Studienabschlussarbeiten
Fakultat fur Mathematik, Informatik
LUDWIG- und Statistik

MAXIMILIANS-
UNIVERSITAT
MUNCHEN

Fink Amores, Michael Christian:

The Graph Isomorphism Problem and the
Gl-Completeness of Selected Problems from
Context-Free Grammmars and Rewrite Systems

Bachelorarbeit, Wintersemester 2021
Gutachter®in: Sabel, David : Merkl, Franz

Fakultdt fur Mathematik, Informatik und Statistik

Mathematik, Informatik

Ludwig-Maximilians-Universitat Munchen

https://doi.org/10.5282/ubm/epub.78037

INSTITUT FUR INFORMATIK
DER LUDWIG-MAXIMILIANS-UNIVERSITAT MUNCHEN

Lehr- und Forschungseinheit fir Theoretische Informatik

MATHEMATISCHES INSTITUT

DER LUDWIG-MAXIMILIANS-UNIVERSITAT MUNCHEN

Bachelor Thesis

The Graph Isomorphism Problem
and the Gl-Completeness of
Selected Problems from Context-Free Grammars
and Rewrite Systems

Michael Christian Fink Amores

Supervisors: Prof. Dr. David Sabel & Prof. Dr. Franz Merkl
Deadline: March 31st, 2021

I hereby assure that I have written the present bachelor thesis independently and
that T have not used any sources or resources other than those stated.

Miinchen, March 31st, 2021

(Michael Christian Fink Amores)

Abstract

Graph isomorphisms are adjacency and label (equivalence class) preserving one-to-one
correspondences between vertex sets of possibly labelled graphs. The graph isomorphism
problem is then the task of deciding whether two given graphs are isomorphic or not
and basis of complexity class GI, containing all problems with polynomial reduction to
former problem. We highlight history and state of the art research on graph isomorphism
related problems, with special focus on categorisation of GI in the complexity hierarchy
and its relation to the unsolved P = NP problem, where strong theoretic and heuristic
evidence suggests that GI is NP-intermediate.

The core of the thesis is study of GI-completeness of selected problems from context-
free grammars and term rewriting systems. We show polynomial equivalence of the
graph isomorphism problem and decision problems on context-free and regular gram-
mars, involving grammar isomorphisms and isomorphic strict interpretations, describing
bijective mappings between nonterminals and terminals of different symbol sets.
Grammar concepts are specialised to term rewriting systems, formalising substitution
based on a function/variable symbol term model. Isomorphism on such finite structures
involve local, on a per rule basis, and global rewriting of respective symbol sets, including
arbitrary combinations. Completely local term rewriting system isomorphism can be
determined in polynomial time by introduction of local templates, subject to different
restrictions. Explicit pseudocode algorithms are subsequently provided to support those
claims. In contrast, different graph encodings are used to prove that global rewriting of
atleast one symbol set already leads to GI-completeness of the related decision problem.

Acknowledgements

I thank my supervisors Dr. David Sabel and Dr. Franz Merkl for their continuous input
and support, my sister Yasmina Fink Amores for proof reading and patiently listening
to my ideas, and lastly my parents for their motivating words.

vii

Contents

1 Introduction

2 The Graph Isomorphism Problem

2.1 Mathematical Notations and Graph Theoretical Basics
2.2 The Graph Isomorphism Problem and Complexity Class GI

2.2.1 Outline on basic Complexity Theory . .

2.2.2 Polynomial Reductions and Complete Problems

2.2.3 GI and its Relation to other Complexity
2.3 GI-Complete Subclasses of Graphs
2.3.1 Edge Replacement Techniques
2.3.2 Pointer Techniques

Classes

3 Structural Isomorphism of Context-Free and Regular Grammars
3.1 Grammar Isomorphism and Isomorphic Strict Interpretations

3.2 Template Construction

3.3 GI-Completeness of Structural Isomorphisms between Context-Free and

Regular Grammars

4 Structural Isomorphism of Term Rewriting Systems

4.1 Term Rewriting Systems and Structural Isomorphisms

4.2 Local TRS Isomorphisms arein P
4.3 Term Trees and TRS-Forests
4.4 GI-Completeness of Global TRS Isomorphisms

5 Summary and Conclusion
List of Algorithms

List of Tables

List of Figures

Bibliography

23
23
25

27

39
39
45
47
o1

63
65
65
67

69

ix

1 Introduction

Graph theory is one of the most prominent fields of research in all of mathematics
and (theoretical) computer science with a wide variety of applications. This is owed
to the extremely simple concept of graphs, abstracting structural relations, and a big
catalogue of open, unanswered questions, inspiring researchers all over the globe. In
particular finite structures can be encoded as graphs and allow us to fall back on graph
theoretical methods to solve certain problems. One of these problems is the famous graph
isomorphism problem, involving the task of deciding whether between two given graphs
exists an adjacency-preserving one-to-one correspondence on respective vertex sets or
not, which can then be juxtaposed to isomorphism between initial, non-graph objects.
Security tools like fingerprint scanners, facial scanners, retina scanners, or analysis of
social/business structures, especially in context of social networks, would greatly benefit
of fast isomorphism-algorithms and profit of efficient tracking of relationship-properties.
Graph isomorphism and its exact computational categorisation was long deemed a stale
topic, with research content in mostly improving known results with regard to their
time complexity bounds. In 2015 however, Hungarian researcher Léaszl6 Babai sparked
a new flame in the cold lands of graph isomorphism complexity, when he provided the
first quasipolynomial time algorithm for determining isomorphisms between two given
graphs.

Our main goal is to study isomorphisms on finite structures, their relation to different
graph isomorphism types and methods to encode those structures property-preserving
into graphs. We are particularly interested in corresponding decision problems and
possible polynomial equivalence to the graph isomorphism problem. That is, if a poly-
nomial solution of such problem yields a polynomial decision algorithm for determining
graph isomorphisms and vice versa. This will not be done in an exclusively theoretical
way, but rather we work on two explicit types of structures, namely formal grammars,
more specifically context-free grammars, and term rewriting systems, on which we will
present general methods and ideas. In both cases, the aim is to analyse syntactical
properties, induced by symbol manipulation, with regard to their computationally com-
plexity and their relation to the graph isomorphism problem. The presented methods
can then be generalised to tackle similar problems. This can be of interest in the context
of compilers, where formal grammars/languages appear and detection of isomorphism
may aid in performance optimisation. Similar for term rewriting systems, who see us-
age in computer-aided applications and yearly termination competitions. In the latter,
new, preferably non-isomorphic, examples are yearly added to a termination problems
data base. This prevents participating tools from gaining an advantage by tailoring or
overfitting to previous data bases.

1 Introduction

We will proceed as follows:

Chapter 2: Starts by giving a quick overview of key definitions regarding graph the-
ory and provides a complexity theoretical categorisation of the computational effort to
determine isomorphisms between two given graphs. Furthermore, GI-completeness of
different graph subclasses is discussed.

Chapter 3: Tackles GI-completeness of determining grammar isomorphisms and iso-
morphic strict interpretations on context-free and regular grammars.

Chapter 4: Specialises results from the previous chapter by studying computational
properties of isomorphisms on term rewriting systems.

At all points in this thesis we try to uphold balance between mathematical rigorous-
ness and practical application. In particular, implementation and runtime analysis of
certain algorithms will not be explained in too much detail to keep the focus of the
reader on the core results and presented methods. If needed, we provide appropriate
references to further literature.

2 The Graph Isomorphism Problem

2.1 Mathematical Notations and Graph Theoretical Basics

Let N={1,2,3,...} be the set of positive integers and consequently Ny = NU{0} the set
of non-negative integers. Cardinality or order of a set A is denoted by |A| and we write
A C B, if Ais a subset of an other set B. For distinct elements aq,...,a, and elements
bi,...,bn, denote with {a; — by,...,a, +— by} the map f : {a1,...,an} — {b1,...,bn}
mapping a; onto b;. Moreover, if A and B are disjoint sets, f: A - Cand g: B — D
maps defined on these sets, let fllg : AUB — C U D be the unique map so that
(fUg)la = f and (fUg)|s = g. This can be generalised to arbitrary many, pairwise
disjoint, sets. For f,¢g : Nj* — R, we say that f = O(g) or f is in, or of, O(g), if
we find C > 0 and N € Ny such that for every ni,...,n, > N, [f(n1,...,nn)| <
Cg(ny,...,nn,). Lastly, denote for n € N with &,, the symmetric group of order n,
i.e. the set of bijections {1,...,n} — {1,...,n}. The following section gives a quick
overview of the most important definitions and terms regarding graph theory that will
be used throughout the whole thesis. Acronyms 4.e., w.r.t. and w.l.0.¢g. and refer to “id
est”, “with respect to” and “without loss of generalisation” respectively.

Definition 2.1 (Labelled Directed Graph). A labelled directed Graph (LDG) is a tuple
G = (V,E, L,lab), where V is a finite set of vertices, FE C V x V x L are directed
labelled edges between vertices, L is a finite set of labels, sets V, E are disjoint, and
lab : V — L is a labelling function.

If |L| = 1, we say that G is a directed graph (DG) and omit L in the definition, G =
(V,E). We call G a labelled undirected graph (LUG) or simply labelled graph, if (v, w,l) €
E <~ (w,v,l) € E. The number of vertices |V| of G is the order of G, whilst |E| is
called the size of G. In order to avoid confusion, we denote an undirected labelled edge
by (v, w,l). In contrary to other popular literature, we do not allow LDGs to have loops
or parallel edges, i.e. for (v,w,l), (v,w,l') € E, v # w and already [= ['.

Definition 2.2 ((In-/Out-)Degree). For fix vertex v € V, denote with indeg(v) =
Hw eV :(w,v,l) € E}| and outdeg(v) = [{w € V : (v,w,l) € E}| the indegree and
outdegree of v respectively, i.e. the number of ingoing or outgoing edges. Vertices
of indegree 0 (and outdegree 1) are called (simple) roots and of outdegree 0 (and
indegree 1) (simple) leafs.

If G is undirected, indeg(v) = outdeg(v) and we simply call deg(v) = indeg(v) the degree
of v. In this case, the notion of leaf and root agree, and we demand deg(v) = 1.

2 The Graph Isomorphism Problem

(b) Vertex vy is a leaf, vs a simple leaf, vy
a root, v a simple root and v3 neither
(a) Vertex v has indegree indeg(v) = 4 and
outdegree outdeg(v) = 3, vertices with
ingoing edges are light shaded, vertices
with outgoing edges dark shaded

Figure 2.1: Example of (in-/out-)degree and leafs/roots in a directed graph

Definition 2.3 (Complete Graph). G is complete, if all vertices are connected, i.e.
if we consider the edges to be unlabelled, E = V x V, or more formally, for all
v,w €V, v # w, there is I,I' € L with (v, w,l), (w,v,l') € E.

Definition 2.4 (Subgraph, Clique). A subgraph G’ of G is a graph (V', E’, L,1ab’)
consisting of a subset V! C V of V and corresponding edges in F, i.e. E' =
ENV'x V' x L, or equivalently, E' = {(v,w,l) € E:v,w € V'}. Vertex labels
are preserved, lab’ =lab |y+. A k-clique in G is a complete subgraph of order k.

Definition 2.5 (Path). A (directed) path in G of length k € N, or k-path, is a family
of k + 1 connected vertices (v1,...,vp1) € V¥, ie. we find edges (v, vit1,1;) € E,
1 <i < k. We say that vertices v,w € V are k-connected, if we find a k-path starting
in v and ending in w, i.e. v; = v and vg11 = w. Adjacent vertices are 1-connected
vertices. For simplicity sake we assume, as long as not stated otherwise, that all
vertices in a path are unique, or in other words, every vertex is only visited once.

2.2 The Graph Isomorphism Problem and Complexity Class GI

(b) Directed path of length 3 between two

(a) 3-clique in graph, vertices are shaded shaded vertices

Figure 2.2: Example of k-clique and k-path (k = 3)

We will make heavy use of breadth-first search, lexicographical sorting and maps to prove
polynomial properties of certain algorithms. Breadth-first search on a graph G = (V, E)
visits every vertex (and edge) in at most O(|V| + |E|), by exploring G starting at an
arbitrary vertex. Any set A of strings, can be sorted lexicographically in O(cnlogn),
where n is the size of A and ¢ is an upper bound on the length of the strings in A.
Consequently, a map f : B — A into A can be managed as heap, with insertion (i.e.
assigning values) and access being possible in O(clogm), where ¢ is again an upper
bound on the length of the strings in A, and m is the size of B. Refer to [CLRS09] for
concrete implementation of said algorithms, including a comprehensive analysis of their
runtimes.

2.2 The Graph Isomorphism Problem and Complexity Class GI

2.2.1 Outline on basic Complexity Theory

Object of the thesis will be so called decision problems. Formally, a decision problem
is the task to decide, whether a given object a belongs to a certain set A or not, i.e. if
a € A. Such a problem can be posed as a yes-no question on the input values and be
solved in the form of an algorithm. All of the here presented decision problems will be
based on finding pairs of finite structures correlated by bijective functions with certain
structure preserving properties, and thus can be solved for all input values in finite time
by simply checking all such possible functions of which exist only finitely many. Due to
theoretical computer science working with countable structures, all decision problems
can be regarded as integer subsets, A C N. This can be accomplished by, for example,
Gaodel numbering. We are however not interested in decidability of decision problems,
but rather their computational (time) complexity, that is, how computationally difficult
they are. Decision problems then can be agglomerated to so called complexity classes,

2 The Graph Isomorphism Problem

i.e. sets of problems. Formal definition of a complexity class C is object to three things:

(1) A type of computational problem,
(2) a model of computation and

(3) a bounded computational resource, which will be time.

Our computation model of choice will be Turing machines represented by simple pseu-
docode algorithms. This is supported by the Church-Turing thesis. Time is then mea-
sured by the number of individual, elementary steps dependent on input size n in those
algorithms. We do not want to go too in-depth in formal definitions, since satisfactory
study of those subjects would blow up the capacity of this thesis. Instead we recom-
mend [SchO08] for a more rigorous approach. From now on, (complexity) classes refer
to time complexity classes, i.e. the bounded computational resource will be time if not
explicitly stated otherwise. We say problem A is in class C, if A € C and in co C, if its
complement A is in C, A € C.

For function f : N — N, let TIME(f(n)) be the class of all problems which can be
deterministically solved in time O(f(n)), i.e. A € TIME(f(n)) if and only if we find
a deterministic algorithm which solves A (can decide whether a € A or not) in at most
O(f(n)) steps, where n is the size of the input value, for example the length of a word,
or order/size of a graph. Consequently, let NTIME(f(n)) be the class of all problems
which can be nondeterministically solved in time O(f(n)). The most prominent represen-
tatives of complexity classes are P = | J;. <y, TIME(n*) and NP = Uren, NTIME (n*),
the classes of problems decidable in (non)deterministic polynomial time. Definitions then
can be extended to include multivariate polynomials, to cover algorithms with multiple
inputs, as |V/|,|E| in the case of graphs. Clearly P C NP, TIME(1) C TIME(n) C
TIME(n?) C ... C P and NTIME(1) € NTIME(n) C NTIME(n?) C ... C NP.
The latter two hierarchies do not collapse in the sense that there is no integer £ € N such
that TIME(n*) = P or NTIME(n*) = NP and a direct consequence of a collection of
various statements regarding time-bounded computation on Turing machines, called the
Time hierarchy theorem [HS65, Coo72]. If inclusion P C NP is strict or not, is widely
known as the famously unsolved P = NP problem, first introduced in 1971 by Stephen
Cook [Coo71] and an important consequence of the Cook—Levin theorem, which states
the Boolean satisfiability problem is NP-complete.

2.2.2 Polynomial Reductions and Complete Problems

Reduction of one problem to another and hardness/completeness of problems relative to
complexity classes play a major role in not only theoretical research, but specifically in
this thesis. We are primarily interested in problems which are “equivalent” to deciding,
whether two given graphs are isomorphic, or not.

2.2 The Graph Isomorphism Problem and Complexity Class GI

Definition 2.6 ((Polynomial) Reduction). Let A, B C N be two integer-valued sets
(or decision problems). We say that A can be (many-one-)reduced to B, in terms
A < B, if we find a computable total function p : N — N such that ¢« € A <—
p(a) € B. If f is even computable in polynomial time, i.e. p € P, then we write
A <P B. Consequently, A and B are polynomially equivalent, A =P B, if A <P B
and B <P A. Both < and <P are clearly reflexive and transitive.

Note that the notion p € C, for some complexity class C and function p : N — N, is
no contradiction to our earlier characterisation, but rather an abuse of notation. That
is, p € C if and only if {(n,p(n)) : n € N} € C, i.e. we identify the function p with its
function graph. For our purposes, p will be mostly given either directly or indirectly by
a pseudocode algorithm, and thus p is computable in polynomial time if and only if the
algorithm itself has runtime of O(p) for some, possibly multivariate, polynomial p.

The driving motivation behind reductions is twofold. On the one hand, there is strict
complexity theoretical information gain. For A < B, every instance of problem A can
be solved by an algorithm of B, after applications of suitable, computable encoding.
If we additionally demand time constraints on the runtime of such an encoding, we
can derive a wide facet of information about complexity classification of A just from
algorithmic properties of B. On the other hand, reductions can be informally used
to convert practical and concrete tasks into mathematically manageable problems on
which we can then apply theoretical results. An obvious example is graph theoretical
abstraction and modelling of traffic-related problems. Cities, villages or other relevant
traffic nodes can be interpreted as vertices, connected by suitably chosen edges.

Definition 2.7 (Hardness, Completeness). Let P C C be a complexity class and A C N
a decision problem. Then A is C-hard, if B <P A for all B € C, i.e. every problem
B in C can be polynomially reduced to A. If additionally A € C, then A is called
C-complete. Notions of hardness and completeness can be generalised to other type
of classes, requiring reductions of differing complexity. For our purposes the above
definition is adequate.

C-complete problems can be understood as computational representatives of a class, that
is to say, solving a C-complete problem A, i.e. stating an algorithm, already solves all
other problems in C. Properties of complete problems then can be easily generalised to
properties of the whole class. Theoretical computer science is interested in NP-complete
problems, where we additionally demand reductions to be polynomial. Richard Karp’s
paper [Kar72] published in 1972 was a major step-stone in studying the relation between
classes P and NP, building on Cook’s results [Coo71] from one year prior and proving
NP-completeness of in total 21 combinatorial and graph theoretical computational prob-
lems.

2 The Graph Isomorphism Problem

2.2.3 GI and its Relation to other Complexity Classes

Definition 2.8 ((Strong) Graph Isomorphism). Given two labelled directed graphs
G; = (Vi, E;, Li,lab;), i = 1,2, and a bijection ¢ : Ly — Lo, a graph isomorphism
¢ : Vi — Vo war.t. 1, is an adjacency and label preserving bijection, i.e. ¥ (laby(v)) =
laba(¢(v)) for all v € V4 and (v, w,l) € E; if and only if (¢(v), ¢p(w), (1)) € Ea. We
call Gy and Go isomorphic w.r.t. ¢. If L1 = Lo = L and % is the identity on L,
then we call ¢ a strong isomorphism and G and Ga strongly isomorphic.

The notion of (strong) isomorphism is appropriately generalised to other subclasses of
graphs, like unlabelled (un)directed graphs. See Figure 2.3 for a few examples. Intu-
itively, two graphs are strongly isomorphic if they are the same after “moving around”
vertices, preserving adjacency and labels. Of course, this assumes a certain geometrical
abstraction and approach that makes determining (strong) isomorphism of given graphs
of arbitrary order and size so difficult and computationally intensive in the first place.
This is the case for G2 in Figure 2.3b, which can be built out of G in Figure 2.3a by
swapping top and middle vertex and rotating the resulting graph by 180 degrees. Graph
Isomorphism then generalises this concepts by only demanding preservation of equiva-
lence classes of labels. For example G2 in Figure 2.3b and G3 in Figure 2.3c are the
same graph up to (global) recolouring of vertices, i.e. swapping labels. Just from Defi-
nition 2.8, Definition 2.4 and Definition 2.5, we immediately see that images of k-cliques
or k + 1-paths under a (strong) graph isomorphism are again k-cliques or k + 1-paths,
and that restriction of (strong) graph isomorphisms to subgraphs are also (strong) graph
isomorphisms. This will be (implicitly) used all throughout this thesis. At this point we
can finally discuss the graph isomorphism problem and correlated complexity class.

Definition 2.9 (Graph Isomorphism Problem (GI)). The graph isomorphism problem
(GI) is the task to decide whether two (unlabelled undirected) graphs are isomor-
phic. Moreover, denote with GI the decision problem itself, i.e

GI = {(G1, G2) : G1, Gy isomorphic graphs},

and the complexity class of to graph isomorphism polynomially reducible problems,
that is, the set of problems A such that A <P GI. Which of the two definitions
is used will be clear by context. Since P C GI, we can apply Definition 2.7 and
discuss GI-complete problems.

The complexity class GI is only known to be between P and NP. The latter inclu-
sion is shown pretty easily, as one can guess an one-to-one correspondence between
vertex sets and then verify in polynomial time whether adjacency property holds or
not. Just from Definition 2.9 we can derive two important relations in regard to the
exact classification of GI: If GI is solvable in polynomial time, then already GI = P.
On the other hand, GI = NP if it were to be shown that GI is additionally in fact

2.2 The Graph Isomorphism Problem and Complexity Class GI

< A

) Labelled undirected graph G) Labelled undirected graph Gs
) Labelled undirected graph Gj) Labelled undirected graph G4

Figure 2.3: Example of (strongly) isomorphic labelled undirected graphs

(Edges are unlabelled, vertex-labels are visualised by different shading) G; and G5 are strongly
isomorphic, Gy and G3 are isomorphic, G; and G4 are not (strongly) isomorphic

NP-complete. The latter assumption is one of the 12 open problems listed in Garey’s
and Johnson’s famous textbook Computers and Intractability: A Guide to the Theory
of NP-Completeness [GJ79] published in 1979. Just a few years prior in 1975, Richard
E. Ladner proved Landner’s theorem [Lad75], stating that if P # NP, there indeed
exist problems neither in P nor NP. As still unclassified problem, GI is thus a prime
candidate for a so called NP-intermediate problem, with strong evidence suggesting
that indeed GI # P and GI # NP. A wide variety of important special cases have
efficient, polynomial time solutions, like trees [ZKT85], planar graphs [HW74], permu-
tation graphs [Col81] or graphs with bounded parameters [Bod90], [Luk82], for exam-
ple bounded (in-/out-)degree, which mostly exploit the combinatorial structure of said
classes by using combinatorial heuristics such as individualisation and refinement. There
is however no hope of generalising those achievements in favour of GI = P, as shown
in 1992 by Cai, Fiirer & Immermann [CFI92], who state that combinatorial refinement
methods can not succeed in less than exponential time for the general graph isomorphism
problem. Moreover, graph isomorphism can be considered an universal problem, in the
sense that “isomorphism” between finite combinatorial structures can be remodelled to
isomorphism between graphs, and thus solving GI with a fast polynomial algorithm

2 The Graph Isomorphism Problem

would also solve all those problems relatively fast. We will see some examples of this
in Chapter 3 and Chapter 4, when we prove GI-completeness of certain isomorphism
between formal grammars and term rewriting systems respectively. Since this kind of
universality usually implies computational “hardness”, it is relatively unlikely for GI to
be in P.

Other algorithmic approaches interconnect graph theory with group theory, build on
the fact that computation of the automorphism group of a graph is computationally
equivalent to GI. This is supported by Frucht [Fru39], who proved that every finite
group is isomorphic to the automorphism group of some graph. In 1983, Babai &
Luks [BL83] published an algorithm with runtime 20(vV?1°67) for graphs of order n,
based on a combination of Luks’s algorithm for graphs of bounded degree [Luk82] from
1982 and Zemlyachenko’s degree reduction technique [ZKT85], which relies on classifi-
cation of finite simple groups (CFSG). The latter states that every finite simple group,
that is, a finite group whose normal subgroups are the trivial group and itself, is either a
member of one of three infinite classes (cyclic groups, alternating groups, groups of Lie
type) or one of 27 so called sporadic groups. This classification theorem however was
announced in 1983 but not completely proven until much later in 2004 when Aschbacher
& Smith solved the last remaining special case and 2008 when Harada & Solomon filled
a minor gap. This worst case-bound was improved on for a lot of subclasses, for example
in 1996 by Spielman [Spi96], demonstrating that isomorphism of strongly reqular graphs
may be tested in nO®'/? logn) " or in 2008 by Babai & Codenotti [BCOS8] for hypergraphs
of bounded rank.

The biggest break-trough in recent times came in November 2015 from Hungarian re-
searcher Laszlé Babai [Bab16] (last revised in January 2016), who announced a quasipoly-
nomial time algorithm for GI and related problems of String Isomorphism, apparently
improving the worst case-bound down to 29187 for some fixed ¢ > 0. This claim
however was invalidated by an error in the analysis of the graph isomorphism test, first
pointed out by Harald Helfgott, whereupon on January 4, 2017, Babai retracted his
paper. Just a few days later on January 9, after “discovering a replacement for the re-
cursive call in the ‘Split-or-Johnson’ routine that had caused the problem” on January 7,
Babai published an updated, revised version [Babl7] restoring his claim, with Helfgott
himself confirming the fix. This was furthermore improved on by Helfgott [HBD17],
claiming that one can choose in fact ¢ = 3. As of now, both (updated) proofs have
not been fully peer-reviewed yet. Babai’s result is one of three main arguments against
NP-completeness of GI.

Argument 1: GI is solvable in quasipolynomial time

As mentioned before, GI was shown to be solvable in quasipolynomial time by Babai.
Formally, the complexity class of subexponential time is given as SUBEXP = 20(n)
Neso TIME(2™) or simply TIME(2P°(°8™)) - That is, an algorithm of subexponen-
tial time, runs longer than polynomial time, but still not as long as exponential time,
indicated by the small o in the exponent of the first definition. Now GI being NP-
complete would immediately imply NP C SUBEXP, i.e. all NP problems are solvable

10

2.2 The Graph Isomorphism Problem and Complexity Class GI

in quasipolynomial time. This however, would contradict the yet unproven but widely
popular Exzponential time hypothesis formulated by Impagliazzo & Paturi [IP99] in 1999.
The hypothesis states that 3-SAT, i.e. the problem of deciding whether a boolean for-
mula in conjunctive normal form with at most three literals in each clause is satisfiable,
and other NP-complete problems cannot be solved in subexponential time. One of the
best currently known deterministic bounds for 3-SAT is only in O(1.439") [KS10] with
randomised algorithms even cracking (0(1.321™) [HMS11].

Argument 2: The polynomial time hierarchy would collapse

For some complexity class C and some decision problem A, denote with C# the class of
problems solvable by an algorithm in class C with an oracle for A, generalised to CP =
Usen CA for class D. Conceptually, oracle machines, or algorithms with an oracle for
that matter, can use oracles to solve certain problems in one step. For example an oracle
for GI could decide in one step whether two given graphs are isomorphic or not. Now
the polynomial hierarchy is inductively defined the following way: AP =3P =1IF = P
and AP = P¥ ¥P = NP™ K IIP, = coNP™ . For example, 3P = NPF =
NP and A} = PNP. This immediately implies relations like ©f € AP, € ¥F, or
Hf C AEA C Hil, which are widely believed to proper inclusions. In 1988 however,
Uwe Schoning [Sch88| proved that if GI is NP-complete, this hierarchy collapses to the
second level, forcing above inequalities to be in fact equalities for i > 1. Refer to [vM50)]
by van Melkebeek and [Sto76] by Stockmeyer for a more rigorous introduction to oracle

machines and polynomial hierarchy respectively.

Argument 3: GI is in coAM

Complexity class AM is the set of decision problems that can be decided in polynomial
time by an Arthur—Merlin protocol with two messages, which was first introduced by
Babai [Bab85] in 1985. Conceptually, this is comparable to a blind taste test or zero-
knowledge proof, with two participants Arthur and Merlin. Arthur is assumed to be a
standard computer, i.e. the user itself, equipped with a random number generator, for
example a fix number of coins that can be tossed, and Merlin represents an all-knowing
oracle, i.e. a computer with infinite computing power. Now messages between the two
are exchanged. Arthur tosses his coins (not necessarily all) and sends the outcome of
all tosses to Merlin, without conveying additional information apart from the values
itself. Merlin then answers with a supposed proof that is deterministically verified by
Arthur, i.e. he either accepts or rejects the given proof. Problems are then solvable
by such protocols if possibility of acceptance exceeds a certain threshold in the case of
a yes-instance. No such protocol however has been found for any known NP-complete
problem, again pointing towards GI not being NP-hard.

11

2 The Graph Isomorphism Problem

2.3 GI-Complete Subclasses of Graphs

We will discuss a wide variety of different graph subclasses and show that in fact (strong)
isomorphism on these subclasses is already GI-complete. In particular labelled directed
graphs will be of use in the coming chapters, since encoding finite structures into graphs
tends to be much easier if you are allowed to actually to use symbols instead of trying
to encode everything via isomorphically unique subgraphs.

Theorem 2.10. The following sets are polynomially equivalent:

) GI = {(G1,G2) : G1, G2 isomorphic undirected graphs}

) DG = {(G1,G2) : G1,G> isomorphic directed graphs}

) Pseudo = {(G1, G2) : G1, G2 isomorphic pseudographs}

) StrLUG = {(G1,G2) : G1,Gs strongly isomorphic LUGSs}

(v) StrLDG = {(G1, G2) : G1, G2 strongly isomorphic LDGs}

) LDG = {(G1,G2) : G1,G2 isomorphic LDGs}
) StrOOLDG = {(G1,G2) : G1,Ga strongly isomorphic OOLDGs}
) OOLDG = {(G1,G2) : G1, G isomorphic OOLDGs}

Proof. Immediately follows by a chain of polynomial reductions as depicted in Figure 2.4.
Unlabelled implications are trivial implications based on subclasses and identity encod-
ing. Definitions of pseudograph and OOLDG will be given later in the section, refer to
Definition 2.12 and Definition 2.15. |

Proposition 2.14 Proposition 2.13

(iv) StrLUG

(7i7) Pseudo

(ii) DG

o S
S ~
g 3
> £ 5
3
(v)StrLDG (i) GI (vii) StrOOLDG |2
[=]
§ [«
.
(vi) LDG (viii) OOLDG

Figure 2.4: Structure of the proof of Theorem 2.10

12

2.3 GI-Complete Subclasses of Graphs

2.3.1 Edge Replacement Techniques

For the first part of the proof of Theorem 2.10 we will take a look at so called edge
replacement techniques to encode edge-direction and/or edge-labels. The basic idea is
always the same: To encode the original graph into a graph of different class, replace
edges e = (v, w) with isomorphically unique substructures consisting of a linearly-edge-
depending number of vertices ve1,...,ve x connected to v and w. That is, the edge
replacement is chosen in such a way that the original vertices can be recovered uniquely
up to isomorphism. This can be done by traversing the graph breadth-first (always
terminates since our graphs are finite) and then gradually replacing edges connecting
old vertices. For that, we need to extend standard breadth-first search by adding more
labels to distinguish between newly inserted vertices v.; and original vertices. Since
our substructures are of either constant (Proposition 2.11, Proposition 2.16) or bounded
size (Proposition 2.13) and only depend linearly on given edge (Proposition 2.17), this
can be done it at worst O(|V| + ¢|E|) where c is some fix constant. Refer to [CLRS09,
pp. 594-600] for an in-depth analysis of breadth-first search and Algorithm 2.1.

Algorithm 2.1: Computation of linear edge replacement encoding A

input : Labelled directed graph G = (V, E, L,lab), edge replacement enc. \
output : Labelled directed graph A\(G) = (V’/, E’, L’,1ab’) according to A
runtime: O(|V| + ¢|E|), ¢ upper bound on size of replacement structure

1 Initialise B’ < E, V' <V, lab’ < lab

2 Initialise L’ according to A

3 Initialise Visit < V // Unseen vertices
4 while Visit # () do // O(|V]| +c|E|)
5 Choose w € Visit arbitrary

6 Initialise empty queue Q)

7 Remove(w, Visit)

8 Push(w, Q)

9 while @ is not empty do
10 Set v < Pop(Q)
11 for edge (v,v',1) € E do

12 Replace (v,v’,1) according to A // bounded by constant c
13 Update V', E’, lab’ accordingly

14 if v/ € Visit then

15 Remove(v',Visit)

16 Push(v/, Q)

17 end

18 end

19 end
20 end
21 return \(G) = (V' E', L', 1ab’)

13

2 The Graph Isomorphism Problem

Proposition 2.11 ((ii) = (i), motivated by [BC79]). DG <P GI

Proof. Define an encoding 7 of a directed graph into an undirected graph the following
way: Given a directed graph G = (V, E), replace every directed edge e = (v,w) € E
by an undirected 5-vertex-structure as seen in Figure 2.9a. That is, introduce paths of
length 4 consisting of fresh vertices ve 1, ve,2, Ve,3, Ve 4, Ve 5 such that tail v is connected to
Ve,2 and head w to ve 3, i.e. the second and third vertex in the path respectively. More
formally, n(G) = (V', E’), where V. =V U{ve; : e € E,1 <i <5} and

E = {(ve,isVeig1) re € E,1 <i <4} U{(v,ve2), (w,ve3) 1 e = (v,w) € E}. (2.1)

First note that every leaf, whose neighbour has degree 2, is of the form v, 5 for some
edge e € E. Indeed, if deg(v) = 1 for some vertex v € V', and v # v,35, then either
already v € V' and indeg(v) = 1 or outdeg(v) = 1, i.e. a simple leaf/root in the original
graph G, or v = v.,1. Adjacent vertices are either vz or ve 3, both of degree 3 in n(G).
Moreover, ve4 is the unique neighbour of v.5, ve 3 the unique neighbour of v, 4, and
Ve,2 the unique neighbour of v, 3 of degree 3 adjacent to a leaf in 1n(G). Vertex v is
not uniquely recoverable however. If e = (v,w) € E is the unique outgoing edge of
some simple root v € V, then v and v.,; are both adjacent vertices of v. o of degree 1,
refer to Figure 2.9a. Now two directed graphs G, G2 are isomorphic if and only if their
undirected encodings 1(G1),n(G2) are isomorphic.

The first implication is clear. Extended an isomorphism ¢ : Vi — V5 between GG; and
G> to an isomorphism ¢’ : V/ — VJ between n(G1) and n(Gsa) via ¢'(ve,;i) = ver;, where
e = (p(v),p(w)) if e = (v,w) € B, 1 <i <5,

On the other hand, let an isomorphism ¢’ : V{ — VJ be given. By earlier argumentation,
ve4-vertices are almost uniquely identifiable. Let

— R; = {v € V; : outdeg(v) = 1,indeg(v) = 0} be the set of simple roots in G;, and

— S = {ve1 : € € E; unique outgoing edge of some v € R;} the corresponding set of
outgoing edges, ¢ = 1, 2.

Denote with f; the canonical one-to-one correspondence between R; and S;, i.e. for
v € Ry, fi(v) = vey1 € S;, such that e € E;, is the unique outgoing edge of v. For any
vertex v € Ry, we have that {¢/'(v),¢'(f1(v))} = {v/, f2(v')} for some v' € V3, but not
necessarily ¢'(v) = v’. This can easily be corrected by considering map ¢” : V{ — V3,
where ¢ (v) = v for v € Ry with same notation as before, i.e. map simple roots in Gy
onto simple roots in G according to ¢’. This is still an isomorphism between 7(G1) and
n(G3). Hence there is an, by ¢” induced, one-to-one correspondence between the sets
Fi = {(ve1,...,ve5) 1 € € Ei}, i = 1,2, Then |Vi| = |Va] and ¢ = ¢"|y, : VI — Vs, is
well-defined and bijective. Moreover, |Eq| = |F}| = |Fy| = |Es|. For fix e = (v, w) € Fy,
we have (v,ve,), (w,ve,) € Ef by (2.1) and thus (@(v),ve2), (d(w),ver3) € Ef for
some edge €’ € Es,by aforementioned correspondence. But this is already equivalent to
(¢(v), p(w)) € B9 and we are done (in particular ¢’ = (¢(v), p(w))). |

14

2.3 GI-Complete Subclasses of Graphs

e = (v,w)
© H)

Ve,5
@ v

(a) Visualisation of encoding

n
YO Q EE 33 O

()
&/

-/

S

(

/9

(b) Graph example of encoding 71

Figure 2.5: Example of encoding 7 in the proof of Proposition 2.11 (new vertices are shaded)

Definition 2.12 (Pseudograph). A pseudograph G = (V, E) is an unlabelled undi-
rected graph with possibly multiple edges between vertices and loops, so called
multi-edges/-loops. Formally, E C V x V x N and (v,w,k) € E if and only if
(w,v,k) € E, where we allow v = w, but not (v,w,k), (v,w,k’") € E for distinct
k, k" € N. Denote edges by (v,w | k). Then k is the so called multiplicity of an
edge (v, w). Consequently, two pseudographs G; = (Vi, E1) and Gy = (V3, Es) are
isomorphic if we find adjacency preserving bijection ¢ : Vi — Vo, i.e. (v,w | k) € Ey
if and only if (¢(v), p(w) | k) € Es.

Technically, a pseudograph G is nothing else than an integer-labelled undirected graph.
The edge-labels are exactly the multiplicities and loops are transformed to label-function

15

2 The Graph Isomorphism Problem

lab : V' — Ny, lab(v) = k, if (v,v | k) € E, 0 otherwise. The important distinction now
comes in the form of geometrical interpretation:

Proposition 2.13 ((iii) = (ii), Booth & Colbourn 1979 [BC79]). Pseudo <¥ DG

Proof. We encode a pseudograph G = (V, E) into a directed graph «(G) = (V', E’) by
replacing multi-edges and multi-loops with directed edges the following way: For each
edge (v,w|n) = e € E, introduce n fresh vertices v 1,...,v to replace e by 2n
directed edges (ve,i,v), (Ve,i, w), or n directed edges (ve,v), 1 < i < n, depending on if
v=w or not. That is, V' =V U{v.;:e€ E,1<i<n}and E' = EW U E@ | where

ED = {(Ve,i, v), (Ves,w) = (v,w | n) =e € E,v#w,1<1i<n},
E® = {(ve,v) : (v,v|n) =e€ B, 1<i<n}.

Then the original vertex set V' is exactly the subset of vertices in ¢(G) of outdegree 0 and
every multi-edge (v, w | n) € E can be recovered by n = {v' € V' : (v/,v), (v/,w) € E'},
i.e. the number of vertices placed between to vertices v,w € V, and every multi-loop
(v,o|ny € Ebyn = {eV': (v v)e F, outdeg(v)=1} (if n = 0 we omit the
edge/loop). One then easily checks that two pseudographs G and Gy are isomorphic if
and only if their respective directed encodings ¢(G1) and ¢(G2) are isomorphic. |

Figure 2.6: Example of encoding ¢ in the proof of Proposition 2.13 (new vertices are shaded)

Proposition 2.14 ((iv) = (iii), Booth & Colbourn 1979 [BC79]). StrLUG =<F Pseudo

Proof. This is pretty straight forward. For a labelled undirected graph G = (V, E, L, lab)
with ordered label set L = {l1,...,l}, consider k(G) = (V,E’) with edges E' =
{{v,w]j): (v,w,l;) € E}. Clearly, & is an one-to-one encoding from labelled undirected
graphs into pseudographs if we extend L to L' = LU{lp} for some fresh label [y to ensure
decoding of vertices without loops. If G is given by an adjacency matrix, k is as easy as
just renaming labels according to their ordering in the given label set, which can be done
in O(|V|*log|L|). Then ¢ is a strong isomorphism between labelled undirected graphs
G1 and Gy if and only if it is an isomorphism between pseudographs x(G1) and k(Gs2),
under the assumption that both label sets are equal and ordered the same way. |

16

2.3 GI-Complete Subclasses of Graphs

O oo

[G —

C2

Figure 2.7: Example of encoding & in the proof of Proposition 2.14 (Label set L = {c1,¢2})

Definition 2.15 (Outgoing-Ordered LDG (OOLDG)). A labelled directed graph G =
(V, E, L,lab) is called outgoing-ordered or outgoing-ordered labelled directed graph
(OOLDG) if and only if labels of outgoing edges are unique for each vertex, i.e.
whenever (v,v1,1), (v,v2,l) € E then already v; = vs.

We refine encoding ¢ from Proposition 2.13 by introducing labelled directed edges en-
coding old vertex set membership and original edge direction.

Proposition 2.16 ((ii) = (vii) and (it) = (viii), Schmidt-SchauB, Rau & Sabel
2013 [SSRS13]). DG <P StrOOLDG and DG <P OOLDG

Proof. Recall encoding ¢ in the proof of of Proposition 2.13. If G = (V, E) is a directed
graph, replace every edge e = (v, w) € E by edges (ve,v,1) and (v, w,2), where v, is a
fresh vertex, uniquely introduced for this very edge. Additionally, introduce a single 1-
labelled edge (w1, w2, 1) between fresh vertices w; and wsy. In other words, an encoding
p is given by p(G) = (V',E’, L,1ab), where V! = V U {v.:e € E} U {w;,ws}, E' =
{(ve, v, 1), (Ve,w, 2) : (v,w) =e € E}U{(w1,we,1)}, L ={1,2} and lab is considered to
be trivial.

Two directed graphs G; and G are then isomorphic if and only if p(Gy) and p(G2)
are (strongly) isomorphic. The first part of the proof is trivial, we can even choose a
graph isomorphism between p(G1) and p(G3) to be strong. For the if part, consider an
isomorphism ¢ : V/ — VJ and a bijection ¢ € G3. Unique edges (w1, w2,1) in £} and
(wh,wh, 1) in Ef force ¢ to be the identity, due to necessarily mapping w; onto w; to
preserve adjacency (w; is the only vertex of outdegree 1).

17

2 The Graph Isomorphism Problem

Q 30
I
1
1 2
& P oY’ O Ve
O4 O H——0——

Figure 2.8: Example of encoding p in the proof of Proposition 2.16 (new vertices are shaded)

In other words, p(G1) and p(G2) are isomorphic if and only if they are strongly iso-
morphic and we can proceed by omitting trivial 1 entirely. Now ¢’ maps old vertices
onto old vertices. Indeed, V3 U {wa} and Vo U {w)} are exactly the sets of vertices with
outdegree 0, and thus ¢'(V1) = V4, since already ¢'(w2) = w). For fix (v1,v2) = e € Ej,
(Ve,v1,1), (ve,v2,2) € E} and thus there is an unique vy € V3 \ Vo with ¢'(ve) = ver
and (ver, @' (v1), 1), (ver, ¢'(v2),1) € EY, which corresponds to edge (¢'(v1), ¢ (v2)) € Es.
Moreover, |E1| = |V/ \ V1| =1 = |V \ Va| — 1 = |E2| and hence ¢ : V1 — Va, ¢ = ¢'|y,
indeed describes an isomorphism between G1 and Go. |

By omitting vertex-labelling entirely, we have in fact proved that isomorphism of un-
labelled directed graphs can be reduced to (strong) isomorphism of only-edge-labelled
OOLDGs.

Proposition 2.17 ((v) = (iv), motivated by [BC79]). StrLDG =¥ StrLUG

Proof. Let G = (V, E, L,lab) be an arbitrary labelled directed graph. Recall the proof
of Proposition 2.11, where we described an encoding 7 given a directed graph into an
undirected graph. Replace every edge (v, w,l) by the same 5-vertex-structure (depicted
in Figure 2.9a), whose edges are additionally [-labelled. That is, o(G) = (V/,E/,L U
{h},1ab’), where V' =V U{v.; : e € E,1 <i <5},

E' = {(veji,Ve,it1,1) 1 €= (v,w,l) € B, 1 <i <4}

U {(v,ve2,1), (w,ve3,1) : (v,w,l) € EY, (22)
h is a fresh label, and lab’ is extended to all of V' via lab’(ve;) = h, for each e € F,
1 <4 < n. Alternatively, endow edge-vertices v.; with corresponding edge-label, and
leave out edge-labels entirely.
We now claim that two labelled directed graphs G, Gy are strongly isomorphic if and
only if their LUG-encodings 0(G1),0(G2) are strongly isomorphic. The first implication
is clear. Extend a strong isomorphism ¢ : V3 — V5 between G; and Gy to a strong
isomorphism ¢’ : V{ — V4 between o(G1) and o(G2) via ¢'(ve;) = ver;, where ¢ =
(p(v), p(w),l) if e = (v,w,l) € B, 1<i<5h.
On the other hand, let ¢’ : V] — V4 be a strong isomorphism between o(G1) and o(G2).

18

2.3 GI-Complete Subclasses of Graphs

By proof of Proposition 2.11, restriction ¢ = ¢'|y; is well-defined, bijective and implies
an isomorphism between the underlying, edge-unlabelled directed graphs of G; and Go
to respectively. Note that adjustment of ¢’ was not necessary due to labelling of new

edge-vertices, i.e. Ve 1,...,V5 are uniquely recoverable. We only have left to check that
¢ preserves edge-labels, but this immediately clear by inspecting edge-construction in
equation (2.2). [

e = (v,w,l)
o ®

~

&
D
==

(a) Visualisation of general structure of encoding o (n with additional la-

belling)
e = (v,w,l)

~

(b) Visualisation of labelling in encoding o (Labels lab(v) = ¢; and lab(w) =
CQ)

Figure 2.9: Example of encoding o in the proof of Proposition 2.17 (new vertices are shaded)

19

2 The Graph Isomorphism Problem

2.3.2 Pointer Techniques

For the last step of Theorem 2.10 we want to reduce isomorphism to strong isomorphism
between labelled directed graphs, i.e. we need to find a way to encode vertex-labels via
uniformly labelled vertices and edges. For that, we introduce so called pointer techniques.
The core idea is pretty straightforward: Encode labels by isomorphically unique sub-
structures. Since we can use labels, a single vertex with properly chosen label should be
enough. Now every original vertex points towards the unique substructure representing
its corresponding label.

Proposition 2.18 ((vi) = (v)). LDG =P StrLDG

Proof. Let G = (V, E, L,lab) be a labelled directed graph. We want to give a polynomial
encoding 7(G) = (V/,E’, L',1ab’) into an alternative labelled directed graph such that
isomorphism of LDGs is equivalent to strong isomorphism between the encoded LDGs.
This is accomplished by introducing vertices corresponding to labels and purging all
existing labels in favour of uniform ones, indicating the role/purpose of a vertex in the
construction. More precisely, we proceed as follows:

(1) Construct the labelled subdivision graph, i.e. replace every edge (vi,ve,l) =
e € E by two edges (ve,v1,1) and (ve,v2,2), where v, is a fresh vertex with
label s, and replace original vertex-labels with fresh label 0. Refer to encoding
p in Proposition 2.16.

(2) Introduce fresh k-labelled vertex v; for each label [€ L.

(3) Encode original vertex-labels with new edges (v, vy, ¢) for each v € V, where
[=lab(v).

(4) Encode original edge-labels with new edges (v, v;, w) for each edge e = (v1, v2,1) ¢
E.

T

That is, L' = {1,2,0,s,k,w,c}, V' =VUVO UV and E' = EW U E® U EG) | where

VW = {v.:e € EY,

V@ = {y:lel},

E(l) = {(UE; U1,]-)7 (UEa V2, 2) re= (’01,’02, l) € E}? (23)

E® = {(v,v,¢) : v € V,lab(v) = I},

EG) = {(ve, v, w) : e = (v1,v9,1) € E},
and lab’ |y = o, lab’|,q) = s, lab’ |, = k. An example of this encoding is shown in
Figure 2.10. Step (1) is edge replacement, which was shown to be possible in polynomial
time way back in the beginning of Subsection 2.3.1. Refer to Algorithm 2.1. In fact,
it is basically the same construction p as in Proposition 2.16, with added relabelling of

original vertices. Step (2) to (4) then can be done by traversing the graph from step (1)
breadth-first and introducing new edges in at most O(|L|(|V| + |E])).

20

2.3 GI-Complete Subclasses of Graphs

D

4

Figure 2.10: Example of encoding 7 in the proof of Proposition 2.18 (new vertices are shaded)

We claim that two labelled directed graphs G; and Gs are isomorphic if and only if
7(G1) and 7(G2) are strongly isomorphic. The first direction is rather trivial. One
easily checks that ¢ : V{ — Vy with ¢'|y; = ¢, ¢/(ve) = ver, ¢'(v1) = vy for each
edge e = (v1,v9,1) € Eq, € = (¢p(v1),¢(v2),9(l)) € Ey and label | € L; is a strong
isomorphism between LDGs 7(G1) and 7(G3), where ¢ : Vi — V3 is a given isomorphism
between G1 and G w.r.t. @ : L1 — Lo. This is evident by inspection of construction
(2.3).

On the other hand, suppose ¢ : V] — VJ is a given isomorphism between 7(G1) and
7(G2). Then ¢'(lab"*({d})) = laby *({d}) for all d € {o, s, k} due to label-invariance of
¢' and thus ¢'(V7) = Vi, ¢/ (Vl(i)) = V2(i), i = 1,2, since each set uniquely corresponds
to one of such vertex-labels. Hence ¢ = ¢'|y, : Vi — Vo and ¢ : Ly — Lo, such
that ¢'(v;) = vy(), are well-defined bijections. Recall proof of Proposition 2.16. The

restriction ¢'| i uJ Vl(l) — Vo U V2(1) declares a strong isomorphism between

viuy

OOLDG-subgraphs (V; U V;(l), EZ-(I), {1,2,0,5s},1ab} | ,4=1,2, i.e. the subdivision

viov®)

21

2 The Graph Isomorphism Problem

graphs from construction step (1), which is equivalent to the fact that G; and Gy are
isomorphic as unlabelled directed graphs. Since we do not allow multi-edges, even if
they are differently labelled, it is only left to check that w(labl(v)) = labs ((;S(v)) for
cach vertex v € Vi and (I) =, if (v1,v2,1) € Ey and (¢(v1), ¢(v2),1') € Es.

For fix v € V;, we find an unique c-labelled edge (v, v;, ¢) € Ef such that (¢/(v), V(1)) =
(¢'(v),¢'(v),c) € EY due to definition of ¢ and construction (2.3), which is exactly
equivalent to ¢ (labi(v)) = laby (¢(v)). Similar, for edges e = (v1,v2,1) € Ey and € =
(¢(v1), ¢(v2),1') € Ea, there exist unique, corresponding w-labelled edges (ve, v, w) € E}
and (ver, vy, w) = (ver, p(vp), w) € Eb, equivalent to I = (). [|

22

3 Structural Isomorphism of Context-Free
and Regular Grammars

3.1 Grammar Isomorphism and Isomorphic Strict
Interpretations

An alphabet ¥ is a finite set of symbols. A word w over X is then a sequence aj ... a, of
finite length, consisting of symbols a; in 3, where the empty word (sequence of length
zero) is denoted by €. Moreover, denote with ¥* the set of all words over ¥ and let
¥t =3*\ {e}. For two alphabets ¥ and A let XA = {ab:a € X,b € A}.

Definition 3.1 (Formal Grammar). A formal grammar is a four tuple G = (N, %, P, S),
where N and ¥ are disjoint finite sets of nonterminals and terminals respectively,
PC(NUX)T x (NUX)T is a finite set of productions or rules, and S € N is the
start symbol. We write v — w instead of (y,w) € P. Note that we do not allow the
right side of a production to be empty.

If not stated otherwise, lower-case Greek letters like v, w refer to words, upper-case Latin
letters like A, B, .S, T to nonterminals and lower-case Latin letters like a, b, ¢ to terminals.

Definition 3.2 (Context-Free/Regular Grammar). A contezt-free grammar is a formal
grammar G = (N, X, P,S), where every production in P is of the form A — ~ for
some nonterminal A € N and v € (N UX)™, or equivalently P C N x (NUX)*. If
even P C N x (X UXN), we call G regular.

Example 3.3. Let N = {S,A,B} and ¥ = {a,b,c}. Then G; = (N,%, P,S) and
G2 = (N, X, P5, S) with production sets

P={S—aA,A—-bB,B—bA—c} and P,={S—aAB,A—bB,A—c}

are both valid formal grammars. Moreover, both are context-free while G is even regular
(G2 not because of production S — aAB).

In this thesis we are only worried about structural isomorphisms of context-free formal
grammars. That is to say, we only care about syntax. To motivate the following defi-
nitions however, we first analyse semantic properties. Without going into much detail,
we can generate words using a formal grammar by gradually replacing nonterminals ac-
cording to productions, starting with symbol S. Recall G = GG; from the example above.

23

3 Structural Isomorphism of Context-Free and Regular Grammars

We start at S and use production S — aA to generate aA. Next, replace A with, for
example, bB using A — bB to generate abB. Lastly, replace B by b using B — b and
obtain abb € ¥*. Since they are no more nonterminals left, we are done. We call the
subset L£(G) C ¥* of in this way obtained words the (formal) language generated by G.
For a rigorous definition of formal languages refer to [Sch08].

Now consider £ = ab* C {a,b}" = ¥* i.e. the language consisting of words start-
ing with a followed by arbitrary many b’s. Language £ can be generated by regular
grammars G = ({S},X,{S — a,5 — Sb},S) or G' = {T},X,{T — a,T — Tb},T), i.e.
L(H) =L = L(G). Note that G and G’ do have the same formal structure in the sense
that production sets are the same up to rewriting of nonterminals, induced by an (triv-
ial) one-to-one correspondence between the nonterminal sets. We want to call G and G’
isomorphic grammars. So what happens if we rewrite terminals as well? Consider formal
language £’ = 01* C {0,1}" = A*. We say that £ is an isomorphic strict interpretation
of £ in the sense that the languages have the same basic structure, i.e. words start with
one terminal symbol followed by arbitrary many times an other distinct terminal symbol.
This can then be pulled down to the level of formal grammars, where we regard formal
grammars to be isomorphic strict interpretations of each other if production sets are the
same up to rewriting of nonterminals and terminals respectively. For example, £’ can be
generated by structurally similar, formal grammar H = ({T'}, A, {T" — 0,7 — T1},T).
Here, just rewrite S <> T, a <+ 0 and b < 1.

Definition 3.4 (Grammar Isomorphism). Let G = (N, %, P,S) and H = (M, %,Q,T)
be context-free grammars. A (grammar) isomorphism is a bijection ¢ : (N UX) —
(M UYX) such that ¢ is the identity on X, ¢(S) =T and

(P) ={s(A) = ¢(7): A= y€eP}=0Q,

where we consider the natural extension of ¢ to all of (N UX)" via ¢(ay...a,) =
¢(a1)...¢(an). We say G and H are isomorphic (context-free) grammars.

Definition 3.5 (Isomorphic Strict Interpretation). Let G = (N, %, P,S) and H =
(M,A,Q,T) be context-free grammars. An isomorphic strict interpretation is a
bijection ¢ : (N UX) — (M UX) such that ¢(X) = A, ¢(S) =T and

d(P) ={9(A) = ¢(7) : A=~y € P} =Q.

We call G an isomorphic strict interpretation of H. Note that contrary to Defini-
tion 3.4, we do not require G and H to posses the same terminal set. Moreover, a
grammar isomorphism is a special case of an isomorphic strict interpretation with
invariant terminal set.

24

3.2 Template Construction

Property ¢(S) = T is essential and non-trivial. Consider N = {S, A}, M = {T, A},

¥ = {a, b} and production sets

P={S—aS,S—aA,A—>b}, Q={T—->bA—aA,A—al},

i.e. regular grammars G = (N,X, P,S) and H = (M,%,Q,T). Then for bijection

¢ = {S = AA— T}l_lidg,
we have ¢y = idy and ¢(P) = ¢(Q), but L(G) = ath # {b} = L(H).

Grammar Isomorphism (GIso)
(N, X, P,S) isomorphic to (M, >, Q,T)

dp: (NUX) = (MUX)
bijective such that

(1) o(N)=M
(2) ¢z =ids
(3) o(S)=T
(4 o(P)=Q

Isomorphic Strict Interpretation (ISI)
(N,X, P,S) isomorphic strict interpretation
of (M,A,Q,T)

dp: (NUX) - (MUA)
bijective such that

(1) ¢(N) =M
2) o(2)=A
3) o(5)=T
4) ¢(P)=0Q

Table 3.1: Comparison of grammar isomorphism and isomorphic strict interpretation

3.2 Template Construction

To proof GI-completeness of determining whether two given context-free/regular gram-
mars are isomorphic or isomorphic strict interpretations of each other, we first need a
way to analyse the general structure of production rules A — =, i.e. the relationship of

nonterminals to terminals.

terminal set).

Definition 3.6 (Templates). Let G = (N, %, P, S) be a context-free grammar. The
template of a production A — + in P is a word over X U {Ll,...,L‘N|}, Lj’s
fresh symbols different from 3, obtained from A+ by replacing each occurrence
of a nonterminal with an L;, where L; refers to the jth distinct nonterminal in
A~v. Furthermore, denote with Temp(G) the lexicographically ordered set of all
such templates of productions in P. We allow ourselves to call L;’s nonterminals
when talking about templates (after all they can be easily differentiated from initial

Following Example 3.3, the template of production S — aAB is LialoLs. Now we can
use templates to reduce context-free grammars to regular grammars, exploiting order
and frequency of nonterminals in relation to terminals.

25

3 Structural Isomorphism of Context-Free and Regular Grammars

Definition 3.7 (Regularisation of Context-Free Grammars). Let G = (N, X, P, S) be
a context-free grammar and Temp(G) = {T1,...,T;} its corresponding ordered set
of templates defined as in Definition 3.6. Denote, for fix 1 < ¢ < t, with n; the
number of distinct nonterminals in 7;, that is to say the highest number &k such
that Lj occurs in T;, and with p; the number of distinct productions with template
T;. Furthermore, assume the productions themselves to be ordered in such a way
that we can unambiguously refer to the jth production with template T;. Now
construct a regular grammar Reg(G) = (N',¥', P',S) the following way: N’ =
NU{A;j;:1<i<t,1<j<p}, ¥ ={a}U{ap:1<i<t,1<k<n;}and P =
Py U Py, U P3, with

P ={8—adij:1<i<t,1<j<p},
Py={A; = apXijr: 1 <i<t,1 <5 <pi, 1 <k <ng}, (3.1)
P3y={X —a:X €N},

where a, a;, A;; are fresh symbols and X;j; refers to the kth distinct nonterminal
in the jth production with template T;. We call Reg(G) the regularisation of G.

Since [N'| = [N|+|P|, [¥'| < 1+|P[[N| and |P'| = [Py|+|Py| +[Ps| < |[P[+[N|+|P[[N],
Reg is at worst of size O(|P| + |N| + |P||N|) = O(|P||N]). Template set Temp(QG)
and Xjji-references can be computed in O(s|P||N|log(|N||X[|P])), where s is an upper
bound on the length of productions in P, i.e. s = max{|Ay|: A — v € P}. Refer to Al-
gorithm 3.1. The production set P; is then computed in O(|P|), P> in O(|P||N|) and P;
in O(|N|), accumulating to a total time complexity of at worst O(s|P||N|log(|N||X||P]))
for the computation of all Reg(G).

Example 3.8. Consider the context-free grammar G = (N, X, P, S), where N = {S, A, B},
Y ={b,c,d} and P = {S — dSAB,A — bB,B — bA, B — c}. First, we calculate tem-
plate set Temp(G) = {T1, T, T3}:

1 | Production | Template T; | p; | n;
1|S—dSAB leLngLg 1 3
A— bB
2 B A L1bLy 212
3| B—c Lic 111
and substitution X
Xo 1 2

Xy 1 2 3 P Xaje 1
1 S A B 9 B A 1 B

26

3.3 GI-Completeness of Structural Isomorphisms between Context-Free and Regular Grammars

The regularisation Reg(G) = (N', ¥/, P’, S) of G is then given by
N =NU{A4;;:1<i<t,1<j<p}={AB,C, A1, An, Az, A31},
Y ={a}U{ay:1<i<t1<k<n;}="{a,bi1,biz,bi3, b1, b2, b3},
P =P UP,UP;,
P, ={S — aAi1,5 = ads,S — ada, S — aAs},
Py = {A11 — b11S, A11 — b1aA, A1y — bi13B, Az — ba1 A,
A1 — b2 B, Aga — b1 B, Aga — b A, A31 — b31 B},
Po={X —»a:XeN}={S—a,A—a,B—a}.

3.3 GI-Completeness of Structural Isomorphisms between
Context-Free and Regular Grammars

The goal of this section is to prove the following theorem by Rosenkrantz & Hunt[RH85]:

Theorem 3.9 (Rosenkrantz & Hunt, 1984). The following sets are polynomially equiv-
alent:
(i) CFGI ={(G,H) : G, H isomorphic context-free grammars}
(1) RGI ={(G, H) : G, H isomorphic reqular grammars}
(1it) GI = {(G1,G2) : G1,G2 isomorphic graphs}
(iv) RGISI = {(G,H) : G, H regular grammars and G strict interpretation of H}
(v) CFGISI = {(G,H) : G, H context-free grammars and G iso. strict int. of H}

Proof. We proceed with the same approach as in [RH85]. The claim then immediately
follows by chain of arguments as depicted in Figure 3.1. |

Proposition 3.10 ((i) = (ii)). CFGI <¥ RGI.
Proof. Let G = (N,X,P,S) and H = (M,A,Q,T) be context-free grammars. We
claim that G are H isomorphic context-free grammars if and only if their regularisa-
tions Reg(G) and Reg(H) are isomorphic, and they have the same set of templates,
Temp(G) = Temp(H). Let the regularisation Reg(G) = (N, X/, P',S) of G be de-
fined as in Definition 3.7. Moreover, if Temp(H) = {T{,...,Tt’,}, denote with m;
the number of distinct nonterminals in 77 and with ¢; the number of productions
with template 7;. Then the regularisation Reg(H) = (M',A’,Q',T) of H is given
by M' = MU{A;; :1<i<t 1<j<gqg}, A={a}U{ay:1<i<t1<k<m}
and Q' = Q1 U Q2 U Q3, with

Q1 ={5—ad;:1<i<t 1<j<q},

Qo= {Aij = aipYip : 1 <i <t 1 <5 <gq;,1 <k <my}, (3.2)

Qs={Y 2 a:Y e M},

27

3 Structural Isomorphism of Context-Free and Regular Grammars

(z) CFGI Proposition 3.10 (“) RGI
3
E
% (ZZZ) GI Theorem 2.10 DG
4 -
= =
8
z
3
[a B}
(v) CFGISI (iv) RGISI

Trivial reduction by subset property

Figure 3.1: Structure of the proof of Theorem 3.9

where a, a;;,, A;; are fresh symbols and Y, refers to the kth distinct nonterminal in the
jth production with ith template in @), recall Definition 3.7.
Suppose G and H are isomorphic. Then ¥ = A and we find an isomorphism ¢ :
(NUX) — (MUA). The template construction in Definition 3.6 only considers the order
of nonterminals and their relation to terminals, which is invariant under isomorphisms,
ie. A — v and ¢(A) — ¢(y) have the exact same template, and thus Temp(G) =
Temp(H) = {T1,...,T;} in the same lexicographical order, since ¢(P) = (. This in
turn means n; = m; for 1 <i < ¢ and ¥’ = A’. Let Temp,;(G) and Temp,;(H) be the
ordered set of productions with template T; in P and @ respectively. Fix 1 <4 < t.
Then | Temp,(G)| = |¢(Temp;(G))| = | Temp,;(H)| and thus p; = ¢;. Moreover, let
o; € &), be a permutation of the set {1,...,p;} so that the image of the jth production
in Temp,(G) under ¢ corresponds to the o;(j)th production in Temp,(H). More formally,
if Templ-(G) = {Bil — Vil — Bipi — %m} and Tempi(H) = {Cﬂ — Wil — Cipi — wz-pi},
then

YV @(Bij) = 0(vij) = Cio,() = Wio(j)- (3.3)

1<j<pi

Now let ¢/ : (N'UY') — (M’ UA") be defined as follows:

a for all o € ¥,
¢'(a) =< ¢p(a) forall @ € N,
Aioi(j) ifa:Aij EN’\N.
We claim that ¢/ declares an isomorphism between Reg(G) and Reg(H). Recall that

p; = ¢; and n; = m; for all 1 <i <t. Then by (3.3), ¢’ is well-defined, bijective, ¢'|s =
idsy, ¢/(N') = M’ and ¢/'(S) = ¢(S) = T. Moreover, |P'| = |Q'| and thus it suffices to

28

3.3 GI-Completeness of Structural Isomorphisms between Context-Free and Regular Grammars

prove that ¢'(P’) C @’. Inspection of productions (3.1) and (3.2) immediately shows
that ¢'(P1) C Q1 C Q" and ¢'(P2) C Q2 C Q'. Now, consider A;; — a;x X, € P3 C P’
with ¢'(Aij — aipXiji) = Aioy(j) = aik®(Xijr). The nonterminal ¢(X;j) is exactly the
image of the kth distinct nonterminal in the jth production with template T; under ¢,
which by (3.3) is Yig,)k, i-e.

¢ (Aij = ainXijr) = Aig,(j) = aird(Xijr) = Ao, (j) = @irYio, ik € @3 € Q'

For the reverse implication, suppose Reg(G) and Reg(H) are isomorphic via ¢’ : (N' U
¥) — (M'UA), and template sets Temp(G) = Temp(H) = {T1,...,T;} are ordered
the same way. Then ¥ = A by simply grouping all terminals under the assumption
that both terminal sets are minimal, or in other words, there are no terminals which
do not appear in any production in P or () respectively. Our first goal is to show that
p; = q; and n; = m; for all 1 <4 < t. The latter is true by the initial assumption that
G and H share the same, ordered template set, i.e. the number of distinct nonterminals
in the 7th template of P is the same as the number of distinct nonterminals in the 7th
template of Q). Note, that by constructions (3.1) and (3.2), ¢'(P) = Q; for | = 1,2,3,
since ¢'(S) =T and ¢'|sy = idyy. Then, for fix 1 <i<tand 1 <j <p;, 4;; € N' and
@' (Aij) = Airjr € M’ due to T — aAyj = ¢'(S — adi;) € Q1, for some 1 <4/ < ¢ and
1< j/ < gy. We claim that ¢ = 7. Indeed, (ﬁ(AZ] — aﬂXijl) = Ai’j’ — ai1¢<XZ‘j1) S Q/,
so necessarily i = i’. Moreover, ¢'(N) = M and ¢'(N'\ N) = M’ \ M, and therefore
& ({Ain, ..., Aip}) ={Ai1,..., Aig} describes an one-to-one correspondence between
the two nonterminal subsets. Then not only p; = ¢;, but we also find a permutation o; €
&y, such that o;(j) = j', i.e. ¢'(Aij) = Aijr = Ajs,(j), accounting for the not necessarily
correspondingly ordered production sets P and). Let map ¢ : (NUX) — (M UX) be
given by ¢|y = idy and ¢|n = ¢'|n, or equivalently ¢ = ids L ¢'|n,

o for all a € X2,
¢pla) =19
¢ () for all @ € N.

Then ¢ is by assumption clearly well-defined and bijective with ¢(S) = ¢'(S) = T'. Since
pi=g¢q foralll <i<t, |P|= Zzzl p; = Zle ¢; = |Q| and again it suffices to show
¢(P) C Q. For that, fix arbitrary A — v € P and choose 1 <i <, 1 < j < p; such that
A — v is exactly the jth production in P with template T;. By construction (3.1), this
production corresponds to the set {A;; — a;1Xij1,. .., Aij = @in, Xijn, } of productions
in P’. Then @’ has the productions

¢/({Aij — ailXijl, ey Aij — ainiXijni})
={¢'(Aij) = aind(Xij1), -, ' (Aij) = ain,d(Xijn,) }
={Aio,(j) = a1d(Xij1), - -, Aig(j) = @in, ®(Xijn,) },

which in turn unambiguously correspond to the o;(j)th production in @ with template
T; and thus ¢(A —) € Q, since n; = m; and their being exactly n;-many distinct
productions of the form A;;, ;) — v € Q' by construction (3.2). |

29

3 Structural Isomorphism of Context-Free and Regular Grammars

Next we discuss an encoding of a regular grammar into an unlabelled undirected graph.

Definition 3.11 (Graph Encoding of Regular Grammars). Let G = (N, X, P, S) be
a regular grammar with ordered terminal set ¥ = {ai,...,a,}. Then G can be
encoded as unlabelled undirected graph Graph(G) = (V, E), with vertices V =
VMuVoUVs UV, and edges E = F1 U FEyU FEsU EgU E5 U Eg U E7, where

Vi={[A,i]: A€ N,1<i<A4},

Vo={[A— a;B,i]: A= aqBeP1<i<k+1},

Vs={[A—ap,i]: A—a,e P 1<i<k+1}

Vi ={[S]},

Ey ={([A,i],[A,]]) : A€ N,1 <i,5 <4,i#j},

Ey ={([A = arB,i],[A = ayB,i+1]) : A - a;,B € P,1 <i < k}, (3.4)

Es ={([A—ak,i],[A = ap,i+1]) : A—ar € P,1 <i<k},

E,={{[A,i],[A = axB,1]) : A - a;B € P,1 <i <2},

Es = {{[A = apB,k+1],[B,4]) : A — a;B € P},

Es ={([A,i],[A — ax,1]) : A > ar, € P,1 < i <2},

Er = {([S],[5,4])}.

Note that |[V| < 4|N|+2|P|(|2|+ 1) + 1 and |E| < 6|N|+ |P|(2|2| + 5) + 1. Moreover,
|P| < |Z||N |2+ |Z||N|, since at worst P = (N x ¥N)U (N x X). Therefore Graph(G) is
of size and can be constructed in O(|N| + |3||P]) = O(|Z|?|N|?) if we assume terminal
set and productions to be suitably ordered and accessible. Refer to Algorithm 3.2 for a
more detailed description and Figure 3.2 for an exemplary encoding Graph(G) of regular
grammar G = ({S, A, B},{a,b,c},P,S), P={S — aA, A — bB, A — c}.

The basic idea is to encode every nonterminal as unique 4-clique with Vi, F; and use
Vi, E7 to highlight the starting symbol 4-clique. Now productions of form A — apB
are encoded as k + 2-paths between corresponding 4-cliques by Va, Fa, Fy4, Es, while
productions A — aj, are encoded as k + 1-paths starting in A’s 4-clique and ending in
an unique leaf by Vs, E3, Fg.

Proposition 3.12 ((ii) = (i7i)). RGI =¥ GIL.

Proof. Let G = (N, X, P,S) and H = (M,>,Q,T) be regular grammars with ordered
terminal set ¥ = {a1,...,a,}. We claim that G and H are isomorphic if and only if
Graph(G) and Graph(H) are isomorphic. To this end, consider Graph(H) = (V', E’) to
be defined analogously as in Definition 3.11.

Suppose G and H to be isomorphic w.r.t. ¢ : (NUX) — (M UX). Then ¢ : V — V|
F([S]) = [T], &'([A,]) = [6(A), I, #([A — axB.4]) = [6(A) — axd(B),] and ¢'([4 —
ar, jl) = [¢(A) = ag),j] for 1 <i <4, 1< j<kand A — apB,A— a; € P, is a
well-defined graph isomorphism. This is immediately clear by inspection of equations
(3.4) in Definition 3.11, since one-to-one correspondences ¢(P) = @ and ¢(N) = M
induce an one-to-one correspondence between edges in £ and E’.

30

3.3 GI-Completeness of Structural Isomorphisms between Context-Free and Regular Grammars

[S, 4]

[S, 3]

[S, 1] (S, 2]

[S — aA, 1]

[S — aA, 2]

[A, 1] [A, 2]

[A — ¢, 1]

[A — bB, 2]

[A — ¢, 2]

[A — bB, 3]

[A — ¢, 3]

[A — ¢, 4]

—

[B, 1] [B, 2]

Figure 3.2: Example of encoding Graph in Definition 3.11

Regular grammar G = ({S, 4, B}, {a,b,c},P,S), P={S = aA, A — bB, A — ¢} with ordered
terminal set {a,b, ¢} = {a1,az2,a3} (4-cliques are shaded)

31

3 Structural Isomorphism of Context-Free and Regular Grammars

|

(a) Matching k + 2-paths between 4-cliques

(b) Matching k + 1-paths between 4-cliques and leafs

Figure 3.3: Matching isomorphically unique paths in proof of Proposition 3.12

On the other hand, suppose ¢’ : V' — V' is a graph isomorphism. We first make a
couple of observations that will lead us to define an unique isomorphism between the
underlying regular grammars. For A € N, denote with Cly the 4-clique in Graph(G)
consisting exactly of vertices [A, 1], [4, 2], [A, 3], [4, 4], connected by edges Ej.

(a) [S] and [A — ag, k + 1], for some production A — aj € P, are the only leafs, i.e.
{veV:deg(v) =1} ={[S]} U{[A — a,k+ 1] : A — a, € P}.

(b) Let k € N. Every path of length k& + 2 between two distinct 4-cliques Cly, Clp is
exactly of the form

Path;(A — a,B) = ([A,z'}, [A— aB,1],...,[A — axB, k+1], [3,4]) (3.5)

32

3.3 GI-Completeness of Structural Isomorphisms between Context-Free and Regular Grammars

fori=1,2 and A — a;B € P. Every path of length k + 1 between a 4-clique Clg
and a leaf has exactly the form

Path;(A — a,B) = ([A,z'], (A= 1], [A = ag, K], [A = ap, k + 1]) (3.6)

fori=1,2 and A — a; € P. In both cases we understand a path to be so that no
edge is contained in Cly or Clg.

(c) Every 4-clique in Graph(G) is of the form Cly for some A € N.

Claims (a) and (b) are immediately clear by equations (3.4). Moreover, (b) implies
that [A,i] and [B,j] for distinct A,B € N, 1 < i,5 < 4 are not adjacent, and thus
can not be part of the same 4-clique. Consider v € V \ V; of degree > 3. Then
v € {[A— a,1],][A — a;pB,1]} for some A — ax, A — apB € P. In the first case,
[A — ag, 2] adjacent with deg([A — ag,2]) € {1,2}, depending on if k = 1, and in the
second, [A — a; B, 2] adjacent with deg([A — ag,2]) = 2. This immediately implies (c).
Now map ¢ : (NUX) — (M UX) with ¢[s = idy and ¢/(Cla) = Clyy for all A€ N, is
well-defined and bijective. Since [S] is the only vertex in V' of degree 1 directly connected
to a 4-clique, ¢'([S]) = [T] and thus ¢'(Clg) = Clp, i.e. ¢(S) =T. For A — ayB € P
consider Path;(A — axB) defined by (3.5). Then ¢'(Path;(A — a;B)) is a path of
length k + 2 between Cly(4y and Cly(py. By (b), ¢/(Path; (A — axB)) = Path; (¢(4) —
ard(B)) for some i € {1,2}, and hence ¢(A) — ard(B) € Q. On the other hand,
let A — a; € P and Path;(A — ay) defined by (3.6). Then ¢'(Path;(A — ag)) is a
path of length k£ + 1 between Cly4) and a vertex of degree 1 and thus again by (b),
¢/ (Pathi (A — ai)) = Path; (¢(A) — ax), i € {1,2}, i.e. ¢(A) = ar € Q.

Substituting Q <+ P, ¢’ <> ¢~ and ¢ > ¢! yields the reverse inclusion Q C ¢(P). W

Proposition 3.13 ((iii) = (iv)). GI <F RGISI.

Proof. Let G = (V, E) be a directed graph. For each edge (v,w) € E and vertex v € V
introduce productions A, — 0A,, Ayw — 1Ay, Ay — 0S and A, — 15. More formally,
we consider the regular grammar Gram(G) = (N, %, P, S), ¥ = {0,1}, N = N{UNyU{S}
and P ={S — 0} U P; U P5, where

Ny ={A,:veV},

No ={Ayy : (v,w) € E},

P ={A, - 05,4, > 1S:v eV}

Py ={Ayy — 04,, Apy — 1Ay : (v,w) € E}.

(3.7)

Moreover, [N| = 1+ [Ni| + |No| = 1+ |[V|+ |E|, |P| = 1+ |Pi| + P2 = 1+ 2|V] +
2|E| and Gram can be computed in O(|V| + |E|) by traversing G breadth-first and
gradually adding productions and nonterminals. We claim that two directed graphs
G1 = (W4, Eq) and Gy = (V3, E») are isomorphic if and only if Gram(G1) is an isomorphic
strict interpretation of Gram(Gs) = (M, %, Q,T).

33

3 Structural Isomorphism of Context-Free and Regular Grammars

First, let ¢’ : Vi — V5 be a graph isomorphism. Then

M\{T} = {Av/ = VQ} U {Av’w’ : (v/,w') S EQ}

3.8
= {Aqs’(v) v E Vi} U {AQS’(v)qS’(w) : (U,U)) S El} ()

disjoint unions, and thus not only |N| = |M|, but also |V1| = |V2| and |E1| = |E2| by
unique structure of productions in equations (3.7) and decomposition in (3.8). Conse-
quently, ¢ : (NUX) — (M UY), ¢z = idx, ¢(S) = T and ¢(A4,) = Ay (y), or more
formally

« for all a € X2,

Pla) =T if o =8,
A¢/(v) ifa=A4, €N,

is well-defined and bijective. Then ¢(P) = @Q, since Ay () — 0T, Ay () — 1T € Q and
A¢'(U)¢'(w) — OA¢’(U)7A¢’(U)¢’(w) — 1A¢’(w) € Q for every v € V; and (’U, w) € F1, which
matches with definition of ¢.

On the other hand, let ¢ : (N UX) — (M UX) be an isomorphic strict interpretation.
Productions ¢(S) — ¢(0) =T — ¢(0) force ¢ to be the identity on 3, i.e. ¢(0) =0 and
¢(1) = 1. By inspecting equations (3.7), we immediately see that ¢(NV;) = M;, i = 1, 2.
Indeed, if v € V1, ¢(4, — 0S5) = ¢(A,) — 0T € P; and necessarily A, = A, for some
v" € V4. Analogously for v' € V5 and we conclude ¢(FP;) = Q;, i = 1, 2.

Then ¢' : Vi — Vi such that ¢(A,) = Ay (y), is well-defined and bijective. For (v,w) € E4
arbitrary, we have that ¢(Ayw — 04,) = Ay — 0Ay () € Q2 and d(Apw — 1A4y) =
Ay = 1Ay () € Q2 for some (v, w') € Fy, which is equivalent to Ay = Ay (v)e/ (w)
and thus (¢'(v), ¢'(w)) € Ey by equation (3.7). This however, is already sufficient by
2|E1| = |¢(P2)| = |Q2| = 2|Es| (again check equations (3.7) and analysis below). |

Agyvs — 04,
A112113 — 1Avg

Ayy = 08
1 A, — 1S

Figure 3.4: Computation of encoding Gram(G) in the proof of Proposition 3.13

34

3.3 GI-Completeness of Structural Isomorphisms between Context-Free and Regular Grammars

Proposition 3.14 ((v) = (i)). CFGISI <¥ CFGI.

Proof. Let G = (N,X,P,S) and H = (N,A,Q,T) be context-free grammars and con-
sider an encoding p into context-free grammars

p(G)=(NUX {#},PU{a— #:a€X},9),

p(H):(MUA,{#},QU{()_)#:Z)EA},T)’ (39)

where # is a fresh, not yet in NUMUXUA featured symbol. Note, p can, due to introduc-
ing |¥|-many new productions and possibly updating the set of nonterminals (depending
on concrete implementation), at worst be computed in O(|3| + |N|+ |P|). For example,
G=({S,A,B},{a,b,c},{S —aA,A— bB,A— c},S) is encoded as p(G) with nonter-
minal set {S, 4, B,a,b, c} and production set extended by {a — #,b — #,c — #}.

We claim that G is an isomorphic strict interpretation of H if and only if p(G) and p(H)
are isomorphic context-free grammars. Let first ¢ : (N UX) — (M UA) be a given iso-
morphic strict interpretation. Extend ¢ to bijective ¢’ : (NUXU{#}) = (MUAU{#})
by assigning ¢'(#) = #. Then ¢’ describes an isomorphism between p(G) and p(H).
Indeed, ¢'(S) = ¢(S) =T, ¢'(P) = ¢(P) = Q and since ¢(X) = A, there is an one-to-
one correspondence between production sets {a — # :a € ¥} and {b — # : b € A}.

On the other hand, assume ¢’ : (N UX U {#}) = (M UA U {#}) to be an isomor-
phism between p(G) and p(H), and consider the bijective restriction ¢ = ¢'|yux. Then
¢(S) = ¢'(S) = T and the unique structure of productions a — # in (3.9) guarantees
that ¢(X) = ¢/(X) = A and ¢(P) = ¢'(P) = @ due to invariance of ¢’ on singleton
terminal set {#}. [

35

3 Structural Isomorphism of Context-Free and Regular Grammars

Algorithm 3.1: Computation of template set Temp(G)
(Including corresponding substitution X;;; and parameters n;,p;)

input : Context-free grammar G = (N, 3, P, S)

output : Ordered sequence of templates Temp(G), corresponding substitution

Xijr and parameters n;, p;
runtime: O(s|P||N|log(|V||X||P]))

1 Set Temp(G) < 0

2 Initialise partial map TempFunc : P — Temp(G)

3 for A~y € Pdo // O(s|P|log(|N||2]|P|))
4 Let y=71...7 € (NUX)"

5 Initialise partial map TempName[A — 7] : N — {Ll, .. ,L|N|} with

TempName[A —](A) < Ly

6 Set w + L

7 Set k < 2

8 for j + 1 ton do // O(slog(|N||X]))
9 if v; € ¥ then // O(log |X])
10 ‘ W — wY;

11 else // O(log |NJ)
12 if TempName[A — 7](7;) undefined then

13 Set TempName[A — 7](;) < Ly

14 k< k+1

15 end

16 w ¢ wTempName[A — v](7;)

17 end

18 end

19 Insert(w, Temp(G)) // O(slog|P|)
20 Set TempFunc(A —) < w // O(slog|P|)
21 end
22 Sort(Temp(G), <rex) // O(s|P|log|P|
23 RemoveDuplicates(Temp(G)) // O(s|P|log|P|
24 Set t + | Temp(G)| // Temp(G) = {T1,...

// Xiji is the kth distinct nonterminal in the jth production of

the ith template

25 for 1 + 1 to ¢t do // O(s|P||N|log(|N||P|)
26 Set Temp, < TempFunc'({T;}) // O(s|P|log|P)|
27 Sort (Temp;, <f.ex) // O(s |P|log\P\
28 Set p; < | Temp; | // Temp, = {Ki,...

29 Set n; + number of distinct nonterminals in T; // O(

30 for j + 1 to p; do // O(|P||N|log|N|
31 for k + 1 to n; do // O(|N|log|N]|
32 ‘ Set Xj < TempName[K;;]~'(Ly) // O(log |N|
33 end

34 end

35 end

36 return Temp(G), Xk, ni, pi

36

3.3 GI-Completeness of Structural Isomorphisms between Context-Free and Regular Grammars

Algorithm 3.2: Construction of Graph(G)
input : Regular grammar G = (N, X, P, S)
output : Encoding as unlabelled undirected Graph(G) = (V, E)
runtime: O(|N| + |X||P|) = O(|Z%|N|?)
Order and rename ¥ = {a1,...,a,}
Initialise £ = {[S]}
for A€ N do // O(|N])
for i+ 1to 4 do

V «— FEU{[A,i]}

for j« 1toi—1do

| Ee BU{(A], [4,)
end

© 0 N & bk W N -

end

end

B« EU{{[S].[5.4)}

for A — a;B € P do // O(|P[|%])

V <+ VU{[A— a;B,1]}

E <+ FU{(A1],[A — apB,1])}

E+ FU{([A2],[A — apB, 1))}

for i< 2to k+1do /7 O(X])
V«— VU{[A — a;B,i]}
E+ FU{{[A — axB,i—1],[A — aB,i))}

end

E+ EU{{[A— ayB,k+1],[B,4])}

end

for A — a;, € P do /7 O(|P||X])

V<~ VU{[A— a1]}

E + FU{{[A1],[A = a, 1))}

E+ FEU{(A,2],[A = a,1])}

fori< 2tok+1do /7 O(%])
V+— VU{[A— a,i]}
E+ FU{{[A = ak,i — 1],[A — ag,1])}

end

NONONNNNNNDNLNR B R oR R R R R e
S ® O R BN R O ©® XN WA WN R O

end
return Graph(G) = (V, E)

w W
= o

37

4 Structural Isomorphism of Term Rewrit-
ing Systems

4.1 Term Rewriting Systems and Structural Isomorphisms

We continue our ideas from the previous chapter. The left side of a production rule in
context-free grammars was limited to one single nonterminal. Term rewriting systems
partially lift this restriction by agglomerating rules of the form f(z,g(y)) — h(x), ab-
stracting term manipulation by rewriting. We will see that term rewriting systems are
much more specialised than general formal grammars, which justifies extensive study of
computational properties of isomorphisms on these finite structures.

Definition 4.1 (Terms). Let F be a finite set of function symbols, V a finite, disjoint
set of variable symbols and ar : F — Ny a so called arity function. We say that
f € F is an n-ary function symbol, if ar(f) = n. 0-ary function symbols are called
constants. The set of terms T'(F,V,ar) is then inductively defined as follows:

(a) Every variable symbol is a term: V C T'(F,V, ar).
(b) Every constant is a term: ar~1({0}) C T(F,V, ar).

(¢) If f € F is an n-ary function symbol, n € N, and t1,...,t, are terms, then
f(t1,...,t,) is also a term.

For convenience, we omit ar and simply write T'(F,V). If not stated otherwise, we
reserve lower-case Latin letters at the beginning of the alphabet, like ¢, d, for constants,
letters in the middle of the alphabet, like f,g, h, for arbitrary function symbols, and
letters at the end of the alphabet, like x,y, z, for variable symbols.

Definition 4.2 (Free Variable/Function Symbols). The set of free variable symbols
Var(t) C V and set of free function symbols Func(t) of a term t € T'(F,V) is given
as follows:

(a) Var(z) = {x}, Func(z) = 0 for every x € V.

(b) Var(c) =0, Func(c) = {c} for every constant c € F.

(c) If f is an n-ary function symbol and ¢y, . . ., t,, terms, then Var (f(tl, R tn)) =
Uj—, Var(#;) and Func (f(tr,.. . tn) ={f}U Uj—; Func(t;).

39

4 Structural Isomorphism of Term Rewriting Systems

Example 4.3. Let F = {f,h,g,c}, V = {z,y} and ar = {¢+— 0,9~ 1,h— 1, f — 2}.
Then o, ¢, g(a), f(g(x).y), F(F(h(c),2), 9(y)) are all valid terms and Var (£(g(x),) =
{z,y}, Func (f(9(x),y)) = {9, f}. Examples for invalid terms are f, f(z) (f is neither
a constant nor is it of arity 1) or ¢(x) (c is a constant).

Definition 4.4 (Term Rewriting System). Recall Definition 4.1. A term rewriting
system (TRS) is a tuple R = (F,V,R), where R C (T(F,V)\ V) x T(F,V) is
a finite set of rewriting rules with additional condition Var(r) C Var(l) for every
(¢,7) € R. That is, the right side of a rule does not introduce new variable symbols.
To emphasise the rule character, we write ¢ — r instead of (¢,7) € R. A string
rewriting system or semi-Thue system (STS) is a special case of term rewriting
system, where all non-constant function symbols are of arity one, [V| = 1 and there
is a single unique constant not appearing on the left side of a rule, i.e. every rule is

of the form fi (... (fu(2))) = g1(-- - (gm(2))) or fi(-.- (fu(@))) = 61(- - (gm(€))), s0

that variable symbol x € V and constant ¢ € F are unique.

Example 4.5 (Cont. of Example 4.3). Exemplary rewriting rules are h(y) — f(c,v),
flg(x),y) — g(x), h(g(z)) — g(z) or h(y) — ¢, with the latter two forming a string
rewriting system. Note that we have a total of three conditions: (1) Left and right side
of a rule have to be valid terms, (2) the right side is not allowed to be a single variable
symbol, (3) the right side does not introduce new variable symbols. Then for example,
f(z) — c violates (1), z — h(x) violates (2) and g(z) — h(y) violates (3).

Similar to Chapter 3, we are interested in structural isomorphisms between term rewrit-
ing systems, i.e. we want to rewrite symbols to go from one system to an other. Before
we can discuss such mappings however, we have to do a bit of preparation to account
for the added layer of complexity.

Definition 4.6 (Term Homomorphism). A term homomorphism between two term
sets T'(F1,V1,ary) and T(Fa, Vo, are) is a bijective map ¢ : (F1 UVy) — (Fa U V),
such that (V1) = Vs and ari(f) = are(¢(f)) for every f € Fi, canonically extended
to all of T'(F1, V1) via ¢(f(t1,...,tn)) = &(f)(o(t1),. .., ¢(tn)). Homomorphism ¢ is
V-invariant if Vi = Vs and ¢y, = idy,, and F-invariant if F; = F» and ¢|z, = id7,.

Definition above reads similar to Definition 3.2 if we interpret variable symbols are
terminals and function symbols as nonterminals. Additionally, we demand term homo-
morphisms to be arity-preserving. Now we can introduce the notion of (V-/F-)equivalent
rewriting rules and consequently (V-/F-)normal forms.

40

4.1 Term Rewriting Systems and Structural Isomorphisms

Definition 4.7 (Equivalence of Rewriting Rules, Normal Forms). Let R = (F,V,R)
be a term rewriting system.

(a) R is in V-normal form, if we cannot find distinct rewriting rules ¢ — r, ¢/ —
r’ € R and F-invariant term endomorphism ¢ : (F UV) — (F U V) with
d(l) = ¢(r) = ¢ — r'. Otherwise we call £ — r and ¢/ — 1’ V-equivalent.

(b) R is in F-normal form, if we cannot find distinct rewriting rules £ — r, ¢ —
r’ € R and V-invariant term endomorphism ¢ : (FU V) — (F UV) with
o) — ¢(r) = — r'. Otherwise we call £ — r and ¢’ — r' F-equivalent.

(c) Risin normal form, if f we cannot find distinct rewriting rules £ — r, ¢/ — 1’ €
R and term endomorphism ¢ : (FUV) — (FUV) with ¢(¢) — ¢(r) = — 1.

Otherwise we call £ — r and ¢/ — 1’ equivalent.

Clearly implications (¢) = (a) and (¢) = (b) hold. A term rewriting system in
normal form is already in V-/F-normal form.

Example 4.8 (Cont. of Example 4.5). Both

(;51:{a?—>y,y»—>:v,c'—>c,gl—>g,hl—>h,f'—>f}
and ¢po = {z = z,y = y,c—>c,h—g,g— h, f— f}

are valid term homomorphisms on T'(F, V) itself, with the former being F-invariant and
the latter V-invariant. Moreover, let

R ={f(9(x),y) = h(x), f(M(z),y) — g(x), fg(y),z) = h(y)}.
) =

Then R is neither in V-normal form, ¢1(f(g(z),y)) — é1(h(x) flg(y),z) — h(y)
(f(g9(x),y) — h(z) and f(g(y),z) — h(y) are V-equivalent), nor in F-normal form,

$2(f(9(2),y)) — ¢a(h(x)) = f(h(z),y) = g(x) (f(9(x),y) — h(z) and f(h(z),y) —
g(x) are F-equivalent).

Isomorphism | V-inv. | V-global | V-local | F-inv. | F-global | F-local

GE
GVE
GFE

LE
VSE
FSE
LVE
LFE

v

v
v

v

v

Table 4.1: Comparison of TRS isomorphisms

41

4 Structural Isomorphism of Term Rewriting Systems

Definition 4.9 (TRS Isomorphisms). Let Ry = (Fi,V1,R1) and Ry = (Fa, V2, Ro)
(arq, ars implicitly) be two given term rewriting systems.

Ry and Ry are globally isomorphic, in terms Ry Zgg R, if we find a term homo-
morphism ¢ : (F1UV1) — (F2UVs) with ¢(R1) = Ra. Map ¢ is then called a global
TRS isomorphism.

(a) If ¢ is F-invariant, we say that Ry and Rg are V-globally isomorphic, Ry ZgvE
Ry, and call ¢ a V-global TRS isomorphism.

(b) If ¢ is V-invariant, we say that Ry and Ry are F-globally isomorphic, R ZgrE
Ry, and call ¢ a F-global TRS isomorphism.

Ry and Ry are locally isomorphic, in terms Ry =g Ro, if they are in normal form
and we find term homomorphisms ¢; : (F1 UVy) — (FaUVWa), 1 < i < n = |Ry|,
such that

P(R1) ={p1(f1) = ¢1(r1), -+ -, Pn(ln) = Pn(rn)} = Ra,

where we denote with ¢ = (¢1,...,¢y,) the family of such term homomorphisms.
Family ¢ is then called a local TRS isomorphism.

(c) If Ry and Rp are in F-normal form and additionally ¢1|y, = ... = ¢nly,, we
say that R; and Ro are V-standard isomorphic, R1 =Zvyse Re, and call ¢ a
V-standard isomorphism.

(d) If Ry and Ry are in V-normal form and additionally ¢1|r, = ... = én|x, we
say that R; and Ro are F-standard isomorphic, R Zgse Ro, and call ¢ a
F-standard isomorphism.

(e) Ry and Ry are V-locally isomorphic, Ry =pyvE Ra, if they are F-standard
isomorphic and the ¢;’s are additionally F-invariant.

(f) Ry and Ro are F-locally isomorphic, Ri =Zpgg Ra, if they are V-standard
isomorphic and the ¢;’s are additionally V-invariant.

In the case of string rewriting systems, we can w.l.o.g. assume that respective
variable symbol and constant symbol are the same, i.e. Vi = V5 and ar;*({0}) =
ary '({0}). Then two string rewriting systems are (globally) isomorphic if and only
if they are globally isomorphic as term rewriting systems. A summary concerning
all types of TRS isomorphism can be found in Table 4.1.

Now it is evident why normal forms are helpful and were introduced in the first place.
They prevent “shrinking” of rewriting rule sets and ensure symmetry and transitivity of
the isomorphism-relation, which will be shown and discussed in Lemma 4.11.

42

4.1 Term Rewriting Systems and Structural Isomorphisms

Lemma 4.10. The following strict implications hold:

o STE_
\ / \ / (4.1)
R /

Proof. Implications in (4.1) can be directly read from Table 4.1, where we use that F-
invariant = F-global = F-local and V-invariant = V-global = V-local.

To proof that those implications are in fact strict, consider the following counter exam-
ples. We will just state rewriting rule sets Ry, R, variable/function symbol sets and
arity functions are given implicitly.

(424) (iv)

(Z) Ri= {f($7y) - C,g(fIf) - C} and Ro = {f($7y) - C,g(.’L’) - d}
are JF-locally isomorphic, but not F-globally isomorphic.

(11) Ry ={f(z,y) = c} and Ry = {f(y,z) — ¢}
are globally isomorphic ,but not F-globally isomorphic.

(i) Ri = {f(z,y) = c.9(x) = c} and Ry = {f(,) = ¢, h(x) = c}
are globally isomorphic, but not V-globally isomorphic.

() Ry =A{f(z,y) = ¢,9(z) = c} and Ry = {f(y,z) = ¢, 9(x) = c}
are V-locally isomorphic, but not V-globally isomorphic.

(v) R1={f(z,y) = ¢,9(x) = c} and Ry = {f(y,2) = c,9(y) = d}
are V-standard isomorphic, but not F-locally isomorphic.

(vi) Ru={f(z,y) = ¢, g(x) = ¢} and Ra = {f(y,2) —= ¢,9(y) = d}
are V-standard isomorphic, but not globally isomorphic.

(vit) Ri = {f(z,y) = ¢,g(x) = ¢} and Ry = {f(2,y) = ¢, 9(y) = ¢}
are F-standard isomorphic, but not globally isomorphic.

(viii) R1 = {f(x) = ¢} and R2 = {g(z) — ¢}
are JF-standard isomorphic, but not V-locally isomorphic.

(iz) Ry ={f(z,y) = c,g(x) = c} and Ry = {f(y,) = ¢, g(x) = c}
are locally isomorphic, but not V-standard isomorphic.

(#) Ri={f(z,y) = c,g(x) = c} and Ry = {f(y, %) = ¢, g(x) — d}
are locally isomorphic, but not F-standard isomorphic.

43

4 Structural Isomorphism of Term Rewriting Systems

From now on we assume, w.l.o.g., F,V to be minimal in the sense that

F = U (Func(f) UFunc(r)) A V= U Var().

{—reR —reER

In other words, every function/variable symbol is used in at least one rewriting rule
¢ — r. This prevents unintended non-isomorphism of term rewriting systems, due to
ill-defined symbol sets. If not, we can compute minimal variable and function symbol
sets in at worst O(s|R|logs), where |R| is the number of rewriting rules and s an fixed
upper bound on the maximal length of rules £ — r in R. This can be accomplished
by scanning every rule individually from left to right, collecting distinct symbols. Con-
crete implementations then are dependent on how rules, or more importantly terms, are
represented and stored as data.

Lemma 4.11. The binary relation Ry ~ Ry <= Ry and Ry are locally isomorphic term
rewriting systems, is an equivalence relation.

Proof. Fix term rewriting systems Ry, Rs, R3 such that Ry g Ry and Ry Zg R3 via
local isomorphisms ¢ and ¢’ respectively, and denote with
R; = {Egz) — T’Y;), PN ,f,g? — T;?},
the respective rule sets, where n; = |R;| for ¢ = 1,2,3. Note that by Definition 4.6,
inverses and compositions of term homomorphism are again term homomorphisms. We
claim that Ry, Ro and Rs have the same number of rewriting rules, n1 = ny = ng = n.
Indeed, if 6" — iV &) — + V1 <i < j <y with
1 1 1 1
6i(0) = ai(rY) = 0,(7) = 05 (1), (4.2)
then for term homomorphism); := gbj_l o ¢;, wi(égl)) — wi(rz(l)) = 41) — r](-l), due to
equation (4.2), in contradiction to R; in normal form. The same holds for Ry. W.lLo.g.
assume Ry, Ro, Ro to be ordered in such a way that for all 1 <7 < n,

$i(t) = i(r D)y =62 0@ A @ (@) 5 @) = 6P @)

7

Then R; =pyve Ri1 and Ry =pve R: by choosing idry, and e (gbfl,...,gb;l)
respectively. Moreover, R; Zpyvg Rs due to ¢(R1) = Rs, where ¢ = (@) o1, ..., ¢, 00,)
is the composition of ¢ and ¢'. [|

Normal form requirement in Lemma 4.11 was indispensable to assure the invariance
of order of rewriting rule set under application of term homomorphisms and to ensure
that inverses and compositions of term homomorphisms can be used to proof symmetry
and transitivity of the binary relation. The same claim also holds for other types of
isomorphism as defined in Definition 4.9 with respective normal forms. This concludes
the following

Corollary 4.12. The binary relation Ry ~ Ry <= Ry and Rs are (V-/F-)locally/global-
ly/standard isomorphic term rewriting systems, is an equivalence relation.

44

4.2 Local TRS Isomorphisms are in P

4.2 Local TRS Isomorphisms are in P

We will state two explicit polynomial time algorithms which solve LVE, LFE, LE, and
will later serve to justify polynomial reductions from FSE to GFE and VSE to GVE.
Recall the previous chapter. To show structural isomorphism of context-free grammars,
we gave a polynomial reduction to regular grammars using so called templates. We will
pursue the same idea. Depending on the type of local isomorphism, we will either rewrite
variable symbols or function symbols or both on a per rule basis.

Lemma 4.13. Every term rewriting system R = (F,V,R) can be brought into mazximal
(V-/F-)normal form R = (F,V,R'). That is, R' C R and for every R’ C R" C R,
(F,V,R") is not in (V-/F-)normal form. This (V-/F-)normal form is unique up to
(V-/F-)equivalence of rewriting rules and can be constructed in polynomial time.

Proof. Let R = (F,V,R) be a term rewriting system, R = {{; — r1,...,¢, = r,}, and
fix 1 <j <n SetVs={x1,...,2x}, K = V|, and Fg = {fr;: 1€ L, 1 <k <p},
where L = {ar(f): fe F}, pp = |{f € F:ar(f) =1}| and |Fg| = |F|. For F and V
from Example 4.8 we get new variable symbol set Vg = {z1,z2} and function symbol
set Fs = {f1,0, f1,1, f21, f1,3}

We define a local rewriting ¢; : (F UV) — (F U Vg) of variable symbols the following
way: Consider ¢; and replace each occurrence of a variable with xj, where xj refers
to the kth distinct variable symbol in ¢;. Since Var(r;) C Var(¢;) this is already suffi-
cient to state a F-invariant term homomorphism. Analogously, rewrite function symbols
locally via ¢} : (FUV) — (FsUV) by replacing each occurrence of a function sym-
bol with fj;, where fi; refers to the kth distinct function symbol in £;r; of arity I
(k depends on I), resulting in a V-invariant term homomorphism. Moreover, assign
oy = (P1,...,¢n) and ¢r = (¢}, ...,¢),). Refer to Algorithm 4.1 and Algorithm 4.2
for exemplary implementations. Both TRS isomorphisms ¢y and ¢ can be computed
in at worst O(s|R||V||F|log(|V||F]|)). We call ¢;(¢;) — ¢;(r;) the V-local template and
@i (4;) — ¢i(ri) the F-local template of rewriting rule ¢; — ;.

Before we proceed with the proof, a quick example: Recall Example 4.8. The V-local
template of f(g(z),y) — h(x) is f(g(z1),x2) — h(x1) and the F-local template is
fi2(fii(z),y) = fo1(x). Extend this toruleset R = {f(g9(z),y) = h(z),9(f(x,y)) — c}.
Now we see why double indices in the functions symbol set are needed to ensure consistent
arity. Rewriting function symbols in the same pattern as variable symbols would yield
templates {f1(f2(z),y) — f3(x), fi(f2(z,y)) — f3} which can not be constructed out of
one singular term set due to both f; and fy appearing with arity 1 and 2. Moreover, it
is not sufficient to just trivially increase the first index, i.e. rewriting f(g(z),y) — h(z)
as f12(f22,y) = fao(x). The resulting template set would be

{fi2(fe2(x),y) = f30(2), fri(fea(z,v) — fi0}

which needs underlying function symbol set of atleast order five, namely {fi 1, f1,2, f2,1,
f2,2, f30}. This prevents bijectivity of qﬁ}’s, and thus them being well-defined term
homomorphisms.

45

4 Structural Isomorphism of Term Rewriting Systems

We now only consider V-normal forms and V-local templates, the case of F-normal
forms and F-local templates is shown analogously. V-equivalence of distinct rewriting
rules ¢ — r,¢' — 7’ is equivalent to V-local isomorphism of corresponding singleton rule
sets {¢ — r} and {¢ — »'}. This justifies the use of the “equivalence”, i.e. being V-
equivalent is indeed an equivalence relation, and we can work with induced equivalence
classes [¢ — 1] = {¢/ = ' € R : V-equivalent to ¢ — r}. Moreover, these equivalence
classes can easily be determined once we have ¢y, since by Corollary 4.12,

Wi = 1] ={l; = 1; € R:gi(li) — di(ri) = d;(4;) — d5(rs)}

In other words, ¢y(R) directly implies a partitioning of R into 1 < m < n sets
of rewriting rules of same V-local template. Then every representation system R’ =
{ti; = riy,..., 4, — r;, } of this equivalence relation is already in maximal V-normal
form. Indeed, no rules are V-equivalent due to assumption, and if we extend R/, we
necessarily have to choose a rule already in one of the represented equivalence classes,
which would be a contradiction to V-normality.

In the case of normal forms, consider ¢ = (¢1,...,%y,), ¥ = (¢;|rUidyg) o ¢4, well-
defined due to F-invariance of ¢; for each 1 < i < n. Computationally speaking, we
sequentially apply Algorithm 4.1 and then Algorithm 4.2, i.e. we take the maximal
F-normal form of the maximal V-normal form of R. The claim then is shown with the
same reasoning as above. |

Definition 4.14 (Local Templates). Recall notation from proof above and refer to
Algorithm 4.1 and Algorithm 4.2. We call ¢;(¢;) — ¢;(r;) the V-local template,
i(l;) — @l(r;) the F-local template and v;(¢;) — 1;(r;) simply the template of
rewriting rule ¢; — r; € R. Notion of (V-/F-local) template then is extended to all
of term rewriting system R.

Corollary 4.15. A term rewriting system R in (V-/F-)normal form is (V-/F-)locally iso-
morphic to its (V-/F-)local template. Moreover, as direct consequence of Corollary 4.12,
two term rewriting systems Ry and Ry in (V-/F-)normal form are (V-/F-)locally iso-
morphic if and only if they have the same (V-/F-)local template.

Proof. Follows immediately by proof of Lemma 4.13, inspection of Algorithm 4.1 and
Algorithm 4.2, and the fact that ¢y is F-invariant and ¢ is V-invariant. |

Now we can easily proof the initial statement from the start of the section.

Theorem 4.16 (Local TRS Isomorphisms are in P). Isomorphism LE, LVE and LFE
can be decided in polynomial time.

Proof. Recall ¢y, ¢F,1 from the proof of Lemma 4.13. Again, only consider the case of
local isomorphism LE, the other cases are shown analogously. By Corollary 4.15, two

46

4.3 Term Trees and TRS-Forests

term rewriting systems R; and Rs in normal form are locally isomorphic if and only if
their local templates R} and R/, are the same. But this is already the case if and only if
the sets of rewriting rules of R and R} are the same. Both, construction of templates
and verification of set equality can be done in polynomial time, with latter being possible
in at most most O(sy1n logni + sanglogng), where n; = |R;| is the number of rewriting
rules and s; = max {|fr| : £ — r € R;} is an upper bound on the length of rules in R;,
i=1,2.]

4.3 Term Trees and TRS-Forests

In preparation for Theorem 4.20, we discuss an encoding from term rewriting systems
into a forest of labelled directed trees. From now on until the end of the chapter, assume
F UV and Ny to be disjoint (symbol) sets.

Definition 4.17 (Rooted Graph, Tree). Let G = (V, E, L,lab) be a possibly labelled,
directed graph. Recall that vertex v € V is called a root, if it has no incoming
edges, that is, the indegree is zero. Graph G is called connected, if the corresponding
undirected graph is connected, i.e. if we can find a path between any two vertices
in undirected G. Vertex v € V is called initial, if every other node w € V' \ {v}
is reachable from v, i.e. there exists a directed path from v to w. We then call G
rooted, if G is connected and has an unique, initial root. If additionally there is at
most one path between any two vertices in GG, we say that G is a tree.

We can canonically encode a term into a tree by simply respecting the term structure.
For example, f(z,y) would be a tree with f-labelled root and two child-vertices, labelled
with = and y respectively. Note that the order of arguments is of utmost importance.
Terms f(x,y) and f(y,x) have the same basic structure, function symbol, followed by
two variable symbols as arguments, and thus the same naive encoding. Once we consider
rules, that is not sufficient any more. It can easily be checked that no type of isomorphism
between term rewriting systems {f(z,y) — g(z)} and {f(y,z) — g(x)} can be found
even though they posses the same naive encoding. The following GI-completeness proofs
will thus make heavy use of OOLDG-trees. In essence, we will identify term rewriting
systems by a forest of unconnected OOLDG-trees, where every connected component
directly corresponds to a single rewriting rule. Dependent on type of TRS isomorphism,
we will need to modify this forest by adding additional vertices and edges or replacing
existing labels. Of particular interest are GVE, GFE and GE, where we will explicitly
state such a polynomial reduction into OOLDGs. The remaining isomorphisms can then
be reduced to those three cases, saving unnecessary constructions.

We will need the following notations: Suppose 11, ..., T, are OOLDG-trees with distinct
(labelled) roots vy, ..., v,. Graph Join(v,l,T1,...,T,) then is the OOLDG-tree with I-
labelled root v and ordered subtrees 17,...,T,, i.e. extend the union of T1,...,T}, to
a new OOLDG-tree by introducing new edges (v,v;,4), 1 < i < n. An example can be
found in Figure 4.1.

47

4 Structural Isomorphism of Term Rewriting Systems

Definition 4.18 (Term Tree, TRS-Forest). Let ¢t € T'(F,V) be a term. The term tree
of t is an OOLDG-tree Tree(t), inductively defined as follows:

(a) If t = z or t = ¢ for some variable symbol z € V or constant ¢ € F, Tree(t) is
a single vertex with respective label.

(b) Ift = f(t1,...,t,) for some n-ary function symbol f € F and terms ¢1,...,t, €
T(F,V), then Tree(t) = Join (v, f, Tree(t1), ..., Tree(t,)), where v is a fresh
vertex.

For a rewriting rule £ — r, we generalise the definition to Tree(¢ — r) = Join ([¢ —
r], T, Tree(€), Tree(r)), where [¢ — 7] is a fresh T-labelled root. We then call G(R) =
Ursrer Tree(? —), R = (F,V, R) term rewriting system, i.e. the union of all rule
trees of rewriting rules in R, the TRS-forest of R (an agglomeration of trees is a
forest). Note that G(R) has exactly |V| — |R| many edges, or in other words, |F| is
in O(|V]).

Figure 4.2: Term tree Tree (f(h(z,y),z) — h(z,y))

If not stated otherwise, let G(R) = (V,E,L = FUY U{T} UN,lab), with optional
indices when working with more than one rewriting system, and denote with V(G)
the not explicitly stated vertex set of some given graph G, used in particular when
working with term trees. Formally, we should choose label set FUVU{T}U{1,...,m},

48

4.3 Term Trees and TRS-Forests

where m is atleast 2 and an upper bound for arity of function symbols in F, i.e. m =
max {2,ar(f): f € F} < oo would be the minimal choice. Due to edge- and vertex-
labels being distinct, edge-labels restricted to positive integers, we just assume the label
set to be as stated initially to avoid unnecessary notation. The TRS-forest can be
constructed in polynomial time, i.e. in O(s|R|), where s is an upper bound on the
length of rewriting rules, if we, for example, use doubly linked lists. In this model, every
tree Tree(v,l,T1,...,T,) belongs to a class Tree with attributes next of type Tree|]
(array of Tree), prev of type Tree and data of some arbitrary type (here FUVU{T}),
initialised by Tree(l,n,S), where [is the data, n the number of child vertices, i.e. the
length of next, and S is stored in prev. In the case of root vertices or n = 0, we
initialise the respective attribute with null, i.e. S = null or next = null. Term
tree Tree(¢ —) is then recursively constructed by linearly parsing each rewriting rule
¢ — r. The following Lemma will highlight the correlation between (global) isomorphism
of term rewriting systems and isomorphism between corresponding TRS-forests. It will
be the main ingredient for the proof of our core theorem.

Lemma 4.19. Let Ry, Re be two term rewriting systems and consider the following two
statements:

(i) Ry and Re are globally isomorphic.
(1i) G(R1) and G(R2) are isomorphic.

(i) = (i1) always holds. The reverse implication is true if edge-labels are invariant
and the symbol-relationship is preserved, i.e. if G(R1) and G(R2) are isomorphic w.r.1.
Y L1 — La, then already (V1) = Va (and automatically (F1) = Fa).

Proof. (i) = (ii): Fix a global TRS isomorphism ¢ : (F1 UV;) — (F2UVs). Moreover,
let Rv = {1 =r1,....0n, =1y} and Ry = {€§ = 7,..., 4, — rl} be ordered with
respect to ¢, i.e. ¢;(f;) — ¢(r;) = £; — r; for each 1 <4 < n. Then ¢ = ¢Uidyyn
is well-defined and bijective. Note that graph isomorphisms are uniquely determined on
connected components. Let T; = Tree(¢; — r;) and T] = Tree(¢; — ;). To define an
OOLDG isomorphism ¢ : V; — V3 it thus suffices to consider restrictions ¢} : V/(T;) —
V(T}) on connected components T; = Tree(¢; — ;) and T} = Tree(¢; — r}). Map ¢’ is
then given by | |, ¢}. If v; and v} are the roots of T; and T respectively, set ¢} (v;) = v}.
Consequently, ¢; can further be broken down into maps ¢! : V(Tree(¢;)) — V(Tree(£}))
and ¢! : V(Tree(r;)) — V(Tree(r})), such that ¢} = {v—v'}U U@l Tt is left to
show that if ¢(¢t) = ¢’ for terms ¢t € T(F1, V1) and t' € T(Fz,Vs), Tree(t) and Tree(t')
are indeed isomorphic. This can be done by structural induction. Denote with ¢; an
isomorphism between Tree(t) and Tree(¢(t)).

In the base case, either ¢t = x or t = ¢ for variable symbol = € V; or constant ¢ € Fj.
Thus ¢(t) = ¢(z) or ¢(t) = ¢(c), and Tree(t), Tree(p(t)) only consist of one vertex v, v’
respectively, with corresponding label. Then ¢; = {v — v’} is an isomorphism. Now
let t = f(t1,...,ty) for some function symbol f € F; and terms t,...,t,. Suppose
Tree(t;) = Tree(¢(t;)) given by isomorphisms ¢, 1 < i < n, according to induction

49

4 Structural Isomorphism of Term Rewriting Systems

hypothesis. We have Tree(t) = Join(v, f, Tree(t1), ..., Tree(t,)) and

Tree(4(t)) = Join(v', ¢(f), Tree(¢(t1)), . . ., Tree(d(ty)))

due to ¢(t) = ¢(f)(A(t1),...,d(tn)). Then ¢ = {v— v'}U[]", ¢, is a well-defined
isomorphism between the term trees. Note that the gradually constructed isomorphism
is indeed edge-label-invariant and preserves symbol-relationship, i.e. (i) <= (i7) under
tightened label-assumptions.

(19) = (4): Both, edge-label invariance and symbol-relationship preservation are nec-
essary and non-trivial requirements to ensure TRS isomorphism. For example, con-
sider singleton term rewriting systems Ry = ({f,c}, {z}, {f(z,¢) = f(x,¢)}) and Ry =
{f, e}, {=},{f(c,x) = f(c,x)}). The respective TRS-forests/term trees G(R;) and G(R2)
are depicted in Figure 4.4. Clearly R; and Ry cannot be isomorphic in any way due

¢!

Figure 4.3: Reduction of isomorphisms on term trees to isomorphisms on term trees in the first
part of the proof of Lemma 4.19

Figure 4.4: Isomorphic term trees of non-equivalent rewriting rules f(z,¢) — f(z,c¢) and

fe,x) = f(e,x)

to different ordering of x, c. In fact, any TRS isomorphism between R; and R is equiv-
alent to f(x,c) — f(z,c) and f(c,x) — f(c,z) being equivalent. On the contrary,

~

G(R1) = G(Rz2) w.r.t. one-to-one correspondences ¢ = {x + ¢,c+> x}Uidg 9 7y Or

50

4.4 GI-Completeness of Global TRS Isomorphisms

Y = {1+ 2,2+ 1}Uid,r7ry- The former isomorphism is edge-invariant but not
symbol-relationship preserving, the latter exactly the opposite.

Now suppose ¢’ : Vi — Vs is an OOLDG isomorphism between G(R;) and G(Rz) w.r.t.
¥ : L1 — Lg, such that ¥|y = idy and (V1) = V,. Then ¢(T) = T due to ¢ mapping
root vertices onto root vertices. Moreover, |Rq| = |laby'({T})| = |laby ' ({T})| = |R2|
and thus there is an one-to-one correspondence between term trees in G(R;) and in
G(R2). Set ¢ = v|r,uy,, well-defined and bijective. Note ar(f) = outdeg(v) for each
vertex v € Vj if laby(v) = f € Fi, and therefore, since ¢’ preserves outward degrees,
ari(f) = ara2(¢(f)) for any function symbol f € F;. Map ¢ is indeed a term homomor-
phism due to symbol-relationship preserving property of label set function ¢. We will
show that if ¢'(Tree(¢ — r)) = Tree(¢’ — r’) for term trees Tree({ — 7), £ — r € Ry
and Tree(¢! — '), ! — r’ € Raq, then already ¢(¢) — ¢(r) = ¢/ — r’. Isomorphism
¢’ necessarily maps [¢ — r] onto [¢/ — /] and thus, due to invariance of edge-labels, it
suffices to check that ¢(t) = t’ if Tree(t) and Tree(t’) are isomorphic under ¢, for any
terms ¢t € T'(F1, V1) and ¢’ € T(F2,V2). This can be shown by structural induction over
t. In the base case, t = = for some variable symbol x € V;, i.e. Tree(t) only consists
of one vertex v. Then Tree(t') is necessarily a single vertex v' and due to ¥(V;) = Vs,
laby(v') € Vo, ie. ¢(t) = ¢(z) = ¥(labi(v)) = laby(v') = ¢'. Analogously, if ¢t = ¢ for
some constant ¢ € F;. Now suppose ¢ is of the form ¢ = f(t1,...,t,) for some n-ary
function symbol f € F; and terms t1,...,t,, i.e. Tree(t) = Join(v, f,T1,...,T,), where
T; = Tree(t;), 1 < i < n. Then Tree(t') = Join(v', f',17,...,T)), t' = f'(t},...,t,),
where ' € Fy is an n-ary function symbol and t,... ¢, are terms such that T =
Tree(t;), 1 < i < n. Consequently, f' = ¥(f) = ¢(f) and T; isomorphic to T, for any
i <1i <mn due to assumption on ¢ and . By induction hypothesis, ¢(¢;) = t; and thus

¢(t) = o(f(tr, -) = S())(Hs - ty) = f1(By, - 8,) = 1 u

4.4 GI-Completeness of Global TRS Isomorphisms

The goal of this section is to prove the following theorem:

Theorem 4.20 (GI-Completeness of Global TRS Isomorphisms). The following sets
are polynomially equivalent:
(1) GI ={(G1,G2) : G1,Gy isomorphic graphs}
(11) GVE = {(R1, R2) : R1, R2 V-globally isomorphic TRS}
(1i1) GFE = {(R1, R2) : Ry, Ry F-globally isomorphic TRS}
(iv) GE = {(R1, R2) : R1, Ry globally isomorphic TRS}
(v) FSE = {(R1, R2) : R1, Ry F-standard isomorphic TRS}
(vi) VSE = {(R1, R2) : R1, Ry V-standard isomorphic TRS}
(vii) STS = {(R1, R2) : R1, Ra globally isomorphic STS}

Proof. Follows immediately by chain of arguments as depicted in Figure 4.5. |

o1

4 Structural Isomorphism of Term Rewriting Systems

(vi) VSE (v) FSE «—2¢finition 4.9 ___ 35y §TS

Definition 4.9

Proposition 4.22
Proposition 4.21

Q

(i1) GVE (iii) GFE (iv) GE

Proposition 4.21

StrOOLDG

Figure 4.5: Proof of Theorem 4.20

Proofs of implications (ii) = (i), (#41) = (i) and (iv) = (i) will follow the same
basic pattern. For fix term rewriting system R, we start by constructing TRS-forest
G(R). We then apply pointer techniques, similar to Proposition 2.18, where we reduced
LDG isomorphism to strong LDG isomorphism, by introducing new vertices encoding
only a subset of vertex-labels and unambiguously separating V-/F-labels. This forces a
strong isomorphism between modified TRS-forests to be equivalent to an isomorphism
between original TRS-forests, where edge-labels and some vertex-labels are invariant.
The different claims then follow by Lemma 4.19.

Proposition 4.21 ((v) = (iii) = (i)). FSE =¥ GFE <P GI

Proof. We start by giving a polynomial reduction from FSE to GFE. Fix term rewrit-
ing systems R; = (F;, Vi, R;) in V-normal form and consider V-local templates R, =
(Fi, Vs, ¢y, (Ri)) as given by proof of Lemma 4.13 and Algorithm 4.1, ¢ = 1,2. This
templates can be computed in polynomial time. We claim that R; and Rs are JF-
standard isomorphic if and only if R} and R, are F-globally isomorphic. Recall that by

52

4.4 GI-Completeness of Global TRS Isomorphisms

Corollary 4.15, R; and R are V-locally isomorphic. First, note that due to V-normal
form, |R;i| = |¢y,(R;)| = n; € N for i = 1,2, and in every case n = n; = ng. Suppose
¢ = (¢1,...,¢y) is a F-standard isomorphism between R; and Ry. Initial definition
R; = (Fi, Vi, R;) is justified due to |V1| = |V2|, and thus both R} and R/, possessing the
same variable symbol set. Then ¢/ = ¢y, o ¢ o qﬁ;ll is a F-global isomorphism between
R} and R). Indeed, for fix i = 1,...,n, ¢, = (¢v,)i 0 d; 0 (¢1,); ', bijective,

9i(Vs) = ((dwy)i 0 ¢ 0 (d1,);) (Vs) = ((dwn)i © ¢:) V1) = (dw)i(V2) = Vs

and ¢}|7 = ¢il7, due to (¢v,); 7 = idz, (¢v,)il7 = ids,, as long as we assume R,
¢y, (R1) and R2 to be ordered in such a way that we can compose those functions in the
desired way. Moreover, ¢, is V-invariant due to construction in Algorithm 4.1 and V-
equivalence of images of ith rewriting rule ¢; — r; € Ry under ¢;|7 Uidy, and ¢;. Then
¢ (v, (R1)) = (py, 0o gzb;ll) (¢y, (R1)) = ¢v,(R2) and we are done. For given F-global
isomorphism ¢’ between R} and R} one shows the same way that ¢ := gf);; o ¢ o Py,
defines a F-standard isomorphism between R; and Ry. That is to say, diagram (4.3) is
commutative. Indeed, ¢;|r, = ¢;|F due to F-invariance of d);ll and ¢y,, and therefore

Gl = = dnlm

(F1, V1, R1) (F2, V2, R2)
45_}11 d)Vl ¢;21 ¢V2 (43)
¢/
(]:1’V57¢V1(R1)) (f2aV57¢V2(R2))

Now reduce GFE to GI. Recall Subsection 2.3.2 about pointer techniques. We will
encode F-labelled vertices via pointer and then use strong isomorphism on resulting
OOLDGs. Let R = (F,V,R) be a term rewriting system. An OOLDG Graphr(R) =
(VI,E',L' =V U{F,T}UNy,lab’) then can be constructed as stated below.

1) Construct G(R) = (V,E,L=F UV U{T}UN,lab).

2) For each function symbol f € F, introduce fresh F-labelled vertex vy.

4

(
(
(
(

)
)

3) Encode F-labels with new edges (v, vy, 0), where v is a vertex with label f € F.
) Replace all F-labels with uniform label 0, i.e. relabel every F-labelled vertex.

That is, V! = VU{vs : f € F}, E' = EU{(v,v,0) : v € V,lab(v) = f € F} and labelling
function lab’ : V! — VU {F, T} U Ny,

F if v = vy for some f € F
lab’(v) =< 0 if lab(v) € V

lab(v) otherwise

Step (1) is done in polynomial time as mentioned at the beginning of the section. Step

93

4 Structural Isomorphism of Term Rewriting Systems

(2) is in O(|F|) and steps (3)/(4) are done simultaneously in at most O(s|R|log|F])
by traversing each tree breadth-first and checking whether it is F-labelled or not. Now,
two term rewriting systems Rp, Ry are F-globally isomorphic if and only if OOLDGs
G1 = Graphz(R;) and G2 = Graphz(R2) are strongly isomorphic. We show that
strong isomorphism between G; and Gy is equivalent to an isomorphism between G(R;)
and G(Rg2), where edge- and V-labels are invariant. By Lemma 4.19 this is equivalent to
global-isomorphism between R; and Rs, where variable symbols are invariant, but this
is exactly F-global isomorphism.

(b) Encoding Graph z(R)

Figure 4.6: Example of encoding Graphy in the proof of Proposition 4.21 for singleton TRS
R ={f(h(z,y),x) = h(z,y)}

Let ¢/ : V{ — V4 be a strong isomorphism between Gy and G. Then |F| = |lab) ' ({F})| =
[laby ' ({F})] = |F2l, Vil = [V{| = |F1| = |V3] = || = [Va|, and thus ¢ : L1 — Lo,

54

4.4 GI-Completeness of Global TRS Isomorphisms

Y = {f — flfer, Vg = ¢/(Uf)} I—]id{T}leuN and ¢ = ¢'|y, : Vi — Vi, are well-
defined and bijective maps. Therefore G(R;) and G(Rz) are isomorphic w.r.t ¢ and
1 if we consider F-labelled vertices to be unlabelled, and we just need to check la-
bel property on this particular vertex subset. Fix such a F-labelled vertex v € Vi,
lab(v) = f € Fi with unique O-labelled outgoing edge (v,vy,0) € Ej. For ¢(v), this
corresponds to (¢(v), @' (vy),0) € Ey, but ¢'(vy) = vy(gy, which is already equivalent to
¥(laby(v)) = laby(¢(v)).

On the other hand, consider an isomorphism ¢ : Vi — Vo w.r.t. ¢ : L1 — Lo, where
Y|nuy, = idnuy, and in particular, ¢¥(T') = T due to ¢ necessarily mapping roots onto
roots. Then |r : Fi — Fa is bijective and can be used to extend ¢ to all of V{ via
¢ = ol {vf oy s f € .7-"1}. Map ¢ is clearly well-defined and bijective, and due
to construction induces strong an isomorphism between G(R;) and G(Rz), considered
as appropriately labelled subgraphs of G; and G9 respectively. Indeed, non-invariant
F-labels were purged in favour of uniform 0-labels. All v;-vertices are F-labelled, so
we just have to check isomorphism property on newly introduced 0-labelled edges. For
(v,v5,0) € Ey, labi(v) = f, and thus (¢(v), #'(vy),0) € Ea, due to ¢'(vs) = vyy) and
laba(¢(v)) = ¢ (lab;(v)). We are done, since by construction

[E7\ Ex| = [labi ({0})] = [laby ' (F1)| = [laby ! (F2)| = [laby ' ({0})] = |E5 \ .
|
Proposition 4.22 ((vi) = (ii) = (i)). VSE <P GVE <P GI.

Proof. A polynomial reduction from VSE to GVE is given the following way: Two
term rewriting systems R; = (F;, Vi, R;) in F-normal form, i = 1,2, are V-standard
isomorphic if and only if their F-local templates R, = (Fs, Vs, ¢r,(Ri)) as given by
proof of Lemma 4.13 and Algorithm 4.2, ¢ = 1,2, are V-globally isomorphic. This is
proven analogously to Proposition 4.21 and equivalent to the fact that diagram (4.4) is
commutative.

(F1, Vi, R1) ¢ (F2, Vo, Ra)
¢5 | |07 672 | |67 (4.4)
¢’ N
(]:Savlad)]:l(Rl)) ’ (]:Sav2>¢]:2(RQ))

We only have to argue that both F-local templates posses the same function symbol set if
initial term rewriting systems R; are V-standard isomorphic, but this immediately clear
due to existence of term homomorphism between T'(Fy,V;) and T(F2,Vs). Indeed, in
this case {ar1(f): f € F1} = {ara(f) : f € Fo} and |ar;*(1)| = |ar; ()] for any I € Ny
(refer to proof of Lemma 4.13).

Next, let R = (F,V,R) be a term rewriting system. Again we will use pointers, this

95

4 Structural Isomorphism of Term Rewriting Systems

time to encode V-labelled vertices. An OOLDG Graphy,(R) = (V/, E', L' =VU{C,T}U
No, lab’) then can be constructed as stated below.

(1) Construct G(R) = (V,E,L =FUVYU{T}UN,lab).

(2) For each variable symbol = € V, introduce fresh C-labelled vertex v,.

(3) Encode V-labels with new edges (v, v, 0), where v is a vertex with label z € V.
(4)

4

Replace all V-labels with uniform label 0, i.e. relabel every V-labelled vertex.

(b) Encoding Graph,,(R)

Figure 4.7: Example of encoding Graph,, in the proof of Proposition 4.22 for singleton TRS
R ={f(M=,y),x) = h(z,y)}

o6

4.4 GI-Completeness of Global TRS Isomorphisms

That is, V' = VU{v, : x € V}, ' = EU{(v,v3,0) : v € V,1ab(v) = 2 € V} and labelling
function lab’ : V/ — V U {C, T} U Ny,

C if v =9, for some z €V
lab’(v) =< 0 if lab(v) € V

lab(v) otherwise

Again, step (1) is done in polynomial time as mentioned at the beginning of the section.
Step (2) is in O(|V]) and steps (3)/(4) are done simultaneously in at most O(s|R|log [V|)
by traversing each tree breadth-first and checking whether it is V-labelled or not. Strong
isomorphism between Graphy,(R;) and Graphy,(Rz2) then is equivalent to an isomorphism
between G(R;1) and G(R2), where edge- and F-labels are invariant. This is shown the
same way as in Proposition 4.21, just switch the notions of F and V and labels F' and
C. By Lemma 4.19 this is then equivalent to a global isomorphism between R; and Rs
with invariant function symbols, but this is exactly V-global isomorphism. |

Proposition 4.23 ((iv) = (i)). GE <P GIL.

Proof. Let R = (F,V,R) be a term rewriting system. Contrary to the F/V-global
case, we are not required to ensure invariance of one of the symbol sets. According
to Lemma 4.19, we cannot outright use G(R) and then apply OOLDG isomorphism,
even though this appears to be the easiest solution on paper. A more nuanced encoding
Graph of a R into an OOLDG Graph(R) = (V' E', L' = Ny U {z, g, F,C}) can thus be
accomplished by combining both encodings from Proposition 4.21 and Proposition 4.22
into one:

) Construct G(R) = (V,E,L =F UV U{T}UN,lab).

) For each variable symbol x € V), introduce fresh C-labelled vertex v,.

3) Encode V-labels with new edges (v, vy, 0), where v is a vertex with label z € V.
)

Replace all V-labels with fresh, uniform label z, i.e. relabel every V-labelled
vertex.

(5) For each function symbol f € F, introduce fresh F-labelled vertex vy.
ncode JF-labels with new edges (v, v¢,0), where v 1s a vertex with label f € F.
6) Encode F-labels with d £,0), wh i ith label f € F

(7) Replace all F-labels with fresh, uniform label g, i.e. relabel every F-labelled
vertex.

o7

4 Structural Isomorphism of Term Rewriting Systems

(b) Encoding Graph(R)

Figure 4.8: Example of encoding Graph in the proof of Proposition 4.23 for singleton TRS
R ={f(h(z,y),x) = h(z,y)}

Thatis, V! = VU{v, : © € V}U{vs : f € F}, B/ = EU{(v,v,,0) : v € V,lab(v) =z € V}U
{(v,v,0) : v € V,1ab(v) = f € F} and labelling function lab’ : V! — Ny U {2, g, F, C},

;

C if v = v, for some z €V

F if v = vy for some f € F
lab’(v) = < 2 if lab(v) € V

g if lab(v) € F

lab(v) otherwise

Step (1) is done in polynomial time as mentioned at the beginning of the section. Steps
(2) and (5) are in O(|F| + |V|) and Steps (3)/(4) and (6)/(7) are done simultane-
ously in at most O(s|R|log(|F||V])) by traversing each tree breadth-first and checking

o8

4.4 GI-Completeness of Global TRS Isomorphisms

whether it is F-labelled or not. Then strong isomorphism between G; = Graph(R;) and
G2 = Graph(R3) is equivalent to edge-label invariant and symbol-relationship preserving
isomorphism between G(R;) and G(R2), and the initial claim is a direct consequence
of Lemma 4.19. Note that this was almost shown in Proposition 2.18 if we disregard
edge-labels in the construction, i.e. without introducing vertex set V(1) and edge sets
EWM_ E®) (recall notation). We accomplish label-type differentiation by introducing two
labels to encode additionally introduced vertices. Relabelling of original vertices, also
with two different labels, simplifies the proof.

First, fix a strong isomorphism ¢’ : V{ — V4. Then ¢ : Ly — Lo,

P = idNU{T}Ll {f — f/ fe .7:1,¢'(Uf) = ’Uf/} Ll{x —z iz e Vl,qﬁ/(vx) = Ux/}

is well-defined and bijective due to label-preserving property, i.e. |[{vy: f e Fi}| =
[laby ' ({F})| = |laby ' ({F})| = |{vy : f € F2}|, analogously for vertices v,, where = is
an arbitrary variable symbol in either V; or V5. Moreover, V; = labé_l({z, g}),1=1,2,
and we check that ¢ = ¢'|y; : Vi — V4 is indeed an isomorphism w.r.t. 1. Note that in
this case, ¢ already satisfies all assumptions of reverse implication in Lemma 4.19, since
Vo = 9(V1) and laby (v) € Vy if and only if lab} (v) = z.

By vertex set restriction, G; and G are strongly isomorphic if we consider vertices
to be unlabelled, with notable exception of T-labelled roots. Fix F-labelled vertex
v € Vi, labi(v) = f with unique O-labelled outgoing edge (v,v¢,0) € Ej. Just as in
Proposition 4.21, ¢ (lab; (v)) = laba(¢(v)) by inspecting 0-labelled outgoing edge of ¢(v).
The case of V-labelled vertices is shown analogously, i.e. as in Proposition 4.22, where
we can distinguish the two cases by different labels z and g in G(R;). Consequently, G
and G2 are isomorphic w.r.t. .

On the other hand, let an isomorphism ¢ : V; — Vo w.r.t. ¢ : Ly — Lo be given, where
Y|y = idy and (V1) = V. In particular ¢(T") = T, since ¢ maps roots onto roots.
Extend ¢ to all of V] via

(25/ :(bU{’Uf = Uy(f) - f E.Fl}U{Ux = Uy(z) - T € Vl},

well-defined and bijective due to |Fi| = |F2| and |Vi| = [V2|. This again induces a
strong isomorphism between G(R;) and G(R2), understood as appropriately relabelled
subgraphs of G; and Ga. Indeed, if laby(v) € Fi, laba(¢(v)) = ¥(labi(v)) € F2 and
hence lab) (v) = g = laby(é(v)), analogously for laby(v) € V. It is left to show iso-
morphism property for newly introduced 0-labelled vertices. For fix non-root vertex
v € V] this is proven the same way as in Proposition 4.21 and thus in Proposition 4.22,
where again we can distinguish the two cases F/V-labelled by different labels g and z

Proposition 4.24 ((i) = (vi) and (i) = (vii) = (v)). GI <P VSE and GI <P
STS <P FSE.

Proof. Let G = (V, E) be an unlabelled directed graph. We define the encodings R(G) =
(F,V,R) and R'(G) = (F',V',R’) into string rewriting systems and term rewriting
systems respectively, the following way:

99

4 Structural Isomorphism of Term Rewriting Systems

(1) F={fo:veViu{c}, V= {2}, R ={fo(fu(z)) = c: (v,w) € E} and
2) Fr={f,c}, V ={zy:v eV}, R = {f(zy,20) = c: (v,w) € E}.

Note that f, c, z are fixed for respective encoding, while function symbols f, and variable
symbols z, depend on vertices v € V. The concept is the same for both. Vertices are
represented by either unique function or variable symbols, while edges are encoded by
rewriting rules. See Figure 4.9 for an example. Now two unlabelled directed graphs G
and G are isomorphic if and only if string rewriting systems R(G;) = R;, i = 1,2, are
isomorphic or if and only if term rewriting systems R'(G;) = R},i = 1,2, are V-standard
isomorphic.

If ¢ : Vi — Vs is a graph isomorphism between G, Go, one easily checks that ¢ : F; —
Fa, ¢'(x) = x, ¢'(c) = c and ¢'(fy) = fyv) is a well-defined STS isomorphism, and
Y (FTuVy) = (F UV, ¥ (2y) = T4 a well-defined V-standard isomorphism.

On the other hand, first assume ¢’ : F; — F5 is a STS isomorphism between R; and Rs.
Since ¢’ preserves arity of function symbols, map ¢ : Vi — V3, so that ¢'(f,) = fs(v), is
well-defined and bijective due to |Vi| = |F1 \ {c}| = |F2 \ {c}| = |V2] and ¢’ invariant on
{z,c}. Fix (v,w) € E1. Then fyu)(fow)(x)) = ¢ = ¢'(fu)(¢'(fw)(x)) — ¢ € Rz, which
is equivalent to (¢(v), @p(w)) € Es. Since |F1| = |R1| = |Ra| = |E2|, we are done.

Now assume ¢’ : (F'UV]) — (F' UV)) is a V-standard isomorphism, or equivalently, a
V-global isomorphism, between R} and Rj. Again, due to arity-preserving property of
¢', we have ¢/(f) = f and '(c) = c¢. Thus map ¢ : Vi — Va, so that ¢'(2,) = T4
is well-defined and bijective due to V1| = [Vi| = |V5] = [V2|. Fix (v,w) € E. Then
analogously to the case before, (¢(v), p(w)) € F2 and since |E1| = |R}| = |RS| = |Es|
we are done. |

@ ’@ F =111, fo, f3, fa, f5, ¢}

R ={fi(f2(x)) = ¢, fi(f5(z)) = ¢,
f2(f3(z)) = ¢, f3(fa(z)) =
fa(fi(z)) = ¢, f5(fo(z)) = ¢}

V' = {x1,29.73, 24,75}
R = {f(x1,22) = ¢, f(x1,25) — ¢,

@< @ f(x2,x3) = ¢, f(x3,24) = c,

f(wg,21) = ¢, f(w5,22) — ¢}

(a) Unlabelled directed graph G of order 5
and size 6 (b) Encodings R(G) and R'(G)

Figure 4.9: Example of encodings R(G) and R'(G) in the proof of Proposition 4.24

Function symbol f; and variable symbol z; respectively refer to vertex v;

60

4.4 GI-Completeness of Global TRS Isomorphisms

Algorithm 4.1: Computation of V-local template

input :TRS R=(F,V,ar,R)
output : ¢y = (1, ..., 0,) family of F-invariant term homomorphisms,
canonical rewriting of variable symbols on a per rule basis

runtime: O(s|R||V||F|log(|V||F|))

// R:{El —>7"1,...,£n—>’l“n}

Let K < |V|

Initialise new variable symbol set Vs = {z1,...,xx}

for j + 1 tondo // O(s|R|log |V|)

Initialise partial map ¢; : F UV — F U Vg

Let £; =71 ...vm € (FUV)*

// We store terms without symbols (,), ,

6 Set k + 1

// Rename variable symbols from left to right

for i + 1 to m do // O(slog|V|)
if v, € V and ¢;(v;) undefined then // O(log|V|)

Set ¢;(vi) < xx,
10 k< k+1
11 end

U W N

12 end

13 end
// Extend ¢; to all of FUYV
14 for z € V do // O(V|log|V|)
15 if ¢;(x) undefined then // O(log|V])
16 Set ¢;(x) + xi,
17 k—k+1
18 end
19 end
20 for f € F do // O(|F|log|F|)
21 ‘ Set ¢;(f) < f
22 end
23 return ¢y = (¢1,...,0n)

61

4 Structural Isomorphism of Term Rewriting Systems

Algorithm 4.2: Computation of F-local template

input :TRS R=(F,V,ar,R)

output : ¢r = (¢),...,¢)) family of V-invariant term homomorphisms,
canonical rewriting of function symbols on a per rule basis

runtime: O(s|R||V||F|log(|V||F]))
// R:{fl HTl,...,fn*)Tn}
Let L < {ar(f): f € F}
for [€ L do
‘ Let p; < 0
end
Initialise new function symbol set Fg < ()
for j < 1 ton do
Initialise partial map ¢} : FUV — FgUV
Let {jmj =7y1...7m € (FUV)*
// We store terms without symbols (,), ,

0w N O Ok W N -

9 for i + 1 to m do

10 if v, € F and ¢;(v;) undefined then
11 Let [< ar(v;)

12 Set p; «—pr+1

13 Set Fg < Fg U {fpl,l}

14 Set ¢; (’7%) — fpl,l

15 end

16 end

17 end

// Extend gbg to all of FUYV
18 for f € F do

19 | if ¢)(f) undefined then
20 Let | <+ ar(f)

21 Set py < pr+ 1

22 Set Fg < Fg U {fpl,l}
25 | | Set &(3) <

24 end

25 end

26 for x €V do

27 | Set ¢(z) =

28 end

29 return ¢r = (P},...,d),)

// Rename function symbols from left to right

// O(|F|log|F|)
// O(F|)

// O(s|R]|log |F|)

// O(slog|F]|)

// O(log|F))

// O(log|F|)

// O(|F|log |F]|)

// O(log|F|)

// O(log|F])

// O(V|log|V|)

62

5 Summary and Conclusion

Understandably, we did not introduce new results to characterise categorisation of class
GI more precisely. Instead we gave a compact, historical overview, highlighting the most
important papers and contributions leading up to the current state of research in the
field of graph isomorphism, with particular focus Laszl6 Babai. After gradually refining
methods based on results by himself and Fugene Luks, dating back as early as 1982, he
finally provided a quasipolynomial time algorithm for GI in 2015, partially corrected
and improved by Harald Helfgott in 2017. This led into three main arguments against
NP-completeness of GI, based on heuristic evidence, involving Babais’ quasipolynomial
claim, Uwe Schoning’s proof of correlation between GI and the polynomial hierarchy,
possibly leading to its collapse, and the fact that GI is in coAM. The pending per-
review may hopefully open the door for new theoretical and practical achievements in
the future, and spark new interest in this field of research.

In preparation for the core GI-completeness-theorems, we subsequently studied (strong)
isomorphism restricted to certain subclasses of graphs, like directed graphs, pseudo-
graphs or labelled directed graphs. By using edge replacement and pointer techniques
to encode one class into an other, we convinced ourselves that these specialised isomor-
phism problems are polynomially equivalent to the standard problem of determining
isomorphisms between unlabelled undirected graphs. Similar constructions can be used
to prove GI-completeness of other classes, as long as they are of a certain “universal-
ity”, in contrast to highly specialised graph classes like trees, which are, as we noted,
computationally much easier.

This led into the conclusion that determining grammar isomorphisms and isomorphic
strict interpretations on context-free/regular grammars, and global isomorphisms on
term rewriting systems are also GI-complete. Both problems could be handled with
similar methods, only slightly differing in their application. Instead of explicitly stating
graph encodings for every special case, we took advantage of the general structure of re-
spective objects in form of templates, in particular the relationship between the different
symbol sets, i.e. nonterminals vs. terminals or function symbols vs. variable symbols.
Algorithm 3.1, Algorithm 4.1 and Algorithm 4.2 can easily be generalised to handle more
than two disjoint symbol sets and can then be applied for reductions or polynomial solv-
ability proofs if isomorphisms demand symbol-relationship to be preserved. In fact, we
saw that, under canonical local rewriting of symbols, proof of isomorphism reduces to
simple set comparison, which is always possible in polynomial time if binary comparison
of structural components is reasonably defined. The runtime of presented algorithms can
be greatly improved by choosing more appropriate data structures, better encapsulating
defining properties.

63

List of Algorithms

2.1

3.1

3.2

4.1
4.2

Computation of linear edge replacement encoding A 13

Computation of template set Temp(G)

(Including corresponding substitution X;;; and parameters n;,p;) 36
Construction of Graph(G) 37
Computation of V-local template 61
Computation of F-local template 62

List of Tables

3.1 Comparison of grammar isomorphism and isomorphic strict interpretation . . . 25

4.1 Comparison of TRS isomorphisms 41

65

List

of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4

4.5
4.6

4.7

4.8

4.9

Example of (in-/out-)degree and leafs/roots in a directed graph 4
Example of k-clique and k-path (k=3) D
Example of (strongly) isomorphic labelled undirected graphs 9
Structure of the proof of Theorem 2.10 12

Example of encoding 7 in the proof of Proposition 2.11 (new vertices are shaded) 15
Example of encoding ¢ in the proof of Proposition 2.13 (new vertices are shaded) 16
Example of encoding x in the proof of Proposition 2.14 (Label set L = {¢1,¢2}) . 17
Example of encoding p in the proof of Proposition 2.16 (new vertices are shaded) 18
Example of encoding o in the proof of Proposition 2.17 (new vertices are shaded) 19
Example of encoding 7 in the proof of Proposition 2.18 (new vertices are shaded) 21

Structure of the proof of Theorem 3.9 28
Example of encoding Graph in Definition 3.11 31
Matching isomorphically unique paths in proof of Proposition 3.12 32
Computation of encoding Gram(G) in the proof of Proposition 3.13 34
Visualisation of Join(v, {,T1,...,Tpn) - « « o o v v v vt v 48
Term tree Tree (f(h(z,y),z) = h(z,y)) - 48
Reduction of isomorphisms on term trees to isomorphisms on term trees in the

first part of the proof of Lemma 4.19 50
Isomorphic term trees of non-equivalent rewriting rules f(x,¢) — f(z,¢) and

fle,) = fle,x) o o0 o e 50
Proof of Theorem 4.20 e 52
Example of encoding Graph r in the proof of Proposition 4.21 for singleton TRS

R={f(h(z,y),z) = h(z,y)} 54
Example of encoding Graph,, in the proof of Proposition 4.22 for singleton TRS

R={f(h(z,y),z) = h(z,y)} 56
Example of encoding Graph in the proof of Proposition 4.23 for singleton TRS

R={f(h(z,y),x) = h(z,y)} - .« . o o 58
Example of encodings R(G) and R'(G) in the proof of Proposition 4.24 60

67

Bibliography

[AHU74]

[Ave95]

[Bab85]

[Bab16]

[Bab17]

[Bab19]

[BC79]

[BCOS]

[BL83]

[Bod90]

[CF192]

A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analy-
sis of Computer Algorithms. Addison-Wesley Publishing Co., Boston, Mas-
sachusetts, USA, first edition, 1974.

J. Avenhaus. Reduktionssysteme — Rechnen und Schliessen in gleichungs-
definierten Strukturen. Springer-Lehrbuch. Springer, Berlin, Heidelberg, D,
first edition, 1995.

L. Babai. Trading Group Theory for Randomness. In Proceedings of the Sev-
enteenth Annual ACM Symposium on Theory of Computing, STOC 85, pages
421-429, New York, NY, USA, 1985. Association for Computing Machinery.

L. Babai. Graph Isomorphism in Quasipolynomial Time. https://arxiv.
org/pdf/1512.03547 .pdf [2016-01-19], 2016.

L. Babai. Fixing the UPCC case of Split-or-Johnson. https://people.cs.
uchicago.edu/~laci/upcc-fix.pdf [2017-01-14], 2017.

L. Babai. GROUP, GRAPHS, ALGORITHMS: THE GRAPH ISOMOR-
PHISM PROBLEM, pages 3319-3336. World Scientific Publishing Co Pte
Ltd, 2019.

K. S. Booth and C. J. Colbourn. Problems polynomially equivalent to graph
isomorphism. Technical Report CS-77-04, University of Waterloo, 1979.

L. Babai and P. Codenotti. Isomorhism of Hypergraphs of Low Rank in Mod-
erately Exponential Time. In 2008 Fourty-Ninth Annual IEEE Symposium
on Foundations of Computer Science, pages 667676, Washington, DC, USA,
2008. IEEE Computer Society.

L. Babai and E. M. Luks. Canonical Labeling of Graphs. In Proceedings
of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC
'83, pages 171-183, New York, NY, USA, 1983. Association for Computing
Machinery.

H. L. Bodlaender. Polynomial algorithms for graph isomorphism and chro-
matic index on partial k-trees. Journal of Algorithms, 11(4):631-643, 1990.

JY. Cai, M. Fiirer, and N. Immerman. An optimal lower bound on the number
of variables for graph identification. Combinatorica, 12(4):389-410, 1992.

69

Bibliography

[CLRS09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

[Col81]

[CooT1]

[CooT2]

[Fru39]

[Genl5]

[GJT79]

[HBD17]

[HMS11]

[HS65]

[HW74]

[IP99)]

70

Algorithms. The MIT Press, Cambridge, Massachusetts, USA, third edition,
2009.

C. J. Colbourn. On testing isomorphism of permutation graphs. Networks,
11(1):13-21, 1981.

S. A. Cook. The Complexity of Theorem-Proving Procedures. In Proceed-
ings of the Third Annual ACM Symposium on Theory of Computing, STOC
71, pages 151-158, New York, NY, USA, 1971. Association for Computing
Machinery.

S. A. Cook. A Hierarchy for Nondeterministic Time Complexity. In Proceed-
ings of the Fourth Annual ACM Symposium on Theory of Computing, STOC
72, pages 187-192, New York, NY, USA, 1972. Association for Computing
Machinery.

R. Frucht. Herstellung von Graphen mit vorgegebener abstrakter Gruppe.
Compositio Mathematica, 6(1):239-250, 1939.

J. Gentzen. A canonical labeling technique by Brendan McKay and
isomorphism testing of deterministic finite automata. Post on Blog
gentzen.wordpress.com, 2015. Accessed: 2021-03-10.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness (Series of Books in the Mathematical Sciences).
W. H. Freeman and Company, New York, NY, USA, first edition, 1979.

H. A. Helfgott, J. Bajpai, and D. Dona. Graph isomorphisms in quasi-
polynomial time. https://arxiv.org/pdf/1710.04574.pdf [2017-10-12],
2017.

T. Hertli, R. A. Moser, and D. Scheder. Improving PPSZ for 3-SAT using Crit-
ical Variables. https://arxiv.org/pdf/1009.4830.pdf [2018-10-31], 2011.

J. Hartmanis and R. E. Stearns. On the Computational Complexity of Algo-
rithms. Transactions of the American Mathematical Society, 117(1):285-306,
1965.

J. E. Hopcroft and J. K. Wong. Linear Time Algorithm for Isomorphism
of Planar Graphs (Preliminary Report). In Proceedings of the Sizth Annual
ACM Symposium on Theory of Computing, STOC 74, pages 172184, New
York, NY, USA, 1974. Association for Computing Machinery.

R. Impagliazzo and R. Paturi. Complexity of k-SAT. In Proceedings. Four-
teenth Annual IEEE Conference on Computational Complexity (Formerly:
Structure in Complexity Theory Conference) (Cat.No.99CB36317), pages
237-240, Washington, DC, USA, 1999. IEEE Computer Society.

[Kar72]

[Klal5]

[KS10]

[Lad75]

[Luk82]

[RHS5]

[Sch88]

[Sch0g]

[Scho9]

[Spig6]

[SSRS13]

[Sto76]

[vM50]

[ZKT85]

Bibliography

R. M. Karp. Reducibility among Combinatorial Problems, pages 85-103.
Springer US, 1972.

E. Klarreich. Landmark Algorithm Breaks 30-Year Impasse. Online Article
published by Quanta Magazine, 2015. Accessed: 2021-03-12.

K. Kutzkov and D. Scheder. Using CSP To Improve Deterministic 3-SAT.
https://arxiv.org/pdf/1007.1166.pdf [2018-10-26], 2010.

R. E. Ladner. On the Structure of Polynomial Time Reducibility. J. ACM,
22(1):155-171, 1975.

E. M. Luks. Isomorphism of graphs of bounded valence can be tested in
polynomial time. Journal of Computer and System Sciences, 25(1):42-65,
1982.

D. J. Rosenkrantz and H. B. Hunt. Testing for Grammatical Coverings. The-
oretical Computer Science, 38(1):323-341, 1985.

U. Schéning. Graph isomorphism is in the low hierarchy. Journal of Computer
and System Sciences, 37(3):312-323, 1988.

U. Schoning. Theoretische Informatik — kurz gefasst. Spektrum Akademischer
Verlag, Heidelberg, D, fifth edition, 2008.

P. Schweitzer. Problems of Unknown Complexity: Graph isomorphism and
Ramsey theoretic numbers. PhD thesis, Naturwissenschaftlich-Technische
Fakultaten der Universitat des Saarlandes, 2009.

D. A. Spielman. Faster Isomorphism Testing of Strongly Regular Graphs.
In Proceedings of the Twenty-Fighth Annual ACM Symposium on Theory of
Computing, STOC 96, pages 576-584, New York, NY, USA, 1996. Associa-
tion for Computing Machinery.

M. Schmidt-Schauf3, C. Rau, and D. Sabel. Algorithms for Extended Alpha-
Equivalence and Complexity. In Femke van Raamsdonk, editor, 2/th Inter-
national Conference on Rewriting Techniques and Applications (RTA 2013),
volume 21 of Leibniz International Proceedings in Informatics (LIPIcs), pages
255-270, Dagstuhl, D, 2013. Schloss Dagstuhl-Leibniz-Zentrum fir Infor-
matik.

L. J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer
Science, 3(1):1-22, 1976.

D. van Melkebeek. Randomness and Completeness in Computational Com-
plexity. Springer-Verlag, Berlin, Heidelberg, D, first edition, 1950.

V. N. Zemlyachenko, N. M. Korneenko, and R. I. Tyshkevich. Graph isomor-
phism problem. Journal of Soviet Mathematics, 29(4):1426-1481, 1985.

71

	Introduction
	The Graph Isomorphism Problem
	Mathematical Notations and Graph Theoretical Basics
	The Graph Isomorphism Problem and Complexity Class GI
	Outline on basic Complexity Theory
	Polynomial Reductions and Complete Problems
	GI and its Relation to other Complexity Classes

	GI-Complete Subclasses of Graphs
	Edge Replacement Techniques
	Pointer Techniques

	Structural Isomorphism of Context-Free and Regular Grammars
	Grammar Isomorphism and Isomorphic Strict Interpretations
	Template Construction
	GI-Completeness of Structural Isomorphisms between Context-Free and Regular Grammars

	Structural Isomorphism of Term Rewriting Systems
	Term Rewriting Systems and Structural Isomorphisms
	Local TRS Isomorphisms are in P
	Term Trees and TRS-Forests
	GI-Completeness of Global TRS Isomorphisms

	Summary and Conclusion
	List of Algorithms
	List of Tables
	List of Figures
	Bibliography

