
Vol.:(0123456789)

SN Computer Science (2022) 3:1
https://doi.org/10.1007/s42979-021-00920-1

SN Computer Science

ORIGINAL RESEARCH

Diversity Forests: Using Split Sampling to Enable Innovative Complex
Split Procedures in Random Forests

Roman Hornung1

Received: 26 May 2021 / Accepted: 2 October 2021
© The Author(s) 2021

Abstract
The diversity forest algorithm is an alternative candidate node split sampling scheme that makes innovative complex split
procedures in random forests possible. While conventional univariable, binary splitting suffices for obtaining strong predictive
performance, new complex split procedures can help tackling practically important issues. For example, interactions between
features can be exploited effectively by bivariable splitting. With diversity forests, each split is selected from a candidate split
set that is sampled in the following way: for l = 1,… , nsplits : (1) sample one split problem; (2) sample a single or few splits
from the split problem sampled in (1) and add this or these splits to the candidate split set. The split problems are specifi-
cally structured collections of splits that depend on the respective split procedure considered. This sampling scheme makes
innovative complex split procedures computationally tangible while avoiding overfitting. Important general properties of the
diversity forest algorithm are evaluated empirically using univariable, binary splitting. Based on 220 data sets with binary
outcomes, diversity forests are compared with conventional random forests and random forests using extremely randomized
trees. It is seen that the split sampling scheme of diversity forests does not impair the predictive performance of random
forests and that the performance is quite robust with regard to the specified nsplits value. The recently developed interac-
tion forests are the first diversity forest method that uses a complex split procedure. Interaction forests allow modeling and
detecting interactions between features effectively. Further potential complex split procedures are discussed as an outlook.

Keywords Random forests · Ensemble learning · Classification · Decision trees

Introduction

Random forests [4] are one of the strongest and most well-
known prediction methods for categorical and continuous
outcomes. There are also closely related variants for vari-
ous other types of outcomes, for example, survival [16] and
ordinal [14] outcomes. Demonstrating their strong practi-
cal relevance, random forests have been used frequently for
predicting various outcomes in the context of the current
COVID-19 pandemic [32]. Particular examples in this area
include [8], who used random forests to predict the effect
of social distancing and [17], who used a combination of
random forests with the AdaBoost algorithm [11] to pre-
dict patient outcome. In the eponymous paper on random

forests by Breiman [4], they are defined as ensembles of
tree prediction rules, where each of these trees depends on
a random vector Θ . These random vectors are sampled anew
for each tree, but from the same distribution. This defini-
tion is quite general and not confined to a single, specific
procedure, as the nature and generation of the random vec-
tor Θ is not further specified. Today, the term “random for-
ests” is commonly used for a specific procedure; see below
for details. Breiman [4] showed that the more accurate the
predictions of the individual trees and the smaller the cor-
relations between these predictions, the greater the predic-
tive performance of random forests becomes. Given that the
predictive information contained in the training data set is
limited, it is not possible that the individual trees perform
very well and, at the same time, deliver predictions that are
very disparate. Instead, any randomization procedure will be
associated with some kind of tradeoff between the quality
and the disparity of the tree predictions.

Breiman [4] proposed a randomization procedure that
improved on the previously existing bagged ensembles of

 * Roman Hornung
 hornung@ibe.med.uni-muenchen.de

1 Institute for Medical Information Processing, Biometry
and Epidemiology, University of Munich, Marchioninistr.
15, 81377 Munich, Germany

http://orcid.org/0000-0002-6036-1495
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00920-1&domain=pdf

 SN Computer Science (2022) 3:1 1 Page 2 of 16

SN Computer Science

trees by strongly increasing the disparity of the tree predic-
tions while accepting a small drop in the quality of these
predictions. This increased disparity of the tree predictions
is attained by randomizing the choices of the features con-
sidered for each split in the trees as opposed to considering
all features in each split. Unlike in the original paper on ran-
dom forests [4], today the term “random forests” is (almost)
exclusively used to describe the forest algorithm associated
with this specific randomization procedure. In this proce-
dure, the trees are constructed in the following way: (1) draw
a bootstrap sample or subsample from the training data set;
(2) construct a tree using the sample drawn in step (1), where
each split in the tree is determined as follows: (a) draw a
random subset of size mtry from all features; (b) determine
that split of the current node in the ordered values of the
mtry features drawn in step (a) that is best with respect to a
pre-specified split criterion. The elements of this procedure
that are associated with the random vector Θ are the indices
of the training data observations sampled in step (1) and
the indices of the features sampled for each split. The term
“conventional random forests” will denote this procedure in
the following, where “random forest” will be abbreviated
as “RF”.

As seen from the description above, in the split selection
of conventional RFs each possible split in the mtry randomly
sampled features is considered. In this paper the procedure
of extending the randomization procedure in the split selec-
tion by not only randomly sampling from the features, but
also, in addition, randomly sampling from the splits in the
features will be investigated. The latter idea was, in its most
basic form, first considered in extremely randomized trees
[12]. With extremely randomized trees, the split selection is
performed in the following way: first, sample mtry features
as in the case of conventional RFs. Second, randomly draw
only one split in each of the mtry features sampled in the
first step. Third, use the split from the mtry splits drawn in
the second step that is associated with the best value of the
split criterion. The term candidate split set will in the fol-
lowing be used for the set of splits considered as candidates
for a specific split and the members of the candidate split
set will be referred to as candidate splits. For example, in
the case of conventional RFs, the candidate split set associ-
ated with a split is the collection of all possible splits in the
mtry sampled features, where each of these splits is thus a
candidate split.

A major advantage of randomizing the split selection
in the considered features that has, to my knowledge, not
been considered so far is that it makes innovative complex
split procedures tangible. Examples of more complex split
procedures than the univariable, binary splitting used in
conventional RFs are multivariable splitting and multi-way
splitting. A multivariable split procedure uses (binary) splits
that involve a number of K > 1 or fewer features and in a

multi-way split procedure the nodes are split into (poten-
tially) more than two child nodes. Splits in complex split
procedures involve one or more features. In the following,
the collection of all possible splits of a node that involve a
specific set of one or several features will be denoted a split
problem. The structures of split problems depend on the
specific split procedures considered. In the case of classi-
cal, univariable, binary splitting a split problem would be
all binary splits in feature x5 . A split problem in the case of
a multivariable split procedure with binary splitting could
be all (multivariable) binary splits that involve one, two or
all three of the features x1 , x7 , and x123 . When randomizing
the split selection, not all splits contained in a split problem
have to be tried out, but instead a single split or a smaller
number of splits can be randomly sampled from the split
problem. The following can be performed repeatedly: first,
sample one of the split problems randomly and, second,
sample one or a few splits randomly from the split problem
drawn in the first step. In the following, RFs that randomize
the split selection in randomly selected features in this form
and may feature complex split procedures (e.g., multivari-
able splitting described above) will be denoted diversity
forests, hereafter referred to as DFs. As will be discussed
in this paper, the DF algorithm both reduces the compu-
tational burden associated with complex split procedures
and avoids overfitting resulting from trying out all splits
in large split problems. There exist works on decision tree
approaches for the complex split procedures multivariable
splitting (see, e.g., [1, 5, 6, 22, 29] and references therein)
and multi-way splitting [2, 10, 33] mentioned above. None
of these approaches seem to have become established for
constructing trees in RFs. These approaches use specialized
(estimation) procedures to find suitable splits. In contrast,
the DF split sampling scheme does not require specialized
split finding algorithms for different complex split proce-
dures. Instead, this simple split finding procedure can be
applied to split forms of any complexity. Moreover, the pro-
cedure is independent of the considered outcome type and
can thus be applied, for example, to categorical, continuous
or survival outcomes. New complex split procedures realiz-
able with the DF algorithm should focus less on improving
the predictive performance of RFs, and more on tackling
practically important issues, such as interaction detection
or measuring feature importance for multi-class outcomes.
The persistent popularity of conventional RFs suggests that
it is difficult to improve on the predictive performance of this
algorithm. Nevertheless, oblique random forests [21] and
in particular, the recently introduced heterogeneous oblique
random forests [19], both of which use multivariable split-
ting, showed promising results. As can be seen from the
above descriptions, the DF algorithm is not to be used to
improve on existing random forest variants that use com-
plex split procedures, but to make new practically useful

SN Computer Science (2022) 3:1 Page 3 of 16 1

SN Computer Science

split procedures computationally possible while avoiding
overfitting.

When using univariable, binary splitting as is also done
in conventional RFs, DFs are similar to RFs with extremely
randomized trees. The single difference is that with DFs, it
is possible that non-fixed numbers of splits in the same fea-
ture are contained in the candidate split sets, whereas with
RFs with extremely randomized trees, one split (or a fixed
number of splits, see “Empirical Comparison Study Using
Univariable, Binary Splitting”) is considered per randomly
sampled feature. The reason why non-fixed numbers of splits
in the same feature can be contained in the candidate split
sets for DFs, is that members of the same split problem can
be featured in the candidate split sets, because the split prob-
lems are sampled with replacement. Calhoun et al. [7] pre-
sented RFs with acceptance–rejection trees (RFARs), where
trees are constructed in a similar manner to the trees in DFs.
As with DFs using univariable, binary splitting, Calhoun
et al. [7] repeatedly sample single splits from randomly sam-
pled features, where the latter are drawn with replacement.
The difference between the two split selection procedures is
that, in contrast to the trees in DFs, the number of candidate
splits is not fixed in acceptance–rejection trees. Instead, the
split selection procedure is ended as soon as a split is found
that delivers a statistically significant association between
the values of the outcome and those of the binary variable
that indicates, which of the observations in the current node
belong to the two resulting child nodes (see “Discussion” for
a discussion of the properties of this proceeding). Note that,
even though, in the case of univariable, binary splitting, DFs,
conventional RFs, RFs with extremely randomized trees, and
RFARs all consider the same collections of possible splits,
the trees obtained using these different approaches will dif-
fer, because the split selection is performed differently.

The main purposes of this paper are to introduce DFs, to
compare extensively the predictive performance associated
with random split selection as performed by DFs to that
associated with conventional split selection, and to study
how sensitive the results are to the number of candidate
splits used. In these analyses the basic form of DFs that
uses univariable, binary splitting will be used. However, a
recently developed DF method that uses an innovative com-
plex split procedure, interaction forests [15], will be pre-
sented as well. Interaction forests allow to model and detect
interaction effects between features effectively. More DF
methods with other types of complex split procedures will
be considered in future work.

The rest of the paper is structured as follows. In
“Description of Diversity Forests” the DF algorithm is
described in its general form. “Heuristic Discussion of

Advantages of the Split Selection Procedure of DFs over
that of Conventional RFs for Complex Split Procedures”
provides heuristic discussions of the advantages of the DF
split selection procedure in comparison to that of conven-
tional RFs. The extensive empirical comparison study of
DFs with other RF-based approaches using univariable,
binary splitting is presented in “Empirical Comparison
Study Using Univariable, Binary Splitting”. In this sec-
tion, first, the large collection of data sets with binary
outcomes used in the analysis is introduced. Second,
a preliminary study using a subset of these data sets is
described; this study focused on investigating the sen-
sitivity of DFs to tuning parameter value selection and
determining suitable parameter value grids for optimizing
these parameters. Third, the design and the results of the
large-scale comparison study are detailed. In “Examples
of Complex Split Procedures” the DF method interac-
tion forests and further potential complex split proce-
dures are treated as an outlook. The discussion (“Discus-
sion”) briefly recalls important findings of the analyses
performed in the paper and discusses various additional
issues. Finally, “Conclusions” summarizes the main con-
clusions from the paper.

Description of Diversity Forests

As conventional RFs, DFs are large collections of decision
trees, where each of them is constructed using a random
subsample or bootstrap sample from the training data.
IFs differ from conventional RFs in the way the splits are
selected during the construction of the trees.

As described above, with conventional RFs, the can-
didate split sets consist of all splits in the sampled split
problems, where in the case of univariable, binary split-
ting, a split problem contains all splits in a specific fea-
ture. Thus, the candidate split sets considered with this
procedure are specifically structured subsets of the set
allsplitsnode of all splits in all features associated with the
current node. With DFs differently structured subsets of
allsplitsnode are considered. A candidate split set considered
with DFs consists of (small) subsets of the splits in the
sampled split problems.

Algorithm 1 shows a sketch of the split selection pro-
cedure performed in the construction of the trees in DFs.
Details follow below.

 SN Computer Science (2022) 3:1 1 Page 4 of 16

SN Computer Science

Algorithm 1 Sketch of the split selection procedure in diversity forests
1: If the node is small, reduce the number of candidate split draws nsplits in

order to avoid potential overfitting. The degree of reduction is controlled by
a parameter proptry ∈ (0, 1]. May be omitted for complex split procedures
(i.e., proptry = 1).

2: Starting with an empty set candsplits = ∅ of candidate splits: For l =
1, . . . , nsplits:

a: Draw randomly a split problem sp from the set of all split problems.

b: Depending on the split procedure, draw randomly either a single split
or a small number of splits cand from sp .

c: If l > 1 and any split from cand is contained in candsplits repeat
steps a and b, otherwise continue with the next iteration. May be omitted
for complex split procedures with large numbers of split problems.

d: Add cand to the candidate split set candsplits.

3: Choose the split splitnode ∈ candsplits that leads to the optimal value
of the considered split criterion.

While the number of candidate split draws is generally
set to a fixed number nsplits, where the latter is a tuning
parameter, choosing smaller numbers of candidate splits for
small nodes may prevent overfitting. For small nodes the
pre-specified number of candidate split draws nsplits might
be too large, because, depending on the split procedure, for
small nodes the set allsplitsnode of all possible splits can also
be small. If the latter is the case, nsplits candidate split draws
may constitute an overly large proportion of allsplitsnode . For
this reason, when using nsplits candidate split draws in the
case of small nodes, the best splits out of these candidate
splits are likely to divide the node very well or even per-
fectly. Such splits may, however, not be that distinct when
applied to new test observations for the purpose of predic-
tion. Instead, the lower layers of the trees may be overly
well adjusted to the training data, performing suboptimally
when used in prediction. To inhibit such an overfitting result-
ing from sampling too many candidate splits, a parameter
proptry is introduced that allows limitation of the maximum
number of candidate splits for small nodes. If the pre-spec-
ified nsplits value is larger than proptry × #{allsplitsnode} ,
where # indicates the cardinality, nsplits is reduced to
⌊proptry × #{allsplitsnode}⌋ . The parameter proptry is larger
than zero with a maximum value of one, where the latter
value corresponds to always selecting the pre-specified num-
ber of candidate splits, irrespective of node size.

As discussed above the structures of the split problems
depend on the type of the split procedure considered. Moreo-
ver, the split problems may also have unequal selection prob-
abilities in step 2 a. For complex split procedures it may be
difficult or costly to determine the number of all possible
splits #{allsplitsnode} , which is necessary for the reduction of
nsplits using proptry in step 1. In such situations, a proptry
value of one may be used, in which case there would be no
restriction of the numbers of candidate splits for small nodes
(that is, step 1 above would be omitted). This is justifiable

by the real data analysis shown in “Pre-study: Determina-
tion of Suitable Grids for the Tuning Parameter Values”,
which revealed that the results are not sensitive to the choice
of proptry and that a value of one is often suitable. The
selection probabilities of the splits in the sets cand may not
be independent (for an example, see “Interaction Detection
Through Bivariable Splitting in Interaction Forests)”.

The basic form of DFs that uses univariable, binary split-
ting and the recently developed method interaction forests
are implemented in the R package diversityForest,
which is a fork of the popular R package ranger [30] that
uses a fast C++ implementation for most of the calcula-
tions. In future work, further diversity forest methods will be
implemented in diversityForest as well. The package
is available on CRAN (https:// cran.r- proje ct. org/ web/ packa
ges/ diver sityF orest/ index. html) and github (https:// github.
com/ Roman Hornu ng/ diver sityF orest).

Heuristic Discussion of Advantages
of the Split Selection Procedure of DFs Over
that of Conventional RFs for Complex Split
Procedures

The split selection procedure of DFs has two advantages
over that of conventional RFs when considering complex
split procedures.

Smaller candidate split sets Because only one or a few
candidate splits are sampled from each split problem the
candidate split sets are generally much smaller than in the
case of conventional RFs. For complex split procedures the
split problems contain many splits and with the split selec-
tion procedure of conventional RFs these would all be added
to the candidate split sets. Evaluating the resulting candi-
date split sets would be computationally challenging or even
impossible. For example, suppose that in a K-variable split
procedure all combinations of split points between up to K
features would be considered. This would make the corre-
sponding split problems exceedingly large, in particular for
larger sample sizes.

More informative splits in the candidate split sets The
second advantage of the split selection procedure of DFs is
that the candidate split sets tend to feature more informative
splits than in the case of conventional RFs. The first reason
for this is that, in the case of DFs, the sampled candidate
splits have more diverse qualities than in the case of conven-
tional RFs. This is because with DFs the different candidate
splits in the candidate split sets mostly stem from different
split problems and the qualities of the splits tend to differ
more strongly across different split problems than within a
certain split problem. This in turn is due to the fact that the
features differ (strongly) in terms of the predictive informa-
tion contained, making it more important which features are

https://cran.r-project.org/web/packages/diversityForest/index.html
https://cran.r-project.org/web/packages/diversityForest/index.html
https://github.com/RomanHornung/diversityForest
https://github.com/RomanHornung/diversityForest

SN Computer Science (2022) 3:1 Page 5 of 16 1

SN Computer Science

considered for splitting than which specific splits in a certain
split problem involving one or several features are used. The
second reason, why the candidate splits sets likely contain
more informative splits for DFs is that they can be expected
to feature more split problems than in the case of conven-
tional RFs. This is because trying out all splits in a larger
number of split problems, as would be done for conven-
tional RFs, would not be beneficial, because it would lead
to overfitting: An extensive search for good splits using the
training data set makes it likely that the selected split deliv-
ers child nodes that are very homogenous with respect to the
outcome. However, unfortunately, it is also likely that due
to this extensive search in the training data, the child nodes
resulting from this split will exhibit a higher level of homo-
geneity than would sets of new, independent observations
associated with these child nodes. This is due to the fact that
observed measurements are subject to random fluctuation
not related to the predictive information contained in the
features. This overfitting issue would likely be relevant for
particularly complex split procedures, because for these the
split problems are very large and more heterogeneous. Thus,
it would likely only be possible to consider (very) few split
problems with conventional RFs without causing a deterio-
rated predictive performance resulting from overfitting.

Empirical Comparison Study Using
Univariable, Binary Splitting

In this section, after introducing the collection of data sets
considered in this paper, the designs and the results of the
preliminary study and the large-scale comparison study are
detailed.

Data

As data material 220 publicly available data sets with binary
outcomes were used. These data sets were also used in the
study by Couronné et al. [9], who compared RFs with default
tuning parameter values with logistic regression. In their
study, the mean cross-validated value of the area under the
ROC curve (AUC) obtained with RFs with default tuning
parameter values was 0.041 points higher than that obtained
with logistic regression. From the 243 data sets used by Cou-
ronné et al. [9], all data sets with more than 10,000 obser-
vations were excluded (n = 19) to limit the computational
burden and from the remaining 224 data sets all data sets
with more than 500 features were excluded (n = 4). All data
sets are publicly available from the OpenML database [27];
for details on the acquisition of this collection of data sets,
see [9]. Tables S1–S5 in Online Resource 1 provide infor-
mation on each of the data sets. In the following, all tables

and figures labeled using the prefix “S” are found in Online
Resource 1.

The analysis was performed using the statistical software
environment R (versions 3.5.0 and 3.6.0). All R code writ-
ten to perform and evaluate the analyses as well as the pre-
processed versions of the data sets used in the analyses are
made available in Online Resource 2.

Pre‑study: Determination of Suitable Grids
for the Tuning Parameter Values

As seen in “Description of Diversity Forests”, DFs feature
two tuning parameters: the number of candidate split draws
nsplits considered for each split and the proportion proptry
of candidate splits to sample from all possible splits in the
cases of small nodes.

A common way of choosing tuning parameter values in
RFs is to try out several different values for these parameters
from a pre-specified grid and choose the values that lead
to the smallest out-of-bag (OOB) prediction error [3, 18].
The grid of tuning parameter values should not be specified
overly dense, because the more parameter values have to be
tried out, the more computationally costly the optimization
will be. However, the grid should still be dense enough to
ensure that the differences in prediction error associated with
neighboring grid values can be expected to be small for the
great majority of data sets.

In this subsection an analysis of the sensitivity of the
performance of DFs to the choices of the values of the two
parameters nsplits and proptry will be presented. Using this
analysis a two-dimensional grid for nsplits and proptry was
determined, which was used for tuning in the comparison
study in “Large Scale Comparison Study of DFs Against
Conventional RFs and RFs with Extremely Randomized
Trees”. To determine this grid, first, for a collection of 50
data sets the prediction error of DFs using univariable,
binary splitting was measured for each pair of tuning param-
eter values nsplits and proptry from a dense two-dimensional
grid. Subsequently, the estimated prediction errors obtained
for the different tuning parameter values and data sets were
inspected to coarsen the two-dimensional grid to obtain a
grid sufficiently dense for practical use. Note, however, that
this grid is likely unsuitable for more complex split proce-
dures than univariable, binary splitting. The main purpose of
this analysis was to study the sensitivity of the performance
of DFs to the choice of nsplits and proptry.

The 50 data sets used in this pre-study were ran-
domly sampled from the 220 data sets described in
“Data”. The two-dimensional grid considered for
nsplits and proptry involved each pairwise combi-
nation from the grids {2, 5, 10, 30, 50, 100, 200} and
{0.01, 0.05, 0.1, 0.3, 0.5, 0.8, 1} , where the former was
used for nsplits and the latter for proptry. To estimate the

 SN Computer Science (2022) 3:1 1 Page 6 of 16

SN Computer Science

prediction error in each case fivefold stratified cross-valida-
tion repeated two times was used. For each DF 2000 trees
were grown.

Figures S1, S2, and S3 show the cross-validated AUC
values for each data set and for each parameter value pair
from the two-dimensional grid. It can be seen easily from
these plots that very small values of proptry are detrimental
for many data sets, but beneficial for some data sets. How-
ever, the plots look quite different for different data sets and,
given the multitude of data sets and parameter values, it is
difficult to draw reliable conclusions from these plots. For
this reason, we will first study the influences of nsplits and
proptry separately before commenting on potential interac-
tions between the values of these parameters. Figures S4,
S5, and S6 show the influences of nsplits on the cross-val-
idated AUC values for each data set. More precisely, for
each nsplits value considered, the plots show the maximum
cross-validated AUC value obtained over the seven differ-
ent values of proptry. For some data sets (e.g., for ‘448’
and ‘788’), the prediction results are notably worse for very
small values of nsplits. Apart from this observation, nsplits
does not seem to have any notable influence on the predic-
tive performance. Moreover, for none of the 50 data sets
does the predictive performance change notably for nsplits
values larger than 30. Figures S7, S8, and S9 show the influ-
ences of proptry on the cross-validated AUC values in an
analogous way as in the cases of Figures S4, S5, and S6.
For most of the data sets the prediction results are worse
for small values of proptry, where this performance drop
for small proptry values is often negligible; for a consider-
ably large number of data sets, however, it is strong or very
strong (e.g., for ‘334’, ‘448’, and ‘1455’ the cross-validated
AUC is about 0.5 for proptry = 0.01 , but close to 1 for large
proptry values). The performance is frequently particularly
bad for proptry = 0.01 , that is, the smallest of the proptry
values. Nevertheless, there are some data sets, for which
the prediction results were slightly better for small proptry
values (e.g., for ‘43’ and ‘1464’). In almost no cases does
the predictive performance change notably for proptry val-
ues between 0.3 and 1 and, in those cases in which there is
a slight difference, larger values of proptry delivered better
results (e.g., for ‘334’ and ‘788’).

Above the influences of nsplits and proptry were stud-
ied separately. The first important finding in this analy-
sis was that, while very small values of nsplits can be
detrimental, the predictive performance does not seem to
change notably for nsplits values larger than or equal to 30.
This finding would suggest recommending use of the fixed
value 30 for nsplits. The second important finding was
that large values of proptry lead to (much) better results
for the majority of data sets, but for some data sets small
proptry are preferable. Moreover, often proptry = 0.01 lead
to much worse results than proptry = 0.05 . Given that the

results hardly differed when varying the proptry value
between 0.3 and 1 with a slight tendency for better per-
formance for larger values of proptry, these results would
suggest recommending the grid {0.05, 1} for proptry. Using
nsplits = 30 and choosing proptry from {0.05, 1} would,
however, only be reasonable, if there are no interactions
between these parameters with respect to their effect on
the performance that would lead to different combinations
of nsplits and proptry being optimal for a relevant propor-
tion of data sets. To study whether or not the latter is the
case, we reexamine Figures S1, S2, and S3: For most data
sets, the plots either do not suggest any relevant inter-
action effects or the differences in performance are very
small across all parameter values considered. However,
for some data sets (e.g., for ‘53’ and ‘479’) we observe
the following pattern: The larger the value of nsplits, the
more the predictive performance depends negatively on
proptry; as a consequence, bad predictive performances
occurring in the case of large nsplits values are prevented
when the proptry values are small at the same time. This
negative dependency of the predictive performance on the
proptry value for large nsplits values can be interpreted as
follows: for these data sets, larger values of nsplits lead to
overfitting in the cases of smaller nodes. This overfitting
is prevented, if the proptry values are small at the same
time, because small proptry values will have the effect
that fewer candidate split values are considered for smaller
nodes. For such data sets, for which there is a danger of a
relevantly strong overfitting of small nodes by consider-
ing too many candidate splits, this overfitting should be
prevented by fixing nsplits = 30 and choosing proptry from
the grid {0.05, 1} . In this situation the optimization algo-
rithm will choose the proptry value 0.05, provided that
this proptry value will be associated with a smaller OOB
prediction error than the proptry value one.

The results described above show that, regardless of
whether the values of nsplits and proptry interact with
respect to their effect on the predictive performance, fixing
nsplits = 30 and choosing the proptry value from the grid
{0.05, 1} is appropriate. Therefore, the latter proceeding is
recommended and will be followed in the analyses presented
later in this paper. The main results of the analysis presented
in this subsection are presented in Table 1.

In general, the above analysis revealed that, provided that
the values of nsplits and proptry are not specified very small,
the influences of these parameters are only weak. The split
selection procedure of DFs does not depend on the split pro-
cedure considered. For this reason, the general conclusion
that the sensitivity of DFs to the choices of the values of
nsplits and proptry is low, provided that these values are
not chosen too small, can be assumed to also hold for more
complex split procedures. However, since the above analy-
sis considered exclusively univariable, binary splitting, for

SN Computer Science (2022) 3:1 Page 7 of 16 1

SN Computer Science

other, more complex, split procedures no detailed statements
regarding the choice of suitable values for nsplits and prop-
try can be made.

Large Scale Comparison Study of DFs Against
Conventional RFs and RFs with Extremely
Randomized Trees

The main purpose of the analysis presented in this subsec-
tion was to compare the predictive performance of DFs
with that of conventional RFs and RFs with extremely rand-
omized trees using the large collection of data sets described
in “Data”. Additional goals were to analyze the influence of
data set characteristics on the predictive performances of
the methods and the optimized tuning parameter values, as
well as the sensitivity of the performances of the methods to
changes in the values of the tuning parameters. As described
above, both RFs with extremely randomized trees and DFs
have in common that the split selection is randomized. In
their original definition [12], extremely randomized trees
use only one randomly sampled split per considered feature.
However, the implementation of RFs with extremely rand-
omized forest provided with the R package ranger [30]
allows consideration of larger, fixed numbers of splits per
considered feature.

As seen in the analysis presented in the paper introduc-
ing RFARs [7], they perform similarly well to RFs with
extremely randomized trees: Using ten data sets with binary
outcomes, Calhoun et al. [7] compared the classification per-
formance of RFARs with that of conventional RFs, RFs with
extremely randomized trees and RFs with so-called smooth
sigmoid surrogate trees [26]; RFARs, RFs with extremely
randomized trees and RFs with smooth sigmoid surrogate
trees each performed best for three of the data sets and, for
one data set, RFARs and RFs with extremely randomized
trees both performed best. Calhoun et al. [7] used the OOB
AUC to compare the predictive performances of the meth-
ods. For all four methods, I calculated the medians of these
values across the ten data sets and found that these median
values were very similar between the methods. In the current
paper, RFARs were not included in the comparison study,
because its goal was not to demonstrate superiority of DFs
using conventional univariable, binary splitting over specific
other approaches. Instead, its main goal was to compare the

predictive performance resulting from random split selec-
tion with that resulting from conventional split selection. If
random split selection would be (strongly) inferior to con-
ventional split selection, it would not be meaningful to apply
the concept of random split selection for realizing innovative
complex split procedures using DFs.

Study Design

For DFs, nsplits was set to 30 and the proptry value associ-
ated with the smaller OOB prediction error was selected
from the grid {0.05, 1} . Two variants of RFs with extremely
randomized trees were considered, where, for the first vari-
ant, only one split was randomly drawn from each of the
mtry considered features and, for the second variant, five
splits were drawn. These two variants will be referred to
as “RFsextr1” and “RFsextr5”, respectively. The values of
mtry for RFs, RFsextr1, and RFsextr5 were selected from
grids, where again in each case the value was selected that
featured the smallest OOB prediction error. If the number
of features was at most 20, the grid considered featured each
possible value for mtry. For data sets with more than 20
features, a grid for mtry featuring 20 values was formed in
the following way: {[ilog(p)∕ log(20)] ∣ i ∈ {1,… , 20}} , where
p denotes the number of features. The forests constructed for
each parameter value from the respective grids consisted of
1000 trees and the forests constructed after optimization that
featured the optimized parameter values consisted of 2000
trees. Again, as in the pre-study, fivefold stratified cross-val-
idation repeated twice was used for predictive performance
estimation.

As Couronné et al. [9] who used the same data sets in
their study, the prediction accuracy (ACC), the AUC, and
the Brier score were considered as performance measures,
where, in consistency with Couronné et al. [9], most of
the interpretations are based on the ACC without loss of
generality.

Results

Global performance Table 2 shows summary estimates of
the performances of the different methods across data sets
according to the three considered performances measures.
More precisely, the quartiles of the different performance

Table 1 Overview of results of
pre-study on the sensitivity of
DFs to the choices of nsplits
and proptry

Parameter Meaning Range Conclusions from pre-study

nsplits Number of sampled split problems / splits [1,∞) Low impact on results;
fixed value (nsplits = 30)
sufficient

proptry Controls the degree of reduction of nsplits for
small nodes

(0, 1] Low impact on results;
select from {0.05, 1}
(using OOB error)

 SN Computer Science (2022) 3:1 1 Page 8 of 16

SN Computer Science

measures calculated per data set are shown. For all three per-
formance measures, the quartiles differ only slightly between
the different methods. Nevertheless, for all three measures,
RFs are outperformed by the other methods in terms of the
median. The biggest differences are seen in terms of the
AUC, where both RFsextr1 and RFsextr5 outperform RFs
by more than 0.01 in terms of the median. RFsextr1 and
RFsextr5 also outperform DFs with respect to the median
AUC; however, DFs outperform both RFsextr1 and RFsextr5
in terms of the first quartile of the AUC values and perform
almost identical in terms of the third quartile of these values.

Wilcoxon tests were used to test, whether the slight
improvements of DFs, RFsextr1, and RFsextr5 over RFs
with respect to the three measures are statistically signifi-
cant. In the case of DFs the 50 data sets that had been used
in the pre-study for determining suitable grids for the tun-
ing parameter values were excluded. This choice was made
to avoid potential overoptimism resulting from having used
part of the collection of data sets in setting up the algorithm.
DFs performed significantly better (� = 0.05) than RFs with
respect to the AUC and the Brier score, but not with respect
to the ACC (p values: ACC: 0.057, AUC: 0.002, Brier: <
0.001). Note that the same conclusions are obtained when
including the 50 data sets used in in the pre-study. RFsextr1
were significantly better than RFs for all three measures (p
values: ACC: 0.046, AUC: < 0.001, Brier: < 0.001) and
for RFsextr5 the same conclusions were obtained as in the
case of DFs (p values: ACC: 0.057, AUC: < 0.001, Brier: <
0.001). It must be stated that these p values might be slightly
overoptimistic, because the data sets are not fully independ-
ent. As the data set labels in Tables S1–S5 reveal, several
of the data sets form groups in the sense that they constitute
versions of the same data set. The effect sizes of the tests

were all in the small to moderate range (DF vs. RF: ACC:
r = 0.15, AUC: r = 0.24, Brier: r = 0.35; RFsextr1 vs. RF:
ACC: r = 0.14, AUC: r = 0.34, Brier: r = 0.43; RFsextr5 vs.
RF: ACC: r = 0.14, AUC: r = 0.27, Brier: r = 0.40).

Performance differences obtained for the individual data
sets The above analysis concerned the summarized perfor-
mances of the methods across data sets. However, naturally
the performances of the methods differ (strongly) across
data sets, because each data set features a different data dis-
tribution. The remaining evaluations presented below will
focus on the data set specific performances of the methods.
Following Couronné et al. [9], these evaluations will be
restricted to the ACC as performance measure. However,
when using the other two measures, very similar conclu-
sions are obtained (results not shown). Differences in results
obtained for the different measures will be outlined in the
following descriptions. Panel (a) of Fig. 1 shows that for the
majority of data sets studied the performances of DFs and
RFs are similar, for some data sets DFs perform notably
better than RFs and for few data sets notably worse. In panel
(b) of Fig. 1 it can be seen that DFs tend to outperform RFs
primarily in situations in which RFs perform medium well,
whereas, in cases in which RFs perform well to very well,
on average there does not seem to be a benefit from using
DFs. In the cases of RFsextr1 and RFsextr5 (Figure S10)
the differences in performance, compared to that of RFs,
are again small for the majority of data sets. However, par-
ticularly for RFsextr1, but also for RFsextr5, there are more
data sets for which there are notably strong differences in
performance compared to RFs than in the case of DFs. The
latter higher variability in results might be explained by the
fact that, for RFsextr1 and RFsextr5, larger numbers of dif-
ferent candidate tuning parameter values are considered in
the optimization than in the case of DFs. The reason why the
variability in performance compared to RFs is slightly larger
for RFsextr1 than for RFsextr5 could be that the optimiza-
tion of mtry can be expected to be more stable for RFsextr5
than for RFsextr1, because for the former, more candidate
splits are drawn per considered feature. Like DFs, RFsextr1
and RFsextr5 also tend to outperform RFs in cases in which
RFs perform medium well.

Influence of sample size and numbers of features on the
performance differences As seen at the beginning of this
subsection, overall, the differences in performance between
the methods are small. However, it was also seen that there
are data sets for which there is a notably strong difference in
performance between DFs, RFsextr1, and RFsextr5 on the
one hand and RFs on the other. This suggests that there are
specific circumstances, where larger differences in perfor-
mance between the methods can be expected. For example,
the available sample size n may affect the methods differ-
ently so that, depending on the sample size, some methods
may be preferable over others. Another factor that might be

Table 2 Performances of the different methods summarized across
the 220 data sets

Method-specific quartiles of the different performance measures cal-
culated per data set

Measure Method Q1 (25% quantile) Median Q3 (75% quantile)

ACC RF 0.7681 0.8802 0.9568
DF 0.7673 0.8823 0.9602
RFsextr1 0.7761 0.8810 0.9598
RFsextr5 0.7704 0.8821 0.9600

AUC RF 0.7637 0.9070 0.9849
DF 0.7794 0.9106 0.9878
RFsextr1 0.7704 0.9207 0.9869
RFsextr5 0.7737 0.9202 0.9881

Brier RF 0.0384 0.0910 0.1657
DF 0.0355 0.0896 0.1680
RFsextr1 0.0360 0.0891 0.1648
RFsextr5 0.0353 0.0881 0.1654

SN Computer Science (2022) 3:1 Page 9 of 16 1

SN Computer Science

of relevance is the number of features p available for a data
set. In Fig. 2, the influences of sample size and number of
features on the performance of DFs and RFs are illustrated.
As expected, both n and p have a positive influence on the
data set specific ACC values (panels (a) and (b) of Fig. 2).
Given that we did not observe notably strong differences
between RFs and DFs above, it is not surprising that, for
most sample sizes and numbers of features, the differences
in performance between the two methods are not notable.
However, panels (a) and (b) of Fig. 2 do reveal that for very
small n and p DFs perform slightly better than RFs. Panels
(c) and (d) of the figure do not reveal any noteworthy inter-
action between the effect of the sample size and that of the
number of features on performance differences between RFs
and DFs.

The influence of n and p on the performance of RFsextr1
and RFsextr5 in comparison to that of RFs is investigated in
Section D of Online Resource 1.

Influence of data set characteristics on the selected tun-
ing parameter values While nsplits was set to a fixed value
in the analyses, the value of proptry was selected from 0.05
and 1 in each cross-validation iteration. Moreover, for RFs,
RFsextr1, and RFsextr5 the parameter mtry was selected
from a larger grid of values.

It is interesting to study, how different data set charac-
teristics influence the selected tuning parameter values. A
study of the influence of sample size, number of features

and strength of signal in the features on the selected tuning
parameter values of the different methods was performed.
For reasons of brevity, the in-depth analysis and discussion
of this study is described in Section E of Online Resource
1. In the following, the main findings from this study will
be discussed. It was seen that proptry values of 0.05 tend to
be selected more frequently for data sets with comparably
weak signal. This is likely due to the fact that data sets with
weaker signal are more susceptible to overfitting. By choos-
ing a proptry value of 0.05, less candidate splits are sampled
for smaller nodes and the trees are not grown to full size,
because tree growing stops as soon as 0.05 times the number
of all possible splits is smaller than one. Both of these effects
help avoiding overfitting small nodes.

As expected, the larger the number of features p, the
larger the value of the optimal mtry value tended to be for
RFs, RFsextr1, and RFsextr5. However, this relationship
was not strong. The optimal mtry values were the largest
for RFsextr1, smaller for RFsextr5 and the smallest for
RFs. It was also seen that the common rule of thumb of
setting mtry =

√
p for RFs delivers too small mtry values

for larger values of p. This is congruent with the findings
of Probst et al. [24] who used a collection of 38 data sets
to determine better default values for mtry in RFs. Probst
et al. [24] found that using the rule mtry = 0.432p delivers
better results. While it was seen in Section E.2 of Online
Resource 1 that this rule may tend to deliver too small mtry

0

20

40

60

80

−0.05 0.00 0.05 0.10
Differences between data set specific

ACC values obtained for DFs and for RFs

co
un

t
(a)

−0.05

0.00

0.05

0.10

0.5 0.6 0.7 0.8 0.9 1.0
Data set specific ACC values obtained for RFs

D
iff

er
en

ce
s

be
tw

ee
n

da
ta

 s
et

 s
pe

ci
fic

AC
C

 v
al

ue
s

ob
ta

in
ed

 fo
r D

Fs
 a

nd
 fo

r R
Fs

(b)

Fig. 1 Data set specific performances of DFs compared to that of
RFs. a Histogram of the differences between the data set specific
ACC values obtained for DFs and for RFs. The red line indicates
the zero line. b Scatter plot of the differences between the data set

specific ACC values obtained for DFs and for RFs against the data
set specific ACC values obtained for RFs. The blue curved line rep-
resents a LOESS fit. The red horizontal line again indicates the zero
line

 SN Computer Science (2022) 3:1 1 Page 10 of 16

SN Computer Science

values for small p and too large mtry values for large p, it
was clearly superior to the standard rule mtry =

√
p . The

fact that the optimal mtry values are larger for larger p does
not mean that it is necessary to choose large mtry values—or
large nsplits values in the case of DFs—for data sets with
large p to achieve a close to optimal performance: Although
the optimal mtry values were larger for larger p, the OOB
errors were close to the minimal OOB errors even when
specifying the mtry values much smaller (Online Resource
3). Typically, the OOB errors were considerably larger only
for very small mtry values, took similar values beyond that
and, for some data sets and only in the case of RFs, increased

again considerably for mtry values larger than the optimal
mtry values. For RFsextr1 and RFsextr5 interestingly the
OOB errors got quickly small and similar beyond very small
mtry values, but, as opposed to in the case of RFs, did not
get notably larger for larger mtry values. This is congruent
with the finding from “Pre-study: Determination of Suitable
Grids for the Tuning Parameter Values” that the predictive
performance of DFs is weak for very small nsplits values,
but consistently strong for larger values. The sample size
only had a weak, non-linear effect on the optimal mtry val-
ues. The strength of signal in the features had a very weak
effect on the optimal mtry values, which differed slightly

0.5

0.6

0.7

0.8

0.9

1.0

4 6 8
log(n)

D
at

a
se

t s
pe

ci
fic

 A
C

C
 v

al
ue

s
(a)

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5
log(p)

D
at

a
se

t s
pe

ci
fic

 A
C

C
 v

al
ue

s

(b)

1

2

3

4

5

6

4 6 8
log(n)

lo
g(

p)

0.000

0.004

0.008

0.012

Mean difference
between data set
specific ACC
values obtained
for DFs and for RFs

(c)

n = 644 (70% qu.) n = 2356 (90% qu.)

n = 55 (10% qu.) n = 132 (30% qu.) n = 313 (50% qu.)

1 2 3 4 5 1 2 3 4 5

1 2 3 4 5

0.80

0.85

0.90

0.95

0.80

0.85

0.90

0.95

log(p)

D
at

a
se

t s
pe

ci
fic

 A
C

C
 v

al
ue

s

(d)

Fig. 2 Influence of sample size n and number of features p on the
performance of DFs and RFs. a and b Data set specific ACC values
obtained for DFs and RFs plotted against the logarithmized values
of n and p. The lines show LOESS fits obtained for DFs and RFs,
respectively. c Two-dimensional LOESS fit of the influences of the
logarithmized values of n and p on the differences between the data
set specific ACC values obtained for DFs and for RFs. d Cross sec-

tions of two-dimensional LOESS fits of the influences of the logarith-
mized values of n and p on the data set specific ACC values obtained
for DFs and RFs, respectively. The cross sections were taken at differ-
ent quantiles of the sample sizes of all data sets. Where applicable, in
each plot the black (dark) lines show the results obtained for DFs and
the red (light) lines those obtained for RFs

SN Computer Science (2022) 3:1 Page 11 of 16 1

SN Computer Science

between RFs, RFsextr1, and RFsextr5. For more details and
further heuristic discussions the interested reader is referred
to Section E2 of Online Resource 1. Overall the influence of
the data set characteristics on the optimal mtry values was
weak, where a clear influence was only seen for the number
of features.

Examples of Complex Split Procedures

Conventionally, RFs are constructed using univariable,
binary splitting. More complex split procedures do not seem
to have received much attention in the literature. A natural
reason for the latter is likely that, as discussed in “Heuristic
Discussion of Advantages of the Split Selection Procedure
of DFs over that of Conventional RFs for Complex Split
Procedures”, with the split selection procedure of conven-
tional RFs many complex split procedures would be compu-
tationally very demanding or simply intractable. Moreover,
as also explained in “Heuristic Discussion of Advantages of
the Split Selection Procedure of DFs over that of Conven-
tional RFs for Complex Split Procedures”, even if a complex
split procedure with split problems that involve many splits
would be computationally tractable, the split selection pro-
cedure of RFs would still not be suitable, because trying out
all members of complex split problems can be expected to
lead to overfitting.

A major advantage of randomly selecting splits as per-
formed by the DF algorithm is that this, in contrast to the
split selection procedure of conventional RFs, does enable
use of such complex split procedures. In this section, I will
first present the recently developed interaction forests. Sub-
sequently, as an outlook I will discuss multi-way splitting
and further complex split procedures.

Interaction Detection Through Bivariable Splitting
in Interaction Forests

The interaction forest algorithm is the first and currently
the only published DF method that uses complex splitting.
In the literature it is often stated that conventional RFs
would be particularly effective for taking interaction effects
between features into account (see, e.g., the literature refer-
ences given in [31]). However, as discussed in [15, 31], since
the splitting—and consequently also the split selection—
is performed univariably in conventional RFs, they focus
on strong univariable effects without modeling interaction
effects effectively. There exists quite a variety of approaches
that aim at identifying interaction effects from tree ensem-
bles; for a literature overview see [15]. However, most of
these use classical, univariable, binary splitting. This likely
explains why they typically perform poorly at differentiating
truly interacting feature pairs from feature pairs for which

both pair members only feature strong marginal effects, but
no interacting effects.

In interactions forests we model interaction effects
directly using bivariable splitting. Here we differentiate
between quantitative and qualitative interaction effects [23].
A quantitative interaction means that the strength of the
effect of feature A on the outcome depends on feature B, but
the direction of that effect does not change in dependency of
the value of B. In contrast, with a qualitative interaction not
only the strength but also the direction of the effect of feature
A depends on feature B, such that A both has a positive and
negative effect. A split problem in interaction effect contains
all possible univariable and bivariable splits in one feature
pair that are of the types visualized in Fig. 3. Trying out all
possible splits of these types in a pair of features would be
computationally very demanding, especially because many
trees (default: 20,000) have to be constructed to identify
interaction effects reliably. Using the diversity forest algo-
rithm, however, only one split of each type is sampled, that
is, seven splits per split problem. Note that the selection
probabilities of the quantitative and qualitative splits (Fig. 3)
among these seven splits are not independent, because they
all share the same split points (p(j1)

b
, p

(j2)

b
).

Interaction detection with interaction forests is performed
using its effect importance measure (EIM). The latter uses a
procedure by Hapfelmeier et al. [13] to measure the impor-
tance of each of the split types shown in Fig. 3 for each
feature and feature pair. This allows to rank the feature pairs
according to the importance of their quantitative and qualita-
tive interaction effects for prediction in addition to ranking
the features according to the importance of their univariable
effects. The split types are defined in such a way in inter-
action forests that they target well interpretable interaction
effects that are easy to communicate. For higher dimen-
sional data the number of possible feature pairs becomes
too large, making in impossible to consider all feature pairs.
Therefore, for data sets with more than 100 features we pre-
select 5000 feature pairs that show the strongest indications
of interaction effects according to a screening procedure.
As stated before, interaction forests are implemented in the
diversityForest R package. Here, we also provide
plot functions for visualizing the estimated bivariable influ-
ence of feature pairs with large EIM values. The latter is
crucial for drawing conclusions on the exact forms of the
interaction effects, because these cannot be deterred from
the EIM values. Simulation results [15] suggest that the EIM
performs superior to other tree-based ensemble methods for
identifying interaction effects. Moreover, in an extensive real
data analysis using the 220 data sets that were also used in
the current paper interaction forests tended to deliver bet-
ter prediction results than conventional RFs and competing
RF-based methods that use multivariable splitting. For more
details, see [15].

 SN Computer Science (2022) 3:1 1 Page 12 of 16

SN Computer Science

Outlook: Multi‑way Splitting

In the case of classification problems with more than two
classes of the outcome, multi-way split procedures are likely
more appropriate. If the outcome has K classes, a K-way
split procedure could be applied, that is, the nodes be split
into K child nodes as opposed to only two. This would allow
to obtain K child nodes for which each of them primarily
contains observations from one of the K classes, which is
not possible using conventional binary splitting. Using a
multi-way split procedure can also improve on the (permu-
tation) feature importance measure [4] of RFs for multi-class
outcomes. This is because a multi-way split procedure puts
more emphasis on selecting split features that differentiate
well between all K classes instead of only a subset of the
classes.

Multi-way split procedures are, however, likely also ben-
eficial for two-class classification problems. Multi-way split-
ting increases the flexibility by which the univariable effects
of the features are taken into account. When performing con-
ventional binary splitting, the algorithm searches for single
splits in the values of the features that divide the observa-
tions in the node into two child nodes that are as homog-
enous as possible with respect to the outcome. However, the
splits in the features found in this way may often be subop-
timal, because there might be features that have a stronger,
but more complex influence. Such influences are more likely
to be detected using multi-way splits. An example of a more
complex influence of a feature on a binary outcome would be

a tub-shaped influence, where the probability for class 1 is
high for small values of the feature, low for moderate values
and large again for large values. Another example would be
very large probabilities for class 1 for small feature values,
probabilities around 0.5 for moderate values, and very small
probabilities for large values. When using such a feature in
binary splitting, at least one of the resulting two child nodes
will be impure. However, when using a three-way split, we
would be able to obtain two (almost) pure child nodes and
one impure node.

Considering multi-way splits instead of binary splits can
not only be expected to deliver better predictive predictive
performance of the trees, but their predictions will likely
also be more diverse. This is because the variety of features
considered in the trees is greater, as complex feature influ-
ences like the ones described above are exploited in addi-
tion to simpler influences that can be taken into account by
binary splits.

Given the recursive nature of the trees, the advantage of
multi-way splitting to allow for a more sophisticated render-
ing of the influences of the features is particularly impor-
tant with respect to the first few splits in the trees. The first
splits have the strongest influence on the structures of the
trees. For this reason, using a highly informative multi-way
split at the root of the tree can be expected to deliver a bet-
ter performing tree than using a simple, binary first split;
such a simple split will be more likely to prematurely divide
observations that are relatively similar with respect to the
outcome.

Fig. 3 Split types considered in the interaction forest algorithm. Each
square visualizes the feature space spanned by two features xj1 and xj2 .
The points p(j1)u , p(j2)u , and (p(j1)

b
, p

(j2)

b
) denote the split points for uni-

variable and bivariable splits, respectively. The white and gray areas
depict the regions associated with the two child nodes of the splits.
Figure adapted from [15]

SN Computer Science (2022) 3:1 Page 13 of 16 1

SN Computer Science

Multi-way splitting may be particularly effective for
large data sets because of the complexity of this procedure,
which benefits from the high precision associated with train-
ing using large sample sizes. A split problem in multi-way
splitting would be the following: all possible splits in a spe-
cific feature that divide the current node into (up to) K child
nodes. The larger the specified value of K, the more complex
the splits will be.

Outlook: Further Potential Complex Split
Procedures

Above the advantages of multi-/bivariable and multi-way
splits were discussed. Apart from these specific split pro-
cedures, the split selection procedure of DFs allows con-
sideration of split procedures of any complexity, avoiding
problems resulting from overfitting and high computational
cost or even infeasibility from a computational point of view.
For example, combining multivariable and multi-way split-
ting may also be considered. It would also be possible to
consider split procedures with diffuse partitions of the fea-
ture space, which may help to detect interesting predictive
patterns in the data. One example of such a split procedure
would be bivariable splitting with random partitions of the
spaces spanned by pairs of features, where these partitions
are used to assign the observations to the child nodes. A spe-
cific application area for new complex split procedures could
be multi-label data. While published random forest-based
approaches to dealing with multi-label data exist [20, 28], it
could be of interest to develop a DF approach with a more
simple tree structure for the specific purpose of measuring
feature importance for multi-label data.

Discussion

In this paper the diversity forest algorithm was introduced,
an alternative split sampling scheme that allows to use
innovative complex split procedures in random forests. The
analyses presented in this paper revealed that random split
selection as performed by diversity forests does not impair
predictive performance compared to conventional split
selection and that the results are quite robust with respect
to the number of candidate split draws nsplits considered in
split selection. These two properties open the door to using
the diversity forest algorithm for realizing new complex split
procedures in RFs. Interaction forests are the first published
DF method with a complex split procedure.

In the case of complex split procedures the total num-
bers of possible splits can become very large. If, for such
split procedures, the required number of candidate splits to
consider per split would be required to be large in relation
to the total number of possible splits, this would render the

procedure computationally intractable. However, luckily,
the required number of candidate splits is not expected to
grow with the complexity of the split procedure. This is
because the number of features is the same, independent
of the complexity of the split procedure. For complex split
procedures the probability that a sampled split involves
strong features is as large as or even larger than (the latter
being the case, e.g., for multivariable splitting) for uni-
variable, binary splitting. Given that the quality of a split
depends primarily on the feature or features used in it,
it becomes clear that the density of strong splits among
the sampled candidate splits is fairly independent of the
complexity of the split procedure. Therefore, even though
the numbers of all possible splits are much larger for com-
plex split criteria, the optimal numbers of candidate splits
should be in the same order of magnitude as that associ-
ated with univariable, binary splitting. Moreover, we saw
in “Pre-study: Determination of Suitable Grids for the
Tuning Parameter Values” and “Results” that, independ-
ent of the number of available features, for random split
selection, beyond very small numbers of candidate splits,
the predictive performance is only weakly influenced by
the number of candidate splits. For these reasons, inde-
pendently of the number of features or the degree of com-
plexity of the split procedure, it should not be necessary to
consider large numbers of candidate splits when randomiz-
ing the split selection, making forest construction well fea-
sible from a computational point of view. For example,
in interaction forests we sample a maximum number of
ten split problems per split, which, given that we sample
seven splits per split problem, leads to a maximum of 70
considered candidate splits.

The analyses presented in this paper were restricted to the
case of binary outcomes. It has been observed previously
that mtry in RFs should be chosen larger in the regression
case than in the classification case [4]. Similarly, in DFs
using a larger nsplits value in the case of metric outcomes
may be preferable. However, we also saw that the perfor-
mance of DFs is quite robust with regard to the choice of
nsplits, which is why the performance is likely not affected
notably when choosing the same nsplits value for different
outcome types. Correspondingly, the popular ranger R
package [30] uses the same default value mtry =

√
p for all

considered outcome types.
The intention of using the parameter proptry that limits

the number of candidate splits for small nodes was to inhibit
potential overfitting of small nodes resulting from consider-
ing too many candidate splits. For complex split criteria the
total numbers of candidate splits can be expected to be large
even for small nodes, which is why for specific complex
split criteria it will not be necessary to limit the numbers of
candidate splits for small nodes, but instead it will be enough
to simply use a proptry value of one.

 SN Computer Science (2022) 3:1 1 Page 14 of 16

SN Computer Science

When using univariable, binary splitting, randomizing
the split selection leads to only little improvement in pre-
dictive performance. Nevertheless, for big data applica-
tions it can be expected to also be advantageous for uni-
variable, binary splitting. This is because, for very large
data sets it is computationally demanding to try out all
possible splits in the features. Moreover, as seen in [7],
randomizing the split selection avoids problems caused
by the tendency of the trees in conventional RFs to select
features with many possible splits [25].

As described before, RFARs [7] do not use fixed num-
bers of candidate splits, but instead they continue split
sampling until a split is found that delivers a statistically
significant association between child node membership
and the values of the outcome. Using a stop criterion in
candidate split sampling would also be possible in DFs.
An advantage of this would be that, by letting the number
of required candidate splits be determined automatically,
we would avoid situations in which the default number of
candidate split draws nsplits is not suitable. However, such
situations can be expected to be rare given the robustness
of the results with respect to the choice of nsplits. Moreo-
ver, it is not clear whether using a stopping procedure in
split selection is beneficial in general. Such a procedure
has the effect that all splits in the trees are of similar qual-
ity. However, it is not clear, why this property would be
beneficial; in contrast, trees that deliver splits of varying
qualities are likely more diverse, which is associated with
better predictive performance of RFs [4].

If a stopping rule is used, it should, however, not be
based on significance testing of the form used by RFARs.
This is because the stopping rule used in RFARs tends to
consider more candidate splits for smaller nodes and, as
explained in “Description of Diversity Forests”, selecting
too many candidate splits for small nodes can lead to over-
fitting. RFARs tend to select larger numbers of candidate
splits for smaller nodes, because the p values of the tests
used to decide whether the split selection procedure of
RFAR is stopped are naturally larger for smaller nodes.
Therefore, the probability of a p value falling below the
significance threshold is smaller for smaller nodes. The
fact that the number of candidate splits depends on the
node size in RFARs is suboptimal, not only with respect
to small nodes. By considering fewer candidate splits for
large nodes the strong predictive information contained
in these nodes is less well exploited. For these reasons it
might be effective to replace the significance testing in
RFARs by a criterion that does not depend on node size. A
suitable criterion for binary outcomes might be Cramér’s
V, a measure for the degree of association between two
binary features. In this case, instead of using a signifi-
cance threshold, we would need a threshold in the values
of Cramér’s V. Unlike the number of candidate split draws

nsplits in DFs, the values of Cramér’s V can be directly
interpreted in terms of the degree of the decisiveness of
the splits.

Comparing the results obtained by [7] with those obtained
in this paper, it can be seen that the performance differences
between RFsextr1 and RFs were larger in this paper than
they were in [7]. One important reason for this discrepancy
is likely that the signals in the data sets tended to be larger
in [7] than in the collection of data sets considered in this
paper; for example, the median AUC value obtained with
conventional RFs was 0.9621 in [7], while it was 0.9070
in this paper (see Table 2). Another reason for the smaller
performance differences seen in [7] is likely that they did not
optimize the values of mtry in each cross-validation itera-
tion, but used default values for mtry. Finally, the results
obtained in this paper are based on a much larger collection
of data sets than that of [7]. The large number of data sets
considered in this paper made it possible to obtain reliable
conclusions and perform more sophisticated analyses, such
as studying the influence of number of features and sample
size on the performances of the methods.

Conclusions

Randomizing the split selection in RFs via the DF algorithm
enables integrating practically useful split procedures of
any complexity and does not impair predictive performance
in comparison to conventional split selection. Moreover,
the performance of DFs is quite robust with respect to the
number of candidate split draws nsplits used. The DF split
finding algorithm is easy to understand and works in the
same way for different outcome types, such as categorical,
continuous, and survival outcomes. DFs may not feature a
stronger predictive power compared to conventional RFs.
However, the main focus of complex split procedures real-
ized using the DF algorithm should not be predictive per-
formance, but solving practically important problems, such
as interaction detection or measuring feature importance for
multi-class outcomes. RF-based methods lend themselves to
solving such problems because of their capability to capture
complex dependency patterns between the outcome and the
features.

The DF algorithm is intended for methodologically ori-
ented researchers with a focus on applications. I hope that
this work will inspire other researchers to develop DF vari-
ants that solve practically important problems. The recently
introduced DF method, interaction forests, shows promising
results and illustrates the practicability of DFs. One future
project will focus on a DF with a multi-way split proce-
dure, because as described in “Outlook: Multi-way Split-
ting”, this allows for the use of a feature importance measure
for multi-class outcomes that identifies features which can

SN Computer Science (2022) 3:1 Page 15 of 16 1

SN Computer Science

differentiate well between all the outcome classes instead of
only a subset. Another planned project will focus on devel-
oping a statistical testing procedure for the effect importance
measure values of interaction forests that will enable testing
which feature pairs display statistically significant interac-
tion effects.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s42979- 021- 00920-1.

Acknowledgements The author thanks Marvin N. Wright for helpful
comments and Alethea Charlton as well as Anna Jacob for valuable
language corrections. This work was supported by the German Science
Foundation (DFG-Einzelförderung HO6422/1-2 to Roman Hornung).

Author Contributions Not applicable (single-author paper).

Funding Open Access funding enabled and organized by Projekt
DEAL.

Availability of Data and Materials The pre-processed versions of all
data sets are available in Online Resource 2. Note that all data sets are
also publicly available in the OpenML database.

Code Availability All R code written for the analyses presented in the
paper and supplement are available in Online Resource 2.

Declarations

Conflict of Interest The funding body German Science Foundation
had no role in the design of the study and collection, analysis, and in-
terpretation of data and in writing the manuscript. The author declares
that he has no conflict of interest.

Ethics Approval Not applicable.

Consent to Participate Not applicable.

Consent for Publication Not applicable.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Bertsimas D, Dunn J. Optimal classification trees. Mach Learn.
2017;106:1039–82. https:// doi. org/ 10. 1007/ s10994- 017- 5633-9.

 2. Berzal F, Cubero JC, Marín N, Sánchez D. Building multi-way
decision trees with numerical attributes. Inf Sci. 2004;165(1–
2):73–90. https:// doi. org/ 10. 1016/j. ins. 2003. 09. 018.

 3. Breiman L. Out-of-bag estimation. Technical report, Department
of Statistics. Berkeley: University of California; 1996.

 4. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
https:// doi. org/ 10. 1023/A: 10109 33404 324.

 5. Breiman L, Friedman JH, Olshen RA, Ston CJ. Classification
and regression trees. Monterey: Wadsworth International Group;
1984. https:// doi. org/ 10. 1201/ 97813 15139 470.

 6. Brodley CE, Utgoff PE. Multivariate decision trees. Mach Learn.
1995;19:45–77. https:// doi. org/ 10. 1023/A: 10226 07123 649.

 7. Calhoun P, Hallett MJ, Su X, Cafri G, Levine RA, Fan J. Random
forest with acceptance-rejection trees. Comput Stat. 2019. https://
doi. org/ 10. 1007/ s00180- 019- 00929-4.

 8. Cobb JS, Seale MA. Examining the effect of social distancing
on the compound growth rate of COVID-19 at the county level
(united states) using statistical analyses and a random forest
machine learning model. Public Health. 2020;185:27–9.

 9. Couronné R, Probst P, Boulesteix AL. Random forest versus logis-
tic regression: a large-scale benchmark experiment. BMC Bioin-
form. 2018;19:270. https:// doi. org/ 10. 1186/ s12859- 018- 2264-5.

 10. Fayyad UM, Irani KB. Multi-interval discretization of contin-
uous-valued attributes for classification learning. In: Teh YW,
Titterington M, editors, Proceedings of the thirteenth interna-
tional join conference on artificial intelligence. pp. 1022–1027.
https:// doi. org/ 10. 1007/ 978-3- 642- 40897-7_ 11.

 11. Freund Y, Schapire RE. A decision-theoretic generalization of
on-line learning and an application to boosting. J Comput Syst
Sci. 1997;55(1):119–39.

 12. Geurts P, Ernst D, Wehenkel L. Extremely randomized trees.
Mach Learn. 2006;63(1):3–42. https:// doi. org/ 10. 1007/
s10994- 006- 6226-1.

 13. Hapfelmeier A, Hothorn T, Ulm K, Strobl C. A new vari-
able importance measure for random forests with missing
data. Stat Comput. 2014;24:21–34. https:// doi. org/ 10. 1007/
s11222- 012- 9349-1.

 14. Hornung R. Ordinal forests. J Classif. 2020;37:4–17. https:// doi.
org/ 10. 1007/ s00357- 018- 9302-x.

 15. Hornung R, Boulesteix AL. Interaction forests: identifying and
exploiting interpretable quantitative and qualitative interaction
effects. Technical Report 237, Department of Statistics, Univer-
sity of Munich, 2021. https:// doi. org/ 10. 5282/ ubm/ epub. 75269.

 16. Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random
survival forests. Ann Appl Stat. 2008;2:841–60. https:// doi. org/
10. 1214/ 08- AOAS1 69.

 17. Iwendi C, Bashir AK, Peshkar A, Sujatha R, Chatterjee JM,
Pasupuleti S, Mishra R, Pillai S, Jo O. COVID-19 patient health
prediction using boosted random forest algorithm. Front Public
Health. 2020;8:357.

 18. Janitza S, Hornung R. On the overestimation of random forest’s
out-of-bag error. PLoS One. 2018. https:// doi. org/ 10. 1371/ journ
al. pone. 02019 04.

 19. Katuwal R, Suganthan PN, Zhang L. Heterogeneous oblique
random forest. Pattern Recognit. 2020;99: 107078.

 20. Kocev D, Vens C, Struyf J, Džeroski S. Tree ensembles for pre-
dicting structured outputs. Pattern Recognit. 2013;46(3):817–
33. https:// doi. org/ 10. 1016/j. patcog. 2012. 09. 023.

 21. Menze BH, Kelm BM, Splitthoff DN, Koethe U, Hamprecht
FA. On oblique random forests. In: Gunopulos D, Hofmann T,
Malerba D, Vazirgiannis M, editors, European conference on
machine learning and principles and practice of knowledge dis-
covery in databases. Berlin, Heidelberg: Springer. pp. 453–469.

 22. Murthy SK, Kasif S, Salzberg S. A system for induction of
oblique decision trees. J Artif Intell Res. 1994;2:1–32. https://
doi. org/ 10. 1613/ jair. 63.

https://doi.org/10.1007/s42979-021-00920-1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10994-017-5633-9
https://doi.org/10.1016/j.ins.2003.09.018
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1201/9781315139470
https://doi.org/10.1023/A:1022607123649
https://doi.org/10.1007/s00180-019-00929-4
https://doi.org/10.1007/s00180-019-00929-4
https://doi.org/10.1186/s12859-018-2264-5
https://doi.org/10.1007/978-3-642-40897-7_11
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/s11222-012-9349-1
https://doi.org/10.1007/s11222-012-9349-1
https://doi.org/10.1007/s00357-018-9302-x
https://doi.org/10.1007/s00357-018-9302-x
https://doi.org/10.5282/ubm/epub.75269
https://doi.org/10.1214/08-AOAS169
https://doi.org/10.1214/08-AOAS169
https://doi.org/10.1371/journal.pone.0201904
https://doi.org/10.1371/journal.pone.0201904
https://doi.org/10.1016/j.patcog.2012.09.023
https://doi.org/10.1613/jair.63
https://doi.org/10.1613/jair.63

 SN Computer Science (2022) 3:1 1 Page 16 of 16

SN Computer Science

 23. Peto R. Statistical aspects of cancer trials. In: Halnam KE, edi-
tor. Treatment of cancer. London: Chapman & Hall; 1982. p.
867–71.

 24. Probst P, Boulesteix AL, Bischl B. Tunability: importance of
hyperparameters of machine learning algorithms. J Mach Learn
Res. 2019;20(53):1–32.

 25. Strobl C, Boulesteix AL, Zeileis A, Hothorn T. Bias in random
forest variable importance measures: illustrations, sources and
a solution. BMC Bioinform. 2007;8:25. https:// doi. org/ 10. 1186/
1471- 2105-8- 25.

 26. Su X, Pena AT, Liu L, Levine RA. Random forests of interaction
trees for estimating individualized treatment effects in randomized
trials. Stat Med. 2018;37:2547–60. https:// doi. org/ 10. 1002/ sim.
7660.

 27. Vanschoren J, van Rijn JN, Bischl B, Torgo L. OpenML: net-
worked science in machine learning. ACM SIGKDD Explor News
Lett. 2014;15(2):49–60. https:// doi. org/ 10. 1145/ 26411 90. 26411
98.

 28. Wang QW, Yang L, Li YF. Learning from weak-label data: a deep
forest expedition. In: Rossi F, Conitzer V, Sha F, editors, Proceed-
ings of the AAAI conference on artificial intelligence. Burnaby:
PKP Publishing Services. pp. 6251–6258.

 29. Wickramarachchi DC, Robertson BL, Reale M, Price CJ, Brown
J. Hhcart: an oblique decision tree. Comput Stat Data Anal.
2015;96:12–23. https:// doi. org/ 10. 1016/j. csda. 2015. 11. 006.

 30. Wright MN, Ziegler A. Ranger: a fast implementation of random
forests for high dimensional data in C++ and R. J Stat Softw.
2017;77(1):1–17. https:// doi. org/ 10. 18637/ jss. v077. i01.

 31. Wright MN, Ziegler A, König IR. Do little interactions get lost in
dark random forests? BMC Bioinform. 2016;17:145. https:// doi.
org/ 10. 1186/ s12859- 016- 0995-8.

 32. Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G,
Schuit E, Bonten MMJ, Dahly DL, Damen JA, Debray TPA, et al.
Prediction models for diagnosis and prognosis of COVID-19: sys-
tematic review and critical appraisal. BMJ. 2020;369:1328.

 33. Yen E, Chu IWM. Relaxing instance boundaries for the search of
splitting points of numerical attributes in classification trees. Inf
Sci. 2007;177(5):1276–89. https:// doi. org/ 10. 1016/j. ins. 2006. 08.
014.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1186/1471-2105-8-25
https://doi.org/10.1186/1471-2105-8-25
https://doi.org/10.1002/sim.7660
https://doi.org/10.1002/sim.7660
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1016/j.csda.2015.11.006
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.1186/s12859-016-0995-8
https://doi.org/10.1186/s12859-016-0995-8
https://doi.org/10.1016/j.ins.2006.08.014
https://doi.org/10.1016/j.ins.2006.08.014

	Diversity Forests: Using Split Sampling to Enable Innovative Complex Split Procedures in Random Forests
	Abstract
	Introduction
	Description of Diversity Forests
	Heuristic Discussion of Advantages of the Split Selection Procedure of DFs Over that of Conventional RFs for Complex Split Procedures
	Empirical Comparison Study Using Univariable, Binary Splitting
	Data
	Pre-study: Determination of Suitable Grids for the Tuning Parameter Values
	Large Scale Comparison Study of DFs Against Conventional RFs and RFs with Extremely Randomized Trees
	Study Design
	Results

	Examples of Complex Split Procedures
	Interaction Detection Through Bivariable Splitting in Interaction Forests
	Outlook: Multi-way Splitting
	Outlook: Further Potential Complex Split Procedures

	Discussion
	Conclusions
	Acknowledgements
	References

