the non-decision

time that is updated. The non-decision time is reduced by a constant amount Δ if the UV was

repeated compared to if it changed from one trial back. This updating rule contributes one

parameter, Δ to the model.

Updating rule 12: Weighted NDT. This updating rule is similar to rule 8, except that it

updates the non-decision time instead of the rate. Also, instead of updating a scaling factor,

the non-decision time is updated directly. In particular the non decision-time on trial n for

level i of the updating variable was:

tðiÞn ¼ t0 þ dt
ðiÞ
n ; ð12Þ

where τ0 was a constant baseline component of the non-decision time and dtðiÞn started as

dt
ðiÞ
1 ¼ 0 on trial 1 and was then updated after each trial by subtracting a constant amount

from the dtðiÞn associated with the level of the UV which occured on that trial (thereby making

the non-decision time associated with that level of the UV shorter) and adding the same

amount distributed over the other levels of the UV. In addition the same forgetting mechanism

used in rule 8 was applied, partially resetting dtðiÞn to the starting value of zero after each trial.

These updates are described by the following equation:

dt
ðiÞ
nþ1 ¼ aðdt

ðiÞ
n � di;jDþð1 � di;jÞð

D

N � 1
ÞÞ; ð13Þ

where δi,j is the Kronecker delta function, j is the index for the scaling factor associated with

the value of the UV that occured on that trial and N is the total number of different possible

values for the UV (two for the RCF and color, eight for position). This updating rule contrib-

utes two parameters, α and Δ to the model.

Updating rule 13: Weighted NDT with distractor inhibition. This updating rule is simi-

lar to rule 10 but specific to position related updating (like rule 9). In addition to shifting

weight to the target position, weight is shifted away from each of the three distractor positions.

PLOS COMPUTATIONAL BIOLOGY Inter-trial effects in priming of pop-out: Comparison of computational updating models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009332 September 3, 2021 30 / 35

https://doi.org/10.1371/journal.pcbi.1009332


Like in rule 12 this is done in such a way that the sum of all changes is zero:

dt
ðiÞ
nþ1 ¼ aðdt

ðiÞ
n � di;jDtþð1 � di;jÞð

Dt

N � 1
Þ þ

P
k�Dn
ðdi;k

Dd

3
� 1 � di;k
� �Dd

5
ÞÞ; ð14Þ

where δi,j is the Kronecker delta function, j is the index for the scaling factor associated with

the value of the UV that occured on that trial, N is the total number of different possible values

for the UV, and k is summed over the three distractor positions on trial n. This updating rule

contributes three parameters, α and Δt and Δd to the model.

Updating rule 14: Weighted NDT with matched distractor inhibition. This updating

rule is similar to rule 13 except the decrease in NDT to the target position was exactly matched

with the sum of increase in NDT over the three distractor positions and the neutral (empty)

positions were not changed:

dt
ðiÞ
nþ1 ¼ aðdt

ðiÞ
n � di;jDþ

P
k�Dn
ðdi;k

D

3
ÞÞ; ð15Þ

where δi,j is the Kronecker delta function, j is the index for the scaling factor associated with

the value of the UV that occured on that trial, and k is summed over the three distractor posi-

tions on trial n. This updating rule contributes two parameters, α and Δ to the model.

Updating rule 15: Position dependent (PD) step NDT. This rule is similar to rule 3, in

that updating only affects the position where the target occured, but applied to the non-deci-

sion time instead of the starting point, and with updating and memory dynamics similar to

rule 7, in that repetitions/switches of the UV from trial to trial result in decreases/increases of

δτ which are partially remembered across trials. A separate δτ is updated for each position,

according to:

dtnþ1 ¼ aðdtn þ ð2dUVn;UVn� 1
� 1Þ � DÞ; ð16Þ

where dUVn ;UVn� 1
is the Kronecker delta function applied to the UV on trial n-1 and the UV on

trial n (so ð2dUVn ;UVn� 1
� 1Þ equals 1 for repeated UV and -1 for UV switch). This updating rule

contributes two parameters, α and Δ to the model.

Updating rule 16: Position-gradient (PG) step NDT. This rule is similar to rule 4, but

updating the non-decision time instead of the starting point. A separate δτ is updated for each

position, such that each update most strongly affects the target position but also affects other

positions with the size of the update decaying with distance:

dtnþ1 ¼ aðdtn þ ð2dUVn ;UVn� 1
� 1Þ � odDÞ; ðo < 1Þ; ð17Þ

where d is the distance from the position being updated to the target position, defined the

same way as for rule 6, and dUVn ;UVn� 1
is the Kronecker delta function applied to the UV on trial

n-1 and the UV on trial n. This updating rule contributes three parameters, α, ω, and Δ to the

model.

Updating rule 17: Position-dependent (PD) weighted rate. This rule is similar to rule 8,

except that, similar to rule 3, updating is done separately for each position. Like rule 8 it used a

separate scaling factor for each different level of the UV, but unlike rule 8, these scaling factors

were also different for each position: k
ði;pÞ
nþ1 where i represents the level of the UV and p the posi-

tion. For each position, the scaling factors summed to a constant value (summing over the dif-

ferent levels of the UV). After each trial, the scaling factor associated with the target position

on that trial was updated according to Eq 9 while only the forgetting rule was applied to the
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scaling factors associated with different positions:

k
ði;pÞ
nþ1 ¼ ak

ði;pÞ
n þ ð1 � aÞ for p 6¼ pt

n; ð18Þ

where pt
n is the target position on trial n. This updating rule contributed two parameters, α and

Δ to the model.

Updating rule 18: Position-gradient (PG) weighted rate. This rule is similar to rule 8,

except that, like for rule 17, scaling factors were different for each position: k
ði;pÞ
nþ1 and, similar to

rule 4, the magnitude of the update decreased with the distance to the target position. After

each trial, the scaling factors were updated by shifting weight to the level of the UV which

occured on that trial, with the size of the update decreasing with distance:

k
ði;pÞ
nþ1 ¼ aðk

ði;pÞ
n þ odð2di;j � 1ÞDÞ þ ð1 � aÞ; ð19Þ

where δi,j is the Kronecker delta function, j is the index for the scaling factor associated with

the value of the UV that occured on that trial, and d is the distance from the position being

updated to the target position, defined the same way as for rule 4.

Model comparison

Given that our model had four factors with 2, 12, 8, and 10 levels (evidence accumulation

model, RCF-based updating, color-based updating, and position-based updating), there were a

total of 1920 possible combinations of the factor levels. Each combination considered had to

be fit to each of the two sessions for 14 participants. If each possible combination of factor lev-

els had been considered, this would have resulted in a total of 26880 model fits. Since this

would have been computationally too demanding, we used the following procedure to find a

model which cannot be improved by changing any single factor:

1. For each of the three updating rule factors, the model was fitted to the data from both ses-

sions for all participants, for each level of that factor, with the other two updating rule fac-

tors fixed to the “no updating” level. This was done for both levels of the evidence

accumulation (EA) model factor (LATER model and DDM).

2. For each of the three updating rule factors, the mean AIC was compared between the differ-

ent factor levels, finding the best factor level for that factor in terms of the lowest AIC,

across both levels of the EA model factor.

3. Steps 1 and 2 were repeated but now fixing factors to the “best” levels discovered in (the

previous repetition of) step 2 instead of to the “no updating” level. This repetition contin-

ued until the best factor level for each factor was the same as in the previous repetition. This

happened on the third repetition, that is, there was no change between the second and third

repetitions, and only the position-based updating factor changed between the first and sec-

ond repetition.
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