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Abstract
The diversity forest algorithm is an alternative candidate node split sampling scheme that makes innovative complex split 
procedures in random forests possible. While conventional univariable, binary splitting suffices for obtaining strong predictive 
performance, new complex split procedures can help tackling practically important issues. For example, interactions between 
features can be exploited effectively by bivariable splitting. With diversity forests, each split is selected from a candidate split 
set that is sampled in the following way: for l = 1,… , nsplits : (1) sample one split problem; (2) sample a single or few splits 
from the split problem sampled in (1) and add this or these splits to the candidate split set. The split problems are specifi-
cally structured collections of splits that depend on the respective split procedure considered. This sampling scheme makes 
innovative complex split procedures computationally tangible while avoiding overfitting. Important general properties of the 
diversity forest algorithm are evaluated empirically using univariable, binary splitting. Based on 220 data sets with binary 
outcomes, diversity forests are compared with conventional random forests and random forests using extremely randomized 
trees. It is seen that the split sampling scheme of diversity forests does not impair the predictive performance of random 
forests and that the performance is quite robust with regard to the specified nsplits value. The recently developed interac-
tion forests are the first diversity forest method that uses a complex split procedure. Interaction forests allow modeling and 
detecting interactions between features effectively. Further potential complex split procedures are discussed as an outlook.

Keywords Random forests · Ensemble learning · Classification · Decision trees

Introduction

Random forests [4] are one of the strongest and most well-
known prediction methods for categorical and continuous 
outcomes. There are also closely related variants for vari-
ous other types of outcomes, for example, survival [16] and 
ordinal [14] outcomes. Demonstrating their strong practi-
cal relevance, random forests have been used frequently for 
predicting various outcomes in the context of the current 
COVID-19 pandemic [32]. Particular examples in this area 
include [8], who used random forests to predict the effect 
of social distancing and [17], who used a combination of 
random forests with the AdaBoost algorithm [11] to pre-
dict patient outcome. In the eponymous paper on random 

forests by Breiman [4], they are defined as ensembles of 
tree prediction rules, where each of these trees depends on 
a random vector Θ . These random vectors are sampled anew 
for each tree, but from the same distribution. This defini-
tion is quite general and not confined to a single, specific 
procedure, as the nature and generation of the random vec-
tor Θ is not further specified. Today, the term “random for-
ests” is commonly used for a specific procedure; see below 
for details. Breiman [4] showed that the more accurate the 
predictions of the individual trees and the smaller the cor-
relations between these predictions, the greater the predic-
tive performance of random forests becomes. Given that the 
predictive information contained in the training data set is 
limited, it is not possible that the individual trees perform 
very well and, at the same time, deliver predictions that are 
very disparate. Instead, any randomization procedure will be 
associated with some kind of tradeoff between the quality 
and the disparity of the tree predictions.

Breiman [4] proposed a randomization procedure that 
improved on the previously existing bagged ensembles of 
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trees by strongly increasing the disparity of the tree predic-
tions while accepting a small drop in the quality of these 
predictions. This increased disparity of the tree predictions 
is attained by randomizing the choices of the features con-
sidered for each split in the trees as opposed to considering 
all features in each split. Unlike in the original paper on ran-
dom forests [4], today the term “random forests” is (almost) 
exclusively used to describe the forest algorithm associated 
with this specific randomization procedure. In this proce-
dure, the trees are constructed in the following way: (1) draw 
a bootstrap sample or subsample from the training data set; 
(2) construct a tree using the sample drawn in step (1), where 
each split in the tree is determined as follows: (a) draw a 
random subset of size mtry from all features; (b) determine 
that split of the current node in the ordered values of the 
mtry features drawn in step (a) that is best with respect to a 
pre-specified split criterion. The elements of this procedure 
that are associated with the random vector Θ are the indices 
of the training data observations sampled in step (1) and 
the indices of the features sampled for each split. The term 
“conventional random forests” will denote this procedure in 
the following, where “random forest” will be abbreviated 
as “RF”.

As seen from the description above, in the split selection 
of conventional RFs each possible split in the mtry randomly 
sampled features is considered. In this paper the procedure 
of extending the randomization procedure in the split selec-
tion by not only randomly sampling from the features, but 
also, in addition, randomly sampling from the splits in the 
features will be investigated. The latter idea was, in its most 
basic form, first considered in extremely randomized trees 
[12]. With extremely randomized trees, the split selection is 
performed in the following way: first, sample mtry features 
as in the case of conventional RFs. Second, randomly draw 
only one split in each of the mtry features sampled in the 
first step. Third, use the split from the mtry splits drawn in 
the second step that is associated with the best value of the 
split criterion. The term candidate split set will in the fol-
lowing be used for the set of splits considered as candidates 
for a specific split and the members of the candidate split 
set will be referred to as candidate splits. For example, in 
the case of conventional RFs, the candidate split set associ-
ated with a split is the collection of all possible splits in the 
mtry sampled features, where each of these splits is thus a 
candidate split.

A major advantage of randomizing the split selection 
in the considered features that has, to my knowledge, not 
been considered so far is that it makes innovative complex 
split procedures tangible. Examples of more complex split 
procedures than the univariable, binary splitting used in 
conventional RFs are multivariable splitting and multi-way 
splitting. A multivariable split procedure uses (binary) splits 
that involve a number of K > 1 or fewer features and in a 

multi-way split procedure the nodes are split into (poten-
tially) more than two child nodes. Splits in complex split 
procedures involve one or more features. In the following, 
the collection of all possible splits of a node that involve a 
specific set of one or several features will be denoted a split 
problem. The structures of split problems depend on the 
specific split procedures considered. In the case of classi-
cal, univariable, binary splitting a split problem would be 
all binary splits in feature x5 . A split problem in the case of 
a multivariable split procedure with binary splitting could 
be all (multivariable) binary splits that involve one, two or 
all three of the features x1 , x7 , and x123 . When randomizing 
the split selection, not all splits contained in a split problem 
have to be tried out, but instead a single split or a smaller 
number of splits can be randomly sampled from the split 
problem. The following can be performed repeatedly: first, 
sample one of the split problems randomly and, second, 
sample one or a few splits randomly from the split problem 
drawn in the first step. In the following, RFs that randomize 
the split selection in randomly selected features in this form 
and may feature complex split procedures (e.g., multivari-
able splitting described above) will be denoted diversity 
forests, hereafter referred to as DFs. As will be discussed 
in this paper, the DF algorithm both reduces the compu-
tational burden associated with complex split procedures 
and avoids overfitting resulting from trying out all splits 
in large split problems. There exist works on decision tree 
approaches for the complex split procedures multivariable 
splitting (see, e.g., [1, 5, 6, 22, 29] and references therein) 
and multi-way splitting [2, 10, 33] mentioned above. None 
of these approaches seem to have become established for 
constructing trees in RFs. These approaches use specialized 
(estimation) procedures to find suitable splits. In contrast, 
the DF split sampling scheme does not require specialized 
split finding algorithms for different complex split proce-
dures. Instead, this simple split finding procedure can be 
applied to split forms of any complexity. Moreover, the pro-
cedure is independent of the considered outcome type and 
can thus be applied, for example, to categorical, continuous 
or survival outcomes. New complex split procedures realiz-
able with the DF algorithm should focus less on improving 
the predictive performance of RFs, and more on tackling 
practically important issues, such as interaction detection 
or measuring feature importance for multi-class outcomes. 
The persistent popularity of conventional RFs suggests that 
it is difficult to improve on the predictive performance of this 
algorithm. Nevertheless, oblique random forests [21] and 
in particular, the recently introduced heterogeneous oblique 
random forests [19], both of which use multivariable split-
ting, showed promising results. As can be seen from the 
above descriptions, the DF algorithm is not to be used to 
improve on existing random forest variants that use com-
plex split procedures, but to make new practically useful 
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split procedures computationally possible while avoiding 
overfitting.

When using univariable, binary splitting as is also done 
in conventional RFs, DFs are similar to RFs with extremely 
randomized trees. The single difference is that with DFs, it 
is possible that non-fixed numbers of splits in the same fea-
ture are contained in the candidate split sets, whereas with 
RFs with extremely randomized trees, one split (or a fixed 
number of splits, see “Empirical Comparison Study Using 
Univariable, Binary Splitting”) is considered per randomly 
sampled feature. The reason why non-fixed numbers of splits 
in the same feature can be contained in the candidate split 
sets for DFs, is that members of the same split problem can 
be featured in the candidate split sets, because the split prob-
lems are sampled with replacement. Calhoun et al. [7] pre-
sented RFs with acceptance–rejection trees (RFARs), where 
trees are constructed in a similar manner to the trees in DFs. 
As with DFs using univariable, binary splitting, Calhoun 
et al. [7] repeatedly sample single splits from randomly sam-
pled features, where the latter are drawn with replacement. 
The difference between the two split selection procedures is 
that, in contrast to the trees in DFs, the number of candidate 
splits is not fixed in acceptance–rejection trees. Instead, the 
split selection procedure is ended as soon as a split is found 
that delivers a statistically significant association between 
the values of the outcome and those of the binary variable 
that indicates, which of the observations in the current node 
belong to the two resulting child nodes (see “Discussion” for 
a discussion of the properties of this proceeding). Note that, 
even though, in the case of univariable, binary splitting, DFs, 
conventional RFs, RFs with extremely randomized trees, and 
RFARs all consider the same collections of possible splits, 
the trees obtained using these different approaches will dif-
fer, because the split selection is performed differently.

The main purposes of this paper are to introduce DFs, to 
compare extensively the predictive performance associated 
with random split selection as performed by DFs to that 
associated with conventional split selection, and to study 
how sensitive the results are to the number of candidate 
splits used. In these analyses the basic form of DFs that 
uses univariable, binary splitting will be used. However, a 
recently developed DF method that uses an innovative com-
plex split procedure, interaction forests [15], will be pre-
sented as well. Interaction forests allow to model and detect 
interaction effects between features effectively. More DF 
methods with other types of complex split procedures will 
be considered in future work.

The rest of the paper is structured as follows. In 
“Description of Diversity Forests” the DF algorithm is 
described in its general form. “Heuristic Discussion of 

Advantages of the Split Selection Procedure of DFs over 
that of Conventional RFs for Complex Split Procedures” 
provides heuristic discussions of the advantages of the DF 
split selection procedure in comparison to that of conven-
tional RFs. The extensive empirical comparison study of 
DFs with other RF-based approaches using univariable, 
binary splitting is presented in “Empirical Comparison 
Study Using Univariable, Binary Splitting”. In this sec-
tion, first, the large collection of data sets with binary 
outcomes used in the analysis is introduced. Second, 
a preliminary study using a subset of these data sets is 
described; this study focused on investigating the sen-
sitivity of DFs to tuning parameter value selection and 
determining suitable parameter value grids for optimizing 
these parameters. Third, the design and the results of the 
large-scale comparison study are detailed. In “Examples 
of Complex Split Procedures” the DF method interac-
tion forests and further potential complex split proce-
dures are treated as an outlook. The discussion (“Discus-
sion”) briefly recalls important findings of the analyses 
performed in the paper and discusses various additional 
issues. Finally, “Conclusions” summarizes the main con-
clusions from the paper.

Description of Diversity Forests

As conventional RFs, DFs are large collections of decision 
trees, where each of them is constructed using a random 
subsample or bootstrap sample from the training data. 
IFs differ from conventional RFs in the way the splits are 
selected during the construction of the trees.

As described above, with conventional RFs, the can-
didate split sets consist of all splits in the sampled split 
problems, where in the case of univariable, binary split-
ting, a split problem contains all splits in a specific fea-
ture. Thus, the candidate split sets considered with this 
procedure are specifically structured subsets of the set 
allsplitsnode of all splits in all features associated with the 
current node. With DFs differently structured subsets of 
allsplitsnode are considered. A candidate split set considered 
with DFs consists of (small) subsets of the splits in the 
sampled split problems.

Algorithm 1 shows a sketch of the split selection pro-
cedure performed in the construction of the trees in DFs. 
Details follow below. 
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Algorithm 1 Sketch of the split selection procedure in diversity forests
1: If the node is small, reduce the number of candidate split draws nsplits in

order to avoid potential overfitting. The degree of reduction is controlled by
a parameter proptry ∈ (0, 1]. May be omitted for complex split procedures
(i.e., proptry = 1).

2: Starting with an empty set candsplits = ∅ of candidate splits: For l =
1, . . . , nsplits:

a: Draw randomly a split problem sp from the set of all split problems.

b: Depending on the split procedure, draw randomly either a single split
or a small number of splits cand from sp .

c: If l > 1 and any split from cand is contained in candsplits repeat
steps a and b, otherwise continue with the next iteration. May be omitted
for complex split procedures with large numbers of split problems.

d: Add cand to the candidate split set candsplits.

3: Choose the split splitnode ∈ candsplits that leads to the optimal value
of the considered split criterion.

While the number of candidate split draws is generally 
set to a fixed number nsplits, where the latter is a tuning 
parameter, choosing smaller numbers of candidate splits for 
small nodes may prevent overfitting. For small nodes the 
pre-specified number of candidate split draws nsplits might 
be too large, because, depending on the split procedure, for 
small nodes the set allsplitsnode of all possible splits can also 
be small. If the latter is the case, nsplits candidate split draws 
may constitute an overly large proportion of allsplitsnode . For 
this reason, when using nsplits candidate split draws in the 
case of small nodes, the best splits out of these candidate 
splits are likely to divide the node very well or even per-
fectly. Such splits may, however, not be that distinct when 
applied to new test observations for the purpose of predic-
tion. Instead, the lower layers of the trees may be overly 
well adjusted to the training data, performing suboptimally 
when used in prediction. To inhibit such an overfitting result-
ing from sampling too many candidate splits, a parameter 
proptry is introduced that allows limitation of the maximum 
number of candidate splits for small nodes. If the pre-spec-
ified nsplits value is larger than proptry × #{allsplitsnode} , 
where # indicates the cardinality, nsplits is reduced to 
⌊proptry × #{allsplitsnode}⌋ . The parameter proptry is larger 
than zero with a maximum value of one, where the latter 
value corresponds to always selecting the pre-specified num-
ber of candidate splits, irrespective of node size.

As discussed above the structures of the split problems 
depend on the type of the split procedure considered. Moreo-
ver, the split problems may also have unequal selection prob-
abilities in step 2 a. For complex split procedures it may be 
difficult or costly to determine the number of all possible 
splits #{allsplitsnode} , which is necessary for the reduction of 
nsplits using proptry in step 1. In such situations, a proptry 
value of one may be used, in which case there would be no 
restriction of the numbers of candidate splits for small nodes 
(that is, step 1 above would be omitted). This is justifiable 

by the real data analysis shown in “Pre-study: Determina-
tion of Suitable Grids for the Tuning Parameter Values”, 
which revealed that the results are not sensitive to the choice 
of proptry and that a value of one is often suitable. The 
selection probabilities of the splits in the sets cand may not 
be independent (for an example, see “Interaction Detection 
Through Bivariable Splitting in Interaction Forests)”.

The basic form of DFs that uses univariable, binary split-
ting and the recently developed method interaction forests 
are implemented in the R package diversityForest, 
which is a fork of the popular R package ranger [30] that 
uses a fast C++ implementation for most of the calcula-
tions. In future work, further diversity forest methods will be 
implemented in diversityForest as well. The package 
is available on CRAN (https:// cran.r- proje ct. org/ web/ packa 
ges/ diver sityF orest/ index. html) and github (https:// github. 
com/ Roman Hornu ng/ diver sityF orest).

Heuristic Discussion of Advantages 
of the Split Selection Procedure of DFs Over 
that of Conventional RFs for Complex Split 
Procedures

The split selection procedure of DFs has two advantages 
over that of conventional RFs when considering complex 
split procedures.

Smaller candidate split sets Because only one or a few 
candidate splits are sampled from each split problem the 
candidate split sets are generally much smaller than in the 
case of conventional RFs. For complex split procedures the 
split problems contain many splits and with the split selec-
tion procedure of conventional RFs these would all be added 
to the candidate split sets. Evaluating the resulting candi-
date split sets would be computationally challenging or even 
impossible. For example, suppose that in a K-variable split 
procedure all combinations of split points between up to K 
features would be considered. This would make the corre-
sponding split problems exceedingly large, in particular for 
larger sample sizes.

More informative splits in the candidate split sets The 
second advantage of the split selection procedure of DFs is 
that the candidate split sets tend to feature more informative 
splits than in the case of conventional RFs. The first reason 
for this is that, in the case of DFs, the sampled candidate 
splits have more diverse qualities than in the case of conven-
tional RFs. This is because with DFs the different candidate 
splits in the candidate split sets mostly stem from different 
split problems and the qualities of the splits tend to differ 
more strongly across different split problems than within a 
certain split problem. This in turn is due to the fact that the 
features differ (strongly) in terms of the predictive informa-
tion contained, making it more important which features are 

https://cran.r-project.org/web/packages/diversityForest/index.html
https://cran.r-project.org/web/packages/diversityForest/index.html
https://github.com/RomanHornung/diversityForest
https://github.com/RomanHornung/diversityForest
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considered for splitting than which specific splits in a certain 
split problem involving one or several features are used. The 
second reason, why the candidate splits sets likely contain 
more informative splits for DFs is that they can be expected 
to feature more split problems than in the case of conven-
tional RFs. This is because trying out all splits in a larger 
number of split problems, as would be done for conven-
tional RFs, would not be beneficial, because it would lead 
to overfitting: An extensive search for good splits using the 
training data set makes it likely that the selected split deliv-
ers child nodes that are very homogenous with respect to the 
outcome. However, unfortunately, it is also likely that due 
to this extensive search in the training data, the child nodes 
resulting from this split will exhibit a higher level of homo-
geneity than would sets of new, independent observations 
associated with these child nodes. This is due to the fact that 
observed measurements are subject to random fluctuation 
not related to the predictive information contained in the 
features. This overfitting issue would likely be relevant for 
particularly complex split procedures, because for these the 
split problems are very large and more heterogeneous. Thus, 
it would likely only be possible to consider (very) few split 
problems with conventional RFs without causing a deterio-
rated predictive performance resulting from overfitting.

Empirical Comparison Study Using 
Univariable, Binary Splitting

In this section, after introducing the collection of data sets 
considered in this paper, the designs and the results of the 
preliminary study and the large-scale comparison study are 
detailed.

Data

As data material 220 publicly available data sets with binary 
outcomes were used. These data sets were also used in the 
study by Couronné et al. [9], who compared RFs with default 
tuning parameter values with logistic regression. In their 
study, the mean cross-validated value of the area under the 
ROC curve (AUC) obtained with RFs with default tuning 
parameter values was 0.041 points higher than that obtained 
with logistic regression. From the 243 data sets used by Cou-
ronné et al. [9], all data sets with more than 10,000 obser-
vations were excluded ( n = 19 ) to limit the computational 
burden and from the remaining 224 data sets all data sets 
with more than 500 features were excluded ( n = 4 ). All data 
sets are publicly available from the OpenML database [27]; 
for details on the acquisition of this collection of data sets, 
see [9]. Tables S1–S5 in Online Resource 1 provide infor-
mation on each of the data sets. In the following, all tables 

and figures labeled using the prefix “S” are found in Online 
Resource 1.

The analysis was performed using the statistical software 
environment R (versions 3.5.0 and 3.6.0). All R code writ-
ten to perform and evaluate the analyses as well as the pre-
processed versions of the data sets used in the analyses are 
made available in Online Resource 2.

Pre‑study: Determination of Suitable Grids 
for the Tuning Parameter Values

As seen in “Description of Diversity Forests”, DFs feature 
two tuning parameters: the number of candidate split draws 
nsplits considered for each split and the proportion proptry 
of candidate splits to sample from all possible splits in the 
cases of small nodes.

A common way of choosing tuning parameter values in 
RFs is to try out several different values for these parameters 
from a pre-specified grid and choose the values that lead 
to the smallest out-of-bag (OOB) prediction error [3, 18]. 
The grid of tuning parameter values should not be specified 
overly dense, because the more parameter values have to be 
tried out, the more computationally costly the optimization 
will be. However, the grid should still be dense enough to 
ensure that the differences in prediction error associated with 
neighboring grid values can be expected to be small for the 
great majority of data sets.

In this subsection an analysis of the sensitivity of the 
performance of DFs to the choices of the values of the two 
parameters nsplits and proptry will be presented. Using this 
analysis a two-dimensional grid for nsplits and proptry was 
determined, which was used for tuning in the comparison 
study in “Large Scale Comparison Study of DFs Against 
Conventional RFs and RFs with Extremely Randomized 
Trees”. To determine this grid, first, for a collection of 50 
data sets the prediction error of DFs using univariable, 
binary splitting was measured for each pair of tuning param-
eter values nsplits and proptry from a dense two-dimensional 
grid. Subsequently, the estimated prediction errors obtained 
for the different tuning parameter values and data sets were 
inspected to coarsen the two-dimensional grid to obtain a 
grid sufficiently dense for practical use. Note, however, that 
this grid is likely unsuitable for more complex split proce-
dures than univariable, binary splitting. The main purpose of 
this analysis was to study the sensitivity of the performance 
of DFs to the choice of nsplits and proptry.

The 50 data sets used in this pre-study were ran-
domly sampled from the 220 data sets described in 
“Data”. The two-dimensional grid considered for 
nsplits and proptry involved each pairwise combi-
nation from the grids {2, 5, 10, 30, 50, 100, 200} and 
{0.01, 0.05, 0.1, 0.3, 0.5, 0.8, 1} , where the former was 
used for nsplits and the latter for proptry. To estimate the 
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prediction error in each case fivefold stratified cross-valida-
tion repeated two times was used. For each DF 2000 trees 
were grown.

Figures S1, S2, and S3 show the cross-validated AUC 
values for each data set and for each parameter value pair 
from the two-dimensional grid. It can be seen easily from 
these plots that very small values of proptry are detrimental 
for many data sets, but beneficial for some data sets. How-
ever, the plots look quite different for different data sets and, 
given the multitude of data sets and parameter values, it is 
difficult to draw reliable conclusions from these plots. For 
this reason, we will first study the influences of nsplits and 
proptry separately before commenting on potential interac-
tions between the values of these parameters. Figures S4, 
S5, and S6 show the influences of nsplits on the cross-val-
idated AUC values for each data set. More precisely, for 
each nsplits value considered, the plots show the maximum 
cross-validated AUC value obtained over the seven differ-
ent values of proptry. For some data sets (e.g., for ‘448’ 
and ‘788’), the prediction results are notably worse for very 
small values of nsplits. Apart from this observation, nsplits 
does not seem to have any notable influence on the predic-
tive performance. Moreover, for none of the 50 data sets 
does the predictive performance change notably for nsplits 
values larger than 30. Figures S7, S8, and S9 show the influ-
ences of proptry on the cross-validated AUC values in an 
analogous way as in the cases of Figures S4, S5, and S6. 
For most of the data sets the prediction results are worse 
for small values of proptry, where this performance drop 
for small proptry values is often negligible; for a consider-
ably large number of data sets, however, it is strong or very 
strong (e.g., for ‘334’, ‘448’, and ‘1455’ the cross-validated 
AUC is about 0.5 for proptry = 0.01 , but close to 1 for large 
proptry values). The performance is frequently particularly 
bad for proptry = 0.01 , that is, the smallest of the proptry 
values. Nevertheless, there are some data sets, for which 
the prediction results were slightly better for small proptry 
values (e.g., for ‘43’ and ‘1464’). In almost no cases does 
the predictive performance change notably for proptry val-
ues between 0.3 and 1 and, in those cases in which there is 
a slight difference, larger values of proptry delivered better 
results (e.g., for ‘334’ and ‘788’).

Above the influences of nsplits and proptry were stud-
ied separately. The first important finding in this analy-
sis was that, while very small values of nsplits can be 
detrimental, the predictive performance does not seem to 
change notably for nsplits values larger than or equal to 30. 
This finding would suggest recommending use of the fixed 
value 30 for nsplits. The second important finding was 
that large values of proptry lead to (much) better results 
for the majority of data sets, but for some data sets small 
proptry are preferable. Moreover, often proptry = 0.01 lead 
to much worse results than proptry = 0.05 . Given that the 

results hardly differed when varying the proptry value 
between 0.3 and 1 with a slight tendency for better per-
formance for larger values of proptry, these results would 
suggest recommending the grid {0.05, 1} for proptry. Using 
nsplits = 30 and choosing proptry from {0.05, 1} would, 
however, only be reasonable, if there are no interactions 
between these parameters with respect to their effect on 
the performance that would lead to different combinations 
of nsplits and proptry being optimal for a relevant propor-
tion of data sets. To study whether or not the latter is the 
case, we reexamine Figures S1, S2, and S3: For most data 
sets, the plots either do not suggest any relevant inter-
action effects or the differences in performance are very 
small across all parameter values considered. However, 
for some data sets (e.g., for ‘53’ and ‘479’) we observe 
the following pattern: The larger the value of nsplits, the 
more the predictive performance depends negatively on 
proptry; as a consequence, bad predictive performances 
occurring in the case of large nsplits values are prevented 
when the proptry values are small at the same time. This 
negative dependency of the predictive performance on the 
proptry value for large nsplits values can be interpreted as 
follows: for these data sets, larger values of nsplits lead to 
overfitting in the cases of smaller nodes. This overfitting 
is prevented, if the proptry values are small at the same 
time, because small proptry values will have the effect 
that fewer candidate split values are considered for smaller 
nodes. For such data sets, for which there is a danger of a 
relevantly strong overfitting of small nodes by consider-
ing too many candidate splits, this overfitting should be 
prevented by fixing nsplits = 30 and choosing proptry from 
the grid {0.05, 1} . In this situation the optimization algo-
rithm will choose the proptry value 0.05, provided that 
this proptry value will be associated with a smaller OOB 
prediction error than the proptry value one.

The results described above show that, regardless of 
whether the values of nsplits and proptry interact with 
respect to their effect on the predictive performance, fixing 
nsplits = 30 and choosing the proptry value from the grid 
{0.05, 1} is appropriate. Therefore, the latter proceeding is 
recommended and will be followed in the analyses presented 
later in this paper. The main results of the analysis presented 
in this subsection are presented in Table 1.

In general, the above analysis revealed that, provided that 
the values of nsplits and proptry are not specified very small, 
the influences of these parameters are only weak. The split 
selection procedure of DFs does not depend on the split pro-
cedure considered. For this reason, the general conclusion 
that the sensitivity of DFs to the choices of the values of 
nsplits and proptry is low, provided that these values are 
not chosen too small, can be assumed to also hold for more 
complex split procedures. However, since the above analy-
sis considered exclusively univariable, binary splitting, for 
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other, more complex, split procedures no detailed statements 
regarding the choice of suitable values for nsplits and prop-
try can be made.

Large Scale Comparison Study of DFs Against 
Conventional RFs and RFs with Extremely 
Randomized Trees

The main purpose of the analysis presented in this subsec-
tion was to compare the predictive performance of DFs 
with that of conventional RFs and RFs with extremely rand-
omized trees using the large collection of data sets described 
in “Data”. Additional goals were to analyze the influence of 
data set characteristics on the predictive performances of 
the methods and the optimized tuning parameter values, as 
well as the sensitivity of the performances of the methods to 
changes in the values of the tuning parameters. As described 
above, both RFs with extremely randomized trees and DFs 
have in common that the split selection is randomized. In 
their original definition [12], extremely randomized trees 
use only one randomly sampled split per considered feature. 
However, the implementation of RFs with extremely rand-
omized forest provided with the R package ranger [30] 
allows consideration of larger, fixed numbers of splits per 
considered feature.

As seen in the analysis presented in the paper introduc-
ing RFARs [7], they perform similarly well to RFs with 
extremely randomized trees: Using ten data sets with binary 
outcomes, Calhoun et al. [7] compared the classification per-
formance of RFARs with that of conventional RFs, RFs with 
extremely randomized trees and RFs with so-called smooth 
sigmoid surrogate trees [26]; RFARs, RFs with extremely 
randomized trees and RFs with smooth sigmoid surrogate 
trees each performed best for three of the data sets and, for 
one data set, RFARs and RFs with extremely randomized 
trees both performed best. Calhoun et al. [7] used the OOB 
AUC to compare the predictive performances of the meth-
ods. For all four methods, I calculated the medians of these 
values across the ten data sets and found that these median 
values were very similar between the methods. In the current 
paper, RFARs were not included in the comparison study, 
because its goal was not to demonstrate superiority of DFs 
using conventional univariable, binary splitting over specific 
other approaches. Instead, its main goal was to compare the 

predictive performance resulting from random split selec-
tion with that resulting from conventional split selection. If 
random split selection would be (strongly) inferior to con-
ventional split selection, it would not be meaningful to apply 
the concept of random split selection for realizing innovative 
complex split procedures using DFs.

Study Design

For DFs, nsplits was set to 30 and the proptry value associ-
ated with the smaller OOB prediction error was selected 
from the grid {0.05, 1} . Two variants of RFs with extremely 
randomized trees were considered, where, for the first vari-
ant, only one split was randomly drawn from each of the 
mtry considered features and, for the second variant, five 
splits were drawn. These two variants will be referred to 
as “RFsextr1” and “RFsextr5”, respectively. The values of 
mtry for RFs, RFsextr1, and RFsextr5 were selected from 
grids, where again in each case the value was selected that 
featured the smallest OOB prediction error. If the number 
of features was at most 20, the grid considered featured each 
possible value for mtry. For data sets with more than 20 
features, a grid for mtry featuring 20 values was formed in 
the following way: {[ilog(p)∕ log(20)] ∣ i ∈ {1,… , 20}} , where 
p denotes the number of features. The forests constructed for 
each parameter value from the respective grids consisted of 
1000 trees and the forests constructed after optimization that 
featured the optimized parameter values consisted of 2000 
trees. Again, as in the pre-study, fivefold stratified cross-val-
idation repeated twice was used for predictive performance 
estimation.

As Couronné et al. [9] who used the same data sets in 
their study, the prediction accuracy (ACC), the AUC, and 
the Brier score were considered as performance measures, 
where, in consistency with Couronné et al. [9], most of 
the interpretations are based on the ACC without loss of 
generality.

Results

Global performance Table 2 shows summary estimates of 
the performances of the different methods across data sets 
according to the three considered performances measures. 
More precisely, the quartiles of the different performance 

Table 1  Overview of results of 
pre-study on the sensitivity of 
DFs to the choices of nsplits 
and proptry 

Parameter Meaning Range Conclusions from pre-study

nsplits Number of sampled split problems / splits [1,∞) Low impact on results; 
fixed value ( nsplits = 30 ) 
sufficient

proptry Controls the degree of reduction of nsplits for 
small nodes

(0, 1] Low impact on results; 
select from {0.05, 1} 
(using OOB error)
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measures calculated per data set are shown. For all three per-
formance measures, the quartiles differ only slightly between 
the different methods. Nevertheless, for all three measures, 
RFs are outperformed by the other methods in terms of the 
median. The biggest differences are seen in terms of the 
AUC, where both RFsextr1 and RFsextr5 outperform RFs 
by more than 0.01 in terms of the median. RFsextr1 and 
RFsextr5 also outperform DFs with respect to the median 
AUC; however, DFs outperform both RFsextr1 and RFsextr5 
in terms of the first quartile of the AUC values and perform 
almost identical in terms of the third quartile of these values.

Wilcoxon tests were used to test, whether the slight 
improvements of DFs, RFsextr1, and RFsextr5 over RFs 
with respect to the three measures are statistically signifi-
cant. In the case of DFs the 50 data sets that had been used 
in the pre-study for determining suitable grids for the tun-
ing parameter values were excluded. This choice was made 
to avoid potential overoptimism resulting from having used 
part of the collection of data sets in setting up the algorithm. 
DFs performed significantly better ( � = 0.05) than RFs with 
respect to the AUC and the Brier score, but not with respect 
to the ACC (p values: ACC: 0.057, AUC: 0.002, Brier: < 
0.001). Note that the same conclusions are obtained when 
including the 50 data sets used in in the pre-study. RFsextr1 
were significantly better than RFs for all three measures (p 
values: ACC: 0.046, AUC: < 0.001, Brier: < 0.001) and 
for RFsextr5 the same conclusions were obtained as in the 
case of DFs (p values: ACC: 0.057, AUC: < 0.001, Brier: < 
0.001). It must be stated that these p values might be slightly 
overoptimistic, because the data sets are not fully independ-
ent. As the data set labels in Tables S1–S5 reveal, several 
of the data sets form groups in the sense that they constitute 
versions of the same data set. The effect sizes of the tests 

were all in the small to moderate range (DF vs. RF: ACC: 
r = 0.15, AUC: r = 0.24, Brier: r = 0.35; RFsextr1 vs. RF: 
ACC: r = 0.14, AUC: r = 0.34, Brier: r = 0.43; RFsextr5 vs. 
RF: ACC: r = 0.14, AUC: r = 0.27, Brier: r = 0.40).

Performance differences obtained for the individual data 
sets The above analysis concerned the summarized perfor-
mances of the methods across data sets. However, naturally 
the performances of the methods differ (strongly) across 
data sets, because each data set features a different data dis-
tribution. The remaining evaluations presented below will 
focus on the data set specific performances of the methods. 
Following Couronné et al. [9], these evaluations will be 
restricted to the ACC as performance measure. However, 
when using the other two measures, very similar conclu-
sions are obtained (results not shown). Differences in results 
obtained for the different measures will be outlined in the 
following descriptions. Panel (a) of Fig. 1 shows that for the 
majority of data sets studied the performances of DFs and 
RFs are similar, for some data sets DFs perform notably 
better than RFs and for few data sets notably worse. In panel 
(b) of Fig. 1 it can be seen that DFs tend to outperform RFs 
primarily in situations in which RFs perform medium well, 
whereas, in cases in which RFs perform well to very well, 
on average there does not seem to be a benefit from using 
DFs. In the cases of RFsextr1 and RFsextr5 (Figure S10) 
the differences in performance, compared to that of RFs, 
are again small for the majority of data sets. However, par-
ticularly for RFsextr1, but also for RFsextr5, there are more 
data sets for which there are notably strong differences in 
performance compared to RFs than in the case of DFs. The 
latter higher variability in results might be explained by the 
fact that, for RFsextr1 and RFsextr5, larger numbers of dif-
ferent candidate tuning parameter values are considered in 
the optimization than in the case of DFs. The reason why the 
variability in performance compared to RFs is slightly larger 
for RFsextr1 than for RFsextr5 could be that the optimiza-
tion of mtry can be expected to be more stable for RFsextr5 
than for RFsextr1, because for the former, more candidate 
splits are drawn per considered feature. Like DFs, RFsextr1 
and RFsextr5 also tend to outperform RFs in cases in which 
RFs perform medium well.

Influence of sample size and numbers of features on the 
performance differences As seen at the beginning of this 
subsection, overall, the differences in performance between 
the methods are small. However, it was also seen that there 
are data sets for which there is a notably strong difference in 
performance between DFs, RFsextr1, and RFsextr5 on the 
one hand and RFs on the other. This suggests that there are 
specific circumstances, where larger differences in perfor-
mance between the methods can be expected. For example, 
the available sample size n may affect the methods differ-
ently so that, depending on the sample size, some methods 
may be preferable over others. Another factor that might be 

Table 2  Performances of the different methods summarized across 
the 220 data sets

Method-specific quartiles of the different performance measures cal-
culated per data set

Measure Method Q1 (25% quantile) Median Q3 (75% quantile)

ACC RF 0.7681 0.8802 0.9568
DF 0.7673 0.8823 0.9602
RFsextr1 0.7761 0.8810 0.9598
RFsextr5 0.7704 0.8821 0.9600

AUC RF 0.7637 0.9070 0.9849
DF 0.7794 0.9106 0.9878
RFsextr1 0.7704 0.9207 0.9869
RFsextr5 0.7737 0.9202 0.9881

Brier RF 0.0384 0.0910 0.1657
DF 0.0355 0.0896 0.1680
RFsextr1 0.0360 0.0891 0.1648
RFsextr5 0.0353 0.0881 0.1654



SN Computer Science             (2022) 3:1  Page 9 of 16     1 

SN Computer Science

of relevance is the number of features p available for a data 
set. In Fig. 2, the influences of sample size and number of 
features on the performance of DFs and RFs are illustrated. 
As expected, both n and p have a positive influence on the 
data set specific ACC values (panels (a) and (b) of Fig. 2). 
Given that we did not observe notably strong differences 
between RFs and DFs above, it is not surprising that, for 
most sample sizes and numbers of features, the differences 
in performance between the two methods are not notable. 
However, panels (a) and (b) of Fig. 2 do reveal that for very 
small n and p DFs perform slightly better than RFs. Panels 
(c) and (d) of the figure do not reveal any noteworthy inter-
action between the effect of the sample size and that of the 
number of features on performance differences between RFs 
and DFs.

The influence of n and p on the performance of RFsextr1 
and RFsextr5 in comparison to that of RFs is investigated in 
Section D of Online Resource 1.

Influence of data set characteristics on the selected tun-
ing parameter values While nsplits was set to a fixed value 
in the analyses, the value of proptry was selected from 0.05 
and 1 in each cross-validation iteration. Moreover, for RFs, 
RFsextr1, and RFsextr5 the parameter mtry was selected 
from a larger grid of values.

It is interesting to study, how different data set charac-
teristics influence the selected tuning parameter values. A 
study of the influence of sample size, number of features 

and strength of signal in the features on the selected tuning 
parameter values of the different methods was performed. 
For reasons of brevity, the in-depth analysis and discussion 
of this study is described in Section E of Online Resource 
1. In the following, the main findings from this study will 
be discussed. It was seen that proptry values of 0.05 tend to 
be selected more frequently for data sets with comparably 
weak signal. This is likely due to the fact that data sets with 
weaker signal are more susceptible to overfitting. By choos-
ing a proptry value of 0.05, less candidate splits are sampled 
for smaller nodes and the trees are not grown to full size, 
because tree growing stops as soon as 0.05 times the number 
of all possible splits is smaller than one. Both of these effects 
help avoiding overfitting small nodes.

As expected, the larger the number of features p, the 
larger the value of the optimal mtry value tended to be for 
RFs, RFsextr1, and RFsextr5. However, this relationship 
was not strong. The optimal mtry values were the largest 
for RFsextr1, smaller for RFsextr5 and the smallest for 
RFs. It was also seen that the common rule of thumb of 
setting mtry =

√
p for RFs delivers too small mtry values 

for larger values of p. This is congruent with the findings 
of Probst et al. [24] who used a collection of 38 data sets 
to determine better default values for mtry in RFs. Probst 
et al. [24] found that using the rule mtry = 0.432p delivers 
better results. While it was seen in Section E.2 of Online 
Resource 1 that this rule may tend to deliver too small mtry 
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Fig. 1  Data set specific performances of DFs compared to that of 
RFs. a Histogram of the differences between the data set specific 
ACC values obtained for DFs and for RFs. The red line indicates 
the zero line. b Scatter plot of the differences between the data set 

specific ACC values obtained for DFs and for RFs against the data 
set specific ACC values obtained for RFs. The blue curved line rep-
resents a LOESS fit. The red horizontal line again indicates the zero 
line
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values for small p and too large mtry values for large p, it 
was clearly superior to the standard rule mtry =

√
p . The 

fact that the optimal mtry values are larger for larger p does 
not mean that it is necessary to choose large mtry values—or 
large nsplits values in the case of DFs—for data sets with 
large p to achieve a close to optimal performance: Although 
the optimal mtry values were larger for larger p, the OOB 
errors were close to the minimal OOB errors even when 
specifying the mtry values much smaller (Online Resource 
3). Typically, the OOB errors were considerably larger only 
for very small mtry values, took similar values beyond that 
and, for some data sets and only in the case of RFs, increased 

again considerably for mtry values larger than the optimal 
mtry values. For RFsextr1 and RFsextr5 interestingly the 
OOB errors got quickly small and similar beyond very small 
mtry values, but, as opposed to in the case of RFs, did not 
get notably larger for larger mtry values. This is congruent 
with the finding from “Pre-study: Determination of Suitable 
Grids for the Tuning Parameter Values” that the predictive 
performance of DFs is weak for very small nsplits values, 
but consistently strong for larger values. The sample size 
only had a weak, non-linear effect on the optimal mtry val-
ues. The strength of signal in the features had a very weak 
effect on the optimal mtry values, which differed slightly 
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Fig. 2  Influence of sample size n and number of features p on the 
performance of DFs and RFs. a and b Data set specific ACC values 
obtained for DFs and RFs plotted against the logarithmized values 
of n and p. The lines show LOESS fits obtained for DFs and RFs, 
respectively. c Two-dimensional LOESS fit of the influences of the 
logarithmized values of n and p on the differences between the data 
set specific ACC values obtained for DFs and for RFs. d Cross sec-

tions of two-dimensional LOESS fits of the influences of the logarith-
mized values of n and p on the data set specific ACC values obtained 
for DFs and RFs, respectively. The cross sections were taken at differ-
ent quantiles of the sample sizes of all data sets. Where applicable, in 
each plot the black (dark) lines show the results obtained for DFs and 
the red (light) lines those obtained for RFs
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between RFs, RFsextr1, and RFsextr5. For more details and 
further heuristic discussions the interested reader is referred 
to Section E2 of Online Resource 1. Overall the influence of 
the data set characteristics on the optimal mtry values was 
weak, where a clear influence was only seen for the number 
of features.

Examples of Complex Split Procedures

Conventionally, RFs are constructed using univariable, 
binary splitting. More complex split procedures do not seem 
to have received much attention in the literature. A natural 
reason for the latter is likely that, as discussed in “Heuristic 
Discussion of Advantages of the Split Selection Procedure 
of DFs over that of Conventional RFs for Complex Split 
Procedures”, with the split selection procedure of conven-
tional RFs many complex split procedures would be compu-
tationally very demanding or simply intractable. Moreover, 
as also explained in “Heuristic Discussion of Advantages of 
the Split Selection Procedure of DFs over that of Conven-
tional RFs for Complex Split Procedures”, even if a complex 
split procedure with split problems that involve many splits 
would be computationally tractable, the split selection pro-
cedure of RFs would still not be suitable, because trying out 
all members of complex split problems can be expected to 
lead to overfitting.

A major advantage of randomly selecting splits as per-
formed by the DF algorithm is that this, in contrast to the 
split selection procedure of conventional RFs, does enable 
use of such complex split procedures. In this section, I will 
first present the recently developed interaction forests. Sub-
sequently, as an outlook I will discuss multi-way splitting 
and further complex split procedures.

Interaction Detection Through Bivariable Splitting 
in Interaction Forests

The interaction forest algorithm is the first and currently 
the only published DF method that uses complex splitting. 
In the literature it is often stated that conventional RFs 
would be particularly effective for taking interaction effects 
between features into account (see, e.g., the literature refer-
ences given in [31]). However, as discussed in [15, 31], since 
the splitting—and consequently also the split selection—
is performed univariably in conventional RFs, they focus 
on strong univariable effects without modeling interaction 
effects effectively. There exists quite a variety of approaches 
that aim at identifying interaction effects from tree ensem-
bles; for a literature overview see [15]. However, most of 
these use classical, univariable, binary splitting. This likely 
explains why they typically perform poorly at differentiating 
truly interacting feature pairs from feature pairs for which 

both pair members only feature strong marginal effects, but 
no interacting effects.

In interactions forests we model interaction effects 
directly using bivariable splitting. Here we differentiate 
between quantitative and qualitative interaction effects [23]. 
A quantitative interaction means that the strength of the 
effect of feature A on the outcome depends on feature B, but 
the direction of that effect does not change in dependency of 
the value of B. In contrast, with a qualitative interaction not 
only the strength but also the direction of the effect of feature 
A depends on feature B, such that A both has a positive and 
negative effect. A split problem in interaction effect contains 
all possible univariable and bivariable splits in one feature 
pair that are of the types visualized in Fig. 3. Trying out all 
possible splits of these types in a pair of features would be 
computationally very demanding, especially because many 
trees (default: 20,000) have to be constructed to identify 
interaction effects reliably. Using the diversity forest algo-
rithm, however, only one split of each type is sampled, that 
is, seven splits per split problem. Note that the selection 
probabilities of the quantitative and qualitative splits (Fig. 3) 
among these seven splits are not independent, because they 
all share the same split points (p(j1)

b
, p

(j2)

b
).

Interaction detection with interaction forests is performed 
using its effect importance measure (EIM). The latter uses a 
procedure by Hapfelmeier et al. [13] to measure the impor-
tance of each of the split types shown in Fig. 3 for each 
feature and feature pair. This allows to rank the feature pairs 
according to the importance of their quantitative and qualita-
tive interaction effects for prediction in addition to ranking 
the features according to the importance of their univariable 
effects. The split types are defined in such a way in inter-
action forests that they target well interpretable interaction 
effects that are easy to communicate. For higher dimen-
sional data the number of possible feature pairs becomes 
too large, making in impossible to consider all feature pairs. 
Therefore, for data sets with more than 100 features we pre-
select 5000 feature pairs that show the strongest indications 
of interaction effects according to a screening procedure. 
As stated before, interaction forests are implemented in the 
diversityForest R package. Here, we also provide 
plot functions for visualizing the estimated bivariable influ-
ence of feature pairs with large EIM values. The latter is 
crucial for drawing conclusions on the exact forms of the 
interaction effects, because these cannot be deterred from 
the EIM values. Simulation results [15] suggest that the EIM 
performs superior to other tree-based ensemble methods for 
identifying interaction effects. Moreover, in an extensive real 
data analysis using the 220 data sets that were also used in 
the current paper interaction forests tended to deliver bet-
ter prediction results than conventional RFs and competing 
RF-based methods that use multivariable splitting. For more 
details, see [15].
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Outlook: Multi‑way Splitting

In the case of classification problems with more than two 
classes of the outcome, multi-way split procedures are likely 
more appropriate. If the outcome has K classes, a K-way 
split procedure could be applied, that is, the nodes be split 
into K child nodes as opposed to only two. This would allow 
to obtain K child nodes for which each of them primarily 
contains observations from one of the K classes, which is 
not possible using conventional binary splitting. Using a 
multi-way split procedure can also improve on the (permu-
tation) feature importance measure [4] of RFs for multi-class 
outcomes. This is because a multi-way split procedure puts 
more emphasis on selecting split features that differentiate 
well between all K classes instead of only a subset of the 
classes.

Multi-way split procedures are, however, likely also ben-
eficial for two-class classification problems. Multi-way split-
ting increases the flexibility by which the univariable effects 
of the features are taken into account. When performing con-
ventional binary splitting, the algorithm searches for single 
splits in the values of the features that divide the observa-
tions in the node into two child nodes that are as homog-
enous as possible with respect to the outcome. However, the 
splits in the features found in this way may often be subop-
timal, because there might be features that have a stronger, 
but more complex influence. Such influences are more likely 
to be detected using multi-way splits. An example of a more 
complex influence of a feature on a binary outcome would be 

a tub-shaped influence, where the probability for class 1 is 
high for small values of the feature, low for moderate values 
and large again for large values. Another example would be 
very large probabilities for class 1 for small feature values, 
probabilities around 0.5 for moderate values, and very small 
probabilities for large values. When using such a feature in 
binary splitting, at least one of the resulting two child nodes 
will be impure. However, when using a three-way split, we 
would be able to obtain two (almost) pure child nodes and 
one impure node.

Considering multi-way splits instead of binary splits can 
not only be expected to deliver better predictive predictive 
performance of the trees, but their predictions will likely 
also be more diverse. This is because the variety of features 
considered in the trees is greater, as complex feature influ-
ences like the ones described above are exploited in addi-
tion to simpler influences that can be taken into account by 
binary splits.

Given the recursive nature of the trees, the advantage of 
multi-way splitting to allow for a more sophisticated render-
ing of the influences of the features is particularly impor-
tant with respect to the first few splits in the trees. The first 
splits have the strongest influence on the structures of the 
trees. For this reason, using a highly informative multi-way 
split at the root of the tree can be expected to deliver a bet-
ter performing tree than using a simple, binary first split; 
such a simple split will be more likely to prematurely divide 
observations that are relatively similar with respect to the 
outcome.

Fig. 3  Split types considered in the interaction forest algorithm. Each 
square visualizes the feature space spanned by two features xj1 and xj2 . 
The points p(j1)u  , p(j2)u  , and (p(j1)

b
, p

(j2)

b
) denote the split points for uni-

variable and bivariable splits, respectively. The white and gray areas 
depict the regions associated with the two child nodes of the splits. 
Figure adapted from [15]
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Multi-way splitting may be particularly effective for 
large data sets because of the complexity of this procedure, 
which benefits from the high precision associated with train-
ing using large sample sizes. A split problem in multi-way 
splitting would be the following: all possible splits in a spe-
cific feature that divide the current node into (up to) K child 
nodes. The larger the specified value of K, the more complex 
the splits will be.

Outlook: Further Potential Complex Split 
Procedures

Above the advantages of multi-/bivariable and multi-way 
splits were discussed. Apart from these specific split pro-
cedures, the split selection procedure of DFs allows con-
sideration of split procedures of any complexity, avoiding 
problems resulting from overfitting and high computational 
cost or even infeasibility from a computational point of view. 
For example, combining multivariable and multi-way split-
ting may also be considered. It would also be possible to 
consider split procedures with diffuse partitions of the fea-
ture space, which may help to detect interesting predictive 
patterns in the data. One example of such a split procedure 
would be bivariable splitting with random partitions of the 
spaces spanned by pairs of features, where these partitions 
are used to assign the observations to the child nodes. A spe-
cific application area for new complex split procedures could 
be multi-label data. While published random forest-based 
approaches to dealing with multi-label data exist [20, 28], it 
could be of interest to develop a DF approach with a more 
simple tree structure for the specific purpose of measuring 
feature importance for multi-label data.

Discussion

In this paper the diversity forest algorithm was introduced, 
an alternative split sampling scheme that allows to use 
innovative complex split procedures in random forests. The 
analyses presented in this paper revealed that random split 
selection as performed by diversity forests does not impair 
predictive performance compared to conventional split 
selection and that the results are quite robust with respect 
to the number of candidate split draws nsplits considered in 
split selection. These two properties open the door to using 
the diversity forest algorithm for realizing new complex split 
procedures in RFs. Interaction forests are the first published 
DF method with a complex split procedure.

In the case of complex split procedures the total num-
bers of possible splits can become very large. If, for such 
split procedures, the required number of candidate splits to 
consider per split would be required to be large in relation 
to the total number of possible splits, this would render the 

procedure computationally intractable. However, luckily, 
the required number of candidate splits is not expected to 
grow with the complexity of the split procedure. This is 
because the number of features is the same, independent 
of the complexity of the split procedure. For complex split 
procedures the probability that a sampled split involves 
strong features is as large as or even larger than (the latter 
being the case, e.g., for multivariable splitting) for uni-
variable, binary splitting. Given that the quality of a split 
depends primarily on the feature or features used in it, 
it becomes clear that the density of strong splits among 
the sampled candidate splits is fairly independent of the 
complexity of the split procedure. Therefore, even though 
the numbers of all possible splits are much larger for com-
plex split criteria, the optimal numbers of candidate splits 
should be in the same order of magnitude as that associ-
ated with univariable, binary splitting. Moreover, we saw 
in “Pre-study: Determination of Suitable Grids for the 
Tuning Parameter Values” and “Results” that, independ-
ent of the number of available features, for random split 
selection, beyond very small numbers of candidate splits, 
the predictive performance is only weakly influenced by 
the number of candidate splits. For these reasons, inde-
pendently of the number of features or the degree of com-
plexity of the split procedure, it should not be necessary to 
consider large numbers of candidate splits when randomiz-
ing the split selection, making forest construction well fea-
sible from a computational point of view. For example, 
in interaction forests we sample a maximum number of 
ten split problems per split, which, given that we sample 
seven splits per split problem, leads to a maximum of 70 
considered candidate splits.

The analyses presented in this paper were restricted to the 
case of binary outcomes. It has been observed previously 
that mtry in RFs should be chosen larger in the regression 
case than in the classification case [4]. Similarly, in DFs 
using a larger nsplits value in the case of metric outcomes 
may be preferable. However, we also saw that the perfor-
mance of DFs is quite robust with regard to the choice of 
nsplits, which is why the performance is likely not affected 
notably when choosing the same nsplits value for different 
outcome types. Correspondingly, the popular ranger R 
package [30] uses the same default value mtry =

√
p for all 

considered outcome types.
The intention of using the parameter proptry that limits 

the number of candidate splits for small nodes was to inhibit 
potential overfitting of small nodes resulting from consider-
ing too many candidate splits. For complex split criteria the 
total numbers of candidate splits can be expected to be large 
even for small nodes, which is why for specific complex 
split criteria it will not be necessary to limit the numbers of 
candidate splits for small nodes, but instead it will be enough 
to simply use a proptry value of one.
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When using univariable, binary splitting, randomizing 
the split selection leads to only little improvement in pre-
dictive performance. Nevertheless, for big data applica-
tions it can be expected to also be advantageous for uni-
variable, binary splitting. This is because, for very large 
data sets it is computationally demanding to try out all 
possible splits in the features. Moreover, as seen in [7], 
randomizing the split selection avoids problems caused 
by the tendency of the trees in conventional RFs to select 
features with many possible splits [25].

As described before, RFARs [7] do not use fixed num-
bers of candidate splits, but instead they continue split 
sampling until a split is found that delivers a statistically 
significant association between child node membership 
and the values of the outcome. Using a stop criterion in 
candidate split sampling would also be possible in DFs. 
An advantage of this would be that, by letting the number 
of required candidate splits be determined automatically, 
we would avoid situations in which the default number of 
candidate split draws nsplits is not suitable. However, such 
situations can be expected to be rare given the robustness 
of the results with respect to the choice of nsplits. Moreo-
ver, it is not clear whether using a stopping procedure in 
split selection is beneficial in general. Such a procedure 
has the effect that all splits in the trees are of similar qual-
ity. However, it is not clear, why this property would be 
beneficial; in contrast, trees that deliver splits of varying 
qualities are likely more diverse, which is associated with 
better predictive performance of RFs [4].

If a stopping rule is used, it should, however, not be 
based on significance testing of the form used by RFARs. 
This is because the stopping rule used in RFARs tends to 
consider more candidate splits for smaller nodes and, as 
explained in “Description of Diversity Forests”, selecting 
too many candidate splits for small nodes can lead to over-
fitting. RFARs tend to select larger numbers of candidate 
splits for smaller nodes, because the p values of the tests 
used to decide whether the split selection procedure of 
RFAR is stopped are naturally larger for smaller nodes. 
Therefore, the probability of a p value falling below the 
significance threshold is smaller for smaller nodes. The 
fact that the number of candidate splits depends on the 
node size in RFARs is suboptimal, not only with respect 
to small nodes. By considering fewer candidate splits for 
large nodes the strong predictive information contained 
in these nodes is less well exploited. For these reasons it 
might be effective to replace the significance testing in 
RFARs by a criterion that does not depend on node size. A 
suitable criterion for binary outcomes might be Cramér’s 
V, a measure for the degree of association between two 
binary features. In this case, instead of using a signifi-
cance threshold, we would need a threshold in the values 
of Cramér’s V. Unlike the number of candidate split draws 

nsplits in DFs, the values of Cramér’s V can be directly 
interpreted in terms of the degree of the decisiveness of 
the splits.

Comparing the results obtained by [7] with those obtained 
in this paper, it can be seen that the performance differences 
between RFsextr1 and RFs were larger in this paper than 
they were in [7]. One important reason for this discrepancy 
is likely that the signals in the data sets tended to be larger 
in [7] than in the collection of data sets considered in this 
paper; for example, the median AUC value obtained with 
conventional RFs was 0.9621 in [7], while it was 0.9070 
in this paper (see Table 2). Another reason for the smaller 
performance differences seen in [7] is likely that they did not 
optimize the values of mtry in each cross-validation itera-
tion, but used default values for mtry. Finally, the results 
obtained in this paper are based on a much larger collection 
of data sets than that of [7]. The large number of data sets 
considered in this paper made it possible to obtain reliable 
conclusions and perform more sophisticated analyses, such 
as studying the influence of number of features and sample 
size on the performances of the methods.

Conclusions

Randomizing the split selection in RFs via the DF algorithm 
enables integrating practically useful split procedures of 
any complexity and does not impair predictive performance 
in comparison to conventional split selection. Moreover, 
the performance of DFs is quite robust with respect to the 
number of candidate split draws nsplits used. The DF split 
finding algorithm is easy to understand and works in the 
same way for different outcome types, such as categorical, 
continuous, and survival outcomes. DFs may not feature a 
stronger predictive power compared to conventional RFs. 
However, the main focus of complex split procedures real-
ized using the DF algorithm should not be predictive per-
formance, but solving practically important problems, such 
as interaction detection or measuring feature importance for 
multi-class outcomes. RF-based methods lend themselves to 
solving such problems because of their capability to capture 
complex dependency patterns between the outcome and the 
features.

The DF algorithm is intended for methodologically ori-
ented researchers with a focus on applications. I hope that 
this work will inspire other researchers to develop DF vari-
ants that solve practically important problems.  The recently 
introduced DF method, interaction forests, shows promising 
results and illustrates the practicability of DFs. One future 
project will focus on a DF with a multi-way split proce-
dure, because as described in “Outlook: Multi-way Split-
ting”, this allows for the use of a feature importance measure 
for multi-class outcomes that identifies features which can 
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differentiate well between all the outcome classes instead of 
only a subset. Another planned project will focus on devel-
oping a statistical testing procedure for the effect importance 
measure values of interaction forests that will enable testing 
which feature pairs display statistically significant interac-
tion effects.
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