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Abstract
During the last two centuries, substantial increase in life expectancy was observed.
Even though past developments suggest that the mortality will further decrease in
the future, the uncertainty and instablity about the evolution is highly intensified
due to the ongoing COVID-19 pandemic. Especially for both pension scheme and
life insurers it is therefore of essential interest to predict the mortality of its members
or policyholders with reliable accuracy.
The aim of this thesis is twofold. Firstly, to develop an appropriate enrichment
method to map the mortality data from categorized into metric age scale. Based
on this, different approaches to both fit and forecast human mortality in Finland,
Germany, Italy, the Netherlands and the United States are applied. The special
focus lies on improving the state-of-the-art stochastic models with machine learning
techniques and generalizing them to a multipopulational model as well as enriching
the analysis with further socio-economic and health-risk variables.
The second part is devoted to meeting trend forecasts of mortality rates and life
expectancies as a measure of longevity. To enable this, different - from mild to severe
- scenarios for the future are set up, assessed for plausibility and discussed. This is
helpful for preparedness, planning and informed decision making despite the current
situation surrounded by biological and epidemiological ambiguities.
The thesis ends by providing numerical calculations for age-specific life expectancies
for the years 2022 and 2023 with specific consideration of the COVID-19 impact.

2



Contents

Contents
1 Introduction 4

2 Database 6

3 Data Enrichment 11
3.1 Distribution of population and deaths from categorized into metric

age scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Integration of indicators on socio-economic and health status . . . . . 17

4 Methods 20
4.1 Lee Carter and variants . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Machine learning approach . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Generalized additive model . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Trend forecast considering COVID-19 . . . . . . . . . . . . . . . . . . 38
4.5 Goodness-of-fit evaluation . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Results 40
5.1 State-of-the-art mortality models . . . . . . . . . . . . . . . . . . . . 42
5.2 Breakpoint analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Machine learning methods . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4 Generalized additive models . . . . . . . . . . . . . . . . . . . . . . . 62
5.5 Impact of COVID-19 on mortality rates and life expectancy . . . . . 73

6 Discussion 82

7 Conclusion 86

References 89

Appendix 96

List of Abbreviations 105

List of Figures 107

List of Tables 108

Declaration of Authorship 109

3



1 Introduction

1 Introduction
The developed world has experienced a substantial increase in life expectancy during
the last decades. Data for the USA shows, for example, that the number of deaths
of 80 years-old men per thousand decreased by 56,7 % from 1933 to 2019 (from 127
to 55 deaths per thousand) (HMD, 2021). Indeed, this decline in mortality rates
is associated with social and health advances and makes it particularly interesting
for governments, private pension companies, and life insurers to build models and
estimates to make projections for the future. The mortality rate improvements
must therefore be captured and forecasted adequately, in order to provide a solid
foundation for decision making.

Quantifying the uncertainty about mortality trends is of high relevance, especially
after being intensified by COVID-19. Due to the pandemic, mortality rates have
been discussed for a broader audience. Generally, mortality rate projections consist
of two parts. Firstly, estimating a mortality model based on historical data, which
captures the mortality rates by taking into account three key components: age, time
period and birth cohort. Secondly, forecasting the time dependent parameters or
trends from the estimated model into the future. Hereby, it is important to properly
predict the future extent of population ageing, so that the sustainability of pension
schemes and social security systems are ensured.

This thesis aims to use data and statistical models to obtain reliable estimates
and forecasts as adequate models help insurance companies to meet their liabilities
and offer products to customers. Both pension scheme and life insurers aim to predict
the mortality of its members or policyholders with reliable accuracy. On the one
hand, this will help a pension scheme to handle liabilities in an effective fashion and
to make informed decisions. On the other hand, the life insurer would then be able
to set appropriate premiums, so that they are high enough to cover the policyholders
and, at the same time, as low as possible to remain competitive and worthwhile for
the clients. Although some factors are known to influence human mortality, it is
not a deterministic process by nature. Therefore, an effort is made to estimate how
the random components of mortality rates will develop in the future for different
population groups based on historical data. This leads to the first research question:

How can state-of-the-art mortality models be improved in terms of fit
and forecast?

The most widely used Lee Carter model will serve as a benchmark mainly
due to its robustness, simplicity and explanation, taking into account the age and
period effect (Lee and Carter, 1992). Many variants, extensions and alternatives
to the Lee Carter model exist, such as the CBD model (Cairns et al., 2006) and
the so-called Quadratic CBD model with additional cohort effects (M7) (Cairns
et al., 2009) as well as the Age-Period-Cohort model (APC) (Clayton and Schifflers,
1987, Hobcraft et al., 1982, Holford, 1983, Currie, 2006). These four stochastic
modelling approaches will be compared separately for each subpopulation by gender
and country analyses, as they do not allow for joint estimations in their original
versions. Each subpopulation contains the male or female population of a given
country. The identifiability problems inherent in some of these models are regulated
by constraints. The following countries will be examined in detail: Germany, Finland,
the Netherlands and Italy represent Europe and the United States represent North
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1 Introduction

America. We compare different approaches to human mortality adjustment and
prediction to identify defects in parameter estimation and to further develop and
propose effective methods. For this, we use the data from Human Mortality Database
(HMD, 2021). This dataset provides aggregate data that includes country, year, age,
sex, as well as population size, number of deaths, and mortality rates as variables. As
the interest of the modelling approaches lies in the precise analysis of the age, cohort
and period effects, a methodology has been developed to map the mortality rates
from grouped to metric age scale for recent years, so that the data can be enriched
properly. The data on annual and metric age level is only available until 2019 or even
before, depending on the provided information by the different countries. Another
dataset, also from Human Mortality Database, provides this missing information
up to the current date but with grouped age information only. In the second step,
the Lee Carter model estimation will be revisited to be adequately improved by
tree-based machine learning techniques. The aim is to detect the weaknesses of the
Lee Carter model and to improve them. The time-dependent components (i.e. period
and cohort) are forecasted using ARIMA models or random walk with drift, taking
into account the structural breaks indicating unexpected changes over time and dated
in the period effects (Bai and Perron, 1998, Zeileis et al., 2003). However, all these
models predict the future mortality of a single population without considering the
impact of neighbour countries, their potential dependencies on the geopolitical, socio-
economic or any other common criteria. Therefore, a multipopulational approach
for simultaneous modelling of mortality in two (or more) related populations will
be introduced to enable borrowing strength from similar data. This will illustrate
how the classical APC model can be further developed in the semi-parametric
framework of Generalized Additive Models (GAM) and improved in the sense of
fitting and capturing the uncertainty (Clements et al., 2005). With this approach
there is an identification problem, too. The three components of the temporal
structures age, period and cohort depend on each other so that each of them is
a linear combination of the other two (i.e. cohort is calculated by the difference
between period and age). Thus, the assignment of the interrelations is not unique.
By fitting a bivariate tensor product spline between age and period, we can avoid
these identification problems without running into limitations (Wood, 2017). This
helps to overcome the identification challenge of understanding the interrelations
of the three main components age, period and cohort without meeting further
assumptions and constraints. In addition, it is relevant to consider the variability
in mortality improvements within each country, keeping the socio-economic and
health-related differences in mind. This poses an additional challenge on the accurate
design of pension systems and the management of longevity risk in pension funds
and annuity portfolios. Therefore, apart from jointly analysing the age period and
cohort effects for different gender groups and countries, further variables that are
potentially associated with the mortality rates will be included into the model. For
this a data enrichment procedure will be taken to integrate additional variables
on annual country level from various open data sources, such as the World Health
Organization (WHO, 2021), OECD (OECD, 2021) and the United Nations (UIS,
2021). The contribution of the inclusion of these variables to model performance will
be discussed subsequently.

The coronavirus disease (COVID-19), first broken out in the Chinese city Wuhan
in December 2019, has spread to nearly every country (Mohan and Nambiar, 2020).
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2 Database

At the time of preparing this thesis, there have been reported nearly 177 million cases
and 4 million deaths worldwide (Johns Hopkins, 2021). As this is an ongoing event
and the impact of COVID-19 on the frailty of survivals, the further development and
the long-term effects are not clear yet, the mortality rates of the year 2020 require
special handling in terms of forecasting. This is also an incentive to get up-to-date
data and thus, the investigation of the second research question can be formulated
as follows:

How will mortality develop in the future in different countries,
considering the COVID-19 impact?

On the basis of GAM, several forecasting scenarios will be developed, applied
and discussed with regard to each underlying assumption. These scenarios should
be seen as possible examples and the results should be interpreted with caution,
particularly because of the uncertainty regarding virus variants and vaccinations, the
consequences are not sufficiently foreseeable at the time of writing this thesis. Special
focus lies on the consideration of the excess mortality. If one does not incorporate it,
the prediction of the following years will be biased due to censoring (corona death
cases). Based on this information, life expectancy tables are provided for the next
two years.

The thesis is organized as follows. In Section 2, the database will be introduced
and described within the framework of an exploratory data analysis. In Section 3, the
enrichment strategies in terms of the mapping of mortality rates from grouped into
metric age scale and the integration of additional covariates will be explained. Section
4 gives a theoretical overview of all applied methods from Lee Carter and variants,
machine learning algorithms, GAMs via evaluation metrics to forecasting approaches.
In Section 5, the results for all countries and all models will be introduced and
compared. Discussion and conclusion are then given in Sections 6 and 7, respectively.

2 Database
The Human Mortality Database (HMD, 2021) provides data on mortality rates µa,t,s

as well as the number of deaths Da,t,s during calendar year t aged a in years at
death for a given subpopulation s. It also covers the population size Ea,t,s of these
people on January 1st in year t, for each subpopulation s, comprising the country
and gender. Data are included for both women and men from age 0 to 100� years
in the original version of the dataset. The mortality rates are calculated as follows:

µa,t,s �
Da,t,s

Ea,t,s
(1)

The map in figure 1 is supposed to give an overview of the countries considered in
this thesis. The motivation for selecting these countries is primarily their geographic
context, as well as the relatively different course of the pandemic, in order to be able
to crystallize the contrast in modeling: Finland, Germany, Italy and the Netherlands
represent Europe, whereas the United States represent North America.
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2 Database

Figure 1: World map with the countries relevant for the present thesis

Due to the small number of observations in the higher age groups, the range of
values for age is limited upward to 90 for further analysis. Both male and female
population were used. Table 1 provides an overview of the availability of data for
different countries.

Country Available years
Finland 1850-2019
Germany 1990-2017
Italy 1872-2018
Netherlands 1850-2019
United States 1933-2019

Table 1: Temporal availability of the data in HMD (2021)

To enrich the data up to 2020 another dataset from HMD (2021) was used,
called Short Term Mortality Fluctuations (STMF, 2021). This dataset provides
information about weekly death counts and death rates reported for age groups
r0, 14s, r15, 64s, r65, 74s, r75, 84s, r85�s corresponding to rl, us instead of individual
ages a, including the lower bound l and the upper bound u. The mapping methodology
from weekly categorized mortality data into annual metric age scale will be described
in detail in Section 3. The data availability of this dataset is given in Table 2:

Country Available years
Finland 1990-2020
Germany 2016-2020
Italy 2011-2020
Netherlands 1995-2020
United States 2015-2020

Table 2: Temporal availability of the data in STMF (2021)
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Evolution of mortality of the Italian male population 
aged 0-90 for the years 1933 - 2020

Figure 2: Evolution of mortality rates for Italian males aged 0–90 for the years
1933–2020. The data for year 2020 is enriched by the methodology that is developed
and described in Section 3. Vertical axis spacing represents mortality rates with ticks
on a logarithmic scale

Figures 2 and 3 provide an initial overview of the development of mortality rates.
They illustrate the course of mortality rates simultaneously across years and ages
for Italian and US male population in three dimensional graphs. The mortality
surface shows that during the first part of 20th century, infant mortality was high
but improved and stabilized in the course of time clearly, probably due to medical,
technological and hygienic advance as well as the improvement in living conditions
(Wegman, 2001). This holds for all other ages, even though the steepest decrease
is referred to the infant mortality. Up to an age of about 50 years, the mortality
surface reveals some humps along the years, with mortality gradually increasing as
individuals get older. These humps tend to occur in certain years, especially from
1918 to 1944, potentially linked to the influenza epidemy and to consequences of
World War I or World War II (Wilson et al., 2014, Horiuchi, 1983). Apart from these
humps the course over the ages remains quite similar over the years decreasing until
the age of approximately 12, arriving at the steepest point there and then increasing
slightly with growing age. For other male subpopulations, the corresponding figures
are included in the appendix.
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Evolution of mortality of the U.S. male population 
aged 0-90 for the years 1933 - 2020

Figure 3: Evolution of mortality rates for US males aged 0–90 for the years 1933–2020.
The data for year 2020 is enriched by the methodology that is developed and
described in Section 3. Vertical axis spacing represents mortality rates with ticks on
a logarithmic scale

After enriching the first dataset according to the mapping methodology described
and explained in Section 3, the following years will be used for the further analysis:
For single-population modelling approaches, data from 1950 to 2020 in case of
Finland, the Netherlands, Italy and the United States and from 1990 to 2020 in case
of Germany, due to data inconsistencies before re-unification. The cut in 1950 is
proposed by Lee and Miller (2001) and justified by too many fluctuations before this
year. For coherent modelling with GAM a joint coverage of years is required so that
the available years for all countries will be restricted to 1990-2020, which is probably
still sufficient for capturing more current effects on mortality rates and to project
them into the future.

The heatmaps in figure 4 show the decrease in mortality rates in a more precise
way for the relevant years and ages in the United States as an example. This is
inspired by the so-called Lexis diagrams, i.e. a two-dimensional table or graph
depicting age groups and periods in horizontal and vertical direction, respectively
(Carstensen, 2007). For the other countries, considered in this thesis, the course
remains overall similar. The females are depicted on the left-hand side and the males
on the right-hand side. The color scheme indicates low (dark blue) to high (dark red)
mortality rates, year and age are displayed on the x� and y�axis, respectively. The
slightly increasing, upward diagonal structure of the colors shows the typical course
of mortality rates improvements for the last years. It also appears that females have
on average lower mortality rates than males. The color pattern suggests that the
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2 Database

differences are more likely to affect the higher age categories, around 30 and above.
These differences tend to be much larger in earlier years and seem to narrow over
years. In order to delve deeper into noticeable deviations from the general trend,
one should look at the bottom row depicting the mortality rates for age 0 and the
right column representing the year 2020. The infant mortality has experienced a
tremendous improvement between 1950 and 2020 that holds for all countries and
gender population and can be seen by the relatively abrupt transition of the color
gradient, from red to green. The decline from the color gradient for the year 2020
is especially remarkable for the United States and Italy, probably linked to the
comparatively higher COVID-19 incidence and mortality rates in both countries.
More specifically, this can be observed by the fact that the color profile on the far
right side, has moved vertically downwards, indicating that a relatively sharp decline
can be tracked for the year 2020. The area in the lower right corner of the heatmaps
indicates a very low mortality rate for ages 1 to 10 in the years after 1950. This
might be caused by the improved hygiene and new medical innovations.

Figure 4: Heatmaps of mortality rates for the US population. Age groups and periods
are depicted in vertical and horizontal direction, respectively. Unique cohorts are
displayed along the diagonals. It should be noted that the mortality data for 2020
were enriched from the STMF dataset, with the metholody described in detail in
Section 3.

Additionally the diagonal lines represent the corresponding birth cohorts: 1900,
1930, 1960 and 1990. Accordingly, unique cohorts are displayed along the diagonals.
For instance, cohort 1900 refers to the subset of people born in 1900. A 40�years
old US American woman born in 1930 (green) tends to have a higher mortality rate
than the other one born in1960 (blue). Furthermore, a 10�years old boy has a much
lower mortality rate if he was born in 1990 (dark blue) than the other one born 1960
(light blue). The view from this perspective is generally interesting because cohorts
also play a crucial role in the later course, partially in the modelling phase.
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3 Data Enrichment

3 Data Enrichment
This section is about enriching the existing data described in the upper section. This
happens in two dimensions. First, we explain the methodology we used to adapt
the mortality data from STMF (2021), namely the number of deaths, but also the
population for recent years that are missing in HMD (2021) dataset. The challenge
we specifically address is that these data are aggregated in rough age categories,
whereas we are interested in the metric age scale. The second dimension of data
enrichment refers to the integration of socio-economic and health variables obtained
from other public datasets and should be put in relation with mortality data.

3.1 Distribution of population and deaths from categorized
into metric age scale

Forrecent years only partial information about mortality rates and population is
available on weekly basis and with grouped instead of individual age information
(STMF, 2021). This refers to the year 2020 for all countries, year 2019 for Germany
and Italy and 2018 for Germany only. Thus, both death counts and population have
to be transformed from weekly to yearly data first, and then from age buckets into
the metric age scale.

As the STFM-dataset provides weekly information only about mortality rates
and death counts, one has to firstly derive the weekly population size from this and
then extrapolate to the annual level. From the documentation of this data set, the
original calculation of the weekly age-specific mortality rate can be obtained (STMF,
2021):

µrl,us,w,t,s �
Drl,us,w,t,s

Erl,us,t,s{52 (2)

where Erl,us,t,s represents the annual population exposures, Drl,us,t,s the observed
death counts for a given age interval rl, us, in year t, week w for subpopulation s.
The population for week w is therefore given as follows:

Erl,us,w,t,s �
Drl,us,w,t,s

µrl,us,w,t,s
(3)

with µrl,us,w,t,s indicating the mortality rates for a given age interval rl, us, in
year t, week w for subpopulation s. The weekly population is mapped to the yearly
population by multiplying with a factor 52, as an indicative number of weeks in a
year:

Erl,us,t,s � Erl,us,w,t,s � 52 (4)

On the other side, the weekly death counts will be summarized per year:
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3.1 Distribution of population and deaths from categorized into metric age scale

Drl,us,t,s �
52̧

w�1
Drl,us,w,t,s (5)

To construct the annual death counts and populations for individual ages for 2020
and 2018-2019 (if necessary), the procedures described in the next two subsections
were applied. While the mapping of population takes advantage of the similarity of
the cohort-wise population, the other method used assumes that the distribution of
death counts within the age groups remains roughly similar on average to that of the
last five years. The methods will be explained with the help of US male population
and have been applied to all subpopulations in the same way.

Methodology to construct the population data for each age, for year 2020
(metric level):

The idea is to use the similarity of the cohort-wise patterns of the past years and
assume that this is also true for the year 2020, in accordance with the recommendation
of Antonio et al. (2020). As shown in figure 5, the population pattern for years
2015-2019 is nearly the same, but shifted to the right by one year. That is natural,
because 10�years old boys 2018 belong to the group of 11�years old boys 2019
for example. So, the population of 2019 will be right shifted to create the initial
population course for 2020. This leads to an empty observation for 0 age in 2020 (in
a first step), which will be linearly extrapolated based on the 0 age population of
the last two years (2018 and 2019). Figure 6 shows how the population size of men
and women in the United States is distributed. Obviously more people achieved an
age above 60 in 2010 than in 1900 because of the triangular blue area in the top
left corner. The years of the baby-boom generation starting in 1962 where more
babies were born than in any other year can be seen. This is probably the reason
why there is a growing number of people between ages 30 and 50 in the years after
1990. However, the boom ended rapidly around 1970 when the birth control pill
was invented. This changed the age structure of society from a population pyramid
in 1912, where the population size decreased for an increasing age, to a more urn
shaped form in 2010, which means that there are fewer people born than having an
age from 30 to 50 (Yang and Land, 2013).

12



3.1 Distribution of population and deaths from categorized into metric age scale

Figure 5: Enriched exposure (red) for US male

The next step aims to ensure that the newly created population numbers (red
line in figure 5) matches the observed population numbers within each age group
prvodied by STMF (2021) if summed up across the corresponding categories given
in the table below:

Age group Observed Derived
r0, 14s 30.694.119 30.623.608
r15, 64s 106.359.573 106.664.997
r65, 74s 15.203.936 15.511.873
r75, 84s 7.227.623 7.600.156
r85�s 2.416.311 2.832.233

Table 3: Exposure of the US male population for specific age groups for the year
2020. Observed values are provided by STMF (2021) and derived values are based
on previous year information from the HMD (2021) dataset

To set the two columns to the same common mass, so that the derived values in
the sum correspond to the actual values, the following connection will be assumed:

Etl,uu,2020,s � rtl,uu,s � E�
tl,uu,2020,s,

with rtl,uu,s �
Etl,uu,2020,s°u

i�l E�
i,2020,s

(6)

Here, E�
i,2020,s indicates the exposure size after the shift to right for a given

individual age i and subpopulation s for year 2020. With the help of the ratio rtl,uu,s
the sum of initially shifted population counts in the given age groups will be equal
to those given in the STMF (2021) dataset for year 2020. Recall, we fixed at the
beginning that the maximum age limit being monitored in this thesis is 90. Therefore,
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3.1 Distribution of population and deaths from categorized into metric age scale

the population in the open interval 85� must be adjusted, so that the increase from
2019 to 2020 is evenly distributed across 85 to 110:

Et85,90u,2020,s � et85�,su � Et85,90u,2019,s,

with et85�,su �
Et85�u,2020,s � Et85�u,2019,s

110 � 85 � 1
(7)

This allows a closed-interval statement on population trends to be made reliably
up to the age of 90. The final result of population values for the year 2020 at a
precise age level is depicted in figure 5.

Figure 6: Heatmaps of population numbers for the US population. Age groups and
periods are depicted in vertical and horizontal direction, respectively. Unique cohorts
are displayed along the diagonals. It should be noted that the mortality data for
2020 were enriched from the STMF dataset, with the metholody described in detail
in this section.

Methodology to construct the death counts for individual age for year
2020:

Now, a three-stage approach will be taken to distribute the death counts from
grouped into metric age scale on annual level. The core concept is to exploit the
assumption of homogenized distribution in the given age buckets over the years
2015-2019 and to map this in an averaged form to the year 2020. Figure 7 illustrates
the given issue exemplary for the year 2019: for this year (and also for 2015-2018)
both the death counts for individual (colored bars in figure 7) and grouped (on
average, black lines in figure 7) ages are available. Thus, for the year 2020 only the
information comprised in and corresponding to the black lines are present.
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3.1 Distribution of population and deaths from categorized into metric age scale

Figure 7: Examplarily depiction of averaged grouped death counts for the US male
population. The black lines are obtained from the mortality information in the
STMF dataset (STMF, 2021).

Firstly, averaged weights for each age in each age bucket are computed based on
the recent five years (2015-2019):

wtl,uu,t,s �
Dtl,uu,t,s

1
u�l�1 � Drl,us,t,s

(8)

Secondly, these weights are multiplicatively applied on the averaged death counts
2020 (black lines) in each age group to correct for the deviation from the mean.
The assumption made in this step is, that the distribution within each age category
remains the same across the previous years. D�

tl,uu,t,s denotes the estimates death
counts for each individual age contained in an age group, year t and subpopulation s:

D�
tl,uu,t,s � p

1
5

2019̧

j�2015
wtl,uu,j,sq �

1
u � l � 1 � Drl,us,2020,s (9)

Finally, the same principle as for the population method is followed to ensure
equal death counts in both grouped and metric versions, when summing up within
each age group:

Dtl,uu,2020,s � ktl,u,su � D�
tl,uu,t,s,

with ktl,u,su �
Drl,us,2020,s°u
i�l D�

i,2020,s

(10)
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3.1 Distribution of population and deaths from categorized into metric age scale

In this way it must be guaranteed that the newly created death counts in total
each result in the same number as the grouped data from STMF (2021) given in the
following table:

Age group Observed Derived
r0, 14s 16.219 16.131
r15, 64s 543.294 543.829
r65, 74s 395.856 396.675
r75, 84s 432.905 433.527
r85�s 399.138 398.762

Table 4: US male death counts in both datasets for given age groups

Figure 8: Adjusted death counts (red) for US male

The final death counts for individual ages for years 2018, 2019 (greyish colors)
and 2020 (red) are shown in figure 8. For higher age categories the increase in death
counts (higher bars) is immediately apparent. Presumably, this is related to the
COVID-19 situation in the USA.

Mortality rates are computed as usual by dividing the death count by the
population number for each individual age and subpopulation. Finally, the HMD
dataset has been imputed by adjustedmortality rates for 2020. An equal procedure
was followed for each subpopulation (country and gender) and for all missing years
as just described.
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3.2 Integration of indicators on socio-economic and health status

3.2 Integration of indicators on socio-economic and health
status

Up to this evaluation phase, the data set consists of the following variables: year
of death, age (metric)at death, death count, population size, mortality rate gender
and country. For the coherent modeling over countries, it might be not sufficient to
examine how mortality rates differ across subpopulations in each country, defined
by gender and age categories only. Since it seems obvious that the development of
mortality rates varies also across different socio-economic circumstances within a
country, variables measured by educational attainment, occupation, income or area
deprivation could be beneficial to better capture and project the mortality rates.
These socio-economic differences in mortality pose a major challenge for the design of
pension systems and the management of longevity risk in pension funds and pension
portfolios to address social inequalities. It should not be ignored, however, that
failure to account for mortality heterogeneity in the valuation of pension obligations
or the pricing of annuities could lead to inadequate funding of pension and retirement
obligations, thus inducing undesirable transfer of wealth (Brown et al., 2002).

Therefore, it is of interest to include more variables into the existing dataset
indicating the socio-economic but also health and educational situation. Current
research offers few modern techniques to include socio-economic or even other
additional variables. However, these are usually based on individual data and
individual-specific information on income, socio-economic and health status (Villegas,
2015). In this thesis, however, we work with aggregated data, refelcting rather the
differences between countries.

The described enrichment will be achieved by extracting this information from
additional sources, such as the Organisation for Economic Co-operation and Devel-
opment (OECD, 2021), World Health Organisation (WHO, 2021), United Nations
Development Programme (UNDP, 2021), the World Bank (World Bank, 2021), UN-
ESCO Institute of Statistics (UIS, 2021). As such public data sources usually do not
provide any gender- and age-specific information, the inclusion of these variables into
the dataset and into the models can be considered as a sort of explorative analysis. In
general these are rather an indicator for the lifestyle in the country in a specific year
and should therefore not be viewed as direct influencing factors on the mortality rate.
The usefulness and beneficialness of this kind of reflection of differential mortalities
and comparative performance of countries as well as major trends will be assessed in
detail in Section 5.

From a total of about 1500 indicators collected from different domains and
sources, four were selected. The variable and domain selection were mainly based on
correlation check, expert suggestions and content assessment.

1. Alcohol consumption measured in litres per person for adults, namely people
aged 15 years and older. It is defined as yearly sales of pure alcohol in litres per
person. In general, alcohol consumption is linked to several harmful health and
social consequences, particularly an increased risk of a number of cancers, stroke,
and cirrhosis of the liver (OECD, 2020a).

2. Prevalence of overweight among adults measured by the Body-Mass-Index
(BMI) as a risk factor for health. This gives the percentage of people aged 15 or
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higher with a BMI of 25kg{m2 or higher. BMI is commonly used to categorize
overweight and obesity and is defined as a person’s weight in kilograms divided by
the square of his height in meters (WHO, 2020).

3. Tax revenue measured as tax to gross domestic product (GDP) ratio determining
how well a nation’s government directs its economic resources via taxation. The
value is given as percentage. This should serve as a performance indicator for a pros-
perous national economy. Higher tax revenues mean that a country is able to invest
more in improving infrastructure, healthcare and education. This indicates key con-
ditions to the long-term prospects of a country’s economy and people (OECD, 2020b).

4. Unemployment rate is measured by the number of unemployed people as a
percentage of the labour force and it is seasonally adjusted. Unemployed is hereby
defined as people of working age without work, available for work and have taken
specific steps to find work. Data are based on labour force surveys (OECD, 2020c).

Alcohol consumption (in litres per person)
Country Minimum 1st Quartile Median 3rd Quartile Maximum Mean Std. deviation Missing

Finland 8,2 8,5 9 9,7 10,5 9,0966 0,6941 2
Germany 10,8 11,2 11,8 13 14,9 12,1759 1,1115 2

Italy 7 7,4 8,9 9,6 11 8,6862 1,2463 2
Netherlands 8,2 9,1 9,7 9,9 10,1 9,4345 0,6269 2

United States 8,1 8,3 8,6 8,725 9,3 8,5536 0,2987 3
Prevalence of overweight (in %)

Country Minimum 1st Quartile Median 3rd Quartile Maximum Mean Std. deviation Missing
Finland 48,3 53,35 57,1 60 62,5 56,4963 4,2464 4

Germany 48,5 52,9 56,6 59,7 62,8 56,2333 4,2852 4
Italy 48,8 52,65 57 60,75 64,1 56,7111 4,7914 4

Netherlands 43,2 48,75 54,2 58,95 62,6 53,7037 6,0981 4
United States 51,4 57,2 62,4 66,6 70,2 61,7592 5,7619 4

Tax revenue (in %)
Country Minimum 1st Quartile Median 3rd Quartile Maximum Mean Std. deviation Missing

Finland 40,562 42,111 43,195 44,1965 45,759 43,1555 1,4355 1
Germany 34,329 35,1828 35,8125 36,7795 38,812 36,0414 1,1769 1

Italy 36,271 39,6943 40,658 41,9018 43,828 40,7157 1,8656 1
Netherlands 34,804 35,623 36,8525 38,627 41,728 37,1932 2,0766 1

United States 22,957 24,8253 25,9335 26,7618 28,291 25,843 1,3547 1
Unemployment rate (in %)

Country Minimum 1st Quartile Median 3rd Quartile Maximum Mean Std. deviation Missing
Finland 3,1667 7,7667 8,7667 10 16,5833 9,4366 3,0116 0

Germany 3,15 5,2771 7,7167 8,6688 11,2833 7,1542 2,3157 1
Italy 6,15 8,4917 9,725 11,175 12,825 9,6753 1,7461 0

Netherlands 3,075 4,2042 5,1333 6,275 8,3583 5,3685 1,4040 0
United States 3,667 4,675 5,6083 6,8583 9,6167 5,914 1,6198 0

Table 5: Summary statistics on the values of relevant indicators

Table 5 gives an overview of the index values for each country. The data basis
for this table is the annual data for the four indicators per country. The time frame
covers the years 1990-2020. In addition to the minimum, maximum and mean values
per country and indicator, the first and third quartiles, the standard deviation
and the number of missing values are also shown. The prevalence of overweight
among adults increases over the years in all countries. The USA stands out with the
maximum value of BMI and the minimum value of tax revenue. However, the data is
available for the period range of 1900-2020 and contains missing values, which have
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to be imputed with the help of imputeTS package (Moritz, 2021). This provides an
imputation option for univariate time series, which is required in this case to capture
the time trend in the data and thus project the time series nature. The application of
Kalman Smoothing to the state-space representation of an Autoregressive integrated
moving average (ARIMA) model for each country and each indicator is shown in
figure 9. For the exact procedure in this matter, reference is made to the following
sources (e.g. Welch and Bishop, 2006, Harvey, 1990, Grewa, 2011). The results
appear to be satisfactory, as they plausibly extend the trend present in the data.
However, due to the pandemic influencing the year 2020 in particular in its special
way, the reproducibility of the previous trends is questionable, as the development of
these indicator values would presumably have been different from what it would have
been if there had been no pandemic. Therefore, these covariates are only integrated
into the modeling up to the year 2015 and 2019, respectively, so that it is not a
further problem in the course of this thesis.

Figure 9: Socio-economic and health-related covariates as time series with imputed
values

While the objective of Kalman Smoothing is to estimate the unknown state vector
of the structural model given the entire sample, the automate version of ARIMA
modelling returns the optimal model, according to AIC. It helps to cope with the
order selection process, usually considered to be subjective and difficult to apply,
will be discussed in detail in Section 4 (Hyndman and Khandakar, 2008, Kalman,
1960). Another imputation approach called MissForest was also taken (Stekhoven,
2016). However, this method builds upon Random Forest Algorithm and does not
consider the underlying time-dependent structure leading to non-satisfactory results,
especially for variable with a trend, which will be ignored.

All in all, the above methods allow for extensive enrichment of the initial data,
both in terms of adding annual age-specific mortality data for the missing years and
incorporating more covariates from additional data sources. And these covariates
are used for later modelling in Section 5 where their relationships with mortality are
examined in more detail.
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4 Methods
Both the level of individual and collective well-being in societies is a matter of public,
political and scientific interest, intensified due to the COVID-19 pandemic and its
hardly predictable developments. As observed in the past, life expectancy in a society
generally increases in a monotonic pattern with disruptive spikes. This justifies
the approach of modelling human mortality rates with stochastic models assuming
stochastic processes behind the evolution over time and not just considering fixed
rates. In most cases, we take into account the minimal characteristics with age,
cohort and gender effects. This serves as a basis for considering different models with
strengths and weaknesses. In this section the covered models are presented. The
focus is firstly on the comparison of different models with the help of appropriate
metrics as well as in-sample and out-of-sample forecasts. First, an overview of Lee
Carter models and its variants will be given. Apart from the model specification
and general idea, the methodology behind the modelling of structural breaks will
be explained. Then, standard machine learning algorithms will be presented and
then linked to the Lee Carter model as an improvement strategy. Lastly, generalized
additive model will be introduced and put into the context of modelling and extending
the well-known Age-Period-Cohort (APC) models. A uniform notation was chosen,
which in individual cases differs from original notation in the sources.

4.1 Lee Carter and variants
One of the most comprehensible approaches for modelling mortality in a set of
subpopulations is the classical version of Lee Carter model (Lee and Carter, 1992),
further adapted by the Poisson distributional assumption (Brouhns et al., 2002).
The original version of Lee Carter model proposed by Lee and Carter (1992) suggests
to forcast the mortality rates µa,t at age a in year t based the following formulation:

log µa,t � αa � βaκt � ϵa,t (11)

αa represents the average shape of the overall age course, βa describes the
improvement rate of mortality at age a and κt the general trend of mortality at
time t. The error terms ϵa,t reflect the residual age-specific historical influence on
mortality rates that the model is not able to capture. The authors propose to use
the singular value decomposition (SVD) method to find the least squares solution to
the minimization problem of the residual sum of squares considering the described
in the below sections that are imposed to counteract the identifiability issue:

¸
a,t

plog µa,t � αa � βaκtq
2

(12)

With this perspective, the approach can be characterized as follows: the estimated
α̂a is equal to the average of the observed logarithmic mortality rates log µa,t over
time of an age profile a, yielding in log µa � α̂a. The first term of the SVD of the
matrix log µa,t� α̂a is then described by the β̂a and κ̂t. In order to make the resulting
fitted deaths to match the total number of the actual deaths observed in each year t,
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a second-stange estimation is adopted to adjust the parameter κt. With this variant
of the model-setup the errors assumed to be homoskedastic and normally distributed
which is required for being able to perform the least squares estimation via SVD.
The fixed effects model for the centered age profile can be therefore reformulated as
log µ�

a,t :� log µa,t � α̂a � log µa,t � log µa and thus with the normality assumption
resulting in the model formulation:

log µ�
a,t � N plog µa,t, σ2q (13)

Eplog µ�
a,tq � βaκt (14)

The matrix elements below illustrate that for this expression the feature space to
be estimated comprises only A � T :

log µ� �

�
������

κ1950 κ1951 κ1952 ��� κ2020

β0 log µ�
0,1950 log µ�

0,1951 log µ�
0,1952 � � � log µ�

0,2020
β1 log µ�

1,1950 log µ�
1,1951 log µ�

1,1952 � � � log µ�
1,2020

β2 log µ�
2,1950 log µ�

2,1951 log µ�
2,1952 � � � log µ�

2,2020
... ... ... ... . . . ...

β90 log µ�
90,1950 log µ�

90,1951 log µ�
90,1952 � � � log µ�

90,2020

�
�����

The expected cell value can be calculated by the product of the two parameters
from the correspoding marginals. For instance, for age 2 and year 1952, the Lee
Carter approximates by the following expression log µ�

2,1952 � β2κ1952. Thus, for a
given age a, this model can be viewed as similar to a log-linear model with the
period effect κt serving as a covariate and the mortality improvement rate βa being
equivalent to the slope (Girosi and King, 2007). The deviation from the classical log-
linear model is the fact that these are unobserved variables, which is why the problem
here is not a vector estimation but a matrix estimation. A one rank approximation
tries to estimate this matrix, hence SVD is used. As the logarithm of the observed
mortality is much more variable at older than at younger ages due to the much
smaller death counts, the assumption of homoskedastic and normally distributed
errors is considered unrealistic (Brouhns et al., 2002). In order to address this
limitation Brouhns et al. (2002) suggest to put the LC model into a setting with
Poisson distributional assumption, presuming that the observed death counts Da,t

follow a Poisson distribution at a given age a, in year t. This serves as a benchmark
model, allowing further development to be carried out and compared on the grounds
of this model. This idea is exploited by the generalized nonlinear models and applied
in the background implementation of the package StMoMo used in this thesis (Villegas
et al., 2016).

Even though the notation for subpopulation s has been omitted up to this point
for simplicity, LC and the variants are basically individual modeling of subpopula-
tions. In this case of mortality modelling each individual person is identified by
a feature tuple s P S � pgender � countryq, with gender G � tfemale, maleu and
country C � tFIN, DE, ITA, NLD, USu describing the subpopulation as well as
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age A � t0, . . . , 90u and period which indicates time in years T � ttmin, . . . , tmaxu.
The exposure Ea,t,s and the corresponding number of deaths Da,t,s will be assigned
to a given age a, year t and subpopulation s.

Model Specification:

The Lee Carter model under the setting of Poisson distributional assumption is
specified as follows:

Da,t,s � PoissonpEa,t,s � µa,t,sq, independent distributed (15)

ηa,t,s � αa,s � βa,sκt,s (16)

The link between the linear predictor ηa,t,s and the mortality rates can be de-
scribed like this: log µa,t,s � ηa,t,s. Hereby again, αa,s captures the general age-specific
mortality pattern for subpopulation s, κt,s is the time varying mortality index repre-
senting the overall level of mortality in year t for a given subpopulation s and βa,s

measures the age-specific response to changes in the general level of κt,s.

Identifiability constraints:

As introduced in the original paper (Lee and Carter, 1992) the model contains
identifiability problems. More precisely, it means that the model parameters are only
identifiable up to a transformation, so that values of different effects are not identified
in a unique manner. Choosing c1 and c2 not equal to zero arbitrarily as real constants,
the parameters from the model specification can be transformed in this way leading to
the same mortality rates: pαa,s, βa,s, κt,sq Ñ pαa,s � c1βa,s,

1
c2

βa,s, c2pκt,s � c1qq.
Therefore, the following constraints are incurred, in order to guarantee the identi-
fiability of the model:

°
aPA βa,s � 1,

°
tPT κt,s � 0. The function that defines the

identifiability constraints of the model is implemented in the StMoMo package to
take a set of fitted model parameters and return a list of the transformed model
parameters with the identifiability constraints function applied. For instance, in case
of Lee Carter model, the transformation of the above vector representation can be
imposed by choosing the following constraints and using each estimated parameters:
c1 �

1
n

°
t κt and c2 �

°
a βa.

Since the time series forecasting method ARIMA will be mentioned frequently
in the further course of this thesis, the term with its theoretical background will
be introduced in a short form at this point. One way of forecasting trend, age,
country and gender specific mortality rates is to use the classic ARIMA model (Box
and Jenkins, 1976), which is sufficient and appropriate if the available database is
large enough and provide a stable and consistent pattern over time with only few
outliers. The common notation of an ARIMA(p,d,q) model includes the order p of
the autoregressive process, the order d of integration, namely the number of times
that the series must be differenced in order to make it stationary and the order of
the moving average process q. Its detailed form for a stochastic process µa,t,s is set
up in the following but will only be presented with reduced notation in the further
course:

22



4.1 Lee Carter and variants

∆dµa,t,s �

Drift

δa,s �

Regression
p̧

i�1
ϕi∆dµa,t�i,s �

Smoothed noise

ϵa,t,s �
q̧

j�1
θjϵa,t�j,s

(17)

The idea hereby is to obtain the response from the linear regression of previous
differences and additional smoothed noise. We denote with ∆dµa,t,s the stationary
time series. These are then used to fit the ARIMA model. The drift δa,s is a constant
parameter and indicates the average change in the series over time. Moreover, ϕi

are the parameters of the auto-regressive part and the θj the parameters of the
moving average part. The sequence of independently distributed random variables is
normally distributed with ϵa,t,s � N p0, σq (Pascariu, 2018).

Parameter Estimation:

To fit the parameters αa,s, βa,s, κt,s to the data the R package StMoMo was
used (Villegas et al., 2016). This implementation makes use of the so-called Gen-
eralised Age-Period-Cohort (GAPC) stochastic mortality modelling. According to
Brouhns et al. (2002) the number of deaths, say the random component, follows
a Poisson distribution with a parameter proportional to the exposure as follows:
EpDa,t,s{Ea,t,sq � µa,t,s, where the µa,t,s denotes the underlying mortality rate speci-
fied in the equations above. Moreover, Da,t,s are independent in pa, t, sq P pA�T �Sq.
With this assumption, a standard Maximum Likelihood approach is used for the
estimation of parameters after choosing the log link function for the mortality rates
µa,t,s. Let da,t,s be the corresponding number of deaths actually observed. so that
the log Likelihood function can be formulated down as follows:

logpLpαa,s, βa,s, κt,sqq �
¸
a,t,s

da,t,s logpEa,t,s � µa,t,sq � Ea,t,s � µa,t,s � logpda,t,s !q (18)

whereas Da,t,s will be seen as a counting random variable with Da,t,s �
PoissonpEa,t,s � µa,t,sq and µa,t,s � eαa,s�βa,s κt,s . In the literature this perspective of
viewing is also called Lee Carter model under a Poisson setting (Villegas, 2015).
Following the structure specifically for the Lee Carter model suggested originally by
Lee and Carter (1992), the predictor or the so-called systematic component results
in ηa,t,s � αa,s � βa,sκt,s. The link function g connects the random component and
the systematic component: gpEpDa,t,s{Ea,t,sqq � ηa,t,s. Choosing the log function as
link, the expression yields in log µa,t,s � ηa,t,s.

To forecast mortality, the period index κt (the index s for the subpopulation is
omitted for reasons of clarity) will be modelled and forecasted into the future using
univariate ARIMA processes. This will be implemented with a random walk with
drift (ARIMA(0,1,0)) as suggested by the authors (Lee and Carter, 1992):

κt � δ � κt�1 � ξt (19)
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with ξt � N p0, σ2
κq i.i.d.. Hereby, δ denotes the drift term, ξt the error term

which is normally distributed with zero mean and variance σ2
κ. It is worth men-

tioning that the error terms are assumed to be independent, as the modelling is
done independently for each subpopulation. The validity of this assumption is how-
ever questionable. The reason for this is that primarily subpopulations in relation
to gender within one country tend to have similar mortality trends. In addition,
it is also possible that similarities and dependencies in mortality exist between
countries, for example from a geographical or political angle. Another assumption
made implicitly is that the mortality rates µa,t,s stay constant over the period pt, t�1s.

Structural breaks:

The presence of structural changes can prevent the model from achieving satisfac-
tory capturing of the time-dependent effects, in this case period effect κt, due to the
sensitivity of ARIMA modelling. This might of course also affect the mortality fore-
casting results which are very delicate towards the calibration period. To investigate
the structural breaks in the period effect, we first applied the Lee Carter model. Then
extracted the estimated values for κt and calculated the first degree differences. This
provides the time series as the basis for detecting the structural breaks. Modelling
structural changes for period effect can be introduced in two dimensions: Apart
from dating the structural changes, the optimal number of break points needs to
be determined. The aim is therefore to find the best partition (break dates) of a
time series for an a priori given optimal number of break points k�. This means
that the underlying range of year values will be partitioned into k� � 1 segments.
Then, for each partition, the least squares estimates of the regression coefficients are
obtained within the framework of a piecewise linear regression model. Hereby, the
first order differences of the period effects κa,t,s are considered as dependent variable.
Based on this, the minimal residual sum of squares results in the following estimated
breakpoints:

pp̂1, . . . , p̂kq � argmin
p1,...,pk

RSSpp1, . . . , pkq (20)

RSSpp1, . . . , pkq �
k�1̧

j�1
rssppj�1 � 1, pjq (21)

Here, RSSpp1, . . . , pkq defines the minimal residual sum of squares in the jth

segment for the breakpoints pp1, . . . , pkq, whereas p0 and pk� indicate the beginning
and the end of the given time series, respectively. The main idea is to minimize the
following objective function for every possible partition pp1, . . . , pkq. Yet, obtaining
the global minimizer requires high, computationally intensive capacities, because the
number of possibles segments (and thus also computation times of sum of squared
residuals) reaches npn � 1q{2 for a sample size of n. This problem is overcome by
applying a dynamic programing algorithm based on a recursive procedure. This
technique basically proceeds by sequentially inspecting optimal one-break partitions.
It exploits the idea of Bellman’s principle which states that it is enough to know
the “optimal previous partner” for each point i if i was the last breakpoint in a
k�-partition. It simply minimises the sum of squared residuals over the set of options
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obtained by supposing that the first elements were optimally partitioned into k�

parts and that k� � 1 part consists of the remaining elements of the last procedure.
The implementation and methodology details are documented by Zeileis (2005) and
Bai and Perron (2003).

One of the basic possibilities is about to choose the optimal number of breaks based
on an information criterion given a set of possible values. For this thesis Bayesian
Information Criterion (BIC) was used, defined by BIC � νlogpnq � 2logpL̂q, where
ν is the number of parameters estimated by the model, n the number of observations
and L̂ is the maximized value of the likelihood function of the model. This choice is
justified according to Bai and Perron (2003) stating that BIC is suitable in many
cases whereas Akaike information criterion (AIC) tends to overestimate the number
of breakpoints. Usually such information criteria are used for model selection. In
this case a number out of k � t0, ..., 5u will be chosen. The implementation was
mainly inspired by Zeileis et al. (2003) and Zeileis (2005). The basic idea is to go
for k which induces the minimal BIC: k� � argminBICpkq. Another approach is to
test whether the fit improves significantly or not with the help of F-Tests. In this
thesis, BIC selection is the course of action we have decided to take, as recommended
by Yao (1988) stating that this is a consistent estimator of the true number of break
points. Both parts were implemented using the strucchange package in R (Zeileis
et al., 2002). After detecting the years where structural changes were found, the
time frame for the fitting was shortened by the years prior to it.

Variants:

Further various specifications and extensions of the Lee Carter exist. These all
have the Poisson distribution assumption in common for death counts proposed by
Brouhns et al. (2002). Three of them will be considered, analysed and evaluated in
this thesis. In the following, the theoretical foundations are explained building upon
the Lee Carter (LC) model.

Age-Period-Cohort model:

The Age-Period-Cohort (APC) model extends the LC model by including a cohort
effect γt�a,s and omitting the age-specific improvement rates. The cohort is generally
computed by cohort � year�age. The model predictor has the following expression:

ηa,t,s � βa,s � κt,s � γt�a,s (22)

The application of this model has its origins in the field of medicine and de-
mography and goes back a long way (Clayton and Schifflers, 1987, Hobcraft et al.,
1982). However, Currie (2006) was the first who considered this type of model
in the actuarial field. With the Poisson distribution assumption and the log link
function remaining the same it can be traced back to the general shape of General-
ized Age-Period-Cohort models (Villegas, 2015). The identifiability can be ensured
with the following constraints:

°
t κt,s � 0,

°tmax�0
c�tmin�90 γc,s � 0,

°tmax�0
c�tmin�90 cγc,s � 0,

indicating that the cohort effect oscillates around zero, with no apparent linear trend.
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Cairns-Blake-Dowd model:

Another variant is the proposal of (Cairns et al., 2006), which omits a static age
function and a cohort effect. Instead, the so-called Cairns-Blake-Dowd (CBD) model
integrates the second period term accounting for differences from the average age ā
in the data. This yields in the following model predictor:

ηa,t,s � κ
p1q
t,s � pa � āqκ

p2q
t,s (23)

Moreover, the numbers p1q and p2q stand as indices to distinguish the two period
effects from each other. Since this model is identifiable, no parameter constraints
are imposed.

M7 – Quadratic CBD model with cohort effect:

The original CBD model will be extended by a cohort effect and a quadratic
age effect as suggested by Cairns et al. (2009). The model predictor results in the
following expression:

ηa,t,s � κ
p1q
t,s � pa � āqκ

p2q
t,s �

�
pa � āq2 � 1{91

90̧

i�0
pi � āq

�
κ
p3q
t,s � γt�a,s (24)

Here, an identifiability problem is present again, which makes it necessary to
configure a set of parameter constraints to cope with this issue:

°tmax�0
c�tmin�90 γc,s � 0,°tmax�0

c�tmin�90 cγc,s � 0,
°tmax�0

c�tmin�90 c2γc,s � 0. Again, the constraints ensure that the
cohort effect oscillates around zero, with no apparent linear or quadratic trend and
the top right attached indices are to distinguish the three period effects from each
other. For all the models holds (here again for clarity reasons the condition on s is
omitted): in order to forecast the mortality the period effects will be projected into
the future according to the standard approach with a multivariate random walk with
drift assuming that:

κt � δ � κt�1 � ξκ
t ,κt �

�
��κ

p1q
t
...

κ
pNq
t

�
�, ξκ

t � N p0,Σq (25)

where N denotes the number of period effects in the model specification and δ is
an N -dimensional vector of drift parameters, Σ is the N � N variance-covariance
matrix of the multivariate white noise ξκ

t . In case of one period effect, the approach
with multivariate random walk with drift will be followed (like in LC model).

To capture the dynamics of the cohort effects, an independence from the period
effect will be assumed following previous research work by (Cairns et al., 2006,
Haberman and Renshaw, 2011, Lovasz, 2011). This allows modelling the cohort
effect with a univariate ARIMA(p, q, d) process with drift. Specifically, for the two
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models presented here that include a cohort effect, we follow the specific suggestions
for parameter combinations presented by Villegas (2015) ARIMA(1, 1, 0) with drift
for the APC model and ARIMA(2, 0, 0) with non-zero intercept for the M7 model.
For implementation purposes the package forecast was used to forecast mortality
rates (Hyndman and Khandakar, 2008).

As we will also see later in the results section, the CBD and M7 models have been
particularly designed to fit higher ages because they make use of the linearity of the
age effects at pensioner ages, which does not hold for lower age groups (Villegas and
Haberman, 2014). However, the LC as well as APC models usually provide a good fit
over a wide age range and are able to pick up even small non-linearities in mortality
curve. This will be confirmed in the further course of the analysis, justifying the
focus on these two models hereinafter with the aim of further improvement and
extension (van Berkum et al., 2013).

4.2 Machine learning approach
Current research shows that applications of machine learning in the study of the
changing structure of populations have been rather limited. Levantesi and Pizzorusso
(2019) suggest that this lack of interest is due to the fact that machine learning
models are often seen as “black boxes” and that many argue that their results are
difficult to explain and interpret. Even though the original Lee Carter model has
already been extended and further developed in various ways, as seen in the previous
sections and literature, there are still weaknesses regarding the fitting of the mortality
rates. In this subsection, the benefit of machine learning algorithms will be illustrated
to improve the fit of parametric mortality models, exemplarily the one of the Lee
Carter model, by detecting the weaknesses of the original model fit. Apart from that,
this approach allows for including further variables, such as education, income, or
socio-economic status leading to (hopefully) even more enhancement. It should be
made clear from the beginning that the idea is not to replace the traditional methods
of mortality modeling, but to support and enrich the existing methods with machine
learning approaches. As a reminder, Lee Carter is a model for estimating mortality
rates with the following assumptions:

Da,t,s � PoissonpEa,t,s � µa,t,sq, independent distributed (26)

ηa,t,s � αa,s � βa,sκt,s,

with log µa,t,s � ηa,t,s

(27)

Thus, fitting a Lee Carter model means basically to provide estimates for mortality
rates using the two inputs exposure Ea,t,s and death counts Da,t,s. These estimates
will be marked as µLC

a,t,s in this subsection. The expected number of deaths according
to the Lee Carter fit can be calculated as follows:

DLC
a,t,s � Ea,t,s � µLC

a,t,s (28)
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This model will be evaluated by analyzing whether the constant factor qa,t,s,
which is to be estimated hierarchically in the second step, is equal to 1 or not:

Da,t,s � Poissonpda,t,s � qa,t,sq,

with da,t,s � Ea,t,s � µLC
a,t,s

(29)

whereas, if qa,t,s � 1 then the mortality rates estimated by the Lee Carter model
are an appropriate choice and there is nothing to be improved by machine learning
methods. In case of underestimating the mortality rates in the first stage for a given
age, year and subpopulation, the factor q should be increased. According to the same
logic, q should be decreased, if the Lee Carter model overestimates the mortality rates
(Deprez et al., 2017, Levantesi and Pizzorusso, 2019). To calibrate q, the following
three algorithms will be applied and compared: Decision Trees, Random Forest and
Gradient Boosting Machine. The machine learning framework will be implemented
using the ratio between the observed death counts and the corresponding da,t,s as
response. The inputs are age, cohort and period (year). Even though the cohort
effect may pose identifiability issues, the authors justify this choice by appropriate
predictions. Further implementation details are explained in Subsection 5.3. The
machine learning improved mortality rates are then given by µML

a,t,s � µLC
a,t,s � qML

a,t,s. To
forecast these mortality rates an ARIMA model with automated parameter estima-
tion will be chosen (Hyndman and Khandakar, 2008). In the following the relevant
functionality of the applied tree-based machine learning algorithms will be introduced.

Decision Trees:

Decision trees are non-parametric supervised learning methods that can be applied
to both regression and classification problems aiming for a model to predict the
outcome variable by learning simple decision rules. These rules are implied from
the features in the training data. They are based on the successive rectangular
partitions of the feature space via a sequence of binary splits and can be seen as a
piecewise constant approximation of the underlying true function. During training,
observations are forwarded along the resulting tree structure until they end up in a
particular leaf node. This set of splitting rules is summarized in a tree (Hastie et al.,
2016). Predictions of the response for a given observation with a certain feature
space are made by using the average of the training observations in the region that
the observation falls into (James et al., 2017).

Let Θ be the number of partitions and R1, R2, . . . , RΘ the terminal regions of the
feature space. Then, the decision tree estimator yields in the following expression:

q̂a,t,s �
Θ̧

θ�1
q̄a,t,s1tpa,t,sqPRθu (30)

where q̄a,t,s is the prediction for a given observation in leaf node θ P Θ. The
algorithm is designed in a way, that each split is loss-minimal across all child nodes
requiring full evaluation of all possible split and threshold configurations. For further
details on the Classification and Regression Trees (CART) algorithm, the reader is
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4.2 Machine learning approach

referred to (Breiman et al., 1984). To implement decision trees in R the package
rpart was used (Therneau and Atkinson, 2017).

In general, trees are easy to interpret and have a facile handling of all feature
types, including interactions (the latter ability also holds for Random Forest). They
are able to fit perfectly every pattern in the training data if allowed for full growth.
Overfitting issues are posed, since they can lack robustness and are highly sensitive
to data modifications. Thus, probably the most important drawback of Decision
Trees is its low-bias and high-variance nature.

Random Forest:

To overcome the overfitting issue, an aggregation of many decision trees was
introduced with the hope to correct for the bias-variance trade-off. This however
only holds for the case of uncorrelated trees to ensure an improvement of predictive
performance of trees. One can imagine this procedure in two parts: First, the
so-called bagging, standing for bootstrap aggregation, will be applied in order to
bootstrap (sample with replacement) B training samples from the original training
data and obtain tree base learners for each that are assembled to predict the response
value via averaging. Second, only a random set of features may be considered and
used at each split in the tree (Breiman, 2001). This contributes to the decorrelation
and yields in relatively stable ensembles, giving the chance to all predictors to be
chosen as split candidates, even in the precense of a strong predictor in the training
dataset. Proceeding from the notation given for the Decision Trees, the Random
Forest estimator is calculated as follows:

q̂a,t,s �
1
B

B̧

b�1
q̂
pbq
a,t,s (31)

To implement Random Forest in R the package randomForest will be obtained
(Liaw and Wiener, 2018). The number of classification trees and thus of bootstrap
samples B, as well as the maximum number of levels of the trees, are to be determined
in advance. It should be considered that the increase of B does not lead to overfitting
problems due to the nature of bootstrapping (James et al., 2017). However, above
a certain number, little or no improvement can be expected. Due to the random
selection of the m covariates, but also of the individual bootstrap subsets, the Ran-
dom Forest algorithm usually exhibits a high prediction accuracy and robustness.
Moreover, it often provides satisfactory results in the case of high-dimensional data
(Strobl et al., 2009). Furthermore, since the bootstrap method uses on average 2{3
of the training data for tree construction, it is possible to use the remaining so-called
out-of-bag data for the evaluation of prediction accuracy. A disadvantage of Random
Forest is that the computation time is relatively long due to the multiple trees. With
the help of an ensemble of Decision Trees some variance stabilization is gained, but
Random Forest thereby loses the property of interpretability.

Gradient Boosting:

Gradient Boosting is another form of an ensemble learner that is based on the
weighted combination of weak predictive learners such as Decision Trees, usually
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4.3 Generalized additive model

outperforming Random Forest (Hastie et al., 2016). The model is built stepwise and
optimized by a differentiably loss function minimizing the in-sample loss (Hastie et al.,
2016). It builds the model stepwise, like other boosting methods, and generalizes
them by allowing optimization of any differentiable loss function. Whereas in bagging
multiple samples of the original training dataset are used to fit a separate decision
tree to each one independent from the others and to combine all of trees into a single
predictive model, boosting grows the trees sequentially, meaning the information
gained from the previous trees is used to grow the current one. This helps to overcome
the major issue of training a single large Decision Tree by possibly resulting in an
overfitting problem. The gradient boosting algorithm instead learns by constructing
a new model based on the previous one and adding the ith base learner h

piq
a,t,s:

q̂
piq
a,t,s � q̂

pi�1q
a,t,s � λih

piq
a,t,s (32)

The model will be improved in such a way that the current residual will be
used as an outcome to fit a new Decision Tree and to add this into the originally
fitted function with the notion to update the residuals. So, the gradient boosting
algorithm fits the new predictor to the residual errors made by the previous predictor.
The shrinkage parameter λi helps to run the process even slower allowing for more
trees and more detailed enhancement of the residuals. Overall in contrary to the
bagging methodology, each tree depends on the previous ones (James et al., 2017).
Even though the gradient boosting keeps on minimizing the errors, this can cause
overfitting in case of a lot of noise in the data and is computationally time and
memory expensive, especially because trees are built sequentially (not in parallel as
the Random Forest do). Due to the high flexibility, the gradient boosting algorithm
also tends to be harder to tune than Random Forest (Hastie et al., 2016). In the
analysis part we will be able to assess and improve the goodness-of-fit of the mortality
rate estimates produced by standard stochastic mortality models, specifically the
ones obtained from the Lee Carter model. The package gbm was utilized to implement
this algorithm in R (Greenwell et al., 2020). The key parameter configurations were
set up following the recommendations of Deprez et al. (2017) and (Levantesi and
Pizzorusso, 2019) and will be described in detail in the analysis section.

4.3 Generalized additive model
In recent years, there has been an increasing use of APC methods in various research
areas, also due to the availability of more sophisticated statistical approaches. It
can be seen as an established tool for the inspection of temporal interrelations,
separating cohort effects from age and period (Yang and Land, 2013). All models
considered before can be applied for each subpopulation, in this case country and
gender only, at least in their original form. Generalized Additive Models (GAMs)
with age, period and cohort as possible covariates are used to predict future mortality
improvements in a coherent way, possibly allowing for learning from each other both
between countries and genders within each country. With the help of tensor products
we provide the flexibility to model complex relationships between the covariates
and allow intuitively simple models of mortality to be specified. More precisely,
age, period (year of death) and cohort (year of birth) come into play as possible
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factors to project future mortality building upon the original idea of APC models
introduced in Subsection 4.1. Therefore, in this subsection the APC method will
be revisited, analysed, refined and showcased in more depth. GAMs can handle it
without restrictions and can be seen as extensions of Generalized Linear Models
(GLM) resulting in a more robust and flexible method for capturing non-linear effects.
GAMs relax the linearity assumption, as this may not apply in practice for complex
data structures and therefore replace the simple linear parametric relationships from
GLM with smooth functions (Wood, 2017). GAMs can be used for all exponential
family responses. Subpopulations are estimated jointly here, additional covariates
can be added. The extent to which forecast quality and estimation reliability are
improved is discussed in extensive detail in Subsection 5.4.

General GAM Theory:

In the following, a theoretical introduction to the Generalized Additive Regression
Model is given as proposed by Hastie and Tibshirani (1987, 1990), Wood (2017).
This is then further processed in the context of the APC analysis. It is now possible
to consider nonlinear, flexible effects in addition to linear effects for metric covariates.
Thus, the relationship of variables, for which the linearity assumption is violated, can
be estimated more flexibly. The target variable can be explained by the covariates
and an additive error term. So, the assumption is made that the effects of the
individual covariates on the target variable are additive. Furthermore, it is assumed
that the distribution of the target variable conditional on the covariates belongs
to the exponential family. A GAM has the following structure in the context of a
simplifying example:

gpµiq � ηi � β0 � βx1i � f2px2iq � f3px3i, x4iq (33)

Let x1, x2, x3 and x4 be metric covariates and y the metric outcome variable.
While the effect of x1 is modelled linearly and is representative for all strictly
parametric components of the model, the flexible function f2p.q allows the non-linear
effect of the covariate x2 to be included, summarizing all linear functionals. Function
f3p.q represents a two-dimensional non-linear interaction between the covariates x3
and x4. The log link gpµq � logpµq is relevant for this thesis as well as the Poisson
distribution, which belongs to the exponential family as the distribution of the
reponse variable conditional on the covariates. The link function g represents the
map from the conditional expectation µi of the response to the linear predictor ηi

for an observed individual i P 1, . . . , n in a dataset. Poisson distribution is defined
by the following probability function for Yi � Poissonpλiq (Fahrmeir et al., 2007):

fP opyi; λiq �
λyi

i e�λi

yi !
(34)

where yi denotes the number of event occurrences. In this case the link be-
tween the linear predictor and conditional expectation is defined in such a way that
Epyi|xiq � g�1pηiq � λi, with xi � p1, x1i, . . . , x4iq for the covariates considered
in the model (in the above example 4 covariates) (Fahrmeir et al., 2007). It will
be assumed that y1, . . . , yn are samples of independent random variables Y1, . . . , Yn
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4.3 Generalized additive model

respectively and that Yi has the probability density (or mass) function of the form of
a Poisson distribution and therefore the assumption for the variance V pyi|xiq � λi

holds. The flexible functions f2p.q and f3p.q of the individual covariates is estimated
with the help of the so-called splines, which will be described in the following.

Splines:

Smoothing splines, or splines for short, are used in GAM to maintain a more
flexible modelling of the relationships. Visually, it can be thought of as an elastic
line that adapts to the data points in a scatter plot. These functions f2p.q or f3p.q
represent penalised splines based on univariate B-splines (short: P -splines) as well
as multidimensional P -splines will be introduced.

Univariate splines:

Starting from polynomial splines, which try to represent the data points as
precisely as possible by smooth functions, the range of values is divided into m � 1
intervals, between which the m nodes are defined. After estimating a polynomial
of degree l on each interval, the polynomial functions of degree l are formed over
l � 2 knots in order to merge the polynomials of the individual intervals without
jumps occurring at the nodes. Finally, the resulting d � m � l � 1 basis functions
are joined into the a single function. Another feature of the B-Spline base is that
the sum of all basis functions at some point z P ra, bs is

°d
j�1 Bjpzq � 1.

Figure 10: Cubic B-Spline base, m � 9 (Fahrmeir et al., 2007)

The figure 10 illustrates the features explained examplarily for a cubis B-spline
base over 9 knots. Each smooth function is thus represented by an appropriate basis
function for a univariate (equation 29) and a bivariate (equation 30) smooth function,
respectively:

f2px2iq �
K2̧

k�1
γ2,kB2,kpx2iq (35)

f3px3i, x4iq �
K3̧

k�1

M3̧

m�1
γ2,k,mB3,kpx3iqB3,mpx4iq (36)
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In equations (29) and (30) B3,k and B3,m are the B-Splines (Eilers and Marx, 1996),
and γ2,k, γ2,k,m the corresponding basis coefficients, estimated from the data. The
(marginal) basis dimensions of the p-th smooth are given by K3 and M3, respectively.

This results in a continuous function defined on the range of values of the co-
variates, which is continuously differentiable twice in the respective node. The
choice of the number of knots determines to a large extent the smoothness of this
function: a high number of knots leads to a rough estimation, whereby the danger
of overfitting arises; on the other hand, the fewer knots there are, the smoother
the function, which in turn can result in high bias (Fahrmeir et al., 2007). The
overarching goal of penalization is to control the tradeoff between bias and variance,
ensuring adequate complexity. Besides the number of knots, the flexibility can be
regularized by the second–order derivative, i.e. the curvature, used as a measure
of variability, so that the following penalisation results for the B-splines just ex-
plained, i.e. λ

³
f2

2 px2iq
2. Hereby, the smoothness is primarily controlled by the choice

of the penalisation or smoothing parameter λ: the larger λ, the smoother the estimate.

Multivariate splines:

It is also possible to consider multidimensional smooth effects. The advantage is
that the joint effect of several (usually two) covariates on the target variable is taken
into account, like a non-linear, smooth interaction of two continuous covariates. With
this kind of interaction, autocorrelation effects can be treated, since, for example,
two covariates are simultaneously included in the estimation of the splines (Wood,
2017).

Parameter estimation:

The base expansion of the smooth functions allows the resulting model to be linear
in the parameters and thus to estimate this as a standard generalized linear model
(GLM), e.g., by Fisher scoring. However, the basis dimensions K3 and M3, and thus
the estimation, are somewhat arbitrary. Therefore the models tend to overfitting,
especially for large K3 and M3, respectively. For this reason, a quadratic penalty of
the base coefficients is used for each smooth function, as explained below. The upper
expression for smooth function can be rewritten in the general case of the p-covariate
into this form: fppxpq �

°Kp

k�1 γp,kBp,kpxpq � Bpγp, so that Bp represents the design
matrix, xp the observed values and γp the vector of basis coefficients of the p-th
smooth function. After selecting S̃p according to the smooth type, quadratic penalty
of the coefficients of each smooth function will result in γ 111

pS̃pγp. For the total
penalty over all smooth functions S̃p will be padded with zeros to make sure that
the contribution of other coefficients is set to zero, yielding in Sλ �

°P
p�1 λpγ

111Spγ
(Wood, 2017). Hereby, λp represents the smoothing parameter and Sp � D1

2D2 is a
diagonal block matrix resulting from the second order differences, defined as:

D2 �

�
����

1 �2 1 0 � � � 0
0 1 �2 1 � � � 0
0 0 . . . . . . . . . 0
0 0 0 1 �2 1

�
���
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so that λpγ
111Spγ captures the penalty for the smooth function fp. While

γ � pβ111,γ 111
1, . . .,γ 111

P q
1 represents the coefficient vector, the λp stand for the smoothing

parameters of the p-th smooth function to control the smoothness of the estimated
relationship: for higher λp values, the fp approaches a constant zero function, in con-
trary for smaller values fp becomes unpenalized and thus more wiggly. Paraphrasing
the original model with the upper notation, the log-likelihood lpγq will be penalized
resulting in the following expression of penalized log-likelihood:

lpγq �
1
2

P̧

p�1
λpγ

111Spγ (37)

for the following model:

gpµiq � Xiγ, yi � Popµiq (38)

The optimization involves two dimensions: estimation of coefficient vector γ and
the estimation of the smoothing parameters λ. For fixed smoothing parameters, the
coefficients γ can be estimated by the penalized, iteratively re-weighted least squares
(P-IRLS) algorithm explained step by step below (Wood, 2017):

1. Initialize expectation µ̂i � yi and linear predictor η̂i � gpµ̂iq

2. Calculate: ỹi � g1pµ̂iqpyi � µ̂iq{αpµ̂iq � η̂i and wi � αpµ̂iq{pg
1pµ̂iq

2V pµ̂iqq, here
V pµ̂iq is the family specific variance function. Under Poisson distribution
assumption V pµiq � µi. Let further αpµiq � p1 � pyi � µiqpV

1pµiq{V pµiq �
g2pµiq{g

1pµiqqq

3. Minimize and obtain the P-IRLS estimate γ̂ from a argmin
γ

pỹ ���Xγq1W pỹ ���

Xγq�
°P

p�1 λpγ
111Spγ, where ỹ � ỹi, . . . , ỹn is the vector of pseudo observation

ỹi calculated in the previous step and W is a diagonal n � n matrix with
elements Wi,i � wi

4. Update η̂ � Xγ̂

5. Iterate 2 � 4 until convergence

In other words, a maximization of the penalized likelihood is performed. The sum
of the penalized weighted least squares is minimized and in each step new data and
corresponding weights are created on the basis of the previously estimated model.
After that new coefficients are estimated by the minimization of the penalized least
squares method. After that, pseudo data are created again. The same process is
repeated until a pre-specified convergence criterion is met. The coefficients in the
last step represent the final parameter estimation in the respective model.

The estimation method for the penalty parameter used in the models is the
so-called REML-based approach, which is derived from Wood (2017). Here, the
smoothing parameters are considered to be part of the variance components of

34



4.3 Generalized additive model

random effects and therefore they can be estimated by variance estimation using
Restricted Maximum Likelihood. Let γ be the random effects with multivariate
normal distribution γ � N p0,S�

λ q, where S�
λ is a generalized inverse of Sλ with

fpγq �
|Sλ|1{2�a

p2πqdimpγq�M
exp
�
�γ 111Sλγ

2



(39)

The above equation consists of a generalized determinant |Sλ|� and the dimension
M of the null space of Sλ. By integrating, the restricted likelihood can be derived
as follows:

³
fpy, γqdγ �

»
exp

�
logpfpy, γ̂qq � 1

2pγ � γ̂q1
B2 logpfpy, γqq

BγBγ 1
pγ � γ̂q



Bγ

� fpy|γ̂qfpγ̂q»
exp
�

1
2pγ � γ̂q1

B2 logpfpy|γqq � logpfγpγqq
BγBγ 1

pγ � γ̂q



Bγ

� Lpγ̂qfγpγ̂q

»
exp
�
�

1
2pγ � γ̂q1pX 111WX � Sλqpγ � γ̂q



Bγ

� Lpγ̂qfγpγ̂q

a
p2πqdimpγq

|X 111WX � Sλ|1{2

(40)

The Taylor expansion around γ̂ is responsible for the second term, whereas the
subsequent equation comes up by using fpy, γq � fpy|γqfpγq twice. The negative,
weighted Hessian matrix is given by B2lpγq

Bγ1Bγ
� �X 111WX with the diagonal matrix of

Newton weigths W obtained from the P-IRLS step conditional on the current values
of λ. The last step is achieved by the integration of a multivariate normal (Wood,
2017, Bender, 2018).

The application of logarithm results in the final REML criterion suggested by
Wood (2011):

Vpλq � lpγ̂q �
γ̂ 1Sλγ̂

2 �
log|Sλ|�

2 �
log|X 111WX � Sλ|

2 �
M

2 log 2π (41)

Finally, according to Wood (2011), to guarantee convergence, an outer itera-
tion will be used to estimate the smoothing parameters by optimizing the REML
criterion, to be followed by an inner P-IRLS iteration (Wood, 2017) in order to
obtain γ̂ conditioned on the updated value of λ. The two steps are then repeated
until convergence is met. As Wood (2017) shows, this approach is preferable to the
Generalized Cross Validation (GCV) criterion. The latter is a method for choosing
the optimal effective degrees of freedom (edf) based on a trade-off between bias and
variance for the smoothing procedure. This method is implemented in the package
mgcv in the function gam as method = REML (Wood, 2021).
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APC context and identification problem:

The usage of age-period-cohort (APC) analysis framework is supposed to give
insights into the extent to which age, period and birth cohorts are related to the
human mortality. According to Yang and Land (2013), whereas age effects are
associated with the ageing process of an individual and period effects are connected
to external events and environmental changes, the cohort effects represent the specific
groups who experience the same events in a specific time frame as well as benefit of
medical and technological improvements of that time. Therefore, the consideration
of these three dimensions to explain temporal trends is recommended by research
(Oppermann, 1995). Since each of the three components of the temporal structures
is a linear combination of the other two (i.e. age � cohort � period), identification
problems arise. This leads to the fact that the effects cannot be clearly assigned
to the individual components and thus cannot be unambiguously interpreted. In a
classical regression framework this leads to collinearity problems and the model is
then not able to identify distinct effects of these components (Clayton and Schifflers,
1987). With the help of GAMs and bivariate tensor product splines between age and
period the identification issue is thus solved without using restrictive assumptions
(in form of constraints) on the time-related effects. This happens, since the cohorts
are modeled implicitely, as an interaction between age and period. This approach
is applicable for both aggregated and individual data. Moreover, we leverage the
fact that the marginal effect of one of the three features is automatically part of the
interaction space of the two others. Thus this approach allows to get insights into the
structure of the available data and to reasonably and systematically analyse them.
As mentioned earlier the multiplicative three-factor regression modelling approach is
not applicable because of the linear dependency of age, period and cohort. Contraints
have to be set up, more or less the same as seen in Subsection 4.1. However, Clements
et al. (2005) suggests using APC model in GAM framework using bivariate spline
function depending on age and period resulting in a two-dimensional interaction
surface. This implicitely contains the cohorts on its diagonals. In the context of this
section, the index for time in years is changed from time t P T to period p P P to
keep consistency of terminology. The number of deaths is still assumed to follow
a Poisson distribution taking the form Di � PoissonpEi � µiq for all i � 1, . . . , n,
with n � pAge�Period�Country �Genderq indicating the data dimension. For a
fixed year, the number of deaths for age a in a portfolio are assumed to be i.i.d.. For
aggregated data the model structure in its general form is then given by:

gpµapc,iq � β0 � fappagei, periodiq � gpEiq (42)
with fap representing a non-linear interaction surface with a two-dimensional spline

basis, in this case a tensor product basis which is defined as the Kronecker product
of two one-dimensional marginal spline basis over age and period. Thereby, each
marginal basis function of age is multiplied with each marginal basis function of
period in order to maintain the two-dimensional spline basis. In this case, penalized
B-splines (Eilers and Marx, 1996) are used to define marginal spline bases, each of
them consisting of ten basis functions. The penalization is done by second-order
differences. Even if the non-linear relationships can be modeled accurately, the use of
penalty integrated both in the univariate and bivariate P -splines can avoid overfitting
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(Weigert et al., 2021, Wood, 2017). More precisely, a semiparametric additiv Poisson
regression with log link function logpµiq � ηi will be applied with offset for the
exposure logpEiq to model the aggregated death counts and thus mortality rates.
This yields in the following model specification:

logpµapc,iq � β0 � fappagei, periodiq � logpEiq (43)

This model is referred to as the pure APC model. In contrast, the coherent APC
model captures the subpopulations discribed in the previous subsection explicitely,
by estimating a bivariate function of age and period for each country and each gender
in form of an interaction for the tensor product:

logpµapc,iq � β0 � fap,si
pagei, periodiq � logpEiq (44)

In order to visualize the marginal effects of each component in an accessible
way the temporal developments will be condensed in one specific dimension only,
to be averaged over the respective other component, whereas the cohort values can
be viewed as post-stratification (Weigert et al., 2021). In the case of interactions,
geometric-averaged statements about the different subpopulations can also be made.
The tensor product estimates provide the required information and will be averaged
in the following way:

fapageiq �
1

|P |
¸

periodiPP

fappperiodi|ageiq,

fppperiodiq �
1

|A|
¸

ageiPA

fappagei|periodiq,

fcpcohortiq �
1

|A| � |P |
¸

ageiPA

¸
periodiPP

fappagei, periodi|cohortiq.

(45)

The inclusion of further variables potentially associated with human mortality
is considered in the GAM framework. The model specification and thus the linear
predictor will then be extendend:

logpµapc,iq � β0 � fap,si
pagei, periodiq � βbmibmii � βunemploymentunemploymenti

� βtaxtaxi � βalcoholalcoholi � logpEiq
(46)

The suitability for the modelling of socio-economic mortality differentials and
interpretation of the linear effects in the context of aggregated data will be discussed
in detail in Subsection 5.4.
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4.4 Trend forecast considering COVID-19
The GAM with P -Splines and Tensorproduct splines extrapolates future mortality
rates. The shape of the curve depends primarily on how many basis functions are
used. Wood (2017) suggests to be careful with extrapolation in such non-linear
estimates and not to project too far into the future. In the case of the year 2020,
especially for higher ages, an outlier can be detected as indicated in Section 2 and will
be discussed in more detail later. To consider a kind of structural change at the edge
of a time series requires a special handling during the prediction process. We have
developed different scenarios to estimate the development of mortality rates in the
upcoming years. Since at the time of writing this thesis an immense uncertainty both
in epidemiological and medical terms is associated with COVID-19 pandemic, the
conclusions that are drawn from this must be taken with all caution. All scenarios
are based on the core model defined in equation 43. As the aim now is to train the
model beyond 2015 which was the upper limit of the training in the context of the
study of first research question, we additionally include a covariate indicating the
year 2020 with special aspect of COVID-19 yielding in the following model definition:

logpµapc,iq � β0 � fap,si
pagei, periodiq � βcovid,si

covidi�si � logpEiq (47)

The asterix in the model formula specifies an interaction between the subpopula-
tion si and the COVID-indicator covidi defined as:

covidi �

#
1, for periodi � 2020
0, for periodi ¤ 2019

The consideration of adding this interaction has its origin in the intention to
represent gender-specific country effects properly. Cultural behavioral changes on
the one hand, political-social decisions in the course of COVID-related events with
correspondingly different consequences on the other hand justify this move. In the
following, four possible scenarios and the prediction methodology behind them are
described:

Scenario I: COVID-19 will disappear in the future.

COVID-19 is a residual and special event and does not affect mortality in fu-
ture years. Thus, excess mortality averages out over the coming years and it is
assumed that there are no long-term effects due to COVID. Technically, this can be
implemented by training the model with data up to 2019 only and then predict for
2020-2025.

Scenario II: Expect full COVID-effect in the future.

It is probably a demographically dramatic development scenario. The COVID-
situation will continue just as it did in 2020. In this case, the model is trained with
original mortality data up to and including the crucial year 2020 and for the next
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years, assuming that the indicator variable is still set to 1.

Scenario III: Flattening COVID-effect over years.

This is similar to Scenario II, except that we do not assume a constant effect in
the future. The next years are influenced by the residual event. There are long-term
effects due to the pandemic, but their influence decreases exponentially.

Scenario IV: Adjustment for excess mortality.

Here, COVID is considered as a residual or special event without influencing
mortality in the upcoming years, as in Scenario I. The only difference in this scenario
is that excess mortality does not average out over the next few years and therefore
must be explicitly considered. Baseline mortality remains the same, so there are
no behavioral changes in all age groups due to the pandemic. We model this by
calculating the excess mortality for the year 2020 in the first step. To do this, the
expected death numbers are used based on the model that was fitted for Scenario I.
These counts are compared to the actual mortality counts. The positive difference
represents then the excess mortality. The population for 2021 is thus adjusted so
that the age- and cohort-specific population from 2019 is reduced by the actual
deaths in 2019 and those in 2020. For newborns, the previous year’s information is
transformed unchanged, as COVID is expected to have little to no impact on this
age group. The model is ultimately trained with the expected death counts for 2020
and 2021, and with the adjusted population count for 2021.

As mentioned above, all scenarios are subject to considerable uncertainties. The
results provided as well as the assumptions and limitations are discussed in detail in
Subsection 5.5.

4.5 Goodness-of-fit evaluation
The inspection of the standardised deviance residuals of the fitted model or sub-
population is a common way of assessing the goodness-of-fit of the models. With a
Poisson component, it is appropriate to look at the scaled variance residuals in each
case conditioned on the subpopulation s, which are denoted as:

Dpda,t,s, d̂a,t,sq �
¸

s

¸
a

¸
t

wa,t,sdevpa, t, sq (48)

ra,t,s � signpda,t,s � d̂a,t,sq

d
devpa, t, sq

ϕ̂
, with ϕ̂ �

Dpda,t,s, d̂a,t,sq

K � λ
(49)

Hereby, devpa, t, sq � 2da,t,s logpda,t,s

d̂a,t,s
q � pda,t,s � d̂a,t,sq is the total deviance of the

model, where K �
°

sPS

°
aPA

°
tPT wa,t,s indicates the number of observations in the

data and λ is the effective number of parameters in the model.
Regular patterns in the residuals indicate the model’s inability to adequately

describe all features in the data (Villegas, 2015). In order to evaluate the accuracy
of the model predictions both in-sample and out-of-sample back-testing is used. For
that, the Root Mean Square Error (RMSE) is used, which quantifies the difference
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between the mortality rates predicted by the model and the actual mortality rates
observed. In Section 5 the goodness-of-fit analysis will be presented in tabular or
graphical form, sometimes offering threefold inspection of error behaviour from each
age, cohort and period perspective. The RMSE is defined as:

RMSE �

c°
sPS

°
aPA

°
tPT pda,t,s � Da,t,sq2

n
(50)

with n � pA� T � Sq as data dimension, da,t,s as the expected number of deaths
and Da,t,s as the actual number of deaths observed at age a in year t. In Section 5 for
each model class the accuracy of the predictions were assessed over various intervals,
depending on either the data availability or the structural changepoint detection.

Alternative to RMSE, the Mean Absolute Percentage Error (MAPE) is proposed
in some places:

MAPE �
100
n

¸
sPS

¸
aPA

¸
tPT

∣∣∣∣∣Da,t,s � da,t,s

Da,t,s

∣∣∣∣∣ (51)

Its advantage is the relative proportion to the actual mortality rates, so that,
for example, smaller mortality rates at younger age categories are equally included
and considered in the calculation (Villegas, 2015). For projections into the future no
evaluation is possible by nature.

5 Results
The analyses were conducted based on the theoretical background presented in the
previous sections. Before the first evaluation results are introduced in this section,
we outline the evaluation plan. The procedure is twofold. Initially, we address
the first research question investigating how the state-of-the-art mortality models
can be improved with respect to fit and forecast. This includes the evaluation on
the contribution of machine learning methods in mortality modeling. Apart from
that, the aim is to find out to what extent the integration of further socio-economic,
health-risking variables is beneficial in this context.
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State-of-the-art 
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Improvement
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Figure 11: Schematic proceeding

Figure 11 provides an overview of the schematic proceeding for the first part of
analysis involving the application of the classical models. This is primarily the Lee
Carter model under Poisson assumption introduced in Section 2. For comparison,
three further extensions of the LC model are applied to the present data: CBD model
(Cairns et al., 2006), Quadratic CBD model with cohort effects (M7) (Cairns et al.,
2009) and Age-Period-Cohort Model (APC) (Clayton and Schifflers, 1987, Hobcraft
et al., 1982, Holford, 1983, Currie, 2006). A breakpoint analysis is performed, after
the first insights and characteristics of each model are obtained. This happens for
each subpopulation, that is, for each combination of country and gender. Without
anticipating too much, it is already warned at this point that not every subpopulation
has a break in the time series. The analysis allows us to establish a preference for two
models, LC and APC. This finding suggests to use these two models as a foundation
for further development and examination. With the machine learning methods, we
revisit the Lee Carter model and hope to improve upon the methodology described in
Subsection 4.2. Specifically, the three tree-based models are used here: Decision Tree,
Random Forests, Gradient Boosting. The thorough evaluation of the improvement
in model performance contains two aspects, on the one hand an improvement in
goodness of fit and on the other hand an improvement in goodness of forecast must
be achieved. The extent to which this contribution is beneficial and suitable in the
case of available data is discussed in detail in Subsection 5.3.
The basic idea of the APC model is exploited to enable further modeling, so that the
idea to model mortality rates capturing the three important components age, period
and cohort is transferred to the GAM universe. The primary advantages here are that
no additional constraints are necessary and a joint modeling of all subpopulations is
guaranteed. Furthermore, this allows the addition of further covariates in a fairly
convenient manner. This approach is devoted to examining the trends and financial
implications of socio-economic and health disparities in mortality.
The second part of the evaluation discusses the question of how mortality will develop
in the upcoming years in different countries. As there is a kind of changepoint at
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the boundary of the time series, which is related to the COVID-19 situation in 2020,
standard breakpoint analysis cannot be applied. Thus, the effect of COVID-19 must
be treated specially and with all caution.
At the time of writing this thesis, both the medical and epidemiological situation
about the future is uncertain. In order to be able to model and forecast into the future,
four scenarios are set up. These are of course subject to certain assumptions, which in
turn require an explicit investigation. Therefore, the discussion of these assumptions
and scenarios for the future situation is an essential part of the content. After all, this
will enable the forecasts of mortality rates to be presented as applied cases. Recently,
both mortality rates and life expectancy have emerged as important metrics and
headlines for various research projects and newspaper articles. To accommodate this,
based on our results, another focus will be to convert the predictions of mortality
rates into life expectancy and then make them available in tabular form as a reference
tool especially for older age categories and for the years 2022 and 2023. Even though
the aim of outlining the potential impact of the COVID-19 pandemic is of great
importance for modeling mortality, at this time, however, statements and analyses
of the impact of COVID-19 are highly speculative in nature.
The data set, enriched according to the procedure described in Section 3, provides a
solid basis for the analyses. First, the mortality data for up to and including the year
2020 are now available, for all countries Finland, Germany, Italy, the Netherlands
and the United States. The results are presented with particular reference to the US
and German populations, to avoid exceeding the volume of the thesis in some places.
The age categories 0-90 were taken into account, excluding the ages above 90, in
order not to provoke distortions due to insufficient data in the even higher categories.
Finally, the data are enriched by additional variables that could be relevant for
differentiating mortality. These are: Alcohol consumption, proportion of overweight,
tax ratio, unemployment rates.
With this foundations, we move now to the results subsections.

5.1 State-of-the-art mortality models
We first apply the Lee Carter (LC) model to all subpopulations. The fitting procedure
is done for the years from 1950 up to including 2010. Germany is an exception,
with a rather small data base. Here, the years 1990-2010 are used for fitting. Data
availability is related to reunification. We refrain from merging the mortality data of
East and West Germany for the years before, because the data collection strategies
do not match exactly (HMD, 2021). The years 2011-2019 are used for evaluating
the goodness of forecast. The year 2020 is intentionally omitted from the testing
procedure for the time being due to its special outlier character. For fixed gender
and country the parameters βa,s, αa,s and κt,s (see Subsection 4.1) are fitted to the
mortality data using StMoMo R-package (Villegas et al., 2016). The implementation
comprises the exposures Ea,t,s and the numbers of deaths Da,t,s as inputs. The LC
mortality rates are then fitted to the data for each subpopulation and time range.

42



5.1 State-of-the-art mortality models

Figure 12: Parameters for the Lee-Carter (LC) model fitted to the US female
population for ages 0-90 and the period 1950-2010. The period effect is projected up
to year 2019.

Figure 12 provides a visualization of fitted parameters of the Lee Carter model
for the US female population. The course of the period effect κt,s confirms and
captures the initial statement that over the past 50 to 60 years mortality rates have
been decreased steadily, in this particular case even fairly linearly on log scale. The
latter fact is useful in terms of forecasting a linear trend, which is indicated by the
greyish part on the right hand side of the graph and will be discussed later. This has
led to an increase in life expectancy. To illustrate the inspiration of this parameter
combination, the figure shows that the decline in mortality rates over the years is
not the same in all age categories.
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Figure 13: Mortality rates for the US female population aged 0-90 years. The color
scheme shows the evolution over the years 1950-2020. The dotted horizontal line
marks the age of 20. Vertical axis spacing represents mortality rates with ticks on a
logarithmic scale.

The typical course for each year is obviously similar: mortality is quite high for
infants and then gradually decreases until it reaches a minimal risk at about 12 years
of age. In adolescence, mortality increases abruptly until the age of 20. Thereafter, it
increases exponentially until the highest age. This general progression of the curves,
if one were to imagine them averaged, without taking into account individual yearly
differences, defines the overall trend of the age effect and comprises the static part
αa,s, capturing the total shape of the mortality by age: Mortality decreases when
females in the US are younger, then it goes up and afterwards it increases even more,
behaving nearly linearly on logarithmic scale (figure 12).

Another question is how the mortality by age evolves in time. To understand the
overall trend of time effect the colour gradient is decisive, from dark to light, that is,
from earlier to more recent years, the mortality rate decreases for all age categories
as the lines take lower levels. This is in line with κt,s capturing the period effect, so
the decreasing mortality in time.

Finally, the improvement rate βa,s is about how much improvement there is over
the years per age category. Visually, this can be seen by the range of the lines, which
differs according to age. Looking at the bunch of lines and paying attention to the
color scheme, one can see that the decline is greater in some age groups and less in
others, depending on the year.

Figure 12 shows for example, that the estimated βa,s parameters for age categories
younger than 20 are more affected by the period change than the higher ages. This
is directly related to the observed mortalities, because the greater the differences
between the lines, the greater the annual improvement (in figure 13). To summarize,
βa,s analyzes at which ages mortality has improved faster. Thus, in this case, it can
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be said that the improvement in mortality for the 10-year-old girls was faster than
that for the 60-year-old women in US.

This evolution of mortality rates is what the Lee Carter, as a well-known,
widespread and used method, achieves to model, by letting the log of mortality rates
depend on age and time given in years.

(a) Finnish females (b) German females

(c) Italian females (d) Dutch females

Figure 14: Parameters for the Lee-Carter (LC) model fitted to the Finnish, German,
Italian and Dutch female populations for ages 0-90 and the period 1950-2010 (1990-
2010 for Germans). The period effect is projected up to year 2019.

For female populations in other countries, the estimates of the static age effect
αa,s as well as those of the period effect look similar. There are striking differences in
the age-specific speed of mortality improvement. In the Netherlands, Germany, and
Finland, women aged 60 and older have experienced a comparatively large decline
in mortality rates over the years. Moreover, among German women in general,
a high variability is present in the course of the estimation of the βa,s coefficient.
However, while the model works reasonably well, with the limitation that the age-
specific mortality improvement rates βa,s are assumed to be constant over time. The
assumption seems to have been violated in several low-mortality countries. Research
states that rates of mortality improvements have tended to decline over time at
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younger ages, and they have risen at older ages (Kannisto et al., 1994, Vaupel et al.,
1998, Wilmoth and Horiuchi, 1990). Some of extensions of the Lee Carter model,
as explained in detail in Subsection 4.1, introduce the cohort effect additionally
which is an important component that make mortality explicitly dependent also on
the time people were born, as for example in the APC or M7 model. Also, other
authors have chosen to introduce more age-period effects, such as for CBD and
M7 models. It is perhaps not surprising that people who live in different years or
generations have different mortality experiences. There is much research particularly
for the British population, but the findings there can be generalized. For example,
Willets (2004) finds evidence for the existence of cohort trends in the population of
England and Wales. Murphy (2009) discusses the “golden generations” of the U.K.
population born in the early 1930s that experienced exceptionally rapid improvement
in mortality rates. Willets (2004), Murphy (2009), and Murphy (2010) discuss cohort
effects in detail, including their identification using mortality data, and competing
explanations. The aforementioned studies, however, are not model-based but rely on
empirical data analysis and qualitative analyses such as descriptive and graphical
representations to point out the importance of cohort effects on population mortality.
The graphics in figure 15 show exemplary the estimated parameters for the APC
model, also again for the women in the US.

Figure 15: Parameters for the Age-Period-Cohort (APC) model fitted to the US
female population for ages 0-90 and the period 1950-2010. The period effect is
projected up to year 2019.

The estimated parameters for the general relationship between age and mortality
as well as period and mortality remain broadly similar to the estimates from the Lee
Carter model. For people born until 1960, the rough effect of mortality is upward.
In contrast, for those born between 1960 and 2000 the effect decreases and increases
slightly thereafter. Recall that according to the model equation discussed in the
Section 4, this is an additive effect on log mortality. For other countries the cohort
effect estimation is quite similar except for the small increase in the last several
years, as shown in figure 16. For German females, the main course is similar, but
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with more fluctuations. The predictions for the γt�a,s coefficient is nearly constant
until 2020, which holds for all subpopulations. However, due to the absence of βa,s

coefficient, the APC model is inable to allow for varying improvement rates with age.

(a) Finnish females (b) German females

(c) Italian females (d) Dutch females

Figure 16: Parameters for the Age-Period-Cohort (APC) model fitted to the Finnish,
German, Italian and Dutch female populations for ages 0-90 and the period 1950-2010
(1990-2010 for Germans). The period effect is projected up to year 2019.

The goodness-of-fit of mortality models is usually analyzed by examining the
residuals of the fitted model. Regular clustering patterns in the residuals imply that
the model is not able to adequately describe all features of the data. In the case of
a Poisson setting, it is appropriate to look at the standardized deviance residuals,
which were defined in Subsection 4.5. From figure 17 one can see the standardized
deviance residuals for all four models presented as heatmaps for the US women.
Models CBD and M7 display strong residual clustering patterns, while the residuals
of models LC and APC look reasonably random, even though LC model also shows
less pronounced clustering patterns indicating the inability of this model to capture
the well-known cohort effect observed in the US female population.
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(a) APC (b) CBD

(c) LC (d) M7

Figure 17: Heatmaps of deviance residuals for different models fitted to the US
female population for ages 0-90 and the period 1950-2010.

The weaknesses of the LC and CBD models in not incorporating a cohort effect
become more apparent when looking at scatter plots of the residuals by age, period
and cohort. The right hand panels in figure 18 highlight the inability of the LC and
CBD models to capture the cohort effect. In addition, the left hand panel of figure
18 (b) shows some strong patterns by age, mirroring the lack of a quadratic age
term in CBD. This may be necessary to capture the commonly observed curvature
in mortality rates on a logarithmic scale.
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(a) LC

(b) CBD

Figure 18: Scatterplots of deviance residuals for models LC and CBD fitted to the
US female population for ages 0-90 and the period 1950-2010.

If one looks at the in-sample errors based on MAPE as a criterion in figure 19, it
is apparent that the LC and APC models perform better than the CBD and M7.
This phenomenon refers to all three components, age, period and cohort. It is also
worth mentioning that these two models fit poorly, especially for lower age categories.
Both models use the linearity assumption which holds rather for retiree age, so these
models only provide reasonable fits for the higher age groups.

Figure 19: Lineplots of in-sample Mean Absolute Percentage Error (MAPE) for
models LC, CBD, APC, M7 fitted to the US female population for ages 0-90 and the
period 1950-2010, compared to the respective components Age, Period and Cohort.

When evaluating the goodness-of-fit, models with more parameters are considered
to provide a better fit to the data. To exclude the possibility that the better fit
observed in a model is the result of over-parametrisation and compare the relative
performance of several models, one will look at the out-of-sample errors. More
precisely, it means that the model is fitted on the years 1950-2010, and projected into
the years 2011-2019, whereas the forecasts are then related to the actual mortality
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rates for this period in an appropriate manner. Thus, the figure 20 indicates the
out-of-sample errors measured on MAPE. While the disfavor for the M7 model is
also clear here with respect to all three components, the poor functioning of CBD
is only enforceable with respect to period. It is worth noting that the CBD model
performs better on the test data, so that the errors are smaller on average than those
of the training data. On the other hand, a look at RMSE in figure 20 allows us to
maintain the original assumption that LC and APC models work best also in terms
of forecast.

(a) RMSE

(b) MAPE

Figure 20: Lineplots of out-of-sample Root Mean Square Error (RMSE) and Mean
Absolute Percentage Error (MAPE) for models LC, CBD, APC, M7 fitted to the US
female population for ages 0-90 and the period 1950-2010, compared to the respective
components Age, Period and Cohort. The out-of-sample forecast was conducted for
the years 2011-2019.

5.2 Breakpoint analysis
The period effects extracted in the mortality models are forecasted using random
walk with linear drift. This assumption is not always fulfilled, so we look to see if we
can find structural breaks for the linear drift. In this subsection, we explore how to
use structural breaks to contribute to the stability of this method. Especially, this is
important to use the models in purpose of long-term mortality and longevity forecasts.
If structural changes are present, time-dependent effects, such as period effects are
possibly very sensible towards the calibration period and cannot be captured by
standard ARIMA-models. We will initially check for structural changes by the
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methods proposed by Bai and Perron (2003) and Zeileis et al. (2003) introduced
in Subsection 4.1 for each subpopulation and its time series individually and date
the breakpoints if there are present any. Given the dated breakpoints, a univariate
random walk with constant drift will be then fitted and deviations identified if the
period trend is changing over time. Once each model has been fitted to the data
for the period 1950-2010 (in case of Germany 1990-2010) for each male and female,
we first extract the corresponding time series κt,s that presents the main period
improvement factor in the Lee Carter model. Then, the first order differences are
built, which provides basis for further analysis. At this point, it should be noted
that for the purpose of this thesis, we use the Lee Carter model to detect structural
breaks because latest research suggests that this serves as a benchmark model in
this sense as well and that the main driver of mortality forecasts based on any of the
above models is that of the main period effect κt,s (van Berkum et al., 2013). Since
of all subpopulations, only for the male populations in the US, the Netherlands and
Italy one break each is found, the focus is further on these three. These findings can
be confirmed both with the help of an F-test and using BIC by using the package
strucchange for the implementation.

(a) ITA (males) (b) NLD (males)

(c) USA (males)

Figure 21: F statistics crossing their boundary and thus indicating a structural
change (at the level α = 0.05).
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Figure 21 shows the identification of structural breaks for these three subpopu-
lations in a certain time period each. The structural change is located and dated
by plotting the F statistics for each time period with its boundary. Fluctuations
that fall outside these known boundaries are judged to be improbably large and
hence suggest a structural change in the mean value. It is rather similar to that of
empirical fluctuation processes. The boundaries can be computed under the null
hypothesis of no structural change present, such that the asymptotic probability
that the supremum of the statistics F exceeds this boundary is 0.05. The alternative
hypothesis is the precense of one break point. The F statistics is a function of the
restricted and the unrestricted sum of squared residuals (the null and alternative
hypothesis, respectively). As the F statistics cross their boundary in these three
cases, there is evidence for a structural change at level 0.05. Each of them has a fairly
definite pronouncement, which mirrors the results from the analysis by empirical
fluctuation processes and tests, respectively. For details on calculations, please
refer to Zeileis et al. (2003). On the other hand, looking at the BIC one gains a
detailed information about not only the comparison no structural change versus
one change is present, but on an even more granular level. We used this strategy
primarily to identify the optimal number of breakpoints, which is one for all three
cases, as depicted in figure 22 providing information about the estimated results for
different numbers of breakpoints. As expected, the RSS decreases as the number
of breakpoints increases. Since the BIC is minimal for one break point for all three
cases, using the BIC as a criterion suggests using one break point only.
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(a) ITA (males) (b) NLD (males)

(c) USA (males)

Figure 22: Estimation results for different numbers (0-6) of breakpoints. The optimal
value for the BIC (black lines) is in all cases 1. The blue lines indicate the Residual
sum of squares.

The novel insights gained about the presence and approximate period of the
breaks in the time series allows us to further deepen the recognition in the direction
of concrete annual appointments for these breaks. Figure 23 shows the correspond-
ing breakpoints as concrete values obtained with the package strucchange. The
confidence intervals (red lines) are given indicating that the breakpoints (dotted
horizontal red line) are not exact point estimates, but are within a certain range.
Whereas the orange lines represent the mean of ∆κt,s for the different periods when
one breakpoint is considered, the green line represents the mean of ∆κt,s when no
breakpoints are allowed. For US males the break point is detected in 1968, for Italian
males in 1983 and for Dutch males it is in 1993. Having more structural breaks
present for males than females is in accordance with findings from the literature.
Coelho and Nunes (2011) for example, found out that only 5 of the 18 examined
countries have structural breaks for females suggesting that any potential acceleration
in mortality improvement has had a greater impact on male mortality than on female
mortality.
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(a) ITA (males) (b) NLD (males)

(c) USA (males)

Figure 23: Confidence intervals for estimated breakpoints for the first order difference
of the period effect κt,s. In addition, the mean of the period differences is visualized
with no breakpoints (green lines) and after allowing for one breakpoint each (orange
lines).

The figure 24 shows that in all three cases the structural break is accompanied
by improvement in mortality. That is, after these years, the period effect estimate
looks even more steeper descending, indicating an accelerated improvement in male
mortality. Whether the break is more or less pronounced can be reflected on the
width of the confidence intervals in figure 23.

(a) ITA (males) (b) NLD (males) (c) USA (males)

Figure 24: Parameters for the Lee-Carter (LC) model fitted to the Italian, Dutch
and US male populations for ages 0-90 and the period 1950-2010. The red lines
represent the dates breakpoints.

It is difficult to trace to which events these breakpoints can be attributed. In the
US, mandatory seat belts were introduced in 1968. The new model of the three-point
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seat belt that most of us know today secured the chest and hips with a single belt.
These seat belts became mandatory in all new vehicles in the US. The law took
effect on January 1, 1968. This may have been a possible link to the break in
mortality rates in the time series (Dept of Transportation (US), National Highway
Traffic Safety Administration (NHTSA), 2010). In the early 1990s, a reform of the
health care system was enforced in the Netherlands. This improved conditions for
the health-insured and thus for the perception of many medical treatment options
(Cohu et al., 2011). Studies show that there was a marked decrease in coronary heart
disease mortality in Italy from 1980 onward. Changes in the prevalence of active
smoking from this period onward were mainly responsible for this (Barone-Adesi
et al., 2011). On the other hand, one might wonder if this can really have such a
rapid effect and if it really does not affect women. However, some of our assumptions
are in line with other research, claiming that factors like medical progress (Bots and
Grobbee, 1996) and reforms of health systems (Moreno-Serra and Wagsta, 2010) can
have an impact on the rapidity of the mortality improvements. However, establishing
a precise link between concrete events and these breakpoints is not the focus of this
thesis and will therefore be left at this conjecture.

Country Female Male
LC CBD APC M7 LC LC CBD CBD APC APC M7 M7

(with BP) (with BP) (with BP) (with BP)
FIN 0.0045 0.0157 0.0044 0.0037 0.0072 0.0181 0.0060 0.0120
DE 0.0015 0.0055 0.0006 0.0008 0.0021 0.0067 0.0011 0.0028
ITA 0.0025 0.0195 0.0026 0.0043 0.0035 0.0012 0.0222 0.006 0.0029 0.0015 0.01 0.0026
NLD 0.0019 0.0136 0.0031 0.0030 0.0041 0.0017 0.0146 0.0048 0.0025 0.0013 0.0067 0.0031
US 0.0014 0.0123 0.0015 0.0044 0.0020 0.0017 0.0132 0.0096 0.0026 0.0018 0.0081 0.0049

Table 6: In-sample RMSE for all countries and genders and models LC, CBD, APC
and M7. The fitted period is 1950-2010 for Finland, Italy, the Netherlands, the US
and 1990-2010 for Germany. The reference in the brackets indicates the fitting taking
into account breakpoints.

The task now is to evaluate the extent to which accounting for structural breaks
in these three subpopulations leads to improvement in fit and prediction. The table 6
shows the in-sample errors measured by RMSE. At this point, it should be noted that
for all tables from here on, the light blue highlighting represents the comparatively
smaller column comparison errors. Apart from a clear preference for LC and APC
models, it is immediately apparent that the consideration of breakpoints leads to a
relevant improvement in fit resulting in better accuracy. The years 1969-2010 for US
male, 1984-2010 for Italy and 1994-2010 for the Netherlands were used for training
and evaluation. This is mainly due to the fact that a more recent trend will better
reflect future mortality rates and it is noted that the results are varied with very
minor improvement in some cases.
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Country Female Male
LC CBD APC M7 LC LC CBD CBD APC APC M7 M7

(with BP) (with BP) (with BP) (with BP)
FIN 0.0020 0.0051 0.016 0.0058 0.0029 0.0067 0.021 0.0063
DE 0.0048 0.0077 0.011 0.0065 0.0052 0.0094 0.016 0.0070
ITA 0.0045 0.0052 0.019 0.0071 0.0045 0.0042 0.0048 0.0075 0.026 0.015 0.0074 0.0076
NLD 0.0030 0.0063 0.018 0.0054 0.0047 0.0035 0.0045 0.0082 0.028 0.018 0.0066 0.0065
US 0.0023 0.0052 0.016 0.0029 0.0052 0.0049 0.0076 0.0084 0.021 0.017 0.0049 0.0048

Table 7: Out-of-sample RMSE for all countries and genders and models LC, CBD,
APC and M7. The fitted period is 1950-2010 for Finland, Italy, the Netherlands, the
US and 1990-2010 for Germany. The forecast period is 2011-2019. The reference in
the brackets indicates the fitting taking into account breakpoints.

Figure 25: Mortality rates fitted and forecasted for 65-year-old US male population,
calibrated on the years 1950-2010. The red lines correspond to forecasts when break-
points are not allowed for, the blue lines correspond to forecasts when breakpoints
are allowed for. The dashed lines stand for the 95-%-confidence intervals for the
forecast for years 2011-2019. The black points indicate the observed mortality rates.

It is even more important to investigate the effect on the out-of-sample errors.
This is to test how well the predictions work on the years 2010-2019, which are unseen
by the model. Again, the improvement is not negligible with respect to all four
models and three subpopulations. This is demonstrated in the table 7, indicating
that mortality forecasts using the proposed method are more robust towards the
calibration period. A more detailed exploration of both fit and forecast of all four
models with and without breakpoints in visual form are allowed by the figures 25
and 26 These show the actual and predicted mortality rates for 65 and 85 year old
US men as an example.
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Figure 26: Mortality rates fitted and forecasted for 85-year-old US male population,
calibrated on the years 1950-2010. The red lines correspond to forecasts when break-
points are not allowed for, the blue lines correspond to forecasts when breakpoints
are allowed for. The dashed lines stand for the 95-%-confidence intervals for the
forecast for years 2011-2019. The black points indicate the observed mortality rates.

It is confirmed that the LC and APC models fit and forecast better compared
to CBD and M7. This is visible from the degree of fit from the line at the black
dots representing the actual observations. LC supports linear extrapolations and
incorporating historical beakpoints does not help too much. APC is much more
flexible, local adaptive and thus better encompasses the actual observations in the
future. The dashed lines represent the 95%-confidence intervals, which are relatively
wide and do not provide large changes depending on whether modeling is done with
or without a breakpoint. With the APC model, however, the improvement after
considering beakpoints is visible.

5.3 Machine learning methods
From the last two subsections, the following two key messages were concluded: first, it
became apparent that the LC and APC models perform best for almost all countries
and genders, while M7 and CBD models tend to provide good model and predictive
performance only for older age categories. In addition, taking into account structural
breaks and, if such breaks exist, adjusting the years to be trained accordingly will
certainly improve the fit and forecast in the given cases. Next, we revisit the LC
model under consideration of structural breaks to further improve the accuracy and
to analyse its calibration to the morality data from all of the subpopulations covered
in this thesis. So, in this subsection, we aim to demonstrate how machine learning
techniques allow us to further examine the adequacy of the estimated mortality
rates by the LC model. The ideas presented in Subsection 4.2 are now applied
according to Deprez et al. (2017) and Levantesi and Pizzorusso (2019), by using
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tree-based approaches to analyze how modeling should be improved based on feature
components of an observation, such as age or cohort.

The implementation starts with the Lee Carter model taking into account detected
breakpoints, when available, which is fitted to the data with the help of StMoMo
package for a given country and gender. The aim is then to evaluate the estimated
mortality rates µLC

a,t,s. To do this, three types of supervised tree-based machine
learning models are used to calibrate the machine learning estimated improvement
factor qa,t,s using age, year and cohort as input features: Decision Tree (DT), Random
Forest (RF), and Gradient Boosting Machine (GBM). In stage one, we rely on the
classical form of the LC model and improve it in the second step by using machine
learning and by multiplicatively introducing the improvement factor. The idea is
rather complementary and not alternative to the standard mortality models. The
relationship established in Subsection 4.2 to obtain the improvement factor is:

Da,t,s � Poissonpda,t,s � qa,t,sq,

with da,t,s � Ea,t,s � µLC
a,t,s

(52)

In stage two, we make use of the machine learning framework to find qa,t,s as
a solution of the tree-based algorithms applied to the ratio between the death
observations and the death counts estimated by the LC mortality model as suggested
by Levantesi and Pizzorusso (2019):

Da,t,s

da,t,s

� age � year � cohort (53)

The introduction of the cohort effect may pose identifiability issues, but the
authors justify this by saying that they do not aim to explain or interpret the effects,
but rather to make appropriate predictions. In order to implement the machine
learning algorithms explained in Subsection 4.2 the packages rpart, randomForest
and gbm were used. The settings of the important parameters are based on recom-
mendations given by Levantesi and Pizzorusso (2019). For Decision trees, we set
the complexity parameter to cp � 0.003, for Random Forest we put the number
of trees to ntrees � 200, to ensure that an appropriate proportion of the variance
is explained while producing a low mean of the squared residuals. For gradient
boosting we set the number of trees to n.trees � 5000, number of cross-validation
folds cv.folds � 5 and learning rate shrinkage � 0.001.

Figure 27 shows the values of the fitted improvement factors qa,t,s by age and
year for Italian male population. White areas represent value 1 for the improvement
factors indicating that the specified mortality model, in this case the LC model
perfectly fits the mortality rates, introducing only very small variations from the Lee
Carter model. Values smaller than 1 (purple) point out that the mortality model
could overestimate and the values higher than 1 (dark orange) could underestimate
the actual mortality rates. It is apparent that many areas are identified by diagonal
splits, highlighting the cohort effect, justifying the decision to insert the cohort
parameter additionally in the tree-based algorithms.
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Country Female Male

LC Tree RF GBM LC Tree RF GBM

FIN 0.0045 0.0021 0.0027 0.0011 0.0072 0.0019 0.0033 0.001
DE 0.0015 0.0014 0.0006 0.0004 0.0021 0.0019 0.0008 0.0006
ITA 0.0025 0.0007 0.0019 0.0008 0.0012 0.0006 0.0008 0.0003
NLD 0.0019 0.0004 0.0011 0.0002 0.0017 0.0000 0.0008 0.0000
US 0.0014 0.0007 0.0012 0.0005 0.0017 0.0012 0.0014 0.0006

Table 8: In-sample RMSE for all countries, genders and models LC as well as the
tree-based improvements with Decision Tree, Random Forest and Gradient Boosting
Machine Models. The fitted period is 1950-2010 for Finland, Italy, the Netherlands,
the US and 1990-2010 for Germany.

(a) DT (b) RF

(c) GBM

Figure 27: Values as heatmaps of the improvement factors for each year (1950-2010)
and age (0-90) achieved with Decision Tree (DT), Random Forest (RF) and Gradient
Boosting Machine (GBM) model for Italian male population..

Figures 28 represent the actual and fitted mortality rates only for younger ages,
since the most relevant changes seem to be concentrated in the younger ages, as seen
in the previous figure. This holds for other subpopulations as well. For selected
subpopulations, we see in figures 28 first the actual mortality rates as black dots
exemplary for the year 1995. The black line shows the fit of the LC model based
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on the years up to and including 2010. The red, green and yellow lines, on the
other hand, show the fit improved by Decision Tree , Random Forest and Gradient
Boosting, respectively. It is obvious that the fit to the actual points or mortality rates
improves by multiplying by the respective improvement factors. While the black line
is further away from the actual values in some places, often for the even younger age
categories, the improved methods are closer. A deeper analysis of goodness-of-fit is
provided in the table 8. It presents the subpopulations row by row and the classical
Lee Carter model as well as the improved versions column by column. A look at
the RMSE makes clear that an immense reduction of errors could be achieved by
all machine learning methods compared to the original LC model, especially for the
boosting method. In almost all cases Gradient Boosting Machine (GBM) achieves
the highest reduction of RMSE and thus better fit, followed by Decision Trees (DT)
and Random Forests (RF).

(a) DE (males) (b) ITA (males)

(c) ITA (females) (d) USA (males)

Figure 28: Mortality rate forecasts for selected subpopulations, 1950 and ages 0-50.
The black points indicate the observed mortality rates. The black lines represent the
classic LC model estimations, whereas the red (DT), green (RF) and yellow (GBM)
lines improved the LC estimates with the corresponding machine learning method.

From the graphs, one can argue that machine learning estimators led to an im-
provement in the quality of fit in the mortality model. Thus, it can be concluded that
the application of machine learning methods improves the mortality rate estimations
locally.
Furthermore, it is important to test not only the goodness-of-fit, but also the ability
of the improved models to be generalized. For that the mortality rates estimations
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improved by the machine learning estimator are forecasted according to the Lee
Carter framework, allowing one to assess the forecasting quality.

Country Female Male

LC Tree RF GBM LC Tree RF GBM

FIN 0.0021 0.0021 0.0014 0.0017 0.0029 0.0034 0.0024 0.0031
DE 0.0048 0.0046 0.0032 0.0033 0.0052 0.0052 0.0033 0.0034
ITA 0.0045 0.0046 0.0039 0.0022 0.0042 0.0041 0.0020 0.0022
NLD 0.003 0.003 0.0015 0.0017 0.0035 0.0035 0.0018 0.0020
US 0.0023 0.0023 0.0010 0.0011 0.0054 0.0052 0.0049 0.0051

Table 9: Out-of-sample RMSE for all countries, genders and models LC as well as the
tree-based improvements with Decision Tree, Random Forest and Gradient Boosting
Machine models. The fitted period is 1950-2010 for Finland, Italy, the Netherlands,
the US and 1990-2010 for Germany. The out-of-sample years are 2011-2019.

The years 2011-2019 are used for testing. Again, we deliberately omit 2020
because, as discussed in detail in the section on trend forecast, this year represents
a kind of outlier at the edge of a time series. The table 9 provides an overview
of the out-of-sample errors and thus of the ability to generalize by relating actual
mortality data to predictions that are reached based on unseen data not used to
train the model. The reduction in RMSE in this case compared to the LC model
is not as large as in the in-sample expansion case. It becomes clear that the Lee
Carter Model is well suited to depicting temporally homogeneous time structures
and to foreseeing the linear overall trend. The trees, on the other hand, manage to
resolve locality better. The transformation in forecast of the local improvement is
not always target-oriented. This finding may be related to an overfitting issue that
occurs when a model learns the details and noise in the training data to an extent
that it negatively affects the model’s performance on new data. One needs to build
the models in such a way that they generalize well to the new data meaning that the
model needs to have the ability to properly fit to new, previously unseen data that
comes from the same distribution as the one used to build the model. By achieving
a too high fit to the trained data, the generalizability decreases. This unbalances
the trade-off between bias and variance. This challenge was also addressed in the
introduction of these machine learning algorithms and discussed comparatively. To
summarize, Decision trees can be an effective statistical tool. However, they have
some drawbacks. Most critically, they can overfit the data, so that a single tree
poorly predicts future data that was not used to build the original tree. This problem
is known in statistics as the bias-variance dilemma. Random Forest can help to
overcome the overfitting problem. At the top level, Random Forest is a collection of
decision trees, built slightly differently on the same dataset, that collectively tune
to produce a better model than a single tree can. The trees are built by randomly
selecting a subset of visit records with substitutions (known as bagging) and by
randomly selecting a subset of the attributes, so that the forest consists of slightly
different decision trees. This method allows for small variations in the trees that are
created in the Random Forest. Adding this controlled variance helps to improve the
predictive accuracy of the algorithm (Hastie et al., 2016). This can possibly provide
an explanation as to why the largest decrease in RMSE is achieved in the Random
Forests model.
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In summary, in the case of applying machine learning techniques to our data, we
were able to achieve an immense improvement in fit and a comparative improvement
in forecast compared to the original estimated results of the mortality rates of the
LC model.

5.4 Generalized additive models
The next class of models is the generalized additive model, which was methodologically
introduced in Subsection 4.3. The concrete application refers to one of the two better
performing classical mortality models examined in Subsection 5.1, namely the APC
model. Here, the basis for estimating mortality rates is the combination of features
age, period and cohort, assuming that these play an important role when explaining
human mortality. We aim to apply another statistical approach that will allow for
multipopulational modelling to project and predict future mortality improvements
in a coherent way, without contraints. Hereby, we assume that jointly learning from
each other both between countries and between genders within each country will
contribute to the model performance. For this we utilize GAMs as extensions of
GLMs resulting in a more robust and flexible method for capturing non-linear effects.
The identifiability problem arised by three components of the temporal structures
age, period and cohort representing linear combinations of each other is tackled
using a non-linear interaction surface with a two-dimensional tensor product basis,
capturing the cohort effect implicitly. To implement the models of this subsection
the R package mgcv by Wood (2021) was used. The number of knots were set to
ten in an equidistant way in both dimensions. The fitted years are in this section
1990-2015, as we make use of the joint years present in the dataset, which is limited
to 1990 due to Germany mainly. The range used for testing comprises the years
2016-2019. The specialities concerning the year 2020 will be analysed in the next
section. In the first step, we describe the basic constellation as a reference for the
evaluation to see if there are pronounced country and gender effects in the more
complex model. We refer to this model equation

logpµapc,iq � β0 � fappagei, periodiq � logpEiq (54)
and do not model countries and genders differently, assuming that there are no

relevant disparities. However, we can look at the marginal effects of age, period and
cohort from the general point of view (figure 29).
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Figure 29: Estimated marginal effects of age, period and cohort for mortality rates.
The horizontal lines mark the level of having no effect at all. The GAM was fitted
for years 1990-2015, for ages 0-90.

The multiplicative effect of age on mortality rates decreases from birth to 1 year
old and remains negative (below 1). For people older than 50 years, this effects
starts to increase reaching the pick of acceleration for people over 75 years of age.
This is in line with the descriptive analysis indicating the infants having higher
mortality rates compared to more adult ages. Even older people who are closer to
retirement age naturally have even higher mortality rates. The period effect shows
a decreasing trend almost throughout. This decrease is in line with observations
from recent centuries that mortality has declined in all age groups, leading to an
increase in life expectancy. This decline is due, among other things, to the decrease
in mortality from infectious diseases as well as from cardiovascular diseases, cancer
and overall medical progress. With two exceptions, one at the beginning of the 90s,
there seems to be a small constant part suggesting that there is no period effect
here. Furthermore, from the year 2014 onwards, there is a slight increase in the
period effect, which probably indicates that mortality has increased in recent years
compared to the years before. It will be analyzed and discussed later. It is worth
mentioning that this is a comparative mean effect that applies, given everything
else, especially age remains the same when comparing. The cohort effect is a kind
of ex-post stratification, because the cohort was only implicitly considered in the
modeling itself. A clear decline in the effect on mortality rates can be seen from
the 1950 birth cohort onward. Here, too, a small increase can be seen for the last
generations, which, however, hardly reaches the range of the positive effect.
All these effects have to be interpreted as a multiplicative factor on expected average
mortality rates, given all other features remain constant. Since the exposure of the
population is also assumed to be constant, these factors can be interpreted as effects
on the death counts in same fashion.
Now comes the move to the more complex model. This has been confirmed in the
descriptive section and will be seen also later. Having gained an initial glimpse
here of the directions and trends of the individual components, it is beneficial to
study the effects at a more granular level. Therefore we now allow for individual
smooth function estimation by the interactions of the tensor product with each
subpopulation yielding in the following model formulation, which now contains the
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individual subpopulations si additionally compared to the model from equation 54:

logpµapc,iq � β0 � fap,si
pagei, periodiq � logpEiq (55)

Figure 30: Estimated marginal effects of age, period and cohort for mortality rates,
considering the countries and genders in the model. The horizontal lines mark the
level of having no effect at all. The GAM was fitted for years 1990-2015, for ages
0-90.

The figure 30 illustrates the marginal effects for age, period, and cohort, this time
differentiated by country and gender. The explicit modeling of age and period and
the subsequent extraction of cohort effects allows to disentangle the effects attributed
to the individual components here as well.

Age:

Age effects can be viewed as variations linked to biological and social processes
of aging that are specific to individuals. They include physiological changes and the
accumulation of social experiences that are associated with aging but are not related
to the time period or birth cohort to which an individual belongs. In epidemiological
studies, age effects are usually characterized by different rates of disease or mortality
rates in different age groups (Reither et al., 2009). The age effects show overall the
same structure as described for the pure model according to figure 29. The strongly
regulated but complex age-specific pattern of all-cause mortality has long suggested
the possibility of a universal law of mortality (Carnes et al., 1996, Olshansky and
Carnes, 1997). The most important finding in this context dates back a very long
time. This is arguably Gompertz’s law, which shows an exponential increase in
mortality with age (Gompertz, 1825). At the population level, it is possible to make
hypotheses like health changes in old age are initiated by physiological dysregula-
tions such as increased blood pressure and rising concentrations of total cholesterol.
These changes are followed by an increase in diagnoses of diseases and conditions,
both physical and mental, which are then followed by an increase in disability and
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loss of physical function, and eventually death. For the individual, however, the
sequence of the process may be different, as he or she does not experience some of
the dimensions, and reversals of the process may also occur (Crimmins et al., 2019).
There are pronounced differences in levels between males and females especially for
ages between 50 and 90. This refers to the males having a higher effect for these age
categories compared to females. With respect to the different countries, no relevant
variations in age effects can be identified. Qualitatively speaking, this means that in
all countries, men aged 75, for example, are expected to have higher mortality rate
improvements compared to 25-year-olds than women in the same age comparison,
conditional on the same year. Almost all modern data available on this subject show
that females have a longer life expectancy than males, and the exceptions to this
rule result from unusually harsh living conditions for women. This female superiority
in survival is very much in evidence in old age, where females outlive males by an
ever-increasing ratio as they age. Apart from that plenty of evidence in other studies
clearly supports the view that in societies where there is no serious discrimination
against one sex or the other, women tend to live longer than men. Since this must
be a genetic factor, a result of evolution, it is almost certainly present in all human
populations (Kannisto, 1996).

Period:

Generally, period effects do not result from individual but rather from external
factors that affect all age groups equally at a given point in time. They can be
caused by a variety of environmental, social, and economic factors, e.g., war, eco-
nomic crisis. Methodological changes in outcome definitions, classifications, or the
method of data collection can also generate period effects in the data (Keyes and Li,
2019). In contrast to the age effect, the period effect shows drastic differences not
only between genders but also between countries. First, it can be observed for all
subpopulations that the effect structure on mortality rates is descending and reaches
the multiplicative factor 1 around the year 2004, indicating that around this year the
effect on mortality rates should have been quite small. While the descending trend
for women is quite similar and comparatively shallow between all countries, a much
steeper descent is apparent for men, in addition to country differences, with the
initial level even higher than for women. In other words, the differences in mortality
rates between the years 1995 and 2010, for example, are even greater for men than
for women, age being equal. This is an indication that the improvement in mortality
rates over the years may have been stronger and more significant for men. We have
noticed a similar aspect before in the course of the breakpoint analysis, where we
found out and supported with literature that probably certain events over the years
caused a stronger improvement of mortality rates for men. This finding, in turn,
may be congruent with the observation in the data description that the gap between
male and female mortality rates has narrowed over time, particularly in the older
age categories. More recently, the decline in deaths from adult heart disease in many
countries has contributed significantly to the overall decline in premature mortality.
Thus, the reduction in mortality can be attributed to two more recent factors: more
frequent overcoming of cardiovascular disease in the elderly and prevention of deaths
from low birth weight in infants. The prevalence of smoking can also be attributed
to causes of mortality, although the prevalence in men has declined in recent years.
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Cause-specific mortality rates have also declined in both sexes, although to different
degrees. Absolute declines in deaths caused by diseases of the circulatory system
have been greater for men, and cancer mortality declined faster for men than for
women. Injury-related deaths also declined more for men than for women. Of course,
these are all possible reasons and assumptions that could cause the faster decline
in the period effect in men (Rosella et al., 2016). Furthermore, the gender gap in
mortality rates has narrowed in the last half of the past century, as male mortality
rates have improved more rapidly than female mortality rates. Thus, the available
data suggest that there are not only biological but also behavioral differences between
the genders, and that social and psychological factors play an important role in
differentiating the mortality patterns of women and men. For this reason, many
analyses make the simplifying assumption that women and men are two distinct,
independent populations (Perls and Fretts, 1998).
A closer look at the estimated effect curves of the US, in particular those of men,
reveals that starting in approximately 2014-2015, an increase in the effects can be
seen, compared to other countries. It is also likely that the increase in the pure effect
can be attributed to these subpopulations which are shown on averaged basis in the
figure 29. It is possible that this phenomenon is related to the victims of the opioid
crisis, which caused the sharp increase in the number of drug addicts and deaths
related to the abuse of opioid painkillers in the US (Dowell et al., 2017).

Cohort:

Cohort effects are variations that result from the unique experience of a group of
individuals (cohort) based on year of birth as they move over time. Here, we are
talking about risk for a health outcome described based on year of birth. Thus, a
cohort effect occurs when the distribution of diseases resulting from an exposure
affects age groups differently (Keyes and Li, 2019). It is here conceptualized as an
interaction due to a period effect that is experienced differently by an age-specific
susceptibility to a potential event or that cause. The cohort effect, similar to age,
shows differences worth mentioning only with respect to gender. The generations
born between the years around 1910 and 1940 show higher cohort effects on mortality
rates for men than for women. For all countries and genders, however, the effect
decreases for the more recent birth cohorts and remains almost constant. It is also
clear that for males and females aged 60 years or older, the highest mortality rates
correspond to the youngest cohorts of birth (central panels). That is, for the oldest
age groups, rates increase with the cohort of birth.
All in all, the differences between countries and the changes over time make it clear
that the gap between male and female mortality rates depends to a large extent on
people’s circumstances and epidemiological conditions related to mortality. This
could include for example the dominance of diseases, public health infrastructure
and health care resources. During the period when parity shifted between male
and female mortality rates at older ages, and male mortality rates were twice as
high, chronic diseases-particularly cardiovascular disease and cancer-have replaced
infectious diseases as the leading cause of death. However, the change in the relative
levels of male and female mortality rates reflects not only epidemiological changes
in the distribution of causes of death over time, but also differential changes in
behavioral patterns and risk exposure between men and women (Crimmins et al.,
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2019). The graphs representing the estimated mortality rates for all subpopulations
are provided in figure 31. The model outcomes are summarized by the heatmaps
corresponding to the surface obtained from the tensor products. To ensure an
overall compact view, rates were averaged in 5 year steps for age and period. The
corresponding heatmaps reflect the distributions of estimated mortality rates across
years and age categories for each gender (columns) and country (row).
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Figure 31: Heatmaps of the estimated mortality rate surface (left column: Females,
right column: Males). The predictions are averaged over 5-year and -age blocks.

The figure broadly mirrors the proportions and distributions already observed
in the descriptive analysis. As expected, low mortality rates are predicted for lower
age categories, in particularly declining in recent years. As age increases, estimated
mortality rates also increase. Moreover, women are expected to have lower rates
than men. This already gives an indication of a proper model fit.
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(a) Country-stratified

(b) Age-stratified

Figure 32: Fitted vs. observed mortality rates stratifited by country (a) and age (b).

A more in-depth analysis of model diagnostics is presented in the figures 32 - 33.
On the one hand, these contrast the fitted values with the actual observed values
for both males and females, at the level of crude mortality rates. Ideally, the points
of the scatterplot should lie on the 45° line, which has been marked by a black line.
The plots show a mostly satisfactory fit, except for slightly stronger variabilities for
higher mortality rates. If this graph is stratified by country in addition to gender,
regularities in the form of patterns are recognisable in the case of US. Here, the
US men are almost always above the black 45° line, which indicates that the model
systematically overestimates the mortality rates in this case (figure 32 (a)). However,
when looking at the differences by age (figure 32 (b)), it is noticeable that for very
low age categories a deviation from observed values for both sexes can be seen, these
are the light blue dots. Moreover, higher variability is present in older age categories.
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(a) Country-stratified

(b) Age-stratified

Figure 33: Residuals (raw) vs. linear predictor stratifited by country (a) and age (b).

If we now plot the raw residuals against the linear predictor, we again see
the overestimation of US male mortality rates that is evident as they are almost
systematically above the zero line (figure 33 (a)). However, the age effect seems to
be relevant here as well. Deviations from zero are again caused by very young age
categories which are of primary interest. Thus, the results indicate that, apart from
the small deviations from the variance homogeneity assumption, the model quality
is largely satisfactory. The increasing variance at higher mortality rates may be due,
on the one hand, to the fact that the assumption underlying the Poisson distribution
that mean and variance are equal is violated. On the other hand, it may also be
because less data is available for estimating the higher age groups.
Apart from describing the relationship between the expected number of deaths and
predictors such as age, period (year of death), cohort (year of birth), other lifestyle
factors such as obesity prevalence, unemployment rate, tax revenue and alcohol
consumption are included as linear effects, yielding in the following model:
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logpµapc,iq � β0 � fap,si
pagei, periodiq � βbmibmii � βunemploymentunemploymenti

� βtaxtaxi � βalcoholalcoholi � logpEiq
(56)

The model defined in equation 56 represents an extension of the original GAM in
this thesis and is a departure from the classic APC model. We take advantage of the
data enrichment discussed in Subsection 3.2 and integrate additional variables into
the model. This is to better represent the differences in mortality rates related to
different socioeconomic and health-related factors. The integration of such additional
variables in the context of mortality modeling is not a standard approach. It is
motivated by Villegas and Haberman (2014), who found that differences, especially
those related to socioeconomic conditions, pose a major challenge for the design
of public policies to address social inequalities, as well as for the design of pension
systems and the management of longevity risk in pension funds and pension portfolios.
In contrast, this thesis has mortality data in aggregate form. To the best of our
knowledge, such modeling based on the enrichment of publicly available aggregate
data has not yet been performed or published. Furthermore, these additional variables
contain per-country and per-year values and thus do not provide finer granulation
by gender and age. We therefore tend not to view or interpret these covariates as
directly influencing variables, but rather as indicators of lifestyle in the country, thus
giving the model a more exploratory character.
As described in Subsection 3.2, the selection of the given covariates was influenced
by the content-related plausibility aspect. The WHO states that there is a causal
relationship between harmful use of alcohol and various mental and behavioural
disorders, other noncommunicable conditions as well as injuries (World Health
Organization, 2018). According to the European Association for the Study of
Obesity statistics, overweight and obesity are the fifth leading risk for global deaths
(Czernichow et al., 2021).
It is well-established and evidentially proven by precious studies (e.g. Martikainen
and Valkonen, 1996) that higher mortality rates are expected among unemployed
people than among those in employment. Tax revenue is included because it has
been postulated that by raising more revenue, the state is more likely to be able to
invest in health care. This in turn can influence the health status of the population
and thus longevity and mortality.
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Figure 34: Estimated linear effects of the variables obesity prevalence, unemployment
rate, tax revenue and alcohol consumption in the enriched model for the mortality
rates. Uncertainty is displayed by 95%-confidence intervals

Figure 34 summarizes the estimated effect as associations between the mortality
rates and all included covariates. While the prevalence of overweight measured by
BMI, the unemployment rate and the alcohol consumption show a clear positive
effect, the mortality rates decrease with increasing tax revenue. More precisely, if the
percentage of defined population with a BMI of 25kg{m2 or higher increases by one
percentage point, the mean mortality rate increases by 4, 5%. If the unemployment
rate increases by one percentage point, the mean mortality rate increases by 1, 9%.
Further, if alcohol consumption increases by one liter per person, the mean mortality
rate increases by 2, 52%. With one percentage point increase of tax revenue, the
mean mortality rate decreases by 1, 12%. The above interpretation holds under the
assumption that everything else, especially age and period (or year) remains the
same. Therefore, these effects can be interpreted in the same way for death counts,
since it must also be assumed that the exposure, that is, the population size must
remain the same. The directions of the effects are plausible. Even if their absolute
magnitude appears to be relatively small, this is in line with comparable studies (e.g.
Villegas and Haberman, 2014). Moreover, this should be related to the inherently
relatively modest values of mortality rates.

Predictive power:

Apart from the interpretation of the effects, it is of high relevance to assess
the predictive power of the described models. This is achieved using a test data
set that was excluded from the actual training process of the model. We use the
forecasts of the 2016-2019 data, where the errors were expressed in RMSE. The
table 10 provides a comparison between the different models for each country (row)
and gender (column). The individual columns show four models to be compared.
First, we mention the classical APC model, which refers to the model introduced in
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Subsection 4.1. The second column called GAM represents the APC model built
with GAM, which is based on tensor products of age and period estimated for each
subpopulations. The third column represents the model enriched with additional
socioeconomic and health-risk covariates and its results. Finally, the fourth column
is about a continentwise approach. Here, two models were set up that follow the
GAM-variant, but were estimated separately for the US. Thus, there is one model for
the EU countries and one for the US, which goes hand in hand with the geographical
interplay.

Country Female Male

Class. APC GAM Covariates Continentwise Class. APC GAM Covariates Continentwise

FIN 0.0029 0.0012 0.0015 0.0014 0.0029 0.0015 0.0016 0.0015
DE 0.0046 0.0021 0.0018 0.0019 0.0045 0.002 0.002 0.0023
ITA 0.0025 0.0016 0.0012 0.0014 0.0021 0.0013 0.0016 0.0015
NLD 0.0020 0.0013 0.0010 0.0011 0.0038 0.0011 0.0011 0.0012
US 0.0018 0.0010 0.0014 0.0019 0.0020 0.0016 0.0013 0.0018

Table 10: Out-of-sample RMSE for all countries, genders and models APC as well as
the GAM-based improvements with Age-Period tensor product splines, the integrated
socio-economic and health-risk variables and the continentwise modeling. The fitted
period is 1990-2015 for Finland, Germany, Italy, the Netherlands and the US. The
out-of-sample years are 2016-2019.

When looking at the out-of-sample RMSE, for the classical APC method a
major reduction in forecast errors has been achieved by jointly modeling of all
subpopulations with GAM. The integration of socio-economic and health variables
seems to have a small positive effect on forecast quality. This finding relates to the
present case with aggregated data. However, it is worth noting that this modeling
and procedure can be applied in exactly the same way to a situation with individual
data. It is to be expected that then a possibly higher advantage can be achieved
by enriching the model, since then the observations contain specific values for the
additional characteristics. This would allow for an analysis at a more granular level.
Modeling separated by continents (Europe vs. USA) does not seem to be beneficial.
The table of in-sample errors shows similar observations and can be found in the
appendix.
In summary, the original assumption that a multipopulational, coherent forecasting
method is beneficial and helps the model to learn and adapt the relationships more
effectively is validated. So, it lets confirm that considering each country and gender
as a membership of a group is preferable to individual modeling and forecasting. This
could happen because similar countries in their socio-demographic, economic structure
learn from each other and the country-specific characteristics are better distributed
among the women and men within the country. Finally, all of the examined countries
are highly developed societies that may share many characteristics beyond those of
geography.
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5.5 Impact of COVID-19 on mortality rates and life expectancy

5.5 Impact of COVID-19 on mortality rates and life ex-
pectancy

The focus of this subsection is on dealing with the year 2020 as a breakpoint at the
end of the time series, most likely due to COVID-19. For this, the model defined
in equation 55 is used as a basis. In Subsection 5.2 we discussed methods for the
breakpoint analysis for structural changes being present over time. However, this
does not help for modeling COVID, as the structural change is at the end of the
time series, thus without future data.
We start with presenting the age, period and cohort effects as before. Figure 35 shows
the effects of the model based on the temporal effects age, period, cohort only, which
was described as basic or pure in the previous section, since all subpopulations were
pooled together. The model here was however trained from 1990 to 2020 inclusive.
While the age and cohort effects proceed as expected by the previous model up to
the year 2015, the period effect shows a steep increase up to the year 2020, indicating
an increased effect of the year on mortality rates. More precisely, the improvement
of mortality rates in the last years or even decades was probably just cancelled out
by the COVID-19 effect, so that the level of about 2003 is reached again.

Figure 35: Estimated marginal effects of age, period and cohort for mortality rates.
The horizontal lines mark the level of having no effect at all. The GAM was fitted
for years 1990-2020, for ages 0-90.

A look at the analysis of the effects broken down by country and gender allows
us to understand the background to this occurrence of the period effect (figure 36).
When looking at the model outcome including country and gender effects, it seems
that there are no changes compared to the model up to 2015 regarding the age and
cohort effects. The increase in recent years in the period effect is most clearly visible
for US women and men. It is somewhat weaker, but still pronounced, for women and
men in Italy as well. These findings may be attributable to the COVID situation in
each country. In 2020, incidence and death rates were particularly high in the US and
Italy (Johns Hopkins, 2021). In the previous subsection it was already discussed that
there is an increased mortality rate in the US, compared to the other countries. Also,
other studies show that long before COVID-19, US was at a disadvantage compared
to other highly developed countries in terms of increasing mortality. The literature
shows that young and middle-aged people were particularly affected. The increasing
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mortality in these age groups can be traced back to the deaths that resulted from
drug consumption, suicide and cardio-metabolic diseases, other chronic illnesses
and injuries (Emanuel et al., 2021). While life expectancy appeared to continue
to increase in other countries between 2014 and 2017, mean life expectancy in the
US declined to the point that it became the subject of public discussions. Since
the pandemic, however, this has been overshadowed by the even larger increase in
mortality rates for 2020 (Woolf and Schoomaker, 2019, Bernstein, 2018).

Figure 36: Estimated marginal effects of age, period and cohort for mortality rates,
considering the countries and genders in the model. The horizontal lines mark the
level of having no effect at all. The GAM was fitted for years 1990-2020, for ages
0-90.

We will now look into the scenarios presented in Subsection 4.4 and the cor-
responding model outcomes that attempt to outline the future development of
COVID-19. In the following, the scenarios are briefly repeated and the assumptions
are discussed. Therefore, all results made in this and the subsequent section should
be seen as potential examples of a COVID-19 impact analysis. Thus, it is firmly
stressed at this point that interpretations of the results should be made in light of the
current uncertainties of the further evolution of the pandemic and with all caution.
The implementation refers to the model explanations in Subsection 4.4.

For scenario I the the year 2020 is completely omitted from the model training
process, so that only data up to 2019 are included.

Scenario II assumes that the country-specific COVID-effect will continue in the
same way in the next several years. Technically, this means that the model was fitted
with data up to 2020 and the COVID-indicator was set to one for the next years.

Scenario III, on the other hand, assumes that the COVID-effect will be present in
the next coming years, but will flatten exponentially over time. This was implemented
by assigning exponentially decreasing values between one and zero for the COVID-
indicator for the following years.

For the adjustment for excess mortality in the fourth scenario, the actual numbers
of deaths in 2020 were first contrasted with the number of deaths expected based on
the model from scenario I, which are not influenced by the pandemic.
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Figure 37: Excess mortality for year 2020. Here the expected and actual mortalities
for all subpopulations are contrasted.

Figure 37 shows the calculated excess deaths. While the solid line represents the
actual death counts in 2020, the dashed lines represent the expected death counts
for that year. The dotted lines below are the positive deviations used for modeling,
hence the excess mortality that is adjusted from the 2021 population for modeling
scenario IV. Visually, the comparison between countries can only be made in relation
to population counts, as the absolute death figures are presented here. To train the
model, the death rates for the years 2020 and 2021 are used based on the prediction
of the first scenario, i.e. without the influence of COVID. The population for 2021
is calculated by explicitly adjusting for and thus removing the excess mortality in
2020, whereby the excess mortality is based on the calculation described above. The
underlying assumption here is that older people who were particularly vulnerable to
the virus have already died off and that correspondingly fewer in these cohorts will
die in the coming years.

As a reminder, the GAMs are defined by a two-dimensional cubic smoothing
splines, called tensor product. In general, the two-dimensional smooth functions are
implemented by the so-called penalized or P-splines, for which further details can
be found either in Subsection 4.3 or Wood (2011, 2017). Here, predictions of future
mortality rates are based on an extrapolation of the spline fit, with the penalized
smoothing second-order spline bases assuming a globally quadratic structure and
a persistent curvature outside the observed data. Consequently, the predictions of
future mortality rates depend also on the degrees of freedom chosen for the covariates
or estimated automatically as in this case. The out-of-data forecasts should be made
cautiously, as the authors recommend that it is prudent not to extrapolate far into
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the future (Wood, 2017). We will therefore limit the analysis on the trend forecast
to the year 2025 at the longest. It is also suggested that when using GAMs around
past trends for extrapolation purposes, the degrees of freedom should be chosen as
much as feasible to catch the minimum necessary trends in order to ignore random
fluctuations in the data. The reduction of the number of nodes in both dimensions
to five can help to get this challenge under control.

Figure 38: Different trend forecasts according to the scenarios for 85-year-olds.
The adjusted years are 1990-2020 and 1990-2021 for the scenario demanding an
adjustment for excess mortality. The forecast extends to the year 2025.

Figure 38 illustrates the outcomes of our four scenarios to the considered countries
for males and females exemplarily for 85 years old people. The black circles and
triangles show the observed mortality rates for females and males, respectively.
Comparing the observations with the alignment of the line, we can speak of an
overall good fit by visual inspection, as the estimated mortality rates are close to the
observed mortality rates, while the curve is still smooth. We deliberately do not want
to achieve an overfit, in order not to project the random noise in the data along with
it into the future. For this age catogory, for which the COVID-effect is supposed
to be quite high from a medical and epidomiological point of view, an outlier can
be clearly seen especially for Italy, US and Netherlands, as the corresponding point
tears very far upwards. For Finland and Germany, on the other hand, there is hardly
any particularity to be seen for year 2020. The interpretation of the content of the
individual trend forecasts therefore seems to work conclusively, especially for the
subpopulations strongly affected by COVID. After all, our scenarios involving the
COVID-effect are based on the supposition that this effect exists in the populations
at hand. Thus, the black curve can be seen as a fairly optimistic continuation of
the trend, while the second scenario expects the highest mortality rates via the
constant COVID-effect, marked by the purple line. On the other hand, the yellow
trend, which assumes that the COVID-effect flattens with time, finds its origin in
the same point where the purple line is, but becomes increasingly milder with time
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and decreases exponentially, as expected. In addition, the turquoise prediction is
even more optimistic, so it is even below the black line. This means that we expect
the lowest mortality rates in this scenario, which can be logically combined with
the underlying idea that we do not expect any more COVID-deaths in the future
and instead clean up the population on top of those who have already died in 2020.
For example, in the case of Italy, it is striking that the predicted curve for the
fourth scenario slopes more steeply for men than for women. This is due to the
greater excess mortality of men in this country. Of course, this also means that the
populations that were most affected by the outlier in 2020 are predicted to have an
even lower trajectory. Men in Finland represent a small positive deviation from this
description. This can be explained by the fairly good COVID-handling in Finland,
so that COVID-related effects are generally not very pronounced here. Moreover,
the result is probably influenced by the past trend of mortality rates in this country,
which shows a downward slope.

Figure 39: Different trend forecasts according to the scenarios for 85-year-olds.
The adjusted years are 1990-2020 and 1990-2021 for the scenario demanding an
adjustment for excess mortality. The forecast extends to the year 2025. Dashed
segments represent the model-based 95%-confidence intervals.

A detailed view is provided by the figure 39 by restricting the annual axis to
the years 2017 to 2025. In addition, the corresponding 95% confidence intervals are
shown here. These were corrected by the application of Delta method. This method
provides a basis for calculating the standard error for transformations. In general, the
variance of a transformation gp.q is not equal to the transformation of the variance.
Especially for a regression with log-transformed response, the confidence interval
for the estimate of µ on the original scale cannot be calculated with exppσq. In this
case, θ represents the mean. Instead, the delta rule must be applied. This states
that if µ � N pθ, σ2q, then the distribution of gpµq based on a Taylor-approximation
can be locally approximated by gpµq � N pgpθq, σ2g1pθq2q (Casella and Berger, 2002).
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Almost everywhere, the confidence bands are very narrow. One exception is the
already conspicuous subpopulation of Finnish men. These have comparatively wider
confidence bands, indicating a higher uncertainty of the estimate for this subpopu-
lation, which in turn is in line with the above-mentioned noticeable phenomenon.
Visually, one could argue that these overly narrow, model-based confidence bands
are overly optimistic and should therefore be taken advisedly.
In the context of forecasting into the future, it is naturally not possible to make an
exact quantitative evaluation of the forecast quality, since the actual mortality rates
are not yet known. However, in order to be able to assess the plausibility of the
forecast, the various trends of the forecast are discussed with regard to the underlying
assumptions of the individual scenarios. The different assumptions underlying the
four illustrative alternative scenarios imply a range from mild to severe expected
impacts and will be discussed in detail in Section 6.

Life expectancy:

In some cases, it may be advantageous to express age-specific mortality rates in
terms of life expectancy. Life expectancy is one of the most important demographic
indicators for comparing different population groups against each other in terms
of longevity and represents one of the main outcomes of lifetable analysis. Life
expectancy compresses the mean number of years a person in a population is
expected to live, after the ath year of life, and can also be understood as the area
under the survival curve regardless of its shape. In general, this ratio is often used
to characterize life expectancy at birth, i.e. at age 0. However, we will consider
here the higher age categories 50-90, as they are potentially more influenced by
the COVID-19 pandemic, especially when we focus on the substantive and policy
analyses, from the perspective of the need for Medicare and Social Security. In
addition, longevity is typically seen at the edge of the mortality curve, as it may
be afflicted by non-standard fluctuations at the beginning. In this section, we will
convert the previously modeled trend forecasts of age-specific mortality rates into
life expectancy for different subpopulations and present them in tabular form for
reference.
Let the life expectancy of a person of age a in year t be defined as ea,t, the number
of years we expect this person to live if we know that this person has survived to
age a. To put it in other words: We assume that this person will live an average of
a � ea,t years. For the calculation one needs the probability pa,t,k that this person
will survive a � k years. This can be calculated as follows:

pa,t,k � p1 � µa,tqp1 � µa�1,t�1q � � � p1 � µa�k,t�kq �
k¹

i�0
p1 � µa�i,t�iq (57)

Using the representation

PpTa,t ¡ kq � pa,t,k (58)

one can express T as the remaining lifetime of that person aged a in year t. With
this, PpTa,t � kq denotes the probability that the individual survives to age a� k � 1
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and dies in year t � k at age a � k. With this notation, life expectancy is derived
from mortality rates as follows:

ea,t � EpTa,tq �
8̧

k�1
k PpTa,t � kq �

8̧

k�1
k pa,t,k�1 µa�k,t�k (59)

This methodology was implemented using the R-package Mortalitylaws (Pas-
cariu, 2018). Below we present the tables reflecting the predicted life expectancies of
US men 11 and women 12.

The first column shows the corresponding age category and includes ages 50 to 90.
The second column shows life expectancies from 2019 derived from actual observed
mortality rates. The predictions based on the trend forecasts of mortality rates for
the years 2022 and 2023 presented in the previous section were derived using forecasts
from both scenarios. In addition, the following columns show the raw differences
in age-specific life expectancy in years that would result if the COVID-effect were
assumed to remain present. The last two columns show the percentage drop in life
expectancy when moving from a COVID-free forecast to a forecast taking 2020 into
account. While the raw differences reach up to a maximum of about 1.5 years and
tend to be largest for younger age categories, the largest percentage drops tend to
be seen between ages 80 � 86 and range around about 6%. The tables for other
subpopulations can be found in the appendix.
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Age 2019 Scenario I Scenario II Difference Drop in %
2022 2023 2022 2023 2022 2023 2022 2023

50 29.30 29.69 29.72 28.16 28.18 1.53 1.54 5.15 5.18
51 28.44 28.87 28.90 27.36 27.38 1.51 1.52 5.23 5.26
52 27.59 28.05 28.08 26.56 26.58 1.49 1.50 5.31 5.34
53 26.75 27.23 27.27 25.76 25.79 1.47 1.48 5.40 5.43
54 25.91 26.41 26.45 24.97 25.01 1.44 1.44 5.45 5.44
55 25.09 25.60 25.64 24.19 24.23 1.41 1.41 5.51 5.50
56 24.28 24.78 24.83 23.41 23.46 1.37 1.37 5.53 5.52
57 23.48 23.97 24.02 22.64 22.69 1.33 1.33 5.55 5.54
58 22.69 23.17 23.22 21.87 21.93 1.30 1.29 5.61 5.56
59 21.91 22.36 22.41 21.11 21.17 1.25 1.24 5.59 5.53
60 21.14 21.57 21.61 20.36 20.42 1.21 1.19 5.61 5.51
61 20.37 20.77 20.82 19.61 19.68 1.16 1.14 5.58 5.48
62 19.62 19.98 20.03 18.87 18.94 1.11 1.09 5.56 5.44
63 18.88 19.20 19.25 18.14 18.21 1.06 1.04 5.52 5.40
64 18.15 18.43 18.47 17.41 17.49 1.02 0.98 5.53 5.31
65 17.42 17.66 17.70 16.70 16.77 0.96 0.93 5.44 5.25
66 16.70 16.90 16.94 15.98 16.06 0.92 0.88 5.44 5.19
67 15.98 16.15 16.19 15.28 15.36 0.87 0.83 5.39 5.13
68 15.27 15.41 15.44 14.59 14.67 0.82 0.77 5.32 4.99
69 14.56 14.68 14.71 13.90 13.98 0.78 0.73 5.31 4.96
70 13.86 13.96 13.99 13.22 13.30 0.74 0.69 5.30 4.93
71 13.16 13.25 13.28 12.56 12.63 0.69 0.65 5.21 4.89
72 12.47 12.55 12.58 11.90 11.97 0.65 0.61 5.18 4.85
73 11.79 11.87 11.89 11.25 11.31 0.62 0.58 5.22 4.88
74 11.11 11.19 11.21 10.60 10.67 0.59 0.54 5.27 4.82
75 10.45 10.53 10.55 9.97 10.03 0.56 0.52 5.32 4.93
76 9.80 9.88 9.90 9.35 9.40 0.53 0.50 5.36 5.05
77 9.16 9.24 9.26 8.73 8.78 0.51 0.48 5.52 5.18
78 8.52 8.61 8.63 8.13 8.17 0.48 0.46 5.57 5.33
79 7.89 7.99 8.01 7.53 7.57 0.46 0.44 5.76 5.49
80 7.27 7.37 7.39 6.94 6.97 0.43 0.42 5.83 5.68
81 6.65 6.76 6.78 6.35 6.37 0.41 0.41 6.07 6.05
82 6.03 6.15 6.17 5.77 5.79 0.38 0.38 6.18 6.16
83 5.42 5.54 5.55 5.19 5.20 0.35 0.35 6.32 6.31
84 4.80 4.91 4.93 4.60 4.61 0.31 0.32 6.31 6.49
85 4.17 4.28 4.29 4.01 4.01 0.27 0.28 6.31 6.53
86 3.52 3.62 3.63 3.40 3.39 0.22 0.24 6.08 6.61
87 2.85 2.92 2.93 2.76 2.76 0.16 0.17 5.48 5.80
88 2.14 2.18 2.19 2.08 2.08 0.10 0.11 4.59 5.02
89 1.36 1.38 1.38 1.33 1.33 0.05 0.05 3.62 3.62
90 0.49 0.49 0.49 0.49 0.49 0.00 0.00 0.00 0.00

Table 11: Life expectancy forecasts for US male population
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Age 2019 Scenario I Scenario II Difference Drop in %
2022 2023 2022 2023 2022 2023 2022 2023

50 32.29 32.38 32.46 31.47 31.66 0.91 0.80 2.81 2.46
51 31.38 31.49 31.57 30.60 30.78 0.89 0.79 2.83 2.50
52 30.48 30.60 30.68 29.72 29.90 0.88 0.78 2.88 2.54
53 29.59 29.72 29.79 28.85 29.03 0.87 0.76 2.93 2.55
54 28.70 28.84 28.91 27.99 28.16 0.85 0.75 2.95 2.59
55 27.82 27.96 28.04 27.12 27.30 0.84 0.74 3.00 2.64
56 26.95 27.09 27.16 26.27 26.44 0.82 0.72 3.03 2.65
57 26.08 26.22 26.29 25.41 25.58 0.81 0.71 3.09 2.70
58 25.22 25.35 25.42 24.56 24.72 0.79 0.70 3.12 2.75
59 24.37 24.49 24.56 23.71 23.87 0.78 0.69 3.18 2.81
60 23.52 23.63 23.70 22.87 23.03 0.76 0.67 3.22 2.83
61 22.68 22.78 22.85 22.03 22.19 0.75 0.66 3.29 2.89
62 21.85 21.93 22.00 21.20 21.35 0.73 0.65 3.33 2.95
63 21.02 21.09 21.16 20.38 20.52 0.71 0.64 3.37 3.02
64 20.19 20.26 20.32 19.56 19.69 0.70 0.63 3.46 3.10
65 19.37 19.43 19.49 18.74 18.87 0.69 0.62 3.55 3.18
66 18.56 18.61 18.67 17.94 18.06 0.67 0.61 3.60 3.27
67 17.74 17.79 17.85 17.14 17.26 0.65 0.59 3.65 3.31
68 16.94 16.99 17.04 16.35 16.46 0.64 0.58 3.77 3.40
69 16.14 16.19 16.24 15.56 15.67 0.63 0.57 3.89 3.51
70 15.34 15.40 15.45 14.79 14.89 0.61 0.56 3.96 3.62
71 14.56 14.62 14.66 14.02 14.11 0.60 0.55 4.10 3.75
72 13.79 13.84 13.89 13.26 13.35 0.58 0.54 4.19 3.89
73 13.03 13.08 13.12 12.52 12.59 0.56 0.53 4.28 4.04
74 12.27 12.32 12.36 11.78 11.85 0.54 0.51 4.38 4.13
75 11.52 11.58 11.61 11.05 11.11 0.53 0.50 4.58 4.31
76 10.79 10.84 10.88 10.33 10.39 0.51 0.49 4.70 4.50
77 10.06 10.11 10.14 9.63 9.67 0.48 0.47 4.75 4.64
78 9.34 9.39 9.42 8.93 8.97 0.46 0.45 4.90 4.78
79 8.63 8.68 8.71 8.24 8.28 0.44 0.43 5.07 4.94
80 7.92 7.97 8.00 7.56 7.59 0.41 0.41 5.14 5.13
81 7.22 7.27 7.30 6.89 6.91 0.38 0.39 5.23 5.34
82 6.53 6.58 6.60 6.23 6.24 0.35 0.36 5.32 5.45
83 5.83 5.88 5.90 5.57 5.58 0.31 0.32 5.27 5.42
84 5.14 5.18 5.19 4.91 4.91 0.27 0.28 5.21 5.39
85 4.44 4.47 4.48 4.25 4.25 0.22 0.23 4.92 5.13
86 3.72 3.75 3.76 3.57 3.57 0.18 0.19 4.80 5.05
87 2.98 3.00 3.01 2.87 2.87 0.13 0.14 4.33 4.65
88 2.21 2.22 2.22 2.14 2.14 0.08 0.08 3.60 3.60
89 1.39 1.39 1.39 1.36 1.36 0.03 0.03 2.16 2.16
90 0.49 0.49 0.49 0.49 0.49 0.00 0.00 0.00 0.00

Table 12: Life expectancy forecasts for US female population
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6 Discussion

Figure 40: Mean percentage drop in life expectancy forecast for year 2022 by country
and gender

If one compares the differences in the forecasts for the life expectancy of 50- to 90-
year-olds between Scenarios I and II, a decline in life expectancy for all populations
can be observed. In summary, the figure 40 draws a comparison between the two
scenarios in terms of the decline in life expectancy due to the COVID situation. The
horizontal axis represents the averaged value of the percentage drop for the forecast
of the year 2022. The forecasts show the highest decline in life expectancy for the
US and Italian populations, especially for males, followed by females. In the case
of Italy, the COVID-19 effect may be due to the health care system, which was
possibly overloaded and may, with a rapid response and decent preparation, be a
one-time effect. In contrast, the situation in the US seems to be related to the lack
of public health insurance and is not a unique event. The Netherlands also seems to
be particularly affected by the addition of the COVID-19 effect in 2020 and to carry
over the effects into the future to a relatively high degree. In contrast, Finland and
Germany appear to lose comparatively few life years to the COVID-situation in the
future. These findings are consistent with the results from previous sections as well
as the research results of previous studies and numerical data (Johns Hopkins, 2021).

6 Discussion
In this thesis, we explore alternatives and improvements to existing mortality model-
ing and prediction capabilities. Particularly, we improve the classical Lee Carter and
APC models with machine learning and GAM, respectively, and analyse the impact
of the pandemic on mortality rates with different scenarios. In addition, the impact
of COVID-19 on the trends forecasts of mortality rates as well as life expectancy is
analyzed and estimated for the US and compared to other populations.

Data:

All of these analyses are based primarily on open source data provided by Human
Mortality Database (HMD, 2021). This data source provides high quality data by
following numerous criteria until individual countries are allowed to put their data on
the website. In particular, only mortality data from a sound and statistically highly
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qualified source is allowed to be included, for example, those that ensure almost one
hundred percent population coverage based on census and vital registration systems.
For the enrichment of recent years the STMF dataset was used additionally, which is
necessary to examine the COVID-19 impact (STMF, 2021). This provides up-to-date
mortality data on a weekly basis. However, pooling the data into relatively broad
age groups and mapping them to the metric scale only in retrospect could cause
biased results, since the assumption that the distribution of death rates within the
given age groups remains the same could be violated.
Another item is the data enrichment with socio-economic and health variables. It is
about applying the models discussed earlier also to study the relationship between
socio-economic or health circumstances with mortality. Although this results in a
useful exploratory area of investigation, the application of such specifications in
the context of aggregate data is subject to more detailed examination. While it
would be desirable to have the data at the same level of aggregation, the values of
the individual indicators are not age- and gender-specific, whereas the mortality
rates are. Nevertheless, one can suppose that the covariates considered in this
thesis should be seen more as an indicator of country-specific characteristics and
are assumed to have similiar impact on the health and socioeconomic situation of
the entire population. In any case, the methodology can be applied in the same
form to a set of individual data and is certainly an attractive field for further research.

Modeling:

The modeling process needs to be carefully examined when fitting time series to
period effects for a long period of time. We find out that the presence of structural
breaks in the period effects is significant but not conclusive. The fact that structural
breaks occur more frequently in the male data than in the female data suggests that
the improvement in mortality rates has changed more for males than for females, at
least during the period considered in this thesis. When considering the period effect,
it is important to note that a visual inspection of a graph of κt,s shows us that each
change in improvement has accelerated the improvement in mortality rates above
those of previous years. Put another way, if this perception is not included in the
model because of the time span considered in the data used for this work, there is a
risk that mortality rates will be overestimated. It is also worth noting that in the
course of the analysis we realised that the CBD and M7 models are more suitable
for older age categories.
It can be established that generalized additive model is superior and allows for
multipopulational modelling. Regarding the modeling with GAMs, a notable limi-
tation of all projections made with GAMs is their dependence on the shape of the
models, viewed as an exercise in curve fitting with extrapolation. The validity of
each projection depends on whether the model class follows the expected changes
over time. In our particular case, a globally quadratic structure is assumed based
on the penalized smoothing of B-splines, so that continuous curvature is supposed
outside the observed data.
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COVID-Scenarios:

In the course of predicting future mortality and life expectancy trends, various
scenarios have been set up to counteract the considerable uncertainty of the current
COVID-19 situation. However, these scenarios are bound up with assumptions that
can be discussed extensively.

The first scenario is about the idea that COVID-19 would completely disappear
in the future. Thus, we not only assume that the resulting fluctuations seen in 2020
are entirely due to the pandemic, but also that it is a residual event that will not
affect mortality at all in the coming years. On the other hand, it must be noted
that at the time of writing this thesis, there are no evidence-based studies on the
long-term effects that would provide one hundred percent certainty that the health
of the recovered will not be at risk at all in the long run. Rather, the phenomenon
of “Long Covid” is increasingly being reported by those who have already recovered.
Even people report exhaustion, fatigue and reduced performance, in whom the acute
illness was not severe at all. These late effects of the disease are collectively referred
to as “Long Covid”. Mental illnesses also occur (Sudre et al., 2021). The nowadays
widespread and massively used vaccinations against COVID-19 give hope that the
situation can be kept under control in the future, but this gives no guarantee how
fast and to what extent this will lead to an abrupt disappearance of the pandemic. In
addition, the database on the existence and consequences of long-term side effects of
the individual vaccines is not yet reliable enough to be able to make forecasts in this
regard, according to the current state of knowledge. In some countries, lockdowns
lasting several months were used in 2020 as one of the few measures perceived
as effective by the political authorities to combat the pandemic. This can be a
psychological burden in the long run, as LMU Psychiatry was able to study in its
patients (Kunzler et al., 2021). Long-term effects may also be expected in this regard.
Furthermore, it is implicitly assumed that the excess mortality will average out over
the next few years, so that no excessive, rapid reductions in the population are to
be expected. Whether this is really the case, and whether the assumption that no
long-term effects on health are to be expected is justified, is the subject of discussion
and certainly an exciting field of investigation for future generations of research.

According to the second scenario, we expect a fully continuing effect of COVID-19
on the mortality rates in the future. On the one hand, we assume that the pandemic-
related situation will continue in the same way as in 2020, which can be considered
as an extreme assumption. As already experienced in recent months, scientific and
medical progress in this field is not idle. Due to the vaccination campaigns used in all
countries covered in this thesis, this assumption is already violated to the extent that,
at least as the studies show nowadays, the risk of infection is reduced for a broad
mass of the population (Polack et al., 2020). However, current evidence from various
countries seems to show that despite a large proportion of those vaccinated, incidence
rates continue to rise, sometimes exponentially (Johns Hopkins, 2021). Further, we
assume that the impact of COVID-19 on mortality will remain exactly the same
over the next five years. This is currently difficult to assess, as we can only speak of
short-term decrease in the death rates (Boudourakis and Uppal, 2021). Apart from
that, this decrease is questionable because no exact backward mapping can be made
to the cause of these changes. It is not completely transparent whether these changes
are of a seasonal nature or can actually be attributed to the vaccinations and thus
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rule out the return of the higher death rates. Conversely, the various emerging viral
variants may call into question the effectiveness of the vaccines. This could be a
barrier to improving the pandemic-related situation. In the worst case, lockdowns
could be reinstated. These are not only fraught with negative economic consequences,
but may rather further exacerbate the health consequences. The extent to which
such measures will influence the COVID-19 effect on health in the long term cannot
be estimated with certainty. It is often argued that a prolonged strict lockdown has
limited success in containing the spread of the virus, so even after some relaxation,
containment measures must be implemented. Continued efforts to prevent the spread
of the virus would continue to significantly dampen economic activity in all sectors
until a vaccine (or other effective medical solution) becomes available. Overall, this
scenario envisions significant and lasting impacts on health-related sectors.

The third scenario, which suggests that the COVID-effect will level off over the
years, seems to represent an optimistic and in some respects possibly even more
realistic development. As with scenario 2, we assume that 2020 is not an outlier that
may be completely disregarded, but we give the relevance for the future a reduced
intensity. The basic assumption here is that the pandemic will have progressively
less impact on health and mortality and will almost completely disappear after
five years. This represents a kind of mixture of two chains of reasoning from the
previous scenarios. Because on the one hand we assume that the pandemic will
influence the residual effect. However, at the same time we recognize that, among
other things, medical progress, changes in people’s behavior, and possibly herd or
vaccine immunity, which will build up more and more every year, will make this
effect increasingly irrelevant.

In the course of the fourth scenario, the focus is placed on the fact that the
excess mortality from the year 2020 is to be adjusted from the following years. Some
of the assumptions are based on Scenario I, because we again assume that the
adverse health effect of pandemic will disappear and no long-term consequences will
happen. In contrast to the above scenario, however, we additionally assume that
excess mortality must be explicitly taken into account because it will not average
out in the next few years. To do justice to this assumption, we have to assume that
baseline mortality will not change in the next few years, so that the surpluses from
2020 will become noticeable in this way. Thus, it is implicit to assume that there
were no behavioral changes in all age categories as a result of the pandemic. However,
this assumption seems highly questionable. For example, a large proportion of the
working population had to work mostly from home during the peak periods of the
pandemic. As a result, the commute to work was eliminated. This in turn could
be a reason for fewer traffic fatalities, which of course directly affects the mortality
trend expressed in the final numbers. Vacations were also limited and in some cases
impossible due to travel bans. This could have resulted in less skiing and accidental
deaths. Finally, quarantine measures, excessive attention to hygiene, and contact
restrictions may have led to fewer influenza deaths. These are all possible reasons
that argue against the basic mortality being absolutely unaffected by the pandemic.

As can be seen by the above reasoning, the establishment of possible COVID-
related future scenarios is not a self-evident task. The risk arising from the pandemic
depends on numerous factors, including political decisions and social acceptance of
them. Yet, to provide mortality forecasts also with regard to the future attitudes of
life insurers, the presented scenarios are a helpful and valuable basis.
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7 Conclusion
Mortality forecasts are important for predicting the future extent of population aging
and for establishing the sustainability of pension and social security systems. It
has become even more relevant due to the current events caused by the COVID-19
pandemic, emphasizing that the problem we tackled in this thesis is very up-to-date.
Also, the comparison of the results using data from HMD of women and men from five
countries is the subject of the investigation: Finland, Germany, Italy, the Netherlands
and the US.
Before starting the main analysis, a data enrichment process was carried out to map
the mortality data of missing years from grouped to metric age scale. On the other
hand, additional covariates were integrated from secondary data sources.
To summarize the results obtained in this thesis, we will revisit the research ques-
tions posed in the introduction. We have examined various methods to model the
mortality rates of a person with a certain age in a certain year to find out how
the state-of-the-art mortality models can be improved in terms of fit and forecast.
Starting with the Lee Carter model under Poisson setting, we not only compared this
with three other extensions, but also performed a detection of structured breaks. The
breakpoint analysis proves to be useful and is identified for each of the following three
subpopulations: Italian (1983), Dutch (1993), US (1968) male populations. It is likely
that these years can be attributed as decisive to health-care and health-assurance
reforms and policies. The fact that a breakpoint is identified rather for men than for
women is in line with the findings of other studies and suggests that the improvement
in mortality rates over the last decades has been more rapid for men. This could also
be related to the narrowing gap between male and female mortality rates over the
last years, especially in the older age categories, although in general higher mortality
rates for males than females can still be observed in all nations. Since both the
in-sample and the out-of-sample prediction quality is improved by this, the decision
was made to take the detected structural changes into account, wherever possible,
in the further modeling procedure. The model proposed by (Lee and Carter, 1992)
seems to be widely accepted for providing satisfactory adjustments and forecasts of
mortality rates. This method is therefore widely used, and several extensions and
modifications have been proposed to achieve a broader interpretation to capture the
main characteristics of the dynamics of mortality rates, and thus to improve the
performance of the Lee Carter model. The other extensions that were applied and
compared in this thesis are the CBD model (Cairns et al., 2006) and the so-called
Quadratic CBD model (M7) (Cairns et al., 2009) as well as the APC model (Clayton
and Schifflers, 1987, Hobcraft et al., 1982, Holford, 1983, Currie, 2006). Of the classic
models, LC and APC outperform the others. Especially for the lower age categories,
CBD and M7 are comparatively less suitable.
After comparing the models and crystallizing both as the best performing, the first
task is to exploit their strengths and simultaneously further develop and improve
them with additional methods that may be less established in the context of demog-
raphy. To this end, the focus is on evaluating the contribution of machine learning
methods to mortality modeling, which primarily seek to adjust what is probably the
most important drawback of the Lee Carter model. While the LC model attempts
to represent the mortality surface as accurately as possible and also to anticipate
future changes in mortality structures, it assumes that the age-varying index beta is
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fixed over time. In developed countries, this assumption is violated in any case, as
the slowdown in mortality is caused by a decline at younger ages (infant and child
mortality) and an acceleration at older ages (Lee and Miller, 2001, Girosi and King,
2008). Therefore, we use tree-based machine learning techniques to address this
problem, to use them as a diagnostic tool to detect the weaknesses of the LC model
and to enhance it by using an improvement factor (Deprez et al., 2017, Levantesi and
Pizzorusso, 2019). We can state that the contribution of machine learning methods to
the improvement of fit is undeniable. Of the three tree-based methods Decision Tree,
Random Forest and Gradient Boosting Machine models, GBM works best. However,
the analysis of goodness-of-forecast shows minimal to no differences, noteworthy for
Random Forest. Presumably, this fact is due to the fact that the tree-based models
provide better resolution locally. Lee Carter, instead, fits an overall linear trend,
which is suitable for global projection into the future. Investigating further methods
based on this to boost forecast performance is certainly an interesting aspect of
further studies.
Further, the APC model is revisited and modeled by a generalized additive model with
a two-dimensional tensor product spline. This does not only provide an intuitively
simple method to model the past and to project it into the future, but also allows for
extensive interpretability of individual components of age, period and cohort, among
others, by omitting constraints. This represents an alternative multipopulational
strategy in contrast to the subpopulation-specific models which were presented so
far. This model achieves significantly better prediction quality than the classical
APC model, both in terms of in-sample and out-of-sample errors. Supposedly, this
happens because we allow, through coherent modeling, not only genders within a
country, but also geographically, even politically contiguous countries to learn from
each other. Another focus is on the feasibility of including additional covariates in
the model, as suggested by GAM, and thus, analyzing potential discrepancies in
socioeconomic and health-related differences in mortality in a more granular way.
This primarily helps the model to properly capture country effects. Nevertheless,
the developed model can be applied to individual data, as well.
Having achieved significant advantages for the APC model through GAM in the
course of the extensive model comparison, it is natural that we use this to analyze
the second research question, namely how mortality will develop in the future in
different countries, taking into account the COVID-19 impact. In this thesis, we
have discussed current topics that will continue to be important in the future, as
predictions of longevity are likely to keep changing over time. The prediction and
transferability of the models into the future are difficult to assess, that is why we
are looking at potential scenarios. On the one hand, there is naturally no validation
reference for this and, on the other hand, the current situation of COVID-19 is subject
to uncertainty from both a medical and epidemiological perspective. Therefore, we
have set up and discussed different mild to severe scenarios, to make it possible to
prepare for future evolutions. The established four scenarios are used to illustrate
possible developments, the quality of which can only be assessed years later. For
this purpose, we provide trend forecasts for mortality rates and, based on them, for
age-specific life expectancies, for women and men in all five studied countries. It is
evident that in 2022, the largest average drops in life expectancy due to COVID-19
are expected for the US and Italian male populations, up to more than 6%, especially
for the age groups 80-86. The least affected populations are likely to be those in
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Germany and Finland. In this thesis, we compared different models to each other.
It would be interesting to extend the investigation to Deep Learning techniques and
to analyze the differences. Based on the representation learning paradigm, Richman
et al. (2020) propose to extend the Lee Carter model to multiple populations using
neural networks. These should automatically select an optimal model structure.
It is claimed that the out-of-sample prediction performance of the model is very
competitive. It would be of enormous interest to apply this model to the data used
so far in this thesis and, in particular, to compare it with the APC method patterned
via GAM.
The challenge in practice still is the difference between the overall population and
a specific portfolio of a life insurer. One insightful possibility could be to further
analyze the two-layer methodology for improving LC by machine learning. This could
serve as a measure for portfolio modeling by first estimating the overall population
drift using aggregate data, such as in this thesis. In a second step, one could estimate
the portfolio drift as an improvement factor with respect to individual portfolio
data. This would have the advantage that two reference levels are used, so that
substructures can possibly be discovered.
Additionally, there is also a huge scope for new models if the cause-of-death infor-
mation is included. Particularly with regard to COVID-19, this could provide new
insights and a more detailed view of prognosis as well as a detailed capturing of
excess mortality. This could be integrated relatively conveniently as an extra feature
in the context of the GAM developed in this thesis and it would certainly be inter-
esting to investigate the differences to the analyses already done. There are authors
who further acknowledge that there is a close relationship between socioeconomic
circumstances and causes of death. This would open another field of investigation.
There are still many unanswered vital questions to be addressed in this field of
research. We encourage further research into this topic as it is crucial for insurance
companies to gain further expertise on the evolution of longevity using efficient
techniques. Predicting mortality is key to the longevity insurance business, since
insurers in particular take on the risk for longer life. In practice, the Lee-Carter
model is often used. However, as we have seen in the breakpoint analysis, the period
effect is not in fact a linear drift, so a linear extrapolation of the trend could be
hazardous. Therefore, it makes sense to conduct a sensitivity analysis and calculate
better risk prices using accurate information, which can be improved using the
methods discussed in this thesis, among others. Finally, not taking COVID-19 into
account would lead to an erroneous risk assessment, which suggests the creation of
different scenarios, as done in this thesis, also for later studies.
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(a) Finnish (b) German (c) Dutch

Figure 41: Evolution of mortality rates for males aged 0–90 for the years 1900–2020
(1990–2020 in case of Germany)

Country Female Male

Class. APC GAM Covariates Continentwise Class. APC GAM Covariates Continentwise

FIN 0.0015 0.0011 0.0012 0.0013 0.0027 0.0013 0.0013 0.0015
DE 0.0022 0.001 0.001 0.0014 0.0021 0.001 0.001 0.0013
ITA 0.0021 0.001 0.0012 0.0011 0.0025 0.001 0.0009 0.0011
NLD 0.0032 0.001 0.0011 0.0011 0.0015 0.001 0.0008 0.0012
US 0.0033 0.0013 0.0015 0.0016 0.0028 0.0011 0.0012 0.001

Table 13: In-sample RMSE for all countries, genders and models APC as well as the
GAM-based improvements with Age-Period tensor product splines, the integrated
socio-economic and health-risk variables and the continentwise modeling. The fitted
period is 1990-2015 for Finland, Germany, Italy, the Netherlands and the US.
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List of Abbreviations

Age 2019 Scenario I Scenario II Difference Drop in %
2022 2023 2022 2023 2022 2023 2022 2023

50 29.77 29.98 30.04 29.68 29.73 0.30 0.31 1.00 1.03
51 28.88 29.09 29.14 28.79 28.84 0.30 0.30 1.03 1.03
52 27.98 28.20 28.25 27.91 27.95 0.29 0.30 1.03 1.06
53 27.10 27.31 27.36 27.03 27.07 0.28 0.29 1.03 1.06
54 26.22 26.44 26.49 26.16 26.20 0.28 0.29 1.06 1.09
55 25.36 25.57 25.62 25.30 25.34 0.27 0.28 1.06 1.09
56 24.49 24.71 24.75 24.44 24.48 0.27 0.27 1.09 1.09
57 23.64 23.85 23.90 23.59 23.63 0.26 0.27 1.09 1.13
58 22.79 23.01 23.05 22.76 22.79 0.25 0.26 1.09 1.13
59 21.96 22.17 22.21 21.93 21.96 0.24 0.25 1.08 1.13
60 21.13 21.34 21.38 21.11 21.14 0.23 0.24 1.08 1.12
61 20.31 20.52 20.55 20.29 20.32 0.23 0.23 1.12 1.12
62 19.50 19.71 19.74 19.49 19.52 0.22 0.22 1.12 1.11
63 18.71 18.91 18.94 18.70 18.72 0.21 0.22 1.11 1.16
64 17.92 18.12 18.14 17.91 17.94 0.21 0.20 1.16 1.10
65 17.15 17.34 17.36 17.14 17.16 0.20 0.20 1.15 1.15
66 16.41 16.57 16.59 16.38 16.40 0.19 0.19 1.15 1.15
67 15.68 15.81 15.83 15.62 15.64 0.19 0.19 1.20 1.20
68 14.95 15.07 15.08 14.88 14.90 0.19 0.18 1.26 1.19
69 14.21 14.33 14.34 14.15 14.16 0.18 0.18 1.26 1.26
70 13.46 13.61 13.62 13.43 13.44 0.18 0.18 1.32 1.32
71 12.69 12.90 12.91 12.73 12.73 0.17 0.18 1.32 1.39
72 11.95 12.20 12.21 12.03 12.04 0.17 0.17 1.39 1.39
73 11.26 11.52 11.53 11.35 11.35 0.17 0.18 1.48 1.56
74 10.69 10.85 10.86 10.67 10.68 0.18 0.18 1.66 1.66
75 10.08 10.19 10.20 10.01 10.02 0.18 0.18 1.77 1.76
76 9.49 9.54 9.55 9.37 9.37 0.17 0.18 1.78 1.88
77 8.96 8.91 8.92 8.73 8.73 0.18 0.19 2.02 2.13
78 8.40 8.28 8.30 8.11 8.11 0.17 0.19 2.05 2.29
79 7.77 7.67 7.68 7.49 7.49 0.18 0.19 2.35 2.47
80 7.12 7.06 7.08 6.89 6.89 0.17 0.19 2.41 2.68
81 6.48 6.46 6.48 6.29 6.30 0.17 0.18 2.63 2.78
82 5.85 5.87 5.89 5.70 5.71 0.17 0.18 2.90 3.06
83 5.21 5.28 5.30 5.12 5.12 0.16 0.18 3.03 3.40
84 4.52 4.68 4.70 4.54 4.54 0.14 0.16 2.99 3.40
85 3.81 4.07 4.10 3.95 3.95 0.12 0.15 2.95 3.66
86 3.20 3.45 3.47 3.34 3.35 0.11 0.12 3.19 3.46
87 2.65 2.80 2.82 2.72 2.72 0.08 0.10 2.86 3.55
88 2.04 2.11 2.12 2.05 2.05 0.06 0.07 2.84 3.30
89 1.33 1.34 1.35 1.32 1.32 0.02 0.03 1.49 2.22
90 0.49 0.49 0.49 0.49 0.49 0.00 0.00 0.00 0.00

Table 14: Life expectancy forecasts for German male population
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List of Abbreviations

Age 2019 Scenario I Scenario II Difference Drop in %
2022 2023 2022 2023 2022 2023 2022 2023

50 33.10 32.81 32.79 31.83 31.81 0.98 0.98 3.00 3.00
51 32.17 31.88 31.86 30.92 30.90 0.96 0.96 3.00 3.00
52 31.23 30.96 30.93 30.96 30.00 0.00 0.93 0.00 3.00
53 30.30 30.04 30.01 30.03 29.11 0.01 0.90 0.03 3.00
54 29.37 29.12 29.09 29.11 28.22 0.01 0.87 0.03 3.00
55 28.46 28.21 28.18 28.20 27.33 0.01 0.85 0.04 3.00
56 27.54 27.31 27.27 27.29 26.45 0.02 0.82 0.07 3.00
57 26.63 26.40 26.37 26.39 25.58 0.01 0.79 0.04 3.00
58 25.72 25.51 25.48 25.49 25.48 0.02 0.00 0.08 0.00
59 24.82 24.62 24.59 24.60 24.58 0.02 0.01 0.08 0.04
60 23.93 23.74 23.70 23.71 23.70 0.03 0.00 0.13 0.00
61 23.04 22.86 22.83 22.83 22.82 0.03 0.01 0.13 0.04
62 22.16 21.99 21.95 21.96 21.94 0.03 0.01 0.14 0.05
63 21.29 21.13 21.09 21.09 21.07 0.04 0.02 0.19 0.09
64 20.42 20.27 20.23 20.23 20.21 0.04 0.02 0.20 0.10
65 19.57 19.42 19.38 19.38 19.36 0.04 0.02 0.21 0.10
66 18.73 18.58 18.54 18.53 18.51 0.05 0.03 0.27 0.16
67 17.90 17.74 17.70 17.69 17.67 0.05 0.03 0.28 0.17
68 17.06 16.91 16.87 16.86 16.83 0.05 0.04 0.30 0.24
69 16.22 16.09 16.05 16.03 16.00 0.06 0.05 0.37 0.31
70 15.38 15.28 15.24 15.22 15.19 0.06 0.05 0.39 0.33
71 14.53 14.47 14.44 14.41 14.38 0.06 0.06 0.41 0.42
72 13.69 13.68 13.64 13.61 13.57 0.07 0.07 0.51 0.51
73 12.89 12.89 12.86 12.82 12.78 0.07 0.08 0.54 0.62
74 12.15 12.12 12.08 12.03 12.00 0.09 0.08 0.74 0.66
75 11.40 11.35 11.31 11.26 11.22 0.09 0.09 0.79 0.80
76 10.70 10.59 10.56 10.50 10.46 0.09 0.10 0.85 0.95
77 10.03 9.84 9.81 9.75 9.71 0.09 0.10 0.91 1.02
78 9.35 9.11 9.08 9.01 8.96 0.10 0.12 1.10 1.32
79 8.62 8.38 8.35 8.28 8.23 0.10 0.12 1.19 1.44
80 7.87 7.66 7.64 7.56 7.52 0.10 0.12 1.31 1.57
81 7.12 6.96 6.93 6.85 6.81 0.11 0.12 1.58 1.73
82 6.39 6.26 6.24 6.16 6.11 0.10 0.13 1.60 2.08
83 5.64 5.57 5.55 5.47 5.43 0.10 0.12 1.80 2.16
84 4.86 4.89 4.87 4.79 4.76 0.10 0.11 2.04 2.26
85 4.07 4.21 4.19 4.12 4.09 0.09 0.10 2.14 2.39
86 3.40 3.53 3.51 3.45 3.42 0.08 0.09 2.27 2.56
87 2.78 2.83 2.82 2.77 2.75 0.06 0.07 2.12 2.48
88 2.12 2.11 2.10 2.07 2.05 0.04 0.05 1.90 2.38
89 1.36 1.34 1.34 1.32 1.31 0.02 0.03 1.49 2.24
90 0.49 0.49 0.49 0.49 0.48 0.00 0.01 0.00 2.04

Table 15: Life expectancy forecasts for German female population
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List of Abbreviations

Age 2019 Scenario I Scenario II Difference Drop in %
2022 2023 2022 2023 2022 2023 2022 2023

50 31.25 31.58 31.72 31.13 31.31 0.45 0.41 1.42 1.29
51 30.32 30.66 30.79 30.20 30.38 0.46 0.41 1.50 1.33
52 29.40 29.74 29.87 29.28 29.45 0.46 0.42 1.55 1.41
53 28.48 28.82 28.95 28.36 28.53 0.46 0.42 1.60 1.45
54 27.57 27.91 28.04 27.45 27.61 0.46 0.43 1.65 1.53
55 26.65 27.01 27.14 26.54 26.70 0.47 0.44 1.74 1.62
56 25.76 26.11 26.23 25.64 25.80 0.47 0.43 1.80 1.64
57 24.86 25.21 25.34 24.74 24.89 0.47 0.45 1.86 1.78
58 23.99 24.33 24.45 23.85 24.00 0.48 0.45 1.97 1.84
59 23.11 23.44 23.56 22.96 23.11 0.48 0.45 2.05 1.91
60 22.25 22.57 22.69 22.08 22.23 0.49 0.46 2.17 2.03
61 21.39 21.70 21.82 21.21 21.35 0.49 0.47 2.26 2.15
62 20.54 20.84 20.95 20.35 20.48 0.49 0.47 2.35 2.24
63 19.70 19.99 20.10 19.50 19.62 0.49 0.48 2.45 2.39
64 18.86 19.14 19.25 18.65 18.77 0.49 0.48 2.56 2.49
65 18.05 18.31 18.41 17.81 17.93 0.50 0.48 2.73 2.61
66 17.25 17.48 17.58 16.98 17.09 0.50 0.49 2.86 2.79
67 16.45 16.67 16.76 16.17 16.27 0.50 0.49 3.00 2.92
68 15.65 15.86 15.95 15.36 15.45 0.50 0.50 3.15 3.13
69 14.87 15.06 15.15 14.57 14.65 0.49 0.50 3.25 3.30
70 14.10 14.28 14.36 13.79 13.86 0.49 0.50 3.43 3.48
71 13.35 13.51 13.58 13.02 13.09 0.49 0.49 3.63 3.61
72 12.59 12.74 12.82 12.26 12.33 0.48 0.49 3.77 3.82
73 11.85 12.00 12.06 11.52 11.58 0.48 0.48 4.00 3.98
74 11.12 11.26 11.32 10.79 10.84 0.47 0.48 4.17 4.24
75 10.41 10.54 10.60 10.08 10.13 0.46 0.47 4.36 4.43
76 9.73 9.83 9.88 9.39 9.42 0.44 0.46 4.48 4.66
77 9.04 9.13 9.18 8.71 8.74 0.42 0.44 4.60 4.79
78 8.37 8.45 8.50 8.05 8.07 0.40 0.43 4.73 5.06
79 7.70 7.79 7.82 7.40 7.42 0.39 0.40 5.01 5.12
80 7.06 7.13 7.16 6.77 6.78 0.36 0.38 5.05 5.31
81 6.44 6.49 6.52 6.16 6.16 0.33 0.36 5.08 5.52
82 5.81 5.86 5.88 5.56 5.56 0.30 0.32 5.12 5.44
83 5.19 5.24 5.25 4.97 4.96 0.27 0.29 5.15 5.52
84 4.58 4.62 4.63 4.39 4.38 0.23 0.25 4.98 5.40
85 3.97 4.00 4.01 3.81 3.80 0.19 0.21 4.75 5.24
86 3.37 3.38 3.38 3.22 3.22 0.16 0.16 4.73 4.73
87 2.72 2.73 2.74 2.62 2.62 0.11 0.12 4.03 4.38
88 2.06 2.06 2.06 1.99 1.98 0.07 0.08 3.40 3.88
89 1.33 1.32 1.32 1.29 1.29 0.03 0.03 2.27 2.27
90 0.49 0.49 0.49 0.48 0.48 0.01 0.01 2.04 2.04

Table 16: Life expectancy forecasts for Dutch male population
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List of Abbreviations

Age 2019 Scenario I Scenario II Difference Drop in %
2022 2023 2022 2023 2022 2023 2022 2023

50 33.36 33.30 33.39 32.30 32.39 1.00 1.00 3.00 3.00
51 32.41 32.37 32.46 31.40 31.49 0.97 0.97 3.00 3.00
52 31.47 31.44 31.53 30.50 30.58 0.94 0.95 3.00 3.00
53 30.55 30.52 30.60 29.60 29.68 0.92 0.92 3.00 3.00
54 29.62 29.60 29.68 29.60 28.79 0.00 0.89 0.00 3.00
55 28.69 28.69 28.76 28.67 27.90 0.02 0.86 0.07 3.00
56 27.78 27.77 27.85 27.75 27.01 0.02 0.84 0.07 3.00
57 26.86 26.87 26.94 26.83 26.13 0.04 0.81 0.15 3.00
58 25.95 25.97 26.04 25.91 25.26 0.06 0.78 0.23 3.00
59 25.06 25.07 25.14 25.00 24.39 0.07 0.75 0.28 3.00
60 24.17 24.18 24.24 24.09 24.24 0.09 0.00 0.37 0.00
61 23.28 23.29 23.35 23.19 23.33 0.10 0.02 0.43 0.09
62 22.41 22.41 22.47 22.29 22.43 0.12 0.04 0.54 0.18
63 21.54 21.53 21.59 21.40 21.53 0.13 0.06 0.60 0.28
64 20.68 20.66 20.72 20.52 20.64 0.14 0.08 0.68 0.39
65 19.82 19.80 19.85 19.64 19.75 0.16 0.10 0.81 0.50
66 18.98 18.94 18.99 18.77 18.87 0.17 0.12 0.90 0.63
67 18.13 18.10 18.14 17.90 18.00 0.20 0.14 1.10 0.77
68 17.29 17.25 17.30 17.05 17.14 0.20 0.16 1.16 0.92
69 16.47 16.42 16.46 16.20 16.28 0.22 0.18 1.34 1.09
70 15.64 15.59 15.63 15.36 15.43 0.23 0.20 1.48 1.28
71 14.83 14.78 14.81 14.54 14.60 0.24 0.21 1.62 1.42
72 14.02 13.97 14.00 13.72 13.77 0.25 0.23 1.79 1.64
73 13.22 13.17 13.20 12.91 12.95 0.26 0.25 1.97 1.89
74 12.43 12.38 12.40 12.11 12.15 0.27 0.25 2.18 2.02
75 11.64 11.60 11.62 11.33 11.36 0.27 0.26 2.33 2.24
76 10.88 10.83 10.85 10.55 10.58 0.28 0.27 2.59 2.49
77 10.12 10.07 10.09 9.79 9.81 0.28 0.28 2.78 2.78
78 9.36 9.32 9.33 9.05 9.06 0.27 0.27 2.90 2.89
79 8.62 8.58 8.59 8.31 8.32 0.27 0.27 3.15 3.14
80 7.88 7.85 7.86 7.59 7.60 0.26 0.26 3.31 3.31
81 7.15 7.13 7.14 6.89 6.89 0.24 0.25 3.37 3.50
82 6.44 6.42 6.43 6.19 6.19 0.23 0.24 3.58 3.73
83 5.74 5.71 5.72 5.51 5.50 0.20 0.22 3.50 3.85
84 5.04 5.01 5.02 4.83 4.83 0.18 0.19 3.59 3.78
85 4.34 4.32 4.32 4.16 4.15 0.16 0.17 3.70 3.94
86 3.63 3.61 3.61 3.49 3.48 0.12 0.13 3.32 3.60
87 2.91 2.89 2.89 2.80 2.80 0.09 0.09 3.11 3.11
88 2.16 2.15 2.15 2.09 2.09 0.06 0.06 2.79 2.79
89 1.37 1.36 1.36 1.33 1.33 0.03 0.03 2.21 2.21
90 0.49 0.49 0.49 0.49 0.49 0.00 0.00 0.00 0.00

Table 17: Life expectancy forecasts for Dutch female population
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Age 2019 Scenario I Scenario II Difference Drop in %
2022 2023 2022 2023 2022 2023 2022 2023

50 31.54 31.97 32.09 30.81 30.93 1.16 1.16 3.63 3.61
51 30.62 31.05 31.17 29.89 30.01 1.16 1.16 3.74 3.72
52 29.70 30.13 30.25 28.97 29.09 1.16 1.16 3.85 3.83
53 28.79 29.21 29.33 28.06 28.17 1.15 1.16 3.94 3.95
54 27.87 28.30 28.42 27.15 27.26 1.15 1.16 4.06 4.08
55 26.96 27.40 27.51 26.25 26.35 1.15 1.16 4.20 4.22
56 26.06 26.50 26.61 25.36 25.45 1.14 1.16 4.30 4.36
57 25.16 25.60 25.71 24.47 24.56 1.13 1.15 4.41 4.47
58 24.28 24.71 24.82 23.58 23.67 1.13 1.15 4.57 4.63
59 23.40 23.83 23.93 22.71 22.79 1.12 1.14 4.70 4.76
60 22.53 22.95 23.05 21.84 21.92 1.11 1.13 4.84 4.90
61 21.67 22.08 22.18 20.98 21.05 1.10 1.13 4.98 5.09
62 20.81 21.21 21.31 20.12 20.19 1.09 1.12 5.14 5.26
63 19.97 20.36 20.45 19.28 19.35 1.08 1.10 5.30 5.38
64 19.13 19.51 19.60 18.45 18.51 1.06 1.09 5.43 5.56
65 18.31 18.67 18.76 17.62 17.68 1.05 1.08 5.62 5.76
66 17.51 17.84 17.92 16.81 16.86 1.03 1.06 5.77 5.92
67 16.72 17.02 17.10 16.01 16.06 1.01 1.04 5.93 6.08
68 15.96 16.20 16.28 15.22 15.26 0.98 1.02 6.05 6.27
69 15.18 15.40 15.48 14.44 14.48 0.96 1.00 6.23 6.46
70 14.40 14.61 14.68 13.67 13.71 0.94 0.97 6.43 6.61
71 13.61 13.83 13.90 12.92 12.96 0.91 0.94 6.58 6.76
72 12.82 13.07 13.13 12.19 12.22 0.88 0.91 6.73 6.93
73 12.04 12.31 12.37 11.46 11.49 0.85 0.88 6.90 7.11
74 11.33 11.57 11.62 10.75 10.78 0.82 0.84 7.09 7.23
75 10.63 10.84 10.88 10.06 10.08 0.78 0.80 7.20 7.35
76 9.96 10.12 10.16 9.38 9.40 0.74 0.76 7.31 7.48
77 9.31 9.41 9.46 8.72 8.74 0.69 0.72 7.33 7.61
78 8.65 8.72 8.76 8.07 8.09 0.65 0.67 7.45 7.65
79 7.97 8.04 8.08 7.44 7.46 0.60 0.62 7.46 7.67
80 7.28 7.37 7.41 6.83 6.84 0.54 0.57 7.33 7.69
81 6.60 6.72 6.75 6.22 6.23 0.50 0.52 7.44 7.70
82 5.94 6.07 6.09 5.63 5.64 0.44 0.45 7.25 7.39
83 5.31 5.43 5.45 5.04 5.05 0.39 0.40 7.18 7.34
84 4.66 4.79 4.81 4.46 4.47 0.33 0.34 6.89 7.07
85 4.00 4.14 4.16 3.88 3.89 0.26 0.27 6.28 6.49
86 3.40 3.49 3.50 3.29 3.30 0.20 0.20 5.73 5.71
87 2.78 2.82 2.83 2.68 2.68 0.14 0.15 4.96 5.30
88 2.10 2.11 2.12 2.03 2.03 0.08 0.09 3.79 4.25
89 1.34 1.34 1.35 1.31 1.31 0.03 0.04 2.24 2.96
90 0.49 0.49 0.49 0.48 0.48 0.01 0.01 2.04 2.04

Table 18: Life expectancy forecasts for Italian male population
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List of Abbreviations

Age 2019 Scenario I Scenario II Difference Drop in %
2022 2023 2022 2023 2022 2023 2022 2023

50 34.41 34.30 34.36 33.88 34.00 0.42 0.36 1.22 1.05
51 33.46 33.37 33.42 32.94 33.05 0.43 0.37 1.29 1.11
52 32.51 32.43 32.49 31.99 32.10 0.44 0.39 1.36 1.20
53 31.56 31.50 31.55 31.05 31.16 0.45 0.39 1.43 1.24
54 30.61 30.57 30.62 30.11 30.21 0.46 0.41 1.50 1.34
55 29.67 29.64 29.69 29.17 29.27 0.47 0.42 1.59 1.41
56 28.73 28.71 28.76 28.24 28.34 0.47 0.42 1.64 1.46
57 27.80 27.79 27.84 27.30 27.40 0.49 0.44 1.76 1.58
58 26.87 26.87 26.91 26.38 26.47 0.49 0.44 1.82 1.64
59 25.95 25.95 26.00 25.45 25.54 0.50 0.46 1.93 1.77
60 25.03 25.04 25.08 24.53 24.62 0.51 0.46 2.04 1.83
61 24.12 24.13 24.17 23.62 23.70 0.51 0.47 2.11 1.94
62 23.21 23.22 23.26 22.71 22.78 0.51 0.48 2.20 2.06
63 22.31 22.32 22.36 21.80 21.87 0.52 0.49 2.33 2.19
64 21.41 21.42 21.46 20.90 20.96 0.52 0.50 2.43 2.33
65 20.53 20.53 20.56 20.00 20.06 0.53 0.50 2.58 2.43
66 19.65 19.64 19.67 19.11 19.17 0.53 0.50 2.70 2.54
67 18.78 18.76 18.79 18.23 18.28 0.53 0.51 2.83 2.71
68 17.92 17.89 17.91 17.36 17.40 0.53 0.51 2.96 2.85
69 17.05 17.02 17.04 16.49 16.53 0.53 0.51 3.11 2.99
70 16.19 16.16 16.18 15.63 15.66 0.53 0.52 3.28 3.21
71 15.32 15.30 15.32 14.78 14.81 0.52 0.51 3.40 3.33
72 14.45 14.46 14.47 13.94 13.96 0.52 0.51 3.60 3.52
73 13.58 13.62 13.63 13.11 13.12 0.51 0.51 3.74 3.74
74 12.77 12.79 12.79 12.29 12.30 0.50 0.49 3.91 3.83
75 11.96 11.97 11.97 11.49 11.49 0.48 0.48 4.01 4.01
76 11.18 11.16 11.16 10.69 10.69 0.47 0.47 4.21 4.21
77 10.42 10.36 10.36 9.91 9.90 0.45 0.46 4.34 4.44
78 9.65 9.57 9.57 9.14 9.13 0.43 0.44 4.49 4.60
79 8.86 8.79 8.79 8.39 8.37 0.40 0.42 4.55 4.78
80 8.08 8.03 8.02 7.65 7.63 0.38 0.39 4.73 4.86
81 7.31 7.28 7.26 6.92 6.90 0.36 0.36 4.95 4.96
82 6.54 6.53 6.52 6.21 6.19 0.32 0.33 4.90 5.06
83 5.79 5.80 5.79 5.51 5.49 0.29 0.30 5.00 5.18
84 5.04 5.07 5.06 4.83 4.80 0.24 0.26 4.73 5.14
85 4.27 4.35 4.34 4.15 4.12 0.20 0.22 4.60 5.07
86 3.60 3.63 3.62 3.47 3.45 0.16 0.17 4.41 4.70
87 2.91 2.90 2.89 2.79 2.77 0.11 0.12 3.79 4.15
88 2.18 2.15 2.14 2.08 2.07 0.07 0.07 3.26 3.27
89 1.37 1.36 1.35 1.33 1.32 0.03 0.03 2.21 2.22
90 0.49 0.49 0.49 0.49 0.49 0.00 0.00 0.00 0.00

Table 19: Life expectancy forecasts for Italian female population
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List of Abbreviations

Age 2019 Scenario I Scenario II Difference Drop in %
2022 2023 2022 2023 2022 2023 2022 2023

50 30.55 31.11 31.28 30.82 31.02 0.29 0.26 0.93 0.83
51 29.64 30.21 30.38 29.92 30.12 0.29 0.26 0.96 0.86
52 28.73 29.31 29.48 29.03 29.23 0.28 0.25 0.96 0.85
53 27.84 28.42 28.58 28.15 28.35 0.27 0.23 0.95 0.80
54 26.94 27.53 27.69 27.27 27.47 0.26 0.22 0.94 0.79
55 26.06 26.65 26.81 26.40 26.60 0.25 0.21 0.94 0.78
56 25.20 25.77 25.93 25.54 25.74 0.23 0.19 0.89 0.73
57 24.34 24.90 25.06 24.69 24.89 0.21 0.17 0.84 0.68
58 23.49 24.04 24.20 23.84 24.05 0.20 0.15 0.83 0.62
59 22.64 23.19 23.34 23.00 23.21 0.19 0.13 0.82 0.56
60 21.80 22.34 22.49 22.18 22.38 0.16 0.11 0.72 0.49
61 20.96 21.50 21.65 21.36 21.57 0.14 0.08 0.65 0.37
62 20.13 20.67 20.82 20.55 20.76 0.12 0.06 0.58 0.29
63 19.32 19.85 19.99 19.74 19.96 0.11 0.03 0.55 0.15
64 18.52 19.03 19.18 18.95 19.16 0.08 0.02 0.42 0.10
65 17.74 18.23 18.37 18.17 17.82 0.06 0.55 0.33 3.00
66 16.96 17.43 17.57 17.39 17.04 0.04 0.53 0.23 3.00
67 16.20 16.65 16.78 16.63 16.28 0.02 0.50 0.12 3.00
68 15.44 15.87 16.00 15.87 15.52 0.00 0.48 0.00 3.00
69 14.69 15.10 15.23 14.65 14.77 0.45 0.46 3.00 3.00
70 13.96 14.35 14.47 13.92 14.04 0.43 0.43 3.00 3.00
71 13.26 13.60 13.73 13.19 13.32 0.41 0.41 3.00 3.00
72 12.55 12.87 12.99 12.48 12.60 0.39 0.39 3.00 3.00
73 11.84 12.15 12.26 11.79 11.89 0.36 0.37 3.00 3.00
74 11.14 11.44 11.55 11.10 11.20 0.34 0.35 3.00 3.00
75 10.45 10.74 10.84 10.42 10.51 0.32 0.33 3.00 3.00
76 9.78 10.05 10.15 9.75 9.85 0.30 0.30 3.00 3.00
77 9.12 9.38 9.47 9.10 9.19 0.28 0.28 3.00 3.00
78 8.47 8.71 8.80 8.45 8.54 0.26 0.26 3.00 3.00
79 7.82 8.05 8.14 7.81 7.90 0.24 0.24 3.00 3.00
80 7.17 7.40 7.48 7.18 7.26 0.22 0.22 3.00 3.00
81 6.55 6.76 6.83 6.56 6.63 0.20 0.20 3.00 3.00
82 5.92 6.12 6.19 5.94 6.00 0.18 0.19 3.00 3.00
83 5.31 5.49 5.55 5.33 5.38 0.16 0.17 3.00 3.00
84 4.68 4.85 4.90 4.85 4.75 0.00 0.15 0.00 3.00
85 4.06 4.21 4.25 4.20 4.25 0.01 0.00 0.24 0.00
86 3.42 3.55 3.58 3.53 3.58 0.02 0.00 0.56 0.00
87 2.78 2.86 2.89 2.85 2.88 0.01 0.01 0.35 0.35
88 2.09 2.14 2.15 2.13 2.14 0.01 0.01 0.47 0.47
89 1.33 1.36 1.36 1.35 1.36 0.01 0.00 0.74 0.00
90 0.49 0.49 0.49 0.49 0.49 0.00 0.00 0.00 0.00

Table 20: Life expectancy forecasts for Finnish male population
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List of Abbreviations

Age 2019 Scenario I Scenario II Difference Drop in %
2022 2023 2022 2023 2022 2023 2022 2023

50 34.13 34.19 34.32 34.03 34.18 0.16 0.14 0.47 0.41
51 33.19 33.26 33.39 33.10 33.24 0.16 0.15 0.48 0.45
52 32.24 32.33 32.46 32.16 32.31 0.17 0.15 0.53 0.46
53 31.30 31.41 31.54 31.23 31.38 0.18 0.16 0.57 0.51
54 30.39 30.49 30.61 30.31 30.45 0.18 0.16 0.59 0.52
55 29.45 29.57 29.70 29.39 29.53 0.18 0.17 0.61 0.57
56 28.51 28.66 28.78 28.47 28.61 0.19 0.17 0.66 0.59
57 27.59 27.75 27.87 27.55 27.69 0.20 0.18 0.72 0.65
58 26.66 26.84 26.96 26.64 26.78 0.20 0.18 0.75 0.67
59 25.74 25.94 26.06 25.74 25.87 0.20 0.19 0.77 0.73
60 24.84 25.04 25.16 24.83 24.97 0.21 0.19 0.84 0.76
61 23.94 24.14 24.27 23.94 24.07 0.20 0.20 0.83 0.82
62 23.05 23.25 23.38 23.04 23.18 0.21 0.20 0.90 0.86
63 22.14 22.37 22.49 22.16 22.29 0.21 0.20 0.94 0.89
64 21.25 21.49 21.61 21.27 21.41 0.22 0.20 1.02 0.93
65 20.37 20.61 20.73 20.40 20.53 0.21 0.20 1.02 0.96
66 19.52 19.74 19.86 19.53 19.65 0.21 0.21 1.06 1.06
67 18.67 18.88 18.99 18.66 18.79 0.22 0.20 1.17 1.05
68 17.80 18.02 18.13 17.80 17.93 0.22 0.20 1.22 1.10
69 16.95 17.17 17.28 16.95 17.07 0.22 0.21 1.28 1.22
70 16.10 16.32 16.43 16.11 16.22 0.21 0.21 1.29 1.28
71 15.25 15.48 15.59 15.27 15.38 0.21 0.21 1.36 1.35
72 14.43 14.65 14.75 14.44 14.55 0.21 0.20 1.43 1.36
73 13.60 13.82 13.92 13.62 13.72 0.20 0.20 1.45 1.44
74 12.79 13.00 13.10 12.80 12.90 0.20 0.20 1.54 1.53
75 11.97 12.19 12.29 12.00 12.09 0.19 0.20 1.56 1.63
76 11.18 11.39 11.48 11.20 11.29 0.19 0.19 1.67 1.66
77 10.39 10.60 10.68 10.41 10.50 0.19 0.18 1.79 1.69
78 9.62 9.81 9.89 9.64 9.71 0.17 0.18 1.73 1.82
79 8.83 9.03 9.11 8.87 8.94 0.16 0.17 1.77 1.87
80 8.09 8.27 8.33 8.11 8.17 0.16 0.16 1.93 1.92
81 7.35 7.50 7.56 7.36 7.42 0.14 0.14 1.87 1.85
82 6.61 6.75 6.80 6.62 6.67 0.13 0.13 1.93 1.91
83 5.87 6.00 6.05 5.88 5.93 0.12 0.12 2.00 1.98
84 5.16 5.25 5.29 5.15 5.19 0.10 0.10 1.90 1.89
85 4.42 4.51 4.54 4.42 4.45 0.09 0.09 2.00 1.98
86 3.69 3.76 3.78 3.69 3.71 0.07 0.07 1.86 1.85
87 2.95 3.00 3.01 2.95 2.96 0.05 0.05 1.67 1.66
88 2.19 2.21 2.22 2.18 2.19 0.03 0.03 1.36 1.35
89 1.38 1.38 1.39 1.37 1.37 0.01 0.02 0.72 1.44
90 0.49 0.49 0.49 0.49 0.49 0.00 0.00 0.00 0.00

Table 21: Life expectancy forecasts for Finnish female population
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List of Abbreviations

List of Abbreviations

AIC Akaike Information Criterion
APC Age-Period-Cohort

ARIMA Autoregressive Integrated Moving Average
BIC Bayesian Information Criterion
BMI Body Mass Index

CART Classification and Regression Trees
CBD Cairns-Blake-Dowd

GAM Generalized Additive Model
GAPC Generalized Age-Period-Cohort

GCV Generalized Cross Validation
GDP Gross Domestic Product
GLM Generalized Linear Model
HMD Human Mortality Database

i.i.d. independent and identically distributed
LC Lee Carter
M7 Quadratic CBD with cohort effects

MAPE Mean Absolute Percentage Error
OECD Organisation for Economic Co-operation and Development

P-IRLS Penalized Iteratively Re-weighted Least Squares
REML Restricted Maximum Likelihood
RMSE Root Mean Square Error
STMF Short Term Mortality Fluctuations

UIS UNESCO Institute of Statistics
WHO World Health Organization
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