
Ludwig-Maximilians-Universität München
Department of Statistics

Master’s Thesis

What next? Modeling human behavior
using smartphone usage data and (deep)

recommender systems

Simon Wiegrebe

supervised by
Dr. David Rügamer

September 28, 2021



Contents

Abstract 5

1 Introduction 6

2 Theoretical Framework 7

3 Data 9
3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Data Representation and Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 App-level Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 Sequence-level Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.3 App-to-text Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Methodology 14
4.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.1 Session-based Baseline Models . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.2 Session-based Neural Models . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.3 Session-aware Neural Models . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Evaluation and Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.1 Train-Validation-Test Split . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.2 Evaluation Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.4 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Numerical Experiments 23
5.1 App-level Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1.1 Next-event Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1.2 Category-level Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.3 Embedding Analysis of GRU4Rec . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Sequence-level Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Discussion 40
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3 Suggestions for Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Appendix 43

8 Declaration of Originality 47

1



List of Figures

1 General architecture of the GRU4Rec model. Figure is taken from Hidasi et al.
(2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 General architecture of the HGRU4Rec model. Figure is taken from Quadrana
et al. (2017). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 HR@k performance for k = 1, 5, 10, and 20 on five-window app-level data for all
selected algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 HR@k comparison between performance on full five-window app-level data (left
bars) and performance on five-window app-level data when only training and
evaluating on sequences with a minimum length of 20, for k ∈ {1, 5, 10, 20}. . . . 26

5 HR@1 performance across the first ten prediction positions on five-window app-
level data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 HR@k performance comparison between full five-window app-level data (left
bars) and five-window app-level data after dropping all ON and OFF events
(right bars), for k ∈ {1, 5, 10, 20}. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7 HR@k performance increases on five-window app-level data when only consider-
ing app categories for evaluation (left bars) instead of considering the individual
apps (right bars), for k ∈ {1, 5, 10, 20}. . . . . . . . . . . . . . . . . . . . . . . . . 32

8 App category-based clustering of 128-dimensional app-level embeddings. Blue
dots represent apps categorized as Messaging, red dots represent apps catego-
rized as Social Networks. For illustration, app embeddings are reduced to a
dimensionality of two, using TSNE. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

9 k-means clustering of app-level embeddings (k = 15). For illustration, app em-
beddings are reduced to a dimensionality of two, using TSNE. . . . . . . . . . . . 34

10 HR@k performance for k = 1, 5, 10, and 20 on five-window sequence-level data
for all selected algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

11 HR@k performance comparison between full five-window sequence-level data
(left bars) and five-window sequence-level data after dropping all ON and OFF
events (right bars), for k ∈ {1, 5, 10, 20}. . . . . . . . . . . . . . . . . . . . . . . . 38

12 HR@1 performance across the first ten prediction positions on five-window sequence-
level data for all selected algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . 39

2



List of Tables

1 Excerpt of anonymized app-level data. The timestamp column contains Unix
timestamps, i.e., seconds passed since January 01, 1970 (UTC). . . . . . . . . . . 10

2 Summary statistics of app-level and sequence-level data. . . . . . . . . . . . . . . 11
3 Performance results on five-window app-level data. Performance is averaged

across all windows, which are of equal time span. For HR@k and MRR@k,
the best performance per metric is highlighted in bold. . . . . . . . . . . . . . . . 24

4 Difference between performance when training on all sequences but only consid-
ering sequences of at least 20 events for evaluation and performance when only
considering sequences of at least 20 events for both training and evaluation on
five-window app-level data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 HR@1 performance results on five-window app-level data, by positional cutoff
within test sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Performance results on five-window app-level data when dropping all ON and
OFF events from both training and evaluation data. For HR@k and MRR@k,
the best performance per metric is highlighted in bold. . . . . . . . . . . . . . . . 30

7 Performance results on five-window app-level data when only considering the
category of apps in the test sequence. For HR@k and MRR@k, the best perfor-
mance per metric is highlighted in bold. . . . . . . . . . . . . . . . . . . . . . . . 31

8 Performance results on five-window sequence-level data. Performance is averaged
across five windows of equal time span. For HR@k and MRR@k, the best
performance per metric is highlighted in bold. . . . . . . . . . . . . . . . . . . . . 35

9 Performance results on five-window sequence-level data when dropping all ON
and OFF events from the underlying app-level sessions. ForHR@k andMRR@k,
the best performance per metric is highlighted in bold. . . . . . . . . . . . . . . . 37

10 Performance results on five-window sequence-level data, by positional cutoff within
test sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

11 Optimal hyperparameters for non-neural models for app- and sequence-level data. 43
12 Optimal hyperparameters for neural network-based models for app- and sequence-

level data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
13 Performance results on single-window app-level data. For HR@k and MRR@k,

the best performance per metric is highlighted in bold. . . . . . . . . . . . . . . . 44
14 Differences between single- and multiple-window performance on app-level data. 45
15 Performance results on five-window app-level data when only considering se-

quences of at least 20 events for both training and evaluation. For HR@k and
MRR@k, the best performance per metric is highlighted in bold. . . . . . . . . . 45

3



16 Performance on five-window app-level data when training on all sequences but
only considering sequences of at least 20 events for evaluation. For HR@k and
MRR@k, the best performance per metric is highlighted in bold. . . . . . . . . . 45

17 HR@1 performance results on five-window app-level data, by position within test
sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

18 Relative frequency of predicting an OFF event as top-ranked recommendation
on five-window app-level data, by position in the test sequence. . . . . . . . . . . 46

19 Performance results on single-window sequence-level data. ForHR@k andMRR@k,
the best performance per metric is highlighted in bold. . . . . . . . . . . . . . . . 46

20 Performance results on five-window sequence-level data, by position within test
sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4



Abstract

Smartphone usage data has become an appealing source of data, not just to commercial
entities but also to behavioral researchers. In this work, we take a data-driven approach
to the exploration of behavioral sequences: we perform a variety of next-event prediction
tasks on smartphone app sessions from a PhoneStudy project dataset, exploring many of
the idiosyncrasies as well as different representations of our data. To do so, we employ a set
of algorithms from the RS domain, well suited because of their ability to account for the
sequential nature of app usage data and to deal with the large number of distinct events
(e.g., apps) to be predicted.

We find that behavioral sequences can be modeled well by means of next-event predic-
tion using RS methods. Many - especially non-deep - algorithms show strong predictive
power across most tasks, partially achieving HitRate@1 and HitRate@20 performances of
above 40% and 90%, respectively. And while deep RS methods work well on some tasks,
they exhibit shortcomings caused by short sequence length and small dataset size.
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1 Introduction

Recent years have seen smartphone usage data becoming a highly valuable source of data because
of its large volume and ubiquitousness. While mostly employed by commercial enterprises - for
example, for product targeting and personalized mobile marketing (Tong et al., 2020) - this
data is also of increasing interest to researchers, due to its easy accessibility, cleanness, and
high degree of representativeness of actual human behavior (Mafrur et al., 2015; Montag et al.,
2019).

In this work, we seek to learn about human behavioral sequences through smartphone usage
data. Yet whereas most behavioral research aims at associating observed smartphone usage
patterns with self-disclosed behavioral traits (Peltonen et al., 2020; Stachl et al., 2020), in this
work we aim to predict actual, observed behavior. We consider the PhoneStudy project data
(Stachl et al., 2019), which contains smartphone app data for 310 participants over a period
of approximately three months, and take an entirely data-driven approach: by construction,
app usage data is sequential, i.e., time-ordered, and the number of distinct apps is very large,
usually in the thousands. Sequence-aware models from the recommender systems (RS) domain
naturally lend themselves to the analysis of this kind of data; and recently, deep learning-based
RS approaches have further widened the repertoire of RS methods. In line with our exploratory
approach, we choose a broad selection of eleven sequence-aware RS methods and perform various
next-event prediction tasks. As explained in Section 3.2, we represent the app usage data - and
thus the events to be predicted - in two distinct ways, applying our models to both "app-level"
and "sequence-level" data.

We find that RS algorithms are capable of learning behavioral sequences, with multiple
algorithms correctly predicting more than 30% of next apps (HitRate@1 ) and some algorithms
reaching a 90% HitRate@20 performance. We also find that neural network-based models
are outperformed by simpler algorithms based on trees, co-occurrence frequencies, or nearest
neighbors. As compared to standard RS datasets - as in Sun et al. (2019) or Latifi et al.
(2021) - the predictive performance we obtain is impressive. This is partly due to the specific
characteristics of our data: the event space - i.e., the variety of different apps - is not as large as
in other RS tasks such as movie recommendation or next-click prediction, and some events occur
very frequently, facilitating prediction. However, some of the data characteristics also pose limits
in terms of modeling choices and performance: each app usage session commences by switching
on the phone and ends by switching it off, implying that two events of each session are (almost)
non-informative; furthermore, most sessions are rather short, which makes it hard to learn
from them - in particular for neural network-based models. And while we explore alternative
modeling approaches, such as removing ON and OFF events or representing the data from a
sequence-level perspective, each one also comes with its own limitations. Altogether, we still
conclude that behavioral sequences can be modeled successfully using RS methods, but also
that the limitations of our data are likely a performance bottleneck.
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This paper is organized as follows: In Section 2 we present the relevant theoretical back-
ground and approaches to the modeling of behavioral sequences. Section 3 describes our dataset
and discusses different ways of how to represent (and subsequently model) the data. Section 4
introduces our selection of algorithms as well as the evaluation methodology. Section 5 presents
our analyses along with the corresponding results. Section 6 concludes, addresses limitations,
and provides suggestions for future research.

2 Theoretical Framework

Investigating human behavioral traits through smartphone usage data has been a topic of in-
creasing interest for behavioral researchers and psychologists in recent years. Early explorations
of this topic were made by Chittaranjan et al. (2013) and de Montjoye et al. (2013), who use
features extracted from smartphone usage data to predict Big Five personality traits. More
recently, Peltonen et al. (2020) gather smartphone application data over a period of six months
as well as a questionnaire on Big Five personality traits for a total of 739 participants. They
then use app (and app-category) usage to predict these personality traits. Stachl et al. (2020)
use data from 743 participants recruited as part of the PhoneStudy project (Stachl et al., 2019)
in order to predict Big Five personality dimensions based on behavioral information; this be-
havioral information is extracted from smartphone usage through a classification of activities
(mobility, communication, etc.).

While datasets, extracted features, and prediction methodologies differ among the above-
mentioned works, all of them aim to predict self-disclosed behavior, typically based on a ques-
tionnaire about pre-established personality traits. However, in order to figure out how people
actually act - instead of how they proclaim they will be acting - it might be more instructive
to try to directly predict people’s actions. To do so, one can take advantage of the sequential
nature of smartphone usage data, in particular of app usage, and focus on the prediction of
the next app a user is going to use given their current usage session. However, none of the
aforementioned works take up the notion of a usage session.

In this work, we also use the PhoneStudy project data (Stachl et al., 2019), yet we seek to
explore human behavioral sequences from a data-centric point of view: we uncouple the data
from its psychological context and simply consider apps as one-hot encoded app vectors, the
same way word tokens are represented in a vocabulary in Natural Language Processing (NLP).

From there, one could project the one-hot encoded app vectors into a lower-dimensional
embedding space, as done in Ma et al. (2016). The authors introduce app2vec, which adjusts
the well-known word2vec (Mikolov et al., 2013) to the idiosyncrasies of app sequences; for
instance, they modify the continuous bag of words (CBOW) algorithm to weight context words
according to their temporal proximity to the target word. However, we do not choose this
approach as our main modeling objective because of the following two main drawbacks: first,
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while word analogies are very intuitive - like the famous "king - man + woman = queen" analogy
by Mikolov et al. (2013) - app embeddings are much less intuitive and more difficult to construct.
For instance, it is not very clear whether the app analogy examples given in Table V of Ma
et al. (2016) are analogies at all. Second, app embeddings do not directly lend themselves to
any type of standard performance evaluation: apart from app analogies or (rather hand-crafted)
clustering tasks, there are no widely used performance metrics or methodologies available for
app embeddings, making it hard to evaluate this modeling approach. Still, in section 5.1.3
we do experiment with app embeddings which are created internally by some of our selected
algorithms.

Another approach to model behavioral traits, again disassociated from the psychological
context, is to focus entirely on the sequential nature of the data. Our data is organized into
time-ordered sequences - smartphone usage sessions - with a natural structure: they start by
turning on the screen and end by turning it off. In its sequential nature, smartphone usage
data is very similar to data from movie ratings, e-commerce sessions, or social networking sites:
there are several users, each user has one or more sessions (depending on whether user ID
is recorded), and each session contains one or more events (e.g., apps used or items clicked).
For all of these data types, the typical task performed is next-event prediction - which in the
case of smartphone usage data would be next-app prediction - and to do so, models from the
recommender systems (RS) domain are used. RS methods are designed to be used whenever
the target variable follows a multinomial distribution with a large number of distinct outcomes
and the task is to recommend one (or more) of these outcomes. RS methods thus generate a
list of top recommendations based on historical session data.

The sequential nature of our data is intrinsically similar to language data: events correspond
to word tokens, while usage sessions correspond to sentences. Because of that, and due to the
breakthroughs in NLP, language models have been adjusted to be used in the RS domain in
recent years. These models are usually neural network-based and thus methodologically more
sophisticated (see, e.g., BERT4Rec by Sun et al. (2019)), whereas many traditional RS methods
are much simpler, based on co-occurrence frequencies or nearest neighbors (see baseline models
in section 4.1.1). In order to model smartphone usage data, the RS methods used must be
capable of handling the inherent sequential structure. Early work on next-app prediction - the
task of predicting the next app in a session given all previous apps in that session - was carried
out by Natarajan et al. (2013), who create a personalized recommender algorithm based on
collaborative filtering and cluster-level Markov models. Another early work was conducted by
Baeza-Yates et al. (2015), who model next-app prediction as classification task, using feature
engineering and a Tree Augmented Naive Bayesian Network.1 Since these early methods, litera-
ture on RS methods designed to take session data as input has grown considerably. In line with
Latifi et al. (2021), sequential RS methods can be divided into two categories: session-based

1We do not include any of these two models into our analysis because the papers do not publicly share their
code.
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and session-aware models.
Session-based RS methods process session data as input, yet do not account for the poten-

tial existence of user-level clusters caused by multiple sessions stemming from the same user.
That is, only recent events from the session at hand (short-term preferences) enter the model
and thus generate predictions, whereas user-level effects (long-term preferences) do not. As a
consequence, even if we have user-level information at hand (typically in the form of a user ID
in addition to the session ID), session-based models cannot harness this information. In terms
of past research, early work on session-based RS methods dates back to the beginning of this
century (Mobasher et al., 2002; Shani et al., 2005); yet it was after the introduction of deep
learning methods to the RS domain that many session-based models have been developed. The
first deep learning-based session-based RS model was GRU4Rec (Hidasi et al., 2015), which is
also the most well-known model of this category and is oftentimes used as baseline for both
session-based (Li et al., 2017; Yuan et al., 2018) and session-aware approaches (Hu et al., 2018;
Phuong et al., 2018; Quadrana et al., 2017; Ruocco et al., 2017). We describe the GRU4Rec
model, as well as models that build on it, in more detail in Sections 4.1.2 and 4.1.3.

Session-aware RS methods, on the other hand, exhibit user-awareness; that is, they can
account for both short-term session preferences (intra-session information) and long-term user
preferences (inter-session information). In general, session-aware models have not been re-
searched extensively as of now. An early (deep learning-based) session-aware RS method is
HGRU4Rec, which is a user-aware extension of GRU4Rec; we explain the details of this model
in Section 4.1.3.

In this work, we decide to focus on the session structure of our data and to investigate
human behavior by performing next-event prediction, yet at the same time we go beyond mere
app-level prediction (see Sections 3.2.2 and 5.2). The next section introduces our dataset as
well as some necessary preprocessing.

3 Data

3.1 Description

We use the PhoneStudy dataset from a mobile sensing research project at the Ludwig-Maximilians-
University Munich (Stachl et al., 2019).2 As part of the study, 310 participants (users) were
recruited, consenting to providing log, sensor, and app-usage data during the study period from
October 29, 2017 through January 22, 2018.

For each user, we have up to 86 days of smartphone usage data, each app usage being
recorded along with its exact opening date and time. In a first preprocessing step, we define

2The data is composed of three individual datasets. Combining all datasets would add heterogeneity in terms
of participant recruitment as well as beginning, end, and duration of the study period. Moreover, the unbiased
creation of windows (see Section 3.2) would become more difficult. Since the first dataset furthermore contains
almost 95% of all observations, we decide to not include data from the second and third dataset.
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smartphone usage sessions as a time-ordered sequence of apps (events), starting with an ON
event (whereby the screen is switched on) and ending with an OFF event (whereby the screen
is switched off); that is, ON and OFF are events just like any other app. All events within a
single session are assigned the same unique session ID. By definition, each session has minimum
length two; sessions with a length of exactly two are ON-OFF sessions, where a user turns on
the screen (for example to check the time) and turns it off immediately after.

As a final general preprocessing step, we map app names to numeric app IDs and convert
the date and time variable to a Unix timestamp, resulting in the dataframe as shown in Table
1. There is a total of 844,296 sessions, with 1392 and 1389 being the IDs corresponding to an
ON and OFF event, respectively.

userID timestamp sessionID appID
1 1.511423e+09 1 1392
1 1.511423e+09 1 1389
1 1.511424e+09 2 1392
1 1.511424e+09 2 1389
1 1.511424e+09 3 1392
... ... ... ...
310 1.515952e+09 844295 1389
310 1.515953e+09 844296 1392
310 1.515953e+09 844296 1389

Table 1: Excerpt of anonymized app-level data. The timestamp column contains Unix times-
tamps, i.e., seconds passed since January 01, 1970 (UTC).

3.2 Data Representation and Preprocessing

In language modeling there is a natural way of how to construe the data: tokens correspond
to words (or word pieces), while a sentence is simply a concatenation of tokens ending with
a period. In our case, the main objective is to model human behavior through smartphone
usage data in an exploratory fashion, not to find a new use case for the application of language
models. In the following, we therefore explore app-level and sequence-level representations, two
distinct ways of how to construe and accordingly tokenize the data. We additionally discuss an
app-to-text conversion approach, though do not further pursue it in this paper.

3.2.1 App-level Data

The simplest and most intuitive representation of our data is to let tokens correspond to apps
and sentences correspond to sessions. As explained above, we define sessions to start with an
ON event and end with an OFF event, whereby ON and OFF are treated as tokens just like
any other app (event) token. We coin this "app-level data representation". The objective here
is next-app prediction, i.e., predicting the next app (token) a user is going to use in a given
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session (sentence). In our case, for each user we have a large number of sessions yet most of
them are rather short, as can be seen in Table 2.

App-level Sequence-level
Number of events 4,314,830 720,379
Number of unique events 2,488 2,454
Number of sequences 844,296 9,377
Number of users 310 310
Sequences per user 2,723.54 30.25
Mean number of events per sequence 5.11 76.82
1st quartile of number of events per sequence 2.0 34.0
Median number of events per sequence 4.0 66.0
3rd quartile of number of events per sequence 6.0 106.0

Table 2: Summary statistics of app-level and sequence-level data.

As explained in Section 4.2.2, for performance evaluation all but the first event (app) of
each test session is taken into account. We initially require all sessions to have a minimum
length of two, as well as a minimum global frequency of five, in line with Latifi et al. (2021).3

Furthermore, each user is required to have at least three sessions: one for training, validation,
and testing, respectively.4 Events from the validation and test set which do not occur in the
respective user’s training set are filtered out, as is explained in more detail in Section 4.2.1.

The short average sentence length of our app-level data is also a result of the high frequency
of ON-OFF sessions: in fact, 328,554 out of all 844,296 sessions (38.9%) are such ON-OFF
sessions. To increase average sentence length, in section 5.1.1 we remove the non-informative
ON and OFF events (and thus implicitly all ON-OFF sessions).

Due to the large number of sessions per user and the nature of recommender systems,
requiring all but the last session (of each user) for training, the test set is relatively small and
only contains sessions from January 22, 2018 (the last day of the study period), which might
introduce unwanted idiosyncrasies. To obtain more stable results, we split the entire study
period - October 29, 2017 through January 22, 2018 - into five windows of equal length and
assign sessions to windows based on the timestamp of a session’s first app; this way, for each
user we obtain five training, validation and test sets, respectively. Performance results are then
simply averaged across the five test sets.5

3The minimum length requirement is not binding initially, since all of our sessions have minimum length two
by construction, due to the presence of the ON and OFF event. In Section 5.1.1, we increase the minimum
length requirement to focus on longer sessions only.

4This requirement does not exclude any of the users, with the average number of sessions per user being well
above 2000.

5This multiple-window approach, in particular with the number of windows set to five, is a common procedure
in the RS literature; see, e.g., Ludewig and Jannach (2018) or Latifi et al. (2021).
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3.2.2 Sequence-level Data

While sessions for RS applications tend to be shorter than natural language sentences (see,
e.g., Table 2 in Latifi et al. (2021)), our sessions are still particularly short. This is a potential
concern for the use of neural network-based models, because they are used to learning from
natural language sentences, which in turn tend to be significantly longer than our app-level
sessions. After training, each new sentence constitutes a cold-start situation for the neural
models, in particular for those without session awareness (Ludewig and Jannach, 2018).

One way to address the issue of having very short sessions is to view the data differently:
instead of considering individual apps and their predictability, we might rather focus on the
content of entire smartphone usage sessions and whether their content can predict the content
of future sessions. To do so, in a first step we redefine an app session as concatenation of
the categories of the apps which constitute a session, using pre-defined app categories coming
with our dataset.6 In doing so, we also combine consecutive events from the same category
into a single event. This categorization reduces the number of unique sessions from 173,808 to
124,624. In a second step, we condense each (categorized) session into a single "content token"
by concatenating the app categories within a session into a single session string. In a third step,
for each user we create sentences by grouping together all "content tokens" occurring on a single
calendar day; we do so by assigning a unique sentence ID to all of a given user’s session strings
where the timestamp of the session strings’ first app occurs on a given calendar day. We choose
calendar days for defining a sentence because of their natural cyclical pattern and because the
resulting sentences have a much higher - yet not too high - average length as compared to
app sessions (see Table 2 for summary statistics). This way, we again obtain a sequential data
structure: for each user there are multiple sentences, which in turn contain multiple tokens. We
call this sequence-level analysis.

Up until now, the term session has been used ambiguously, referring to a sequence of events
in app-level analysis and to a single event token in sequence-level analysis. Furthermore, the
term sentence has been utilized as sequence-level analog of an app-level session as well as in
its original natural language meaning. To avoid confusion, from now on we mostly use the
unambiguous terms event (to refer to a single token) and sequence (to refer to a sequence of
tokens).

As for preprocessing of sequence-level data, we again require a minimum sequence length of
two events, at least three sequences per user, and events from validation and test set to also
appear in the training set. Now, however, the minimum global frequency for an event to be
included is set to ten (as compared to five for app-level analysis); this removes many of the very
infrequent events and we end up with 2,454 unique events, comparable to the app-level setting.

An evident drawback of sequence-level analysis is the data size. As can be seen in Table
6For instance, the app category corresponding to "WhatsApp" is "Messaging". This app-category mapping,

which maps the 2,488 individual apps to a total of 93 categories, was performed by Stachl et al. (2020).
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2, the number of total events is close to what used to be the number of sequences in the app-
level setting: 720,379 versus 844,296, the difference being mostly due to the minimum global
frequency of ten required for sequence-level events. The number of sequences is now significantly
lower.

In sequence-level analysis, we now have ON-OFF events (which used to be ON-OFF se-
quences in the app-level setting), constituting 51.06% of all events. In section 5.2, we remove all
ON- and OFF-events from the underlying (app-level) data before converting to the sequence-
level representation, thereby also removing all ON-OFF tokens.

Finally, as explained for app-level data above, we conduct both single-window and multiple-
window performance evaluation, with windows being created exactly as described in Section
3.2.1.

3.2.3 App-to-text Conversion

Yet another way to construe the data would be to start with the methodology we wish to use
and then represent the data accordingly. In particular, we might choose to use transformers
(Vaswani et al., 2017), given their breakthroughs in NLP in recent years and recalling that
language data is, by definition, also sequential. Using transformers has one key advantage:
one can make use of transfer learning, by pre-training the model on the vast amounts of task-
agnostic text data available and then using the pre-trained model for task-specific fine-tuning.
As for the latter step, there are two possible approaches in terms of how to represent our data
for fine-tuning.

First, we could convert our app sequences into natural language by using rule-based natural
language descriptions of each app. An app sequence would then correspond to a natural language
sentence.7 This approach has two advantages: first, it would allow for inclusion of further
features beyond the mere app name; for instance, one could easily include an app’s timestamp
and geolocation into the app usage description. Second, the transformer is both pre-trained and
fine-tuned on (sequential) language data, so there is no inefficiency or bias caused by different
data modalities.

Alternatively, we could try to model our app sequences directly - and thus make next-app
predictions directly - by representing our data as in section 3.2.1, i.e., without transcribing app
sequences to natural language. The idea behind this approach, as explored in Lu et al. (2021),
is that transformers do not only learn language sequence patterns but sequential patterns in
general, even if data of different modalities is involved. This way, a transformer pre-trained
on language data could directly be fine-tuned on non-language sequential data, in our case on
(tokenized) app sequences. While this approach has the advantage of not requiring (rule-based)
app-to-language transcriptions, it does not allow for the abovementioned inclusion of additional

7For example, the app sequence "ON, WhatsApp, Calendar, OFF" could be transcribed into the following
natural language sentence: "The user switched on their screen in order to chat on WhatsApp, then checked their
calendar, and finally switched off the screen."
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app-related information. Furthermore, it is unclear how well transformers would perform on
this particular cross-modal task.

In this work, we do not further pursue analysis based on app-to-text conversion and trans-
formers, instead leaving it for future research.

4 Methodology

Throughout the last few years, almost all session-based and session-aware models proposed have
been neural network-based, with newer models showing a tendency to be architecturally ever
more complex. However, as demonstrated in Ludewig and Jannach (2018) for session-based
models and in Latifi et al. (2021) for session-aware models, complex neural methods oftentimes
fall short of much simpler methods when a fair performance comparison is conducted. Indeed,
unfair comparisons and undue declarations of new "state of the art" models are not restricted
to the RS domain (see Shwartz-Ziv and Armon (2021) for examples). Our methodology thus
consists of two key aspects: choosing a modeling framework and enabling a fair performance
comparison.

4.1 Modeling

In section 3.2 above we saw that preprocessing is very dataset-specific. The prediction task,
on the other hand, is not: we wish to predict the next event, based on a sequence of past
events. Whether events and sequences are defined in an app-level or sequence-level fashion, or
whether we are dealing with a different RS dataset altogether (e.g., e-commerce data instead
of smartphone usage data), is therefore irrelevant regarding the choice and implementation of
algorithms. We simply need a set of algorithms which take sequential data, potentially clustered
at a user level, as input and output prediction scores for each candidate event; these prediction
scores can then be ranked to form a recommendation list, which in turn is used to evaluate the
algorithm by comparing recommended events to observed events.

We use the framework as implemented by Latifi et al. (2021), who compare a variety of
RS algorithms applied to retail, music, and social networking datasets.8 We restrict ourselves
to a subset of all implemented algorithms, based on their type, applicability to our task, and
runtime. Altogether we select eight algorithms, covering both session-based and session-aware
methods and different degrees of model complexity. Sections 4.1.1 through 4.1.3 explain the
algorithms selected in more detail. Moreover, we equip three session-based algorithms with
session-aware extensions, as explained in Section 4.1.4. Our selection thus comprises a total
of eleven algorithms. These algorithms are then applied to the next-event prediction tasks in
Section 5.

8Implementation by Latifi et al. (2021): https://github.com/rn5l/session-rec/. Like them, we perform
all modeling, evaluation, and analysis tasks in Python.
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Before describing the algorithms, we quickly introduce some notation. Let scomplete :=

(s1, s2, . . . , sm) be a sequence of chronologically ordered events, with ss being the last "known"
event in the sequence; that is, s := (s1, s2, . . . , ss) is our current (known) sequence and event
ss+1 is the true next event, which we seek to predict. Sp denotes the set of all training sequences.
Let i be the candidate event for which we wish to compute a score, given the current sequence
s. Finally, 1A(a) denotes the indicator function, equaling 1 if a ∈ A and 0 otherwise.

4.1.1 Session-based Baseline Models

We use the term baseline to refer to models which are not neural network-based. We include
five baseline algorithms (as well as two extension-equipped ones) into our analysis. The sim-
plest baseline algorithms are called Association Rules (AR) and Sequential Rules (SR), both
introduced by Ludewig and Jannach (2018). These algorithms calculate a score for a given can-
didate event by simply counting (or looking up) the number of intra-sequence co-occurrences of
the current sequence’s last known event and the candidate event among all training sequences.
Since these methods only take into account the last event within a sequence when making a
prediction, they exhibit very low computational complexity.

AR is a simplification of the mining technique proposed by Agrawal et al. (1993). Among
all training sequences, this method simply counts how many times ss and i appear together in
a sequence; this count is then normalized by the number of all co-occurrences of ss (i.e., with
any other event) to derive the score of i. Formally, the AR-score for current sequence s and
candidate event i is

scoreAR(i, s) =
1∑

p∈Sp

∑|p|
x=1 1{ss}(px) · (|p| − 1)

∑
p∈Sp

|p|∑
x=1

|p|∑
y=1

1{ss}(px) · 1{i}(py). (1)

SR, originally proposed by Kamehkhosh et al. (2017), is a modification of AR. It takes into
account the sequential order of events in two ways: by only considering co-occurrences where
ss precedes i and by decreasing the weight assigned to i if other events occurred between ss and
i. Formally, the SR-score for s and i is

scoreSR(i, s) =
1∑

p∈Sp

∑|p|
x=2 1{ss}(px) · (x)

∑
p∈Sp

|p|∑
x=2

x−1∑
y=1

1{ss}(py) · 1{i}(px) · wSR(x−y), (2)

with weighting function wSR(z) := 1/z. (See Ludewig and Jannach (2018) for further details.)
An entirely different approach is the Context Tree (CT), proposed by Mi and Faltings (2018).

It uses a variable-order Markov model with context-dependent depth of the Markov chain,
circumventing the difficult choice of a single depth when using fixed-order Markov processes.
CT builds a tree where each node is a context, defined to be the set of all sequences with
a specific suffix (combination of last events), and where the edges combine parent and child
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nodes (i.e., shorter and longer suffixes). For each context, an expert is then defined to be the
probability of the next event given the current sequence of events, calculated using a Dirichlet-
multinomial prior as proposed in Dimitrakakis (2010). The current sequence activates a path
of nodes from the context tree and, as a consequence, all corresponding experts. Finally, all
activated experts generate predictions which are, in turn, combined recursively to yield a final
event prediction. We refer the reader to Dimitrakakis (2010) and to Section 3 of Mi and Faltings
(2018) for further details on the algorithm and the generation of predictions.

The remaining three non-neural algorithms are nearest neighbor-based, with Session-based
kNN (SKNN) being the base method and the Sequence and Time Aware Neighborhood (STAN)
as well as the VSTAN methods being extensions thereof.

SKNN, originally proposed in Jannach and Ludewig (2017), distinguishes itself from AR
and SR by not only focusing on the last (known) event of a sequence; instead, this method
determines the similarity between the entire current sequence and past sequences. To be precise,
one initially defines the neighbors of current sequence s, Ns, as the k past sequences with the
highest similarity to s; similarity is measured in terms of a similarity function sim(·, ·), such as
cosine similarity, applied to binary vectors over the event space, as done in Bonnin and Jannach
(2014). k and sim(·, ·) are hyperparameters. Finally, the score for s and candidate event i is
defined as

scoreSKNN(i, s) =
∑
p∈Ns

sim(s, n) · 1{n}(i), (3)

i.e., simply as the sum of similarity scores across all sequences which contain candidate event i.
STAN, proposed by Garg et al. (2019), extends SKNN in three ways. First, it accounts

for event recency in s: potential neighbor sequences are still binary vectors while event weights
within s decrease with decreasing recency. To be precise, STAN applies an exponential (decay)
function to all but the last event of s. This, in turn, translates into decreased contributions to
the similarity score by less recent events if using similarity functions such as cosine similarity or
the dot product. Second, while SKNN only considers sequence similarity in determining the set
of neighbor sequences, STAN additionally takes into account the recency of other sequences with
respect to s, again using an exponential decay factor to decrease the weight of sequences farther
away from s. Third, STAN also considers the distance of i to other, shared events in Ns, with
i being assigned an (exponentially) higher weight if it is closer to some other recommendable
event i∗. The final score, scoreSTAN(i, s), is then simply computed as for SKNN, yet augmented
by these three weights.

Finally, VSTAN (Ludewig et al., 2021) combines the SKNN -modifications from STAN and
VSKNN, another SKNN -extension proposed by Ludewig and Jannach (2018).
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4.1.2 Session-based Neural Models

In terms of neural network-based session-based models we include the GRU4Rec model (Hidasi
et al., 2015) as well as one extension, see Section 4.1.4. GRU4Rec, being the earliest deep
learning- and session-based RS method, employs a Gated Recurrent Unit (GRU; Cho et al.,
2014), a Recurrent Neural Network (RNN) architecture and standard choice for modeling se-
quential data such as time series, to generate predictions. The general model architecture is
shown in Figure 1.

Figure 1: General architecture of the GRU4Rec model. Figure is taken from Hidasi et al. (2015).

GRU4Rec commences by one-hot encoding single input events into vectors of length equal to
the event space. After an optional embedding layer (see also our experiments in Section 5.1.3),
the input vector is fed into a GRU layer, followed by additional, optional GRU and feedforward
layers.9 For each distinct event, the model outputs the likelihood of being next in the sequence,
which can be interpreted as a score.

Since the sequential data used in RS tasks is different from the primary applications of
RNNs, the authors experiment with pointwise and pairwise ranking loss functions to be used
for model training, concluding that only pairwise ranking loss functions work well. Pairwise
ranking losses generally compare the score of the actually observed event ss+1 with the score
of negative samples. Specifically, the authors suggest the following two loss functions: first, the
Bayesian Personalized Ranking loss (BPR; Rendle et al., 2012), which is the negative logarith-
mized probability of the score of ss+1 exceeding the score of a negative sample. Second, their
self-devised TOP1 loss, which approximates the relative rank of the score of ss+1, adding a

9From their experiments, the authors of GRU4Rec conclude that simple one-hot encoding with no additional
embedding layers, a single GRU layer, and no feedforward layers yields the best performance.
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regularization term to decrease negative sample scores. In a more recent version of their model
(Hidasi and Karatzoglou, 2018), which is also the version we use here, the authors further im-
prove the losses by making them focus on the highest-scoring sample (instead of all samples).
This helps reduce the formerly large proportion of negative samples which produce gradients
close to zero and thus cause the gradients to vanish. The loss function - either BPR-max or
TOP1-max - is a hyperparameter to be tuned. GRU4Rec uses RMSprop (Hinton et al., 2012)
for optimization.

Given the peculiarities of RS data and the loss functions, the authors make two addi-
tional modifications to the base network to reduce runtime and computational complexity:
first, session-parallel mini batches are employed to speed up training; and second, in each step
scores are only calculated for a subsample of all potential events.

4.1.3 Session-aware Neural Models

Finally, we include one session-aware method based on deep neural networks: HGRU4Rec
(Quadrana et al., 2017) is a user-aware extension of GRU4Rec, containing a short-term and
long-term memory component in the form of different GRU layers. To be precise, the model
uses what the authors call a session-level GRU, which generates recommendations for each event
in a sequence. At the end of each sequence, an additional user-level GRU is updated and its
hidden state is then employed for initialization of the session-level GRU at the beginning of
the next sequence. The architecture of HGRU4Rec is visualized in Figure 2. From this, it be-
comes clear that the basic mechanism of how a score is produced by HGRU4Rec is identical to
GRU4Rec - the only difference is the initialization of the GRU at the beginning of a sequence.
Note, however, that HGRU4Rec uses the original TOP1 loss instead of the improved TOP1-max
version. The model is optimized using AdaGrad (Duchi et al., 2011).

Figure 2: General architecture of the HGRU4Rec model. Figure is taken from Quadrana et al. (2017).
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4.1.4 Extensions

A heuristic extension to a session-based model is an extension to the original algorithm providing
user-level information from past sequences and thus making the respective algorithms session-
aware. We use the following three heuristic extensions:10

Extend : In case the current sequence length |s| is lower than hyperparameter d, the most
recent d − |s| events from the user’s preceding sequence(s) are simply prepended to the
current sequence so that it has length d.

Boost : This extension requires an algorithm to return scores. If so, it increases the score
of each candidate event i by b percent (with b being a hyperparameter) whenever i has
occurred at least once within the respective user’s past sequences.

Remind : This extension was originally proposed in Jannach et al. (2017). Its key idea
is to create a reminder list containing events from the last p sequences of a user (with
p being a hyperparameter), based on which a reminder score is calculated as a weighted
combination of interaction recency and session similarity (see Jannach et al. (2017) and
Latifi et al. (2021) for further detail). This reminder score is then added to the original
algorithm’s score for each recommended event.

We include three extension-equipped algorithms into our analysis. The first one is SR_BR,
obtained by applying the Boost and Remind extensions to SR. (The Extend heuristic is useless
here as SR only takes ss, the last event in the current sequence, into consideration for prediction.
Hence, making the current sequence longer does not impact prediction.) The remaining two
algorithms are VSTAN_EBR, the VSTAN algorithm equipped with all three extensions, as
well as GRU4Rec_R, which is the reminder-equipped GRU4Rec algorithm. Thus, our selection
encompasses a total of eleven algorithms.

4.2 Evaluation and Tuning

We now proceed to discuss our evaluation and tuning methodology. It includes data splitting,
the evaluation protocol and tuning strategy for our data, as well as the choice of appropriate
evaluation and tuning metrics.

4.2.1 Train-Validation-Test Split

Due to the presence of sequence data and user IDs, our dataset is time-ordered and user-
clustered, requiring a time- and user-aware data splitting procedure as compared to standard
time-agnostic cross-validation. That is, we must make sure that for every user for whom we
have a test sequence (i.e., a sequence of events in the test set), there are corresponding training

10Both design and implementation of these extensions are taken from Latifi et al. (2021).
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sequences - and vice versa. Because of the sequential nature of the data, we use each user’s last
sequence as test set, in line with the literature (Guo et al., 2020; Latifi et al., 2021; Phuong
et al., 2018, 2019; Quadrana et al., 2017). Using an earlier sequence as test set would imply
using a user’s future behavioral sequences for model training - which conflicts with our overall
objective of predicting future behavior.

In standard cross-validation, the same data is split into k folds, with each fold being used
as test set once and as part of the training set the remaining k − 1 times. This presupposes
that examples can simply be randomly shuffled around and assigned to the training or test
set. Clearly, this is not the case here: first of all, individual events are grouped into sequences
and this sequence-ordering must always be maintained; that is, we cannot assign some events
from within a single sequence to the training set and others to the test set. Second, since our
sequences are user-clustered and some of our models are session-aware (i.e., they actively use
this user-level information), neither can we randomly assign some sequences from a single user
to the training set and others to the test set - because we must always have all but one user
sequence in the training set and the remaining one in the test set. And finally, because of our
user-level last-event split methodology, for a given user this test sequence must always be the
last one - and, consequently, the training set must always comprise all but the last one.

Because of the above, standard cross-validation is not applicable here and, as a consequence,
neither is nested cross-validation. In order to still be able to do hyperparameter optimization
without introducing bias by tuning and evaluating on the same test data twice, we repeat the
last-event split method twice: first, we apply it to the entire data, which creates a test set by
"clipping off" each user’s last sequence. Then we apply it to the remaining data, creating a
validation set comprising each user’s last sequence (of the non-test data) as well as a training set
containing each user’s remaining sequences. Thus, starting from a given user’s sequences, the
last sequence is the test set, the second to last sequence constitutes the validation set, and all
remaining (previous) sequences form the training set. As already stated in section 3.2, it is now
clear why this procedure requires every user to have at least three sequences - one for training,
validation, and test set, respectively. The reason we remove events which do not appear in the
training set is because our models cannot predict events they have not seen during training.

As briefly explained in section 3.2, in addition to single-window analysis (performing the
train-validation-test split on the entirety of sequences for each user) we also conduct multiple-
windows analysis by splitting the study period into five equally long sub-periods (windows).
In this case, we perform the train-validation-test split as explained above, yet on each window
separately.

4.2.2 Evaluation Protocol

In terms of evaluation of a single test sequence, we iterate through all of its events and iteratively
compare the respective prediction - available for all but the first event - with the corresponding
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ground truth. This approach, as done in Hidasi et al. (2015) and Latifi et al. (2021), is preferable
to the one in Sun et al. (2019), where the authors only predict the last event of each test sequence,
because here we harness all but one test sequence event - instead of only a single one. To carry
out this evaluation strategy, however, we first need to decide on a definition of ground truth. We
might define a set of ground truths for a sequence by treating all but the first event as ground
truths for all evaluation positions, as done by Ludewig and Jannach (2018). However, since
we are mostly interested in predicting the single next action of a user, we opt for a narrower
definition: we define the ground truth for an evaluation position within the test sequence to be
only the actually observed event at that specific position, i.e., only ss+1.

4.2.3 Evaluation Metrics

Given the above evaluation protocol, we need to choose appropriate evaluation metrics. Recall
that in the RS domain the target variable follows a multinomial distribution with a large number
of categories and we wish to quantify the goodness of our recommendation list of length k,
generated based on the highest-scoring predictions of our algorithms. Furthermore recall that
we wish to perform next-event prediction and thus only consider the actually occurring event as
ground truth. Therefore, we identify Hit Rate and Mean Reciprocal Rank as most appropriate
performance metrics. Coverage and Popularity Bias are additionally included, though only for
k = 20, to indicate the algorithms’ degree of recommendation diversification. The metrics we
consider are thus:

Hit Rate (HR): The Hit Rate of a recommendation list of length k (HR@k) is the most
intuitive and simple RS metric. Given a total of n events to be predicted and evaluated,
HR@k is simply the fraction of events for which the corresponding recommendation list of
length k includes the ground truth - regardless of the position within the recommendation
list. Formally,

HR@k =

∑n
i=1 1rl(k)i(yi)

n
,

where yi is the ground truth of the i-th event to be predicted and rl(k)i is the correspond-
ing predicted recommendation list of length k. It follows that a high HR@k is desirable.
We consider HR@1, HR@5, HR@10, and HR@20 in order to cover a broad range of
reasonable recommendation list lengths.

Mean Reciprocal Rank (MRR): The Mean Reciprocal Rank of a recommendation list of
length k (MRR@k) is similar to HR@k in that it also considers how many recommenda-
tion lists include the respective ground truths, yet MRR@k additionally accounts for the
ranking within the list. To do so, and in order for lists with highly ranked ground truth
to have high MRR@k, this metric uses the reciprocal rank of the ground truth within the
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recommendation list and averages this reciprocal rank across all n events. Formally,

MRR@k =

∑n
i=1 rri
n

,

where rri is the reciprocal rank of the i-th event, defined as the reciprocal of the rank of
yi within recommendation list rl(k)i if yi ∈ rl(k)i, and zero otherwise.11 As with HR@k,
a high MRR@k is preferable. We consider MRR@5, MRR@10, and MRR@20.

Coverage: The Coverage of an algorithm with respect to a recommendation list of length
k (Coverage@k) is the percentage of events (out of all possible events) that appear at
least once in the recommendation lists. This way, this metric indicates the degree of
personalization of an algorithm. We consider Coverage@20 as this reflects the coverage
not only of the top recommendation but of a reasonably long recommendation list for each
algorithm.

Popularity Bias: The Popularity Bias of an algorithm with respect to a recommendation
list of length k (Popularity@k) is the degree to which an algorithm focuses only on
the most popular events in making recommendations, thereby neglecting the long tail of
not-so-popular potential events. Popularity@k is calculated as average across popularity
scores of each individual recommended event. For each individual recommended event,
this score is simply the min-max normalized count of an event’s appearances in the training
sequences (see also Ludewig and Jannach (2018)). We consider Popularity@20, for the
same reasons as with coverage.

In case of multiple-window analysis, we average the HR@k and MRR@k performances,
respectively, across all five windows. For tuning we use HR@1, for reasons explained below.

4.2.4 Tuning

As for hyperparameter optimization, we choose a simple random search tuning strategy with
budget equal to 100 for all algorithms. For our selected algorithms, we use the same hyperpa-
rameter search space as given in Tables A.11 and A.12 of Latifi et al. (2021).12 AR and CT do
not have any hyperparameters and thus do not need to be tuned.

Before explaining the actual tuning strategy, we first define the tuning data. We decide
to tune on the unrestricted data, thus without excluding ON and OFF events. While ex-
cluding them would speed up tuning by decreasing dataset size significantly (recall that for
app-level analysis, more then one-third of all sequences are ON-OFF sequences), the remaining

11By definition, it follows that MRR@k ≤ HR@k for all k ∈ N, with equality for k = 1, which is the special
case of making only a single recommendation per evaluation event.

12Since SKNN is not included in Latifi et al. (2021) but its hyperparameters are a subset of those from VSKNN
(which is included), we simply use the VSKNN search space for all hyperparameters the two models have in
common.
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sequences would not be representative of all behavioral sequences anymore and we would thus
lose generalizability.

Due to the data structure and our last-event splitting method, we do not use any cross-
validation; instead, for each user there is a single validation sequence used for evaluation of the
(up to) 100 different hyperparameter configurations per algorithm - and, as a consequence, we
obtain a single optimal hyperparameter configuration per algorithm.

Conducting the tuning procedure on the entire single-window data would imply extremely
long runtimes as well as a time bias (recall that the validation set of the single-window analysis
would essentially coincide with the validation set of the last window), while tuning on only one
window would merely address the former of these two issues. This is why we choose to perform
hyperparameter tuning on all five windows for both app-level and sequence-level analysis -
unlike Latifi et al. (2021), who only use the window which contains the largest number of
events. Thus, for a given algorithm and hyperparameter configuration, we compute validation
set performance - in terms of HR@1, as explained below - for each of the five windows separately
and then average performance across windows. Subsequently, we choose the one configuration
with the best average performance as optimal hyperparameter configuration. Tables 11 and 12
in the appendix contain the optimal hyperparameters for each selected algorithm for both app-
and sequence-level data.

Finally, we need to choose a performance metric. Since we are mostly interested in pre-
dicting the single next event (i.e., a recommendation list of length k = 1), we choose HR@1

as the natural candidate. And while HR@1 performance tends to fluctuate significantly across
windows, we account for this by using the aforementioned five-window tuning strategy.

After tuning and extracting the optimal hyperparameter configuration for each algorithm,
we then (re-)train all algorithms on the combined train and validation set (i.e., for each user,
on all sequences except the last one) and evaluate algorithm performance on the test set (for
each user, the very last sequence).

5 Numerical Experiments

In this section, we apply our selection of eleven algorithms to our smartphone usage data.
Sections 5.1 and 5.2 present app- and sequence-level results, respectively. In both sections, we
go beyond a single next-event prediction task, conducting analyses to explore idiosyncrasies of
both data and algorithms.

5.1 App-level Results

For app-level analysis, we first present overall results of the next-app prediction task, followed by
an analysis of the effect of minimum sequence length, of the position within the test sequence,
and of removing ON and OFF events. In the second subsection we consider prediction at

23



category level, while in the third subsection we add an additional embedding layer to the
(tuned) GRU4Rec model and explore its semantic meaningfulness.

5.1.1 Next-event Prediction

Overall Performance
The main task of this paper is to explore predictability of future actions based on a sequence
of past events. In the app-level setting, this equates to next-app prediction. Table 3 presents
the multiple-window performance of our fully tuned algorithms where performance is averaged
across all five windows. Figure 3 shows averaged five-window HR@k performance for all algo-
rithms and different values of k.

Algorithm HitRate@1 HitRate@5 HitRate@10 HitRate@20 MRR@5 MRR@10 MRR@20 Coverage@20 Popularity@20

AR 0.2024 0.5926 0.7250 0.8407 0.3374 0.3555 0.3637 0.3208 0.2328
SR 0.2591 0.6431 0.7836 0.8568 0.4056 0.4248 0.4300 0.3552 0.1892
SR_BR 0.2718 0.6902 0.8203 0.8559 0.4314 0.4496 0.4523 0.3578 0.1892
CT 0.3833 0.7006 0.8193 0.8840 0.5130 0.5290 0.5336 0.3267 0.2491
SKNN 0.0159 0.5290 0.6876 0.7697 0.1909 0.2119 0.2178 0.0489 0.2463
STAN 0.1543 0.3386 0.3451 0.3459 0.2307 0.2317 0.2317 0.1395 0.0883
VSTAN 0.1543 0.5635 0.6769 0.7202 0.3086 0.3244 0.3276 0.3654 0.1838
VSTAN_EBR 0.2436 0.6462 0.8290 0.9278 0.3822 0.4077 0.4150 0.5576 0.2130
GRU4Rec 0.3190 0.5829 0.6701 0.7503 0.4218 0.4338 0.4394 0.8002 0.0895
GRU4Rec_R 0.3105 0.6280 0.7241 0.7949 0.4285 0.4417 0.4467 0.8200 0.1438
HGRU4Rec 0.2978 0.4247 0.4706 0.5182 0.3486 0.3548 0.3580 0.6824 0.0249

Table 3: Performance results on five-window app-level data. Performance is averaged across all
windows, which are of equal time span. For HR@k and MRR@k, the best performance per
metric is highlighted in bold.

Figure 3: HR@k performance for k = 1, 5, 10, and 20 on five-window app-level data for all selected
algorithms.

The CT algorithm achieves the best (i.e., highest) HR@1 and HR@5 performance, while
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VSTAN_EBR performs best in terms of HR@10 and HR@20, i.e., when the Hit Rate is evalu-
ated with regard to long recommendation lists. The fact that CT also has the highest MRR@k

(for all k) furthermore indicates that it not only produces the best top-k recommendations
for low k, but that it also achieves the best (inverse) rank-weighted recommendation quality
for longer recommendation lists. (This is consistent with CT ’s strong HR@1 and HR@5 per-
formance.) The three neural network-based models GRU4Rec, GRU4Rec_R, and HGRU4Rec
come right behind CT when considering HR@1, yet their relative performance deteriorates as
the recommendation list size increases. Amongst them, HGRU4Rec is, by large, the weakest
performer, even more so for larger k. The Remind extension of GRU4Rec increases performance
for k ≥ 5. Finally, the Coverage@20 and Popularity@20 metrics indicate that the extensions
increase an algorithm’s app coverage, while they do not greatly affect its popularity bias. Neu-
ral network-based models have, by far, the highest app coverages and the lowest popularity
biases, implying that the events they predict cover a broader range of the entire set of events as
compared to other algorithms. Finally, we observe that session-based algorithms benefit from
heuristic session-aware extensions.

For single-window analysis, no separate tuning is required because the data stems from the
same population as the multiple-window data and, by construction, the test set of the single-
window data is identical to the test set of the last window in the multiple-window analysis. The
results, as well as performance differences vis-à-vis Table 3, are shown in the appendix (Tables
13 and 14). Apart from some discrepancies in relative performance for individual metrics, the
results are very consistent with the multiple-window analysis; in particular, CT is the overall
top performer for all metrics except HR@10 and HR@20.

Minimum Sequence Length
All neural network-based methods considered in this paper employ RNNs, which rely entirely
on learning from the present sequence instead of "looking up" similar sequences or app co-
occurrences, as is done by many non-neural methods. As discussed in Section 3.2, app-level
sequences are typically very short, implying that RNN-based methods do not have "much to
learn from" for many sequences. We therefore expect GRU4Rec, Gru4Rec_R, and HGRU4Rec
to perform better on longer sequences, where the underlying RNNs are provided more events to
learn from. For models based on co-occurrence frequencies - AR, SR, and SR_BR - we expect
sequence length to have no impact on performance since only the last event of a sequence is
actively used for prediction.

In order to investigate this, we first create a subset of our data by only considering sequences
with at least 20 events. HR@k results when training and evaluating our models on this subset
of data, compared to the all-sequences results in Table 3, are displayed in Figure 4; results
for all performance metrics are shown in the appendix (Table 15). Overall, CT is still the
best-performing algorithm in terms of HR@1 and MRR@k (for all values of k we considered).
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As expected, performance of the co-occurrence frequency-based models is very similar to the
all-sequences performance. The three neural network-based models are still the best performers
behind CT and, indeed, their performance improved. This confirms our initial expectation
that RNN-based models benefit from longer sequences. As for the neighborhood-based models,
we observe moderate performance decreases for all algorithms and metrics, except for STAN
evaluated in terms of HR@1. This implies that finding similar sequences works well even if -
or, rather, especially if - the sequences under consideration are not overly long.

Figure 4: HR@k comparison between performance on full five-window app-level data (left bars) and
performance on five-window app-level data when only training and evaluating on sequences with a
minimum length of 20, for k ∈ {1, 5, 10, 20}.

In a second step, we compare the above results to those obtained if we use all sequences
for training and only apply the minimum length requirement to the sequences in the test set.
That is, we use the same training data as in the initial multiple-window app-level analysis,
yet we filter out all test sequences which contain fewer than 20 events. In Table 4 we present
performance differences between the "long evaluation sequences only" setting and the "long
training and evaluation sequences" setting; absolute performance results are reported in the
appendix (Table 16).

The performance of all algorithms, except VSTAN, is now considerably worse. CT is still
the best performer in terms of HR@1 and MRR@k (for all k considered). We conclude that
performance on long sequences decreases when using all sequences for training; or putting it
differently: performance on long sequences benefits from training exclusively on long sequences.
This is somehow surprising as the full training dataset is considerably larger than the long-
sequences-only dataset and, usually, decreasing the training set size leads to weaker performance.
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Algorithm HitRate@1 HitRate@5 HitRate@10 HitRate@20 MRR@5 MRR@10 MRR@20 Coverage@20 Popularity@20

AR -0.0375 -0.1070 -0.0800 -0.0010 -0.0684 -0.0649 -0.0594 -0.4834 0.0509
SR -0.1330 -0.1556 -0.0744 -0.0269 -0.1405 -0.1306 -0.1272 -0.4782 0.0214
SR_BR -0.1516 -0.1621 -0.0501 -0.0306 -0.1538 -0.1388 -0.1374 -0.5055 0.0165
CT -0.1134 -0.1314 -0.0611 -0.0031 -0.1222 -0.1134 -0.1088 -0.4913 0.0412
SKNN -0.0088 -0.0518 0.0367 -0.0416 -0.0326 -0.0239 -0.0293 -0.0225 0.0392
STAN -0.0130 -0.0237 -0.0265 -0.0280 -0.0177 -0.0181 -0.0182 -0.2578 0.0252
VSTAN 0.1330 0.2688 0.3507 0.3740 0.1967 0.2077 0.2094 -0.2872 0.1637
VSTAN_EBR -0.0887 -0.1345 -0.0218 0.0228 -0.1081 -0.0925 -0.0889 -0.5654 0.0846
GRU4Rec -0.0847 -0.1080 -0.0966 -0.0818 -0.0968 -0.0955 -0.0946 -0.4507 -0.0133
GRU4Rec_R -0.1425 -0.2068 -0.1994 -0.1756 -0.1710 -0.1701 -0.1687 -0.5142 0.0163
HGRU4Rec -0.0351 -0.0506 -0.0377 -0.0370 -0.0415 -0.0399 -0.0399 -0.2834 -0.0059

Table 4: Difference between performance when training on all sequences but only considering
sequences of at least 20 events for evaluation and performance when only considering sequences
of at least 20 events for both training and evaluation on five-window app-level data.

Position in Test Sequence
Above we looked at minimum sequence length as a potential determinant of predictive perfor-
mance since some models benefit from longer sequences. An alternative analysis regarding the
same underlying issue - short sequences - is to look at performance by position within the test
sequence. To do so, we do not aggregate performance across all positions and test sequences
anymore; instead, we focus on a single position to be predicted and then average performance
for that position across all test sequences.

Figure 5 shows performance in terms of HR@1 for the first ten prediction positions (which
would be the second through eleventh positions in the original test sequences, recalling that
no prediction is made for the first test sequence event); Table 17 in the appendix contains the
underlying numbers. CT as well as the three neural models do not show any strong increase or
decrease across positions, with the exception of a surprisingly strong performance on prediction
position two. The results further indicate that the extension-equipped neighborhood-based
model VSTAN_EBR performs very well on early positions but cannot keep up this performance
for longer test sequences; STAN and VSTAN, on the other hand, perform poorly on the very
first positions and then improve, reaching a similar performance as VSTAN_EBR roughly after
the fifth position. A potential explanation is that STAN and VSTAN do not have any user-
level heuristics and, additionally, the first event of all app-level sequences is a (non-informative)
ON event, so for the first prediction positions it is very hard for these models to find similar
sequences based on such unspecific information. The extensions of VSTAN_EBR appear to
initially (more than) compensate for the low informational content of the current sequence,
with this effect wearing off over the first five positions.

From the individual positions, it is sometimes hard to identify a pattern when the actual
question is whether an algorithm performs better on "early" or "late" positions; furthermore,
positions after the tenth position are not considered at all. Therefore, for each test sequence
we introduce a cutoff after the second, fifth, or tenth event to be predicted (which would be
the third, sixth, or eleventh event in the original test sequence) and subsequently compare pre-
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Figure 5: HR@1 performance across the first ten prediction positions on five-window app-level data.

and post-cutoff performance. Results in terms of HR@1 are displayed in Table 5. They are in
line with individual-position results from Figure 5; however, we observe that performance for
all neural models actually worsens for later positions in the test sequences. We conclude that
neural network-based models struggle with the later positions in the prediction sequences. This
is in line with our findings from above analyses, where we saw that neural methods also struggle
with long prediction sequences - whenever training is not tailored towards them.

Algorithm position ≤ 2 position > 2 position ≤ 5 position > 5 position ≤ 10 position > 10

AR 0.2269 0.1892 0.2082 0.1934 0.2045 0.1898
SR 0.2307 0.2768 0.2514 0.2798 0.2676 0.2516
SR_BR 0.2520 0.2854 0.2660 0.2904 0.2838 0.2468
CT 0.3878 0.3818 0.3766 0.4012 0.3911 0.3710
SKNN 0.0142 0.0167 0.0193 0.0111 0.0193 0.0061
STAN 0.0145 0.2298 0.0843 0.2602 0.1268 0.2385
VSTAN 0.0295 0.2230 0.0950 0.2469 0.1270 0.2577
VSTAN_EBR 0.3180 0.2058 0.2807 0.1903 0.2709 0.1405
GRU4Rec 0.3581 0.2984 0.3264 0.3098 0.3208 0.3173
GRU4Rec_R 0.3659 0.2827 0.3342 0.2816 0.3304 0.2311
HGRU4Rec 0.3639 0.2593 0.3132 0.2665 0.3073 0.2542

Table 5: HR@1 performance results on five-window app-level data, by positional cutoff within
test sequence.

As a final piece of analysis regarding the positioning within test sequences, we consider
the fact that around 38.91% of all app-level sequences (i.e., sessions) are ON-OFF sequences
of length two, implying that a user only switches on their screen in order to switch it off
immediately afterwards. This also means that 38.91% of all sequences have an OFF event in
the second position of the original sequence or, equivalently, in the first prediction position of
the sequence. Therefore, we expect that models learn this behavior and frequently predict an
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OFF event as top-ranked recommendation in the first prediction position. We observe that this
is indeed the case for most models and that models which do not learn this behavior are those
with weak HR@1 performance. (The exact results are presented in Table 18 in the appendix.)
It is crucial to note that the algorithms learn where to predict an OFF event and where not. In
the sequence-level analysis in section 5.2 below we will see that the high prevalence of ON-OFF
events and the fact that they can appear repeatedly within a sequence cause algorithms to
simply predict ON-OFF events (almost) always; this is also one of the reasons why we conduct
most sequence-level analyses with ON-OFF events removed, while we do not exclude ON and
OFF events for the app-level analyses in Sections 5.1.2 and 5.1.3.

Removing ON and OFF Events
We have seen that short sequence length is a key issue and potential performance bottleneck for
app-level analysis. Moreover, the first and last event of each sequence - ON and OFF events,
respectively, by construction - are hardly informative and ON-OFF sequences are additionally
very frequent.

To increase average sequence length as well as information density across and within se-
quences, here we analyze the effect of dropping all ON and OFF events from the app-level data.
This automatically implies removing ON-OFF sequences as well as sequences of length three,
because after removing the ON and OFF event such sequences only contain a single event and
thus do not meet the required minimum sequence length of two anymore.

Figure 6 visualizes the effect of removing all ON and OFF events from training and eval-
uation data on HR@k performance for k = 1, 5, 10, and 20; Table 6 presents all performance
metrics. We observe that for almost all models and metrics, dropping ON and OFF events in-
creases performance, especially for the top-ranked recommendation (see HR@1). The increase
in performance is particularly substantial for the nearest neighbor-based models SKNN and
STAN. The explanation is as in the positional analysis above: short sessions, with the obliga-
tory ON token as initial event, are hardly informative and thus make it difficult to effectively
find similar sequences. Dropping many of these short sequences consequently increases perfor-
mance. Finally, we notice that for almost all models there is a (sometimes substantial) increase
in app coverage, with popularity bias decreasing strongly for all models; this is a consequence
of removing the "popular" and thus frequently predicted OFF token.

While the removal of ON and OFF events leads to improvements in terms of model perfor-
mance, it comes at a cost: model performance now reflects the models’ capability to predict
behavioral sequences conditional upon the sequence not being an ON-OFF sequence and upon
the next event being neither an ON nor an OFF event. In our case, dropping ON and OFF
events leads to the exclusion of 49.92% of all app-level sequences, implying that this conditional
analysis is hardly representative of overall user behavior anymore. Therefore, and recalling the
conclusion from the analysis of positioning within the test sequence, we decide against excluding
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Figure 6: HR@k performance comparison between full five-window app-level data (left bars) and five-
window app-level data after dropping all ON and OFF events (right bars), for k ∈ {1, 5, 10, 20}.

Algorithm HitRate@1 HitRate@5 HitRate@10 HitRate@20 MRR@5 MRR@10 MRR@20 Coverage@20 Popularity@20

AR 0.2367 0.6064 0.7282 0.8315 0.3834 0.3997 0.4071 0.4224 0.1373
SR 0.3274 0.6538 0.7680 0.8583 0.4485 0.4642 0.4705 0.4482 0.1301
SR_BR 0.3555 0.7156 0.8203 0.8613 0.4904 0.5050 0.5081 0.4581 0.1309
CT 0.4244 0.7419 0.8223 0.8844 0.5502 0.5614 0.5656 0.3711 0.1557
SKNN 0.2443 0.6201 0.7291 0.8057 0.3896 0.4042 0.4095 0.3070 0.1423
STAN 0.3049 0.5670 0.5721 0.5739 0.4147 0.4154 0.4156 0.1900 0.0523
VSTAN 0.2156 0.5093 0.5836 0.6338 0.3310 0.3411 0.3446 0.5333 0.0515
VSTAN_EBR 0.3203 0.7013 0.8451 0.9316 0.4628 0.4820 0.4881 0.6380 0.1020
GRU4Rec 0.3500 0.5875 0.6722 0.7460 0.4410 0.4524 0.4575 0.8776 0.0514
GRU4Rec_R 0.3673 0.6811 0.7630 0.8283 0.4889 0.5001 0.5047 0.9279 0.0766
HGRU4Rec 0.3118 0.4656 0.5220 0.5863 0.3712 0.3788 0.3831 0.6391 0.0218

Table 6: Performance results on five-window app-level data when dropping all ON and OFF
events from both training and evaluation data. For HR@k and MRR@k, the best performance
per metric is highlighted in bold.

ON and OFF events for all subsequent app-level analyses.13

5.1.2 Category-level Prediction

Given that our ultimate goal is to predict human behavioral sequences, i.e., what type of
behavior we can expect next given a particular phone usage pattern in the past, we might
alternatively consider next-category prediction instead of next-app prediction. Using the app-
level data representation, we are able to do so easily because for each event (app) we also have
its app category at our disposal. This way, we do not predict a particular app anymore but

13For this comparison to be completely fair, one should additionally re-tune all models on the reduced dataset
with ON and OFF events dropped. For runtime reasons, however, we decided against that. Furthermore, the
key conclusion of this piece of analysis, i.e., increased performance at the cost of a loss of representativeness of
user behavior, would not change.
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simply the category - for instance, "Messaging" instead of "WhatsApp". If our algorithms
perform significantly better on the category level, this would indicate that they actually learn
more about behavioral sequences than what we concluded from the results in Section 5.1.1. The
difference in performance would then be the extent to which the algorithms predict the right app
category, yet get the specific app wrong. Furthermore, we would expect performance increases
by non-session-aware models to be larger than those for session-aware models. This is because
the long-term memory of session-aware models should, in theory, already learn specific app
predilections within an app category on a user level (e.g., that user X mostly uses WhatsApp
for messaging, whereas user Y mostly uses Telegram); since session-based models do not have
this user-level memory, they should be more prone to getting the individual app wrong despite
predicting the right category.

Note that by construction, category-level results cannot be worse than app-level results since
whenever the correct app is predicted, the correct app category is automatically predicted as
well - but not vice versa. Table 7 presents prediction results if we only consider the app category
when calculating model performance.

Algorithm HitRate@1 HitRate@5 HitRate@10 HitRate@20 MRR@5 MRR@10 MRR@20

AR 0.2224 0.6975 0.8150 0.9040 0.3890 0.4052 0.4113
SR 0.2822 0.7536 0.8471 0.9074 0.4623 0.4748 0.4791
SR_BR 0.2835 0.7599 0.8660 0.9081 0.4577 0.4728 0.4759
CT 0.3984 0.7710 0.8620 0.9216 0.5464 0.5588 0.5630
SKNN 0.0159 0.6319 0.7834 0.8503 0.2120 0.2327 0.2372
STAN 0.1581 0.3705 0.4174 0.4612 0.2440 0.2498 0.2530
VSTAN 0.1692 0.6066 0.7465 0.8013 0.3303 0.3498 0.3538
VSTAN_EBR 0.2443 0.6610 0.8607 0.9448 0.3868 0.4148 0.4209
GRU4Rec 0.3428 0.6569 0.7528 0.8321 0.4663 0.4795 0.4851
GRU4Rec_R 0.3370 0.6691 0.7806 0.8550 0.4606 0.4756 0.4810
HGRU4Rec 0.3285 0.4935 0.5668 0.6451 0.3923 0.4020 0.4075

Table 7: Performance results on five-window app-level data when only considering the category
of apps in the test sequence. For HR@k and MRR@k, the best performance per metric is
highlighted in bold.

Comparing these results to the app-level results in Table 3, we observe that the performance
increases for non-neural methods are rather small when looking at the top-ranked recommenda-
tion but noticeable for large recommendation list lengths, as illustrated in Figure 7. We more-
over observe that, compared to the performance increase when dropping ON and OFF events,
performance increases due to category-level prediction are approximately proportional to stan-
dard app-level performance, implying that none of the non-neural algorithms get the category
right many more times than the actual app, in particular when only considering the top-ranked
recommendation. For the neural network-based models, the increases due to category-level
evaluation are more pronounced, especially for larger k, yet neither are they overwhelmingly
large. Altogether, from this piece of analysis we conclude that next-app prediction performance
as done in Section 5.1.1 is largely indicative of how much the algorithms truly learn in terms
of behavioral sequence modeling. This holds for both session-based and session-aware models
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as we do not find any evidence of larger performance increases for models without user-level
memory.

Figure 7: HR@k performance increases on five-window app-level data when only considering app
categories for evaluation (left bars) instead of considering the individual apps (right bars), for k ∈
{1, 5, 10, 20}.

5.1.3 Embedding Analysis of GRU4Rec

Having gained a general understanding of behavioral sequence modeling using next-app predic-
tion, in this section we do not carry out any further prediction tasks. Instead, here we explore
to which degree deep learning models learn smartphone app semantics in an illustrative fashion.

To do so, we look at GRU4Rec specifically and add an embedding layer of dimension 128
to the otherwise fully tuned model for training.14 Here we use single-window data since we
are interested in a single, exemplary embedding and thus averaging across five windows would
not make much sense. We note that performance-wise, adding embeddings leads to negligible
decreases.15

After extracting the embedding layer from the fully trained model, we apply the t-distributed
stochastic neighbor embedding dimensionality reduction technique (TSNE; Hinton and Roweis,
2002) to obtain two-dimensional app embeddings. That is, for each app in the training set we
now have a two-dimensional embedding vector, which lend themselves to intuitive visualization.
In particular, we might want to know whether apps from a common app category - which

14The embedding layer was not part of the hyperparameter search space for GRU4Rec. Results for embedding
dimensions of 16, 32, and 64 are similar and thus omitted.

15HR@1 performance, for instance, deteriorated by 0.64 percentage points compared to standard (non-
embedding) single-window performance.
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Figure 8: App category-based clustering of 128-dimensional app-level embeddings. Blue dots represent
apps categorized as Messaging, red dots represent apps categorized as Social Networks. For illustration,
app embeddings are reduced to a dimensionality of two, using TSNE.

by definition encompasses similar apps - form clusters in the embedding space.16 Figure 8
exemplarily illustrates two-dimensional app embeddings for apps from the categories Messaging
and Social Networks. No apparent category-level clustering is recognizable. In order to quantify
this, we also consider the share of apps whose category coincides with the category of its most
similar app, with similarity computed in terms of cosine similarity based on the original 128-
dimensional embeddings. We find this share to be 11.67%, implying that only for less than one
out of eight apps its nearest neighbor app is from the same category. As apps from the same
category are, by construction, content-wise related (e.g., WhatsApp and Telegram), this implies
that app embeddings learned by the GRU4Rec model are not very successful at learning true
app-level semantics.

Alternatively, we might want to start off with a clustering approach which does not use
pre-established app categories but rather clusters apps according to their positioning within
the embedding space. We thus use k-means clustering on the untransformed 128-dimensional

16The need for individual events to be equipped with pre-established categories is the reason why we perform
this embedding analysis only for app-level data.
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app embeddings and cluster apps into 15 categories. An illustration of these clusters, using
two-dimensional data points just as above, is provided in Figure 9.

Figure 9: k-means clustering of app-level embeddings (k = 15). For illustration, app embeddings are
reduced to a dimensionality of two, using TSNE.

To qualitatively assess whether these data-based clusters coincide with our pre-established
app categories, we look at potential accumulations of app categories within each one of the
15 clusters. The small moccasin-colored cluster at the center top indeed demonstrates a high
prevalence of apps from only few but related categories: out of a total 52 apps belonging to this
cluster, 32 (i.e., more than 60%) are either camera or image editing apps. However, this logical
coherence is much more the exception than the rule and, as can already be seen from the figure,
most clusters are very much dispersed across the app space, with (almost) no intra-cluster app
category clustering.

Finally, we briefly (re-)visit the concept of app analogies, by experimentally constructing
app analogies such as "Messaging 1 - Social Network 1 + Social Networks 2 = ???". We find
no meaningful app analogies in our embeddings, which does not come as a surprise: first, as
mentioned in Section 2, app analogies are conceptually much less intuitive than word embeddings
- see, for example, Table V of Ma et al. (2016). Second, the overall quality of our GRU4Rec
embeddings is rather low, as evidenced by the lack of category-level clustering amongst apps.

Summing up our app-level analysis, we conclude that a variety of (modified) next-app pre-
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diction tasks is possible and informative given our app-level data, implying that the algorithms
do learn behavioral patterns based on app usage data. However, this learning - especially by
neural network-based methods - is not profound enough as for app semantics to be recognizable.

5.2 Sequence-level Results

For sequence-level analysis, we again start by presenting overall results on the next-event pre-
diction task. For reasons explained below, we address the effect of removing ON-OFF events
immediately after that and conclude the section with an analysis of the impact of test sequence
positioning. For sequence-level data, it is not necessary anymore to introduce and analyze a
minimum sequence length. This is because the app-level to sequence-level data transformation
we conducted already achieved a significant increase in sequence length. In fact, average se-
quence length is now 76.82 and only 14.74% of all sequences contain fewer than 20 events (and
would thus be excluded by a minimum sequence length requirement of 20).

In the sequence-level setting, predicting the next event does not equate to next-app predic-
tion anymore but instead to predicting the next (categorized) session of apps; that is, we now
aim to model a user’s subsequent session of smartphone activities. While the interpretation
and the underlying data are clearly very different from the next-app prediction task, the tech-
nical analysis conducted - choice of algorithms, evaluation protocol, and metrics - is completely
identical.

Overall Performance
Table 8 presents all five-window performance metrics of the tuned algorithms and Figure 10
shows HR@k performance for different values of k.

Algorithm HitRate@1 HitRate@5 HitRate@10 HitRate@20 MRR@5 MRR@10 MRR@20 Coverage@20 Popularity@20

AR 0.5295 0.6875 0.7541 0.8126 0.5891 0.5980 0.6021 0.4658 0.0733
SR 0.5305 0.7042 0.7653 0.8187 0.5981 0.6063 0.6101 0.8772 0.0724
SR_BR 0.5307 0.6669 0.7271 0.7931 0.5830 0.5911 0.5956 0.6703 0.0625
CT 0.5307 0.7161 0.7705 0.8238 0.6040 0.6113 0.6150 0.9467 0.0730
SKNN 0.5290 0.6917 0.7564 0.8149 0.5884 0.5970 0.6011 0.1807 0.0727
STAN 0.5277 0.6888 0.7391 0.7685 0.5879 0.5948 0.5969 0.5901 0.0666
VSTAN 0.5274 0.6831 0.7284 0.7415 0.5844 0.5907 0.5917 0.3240 0.0578
VSTAN_EBR 0.5301 0.6686 0.7225 0.7864 0.5830 0.5901 0.5946 0.6563 0.0620
GRU4Rec 0.5291 0.5298 0.5306 0.5317 0.5293 0.5294 0.5295 0.0818 0.0502
GRU4Rec_R 0.4982 0.6738 0.7381 0.7996 0.5666 0.5753 0.5796 0.5622 0.0661
HGRU4Rec 0.5134 0.5291 0.5360 0.5463 0.5194 0.5204 0.5211 0.9164 0.0510

Table 8: Performance results on five-window sequence-level data. Performance is averaged
across five windows of equal time span. For HR@k and MRR@k, the best performance per
metric is highlighted in bold.

We observe a very strong performance in terms ofHR@1, at around 50% for all algorithms; in
fact, none of the algorithms in the app-level setting achieved such a high HR@1. Furthermore,
we observe that performance increases with increasing k are much lower than in the app-
level setting, leading to HR@20 performance being worse than in the app-level case for seven
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Figure 10: HR@k performance for k = 1, 5, 10, and 20 on five-window sequence-level data for all
selected algorithms.

algorithms. The strongest performer across all metrics is the CT algorithm, just like in Section
5.1.1. GRU4Rec and HGRU4Rec are the weakest performers for all metrics where k ≥ 5. This
poor performance is surprising since sequence-level sequences are mostly rather long, facilitating
- in principle - the learning for RNN-based models. Moreover, we observe that the Remind
extension boosts GRU4Rec performance considerably whenever the recommendation list length
is k ≥ 5. In terms of the variety of tokens included in the recommendations, there are stark
differences between the algorithms, with CT covering 95% of all tokens while GRU4Rec only
covers 8%. Popularity bias is rather low (between 5% and 8%) for all models. Single-window
results, as shown in Table 19 in the appendix, are very much in line with five-window results,
except for the notable exception of HGRU4Rec, which performs considerably worse on the
single-window data. (This, again, underlines the importance of the multiple-window approach.)

The high HR@1 performance across all algorithms, however, is suspicious because it might
simply be the consequence of the high prevalence of ON-OFF tokens - instead of our models
truly learning anything about behavioral sequences. For this reason, we analyze the effect of
removing ON-OFF tokens immediately, that is, before looking at performance by position.

Removing ON-OFF Tokens
For sequence-level analysis, we do not have individual ON and OFF events anymore but rather
ON-OFF tokens (i.e., events which represent a two-app, ON-OFF app-level session). Removing
all ON and OFF events from the app-level data thus translates into removing all those ON-
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OFF tokens from the sequence-level data.17 Since these ON-OFF tokens constitute 51.06% of
all tokens, the results as shown in Table 9 represent less than half of all observed sequence-level
sequences (i.e., sentences) and are thus not representative of all behavioral sequences anymore.
That said, the results - in particular when compared to those from Table 8 - are still very
insightful: for all algorithms, performance drops significantly after excluding ON-OFF tokens.

Algorithm HitRate@1 HitRate@5 HitRate@10 HitRate@20 MRR@5 MRR@10 MRR@20 Coverage@20 Popularity@20

AR 0.1993 0.4685 0.5804 0.6734 0.2995 0.3145 0.3209 0.4906 0.2551
SR 0.2496 0.5017 0.6013 0.6874 0.3442 0.3578 0.3638 0.8554 0.2437
SR_BR 0.2367 0.4914 0.5785 0.6664 0.3342 0.3460 0.3520 0.7060 0.1845
CT 0.2539 0.5006 0.5961 0.6838 0.3462 0.3591 0.3652 0.9128 0.2527
SKNN 0.1638 0.4348 0.5543 0.6541 0.2628 0.2789 0.2859 0.2571 0.2552
STAN 0.2148 0.4749 0.5833 0.6565 0.3098 0.3245 0.3297 0.8340 0.2175
VSTAN 0.1985 0.4391 0.5061 0.5311 0.2876 0.2970 0.2988 0.5103 0.1165
VSTAN_EBR 0.1941 0.4420 0.5331 0.6295 0.2858 0.2982 0.3048 0.6804 0.1699
GRU4Rec 0.1370 0.1900 0.1956 0.2024 0.1603 0.1610 0.1615 0.3598 0.0877
GRU4Rec_R 0.1843 0.4258 0.5273 0.6366 0.2738 0.2874 0.2950 0.6627 0.1649
HGRU4Rec 0.0586 0.1058 0.1264 0.1515 0.0765 0.0792 0.0809 0.9713 0.0563

Table 9: Performance results on five-window sequence-level data when dropping all ON and OFF
events from the underlying app-level sessions. For HR@k and MRR@k, the best performance
per metric is highlighted in bold.

As illustrated in Figure 11, this drop is especially pronounced for HR@1 performance, with
the average performance drop (across all algorithms) equalling 63.88%. This means that by
virtue of removing all ON-OFF tokens, the number of behavioral sequences an average algorithm
now correctly predicts drops by almost two-thirds, as compared to the previous scenario where
no tokens are excluded. Across all algorithms and evaluation metrics, the performance obtained
is now much worse than in the app-level setting. CT is still the best performer, while the neural
methods GRU4Rec and HGRU4Rec are the worst performers for all metrics. One reason for the
substantial performance drop of the neural network-based models is the fact that the ranking
loss minimized during training does not take token frequency into account; and while this is not
an issue for datasets with a large number of approximately equally likely tokens - e.g., standard
RS datasets as in Hidasi et al. (2015) - it does become problematic for data such as ours, where
some of the tokens are disproportionately frequent. An (inverse frequency-based) weighting of
the loss contributions might thus help to alleviate this over-dependence on frequent tokens.

Judging by these results, it seems clear that the disproportional prevalence of ON-OFF
tokens in the unrestricted data airbrushes the predictive power of the models while hampering
true learning because models simply "learn" to predict an ON-OFF token every single time. In
fact, it turns out that on the unrestricted sequence-level data, all algorithms predict an ON-OFF
token as top ranked recommendation in more than 95% of all cases, except for Gru4Rec_R with
a 89.27% ON-OFF prediction rate; the GRU4Rec algorithm even predicts ON-OFF events in
100% of all cases as its top recommendation. This in turn implies that the algorithms almost

17Since some tokens include multiple ON events, a secondary effect of stripping ON and OFF events from the
underlying app-level sessions (which are then converted into tokens) is the reduction of the number of unique
tokens. However, this effect is rather small, as only very few app-level sequences contain multiple ON events.
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Figure 11: HR@k performance comparison between full five-window sequence-level data (left bars) and
five-window sequence-level data after dropping all ON and OFF events (right bars), for k ∈ {1, 5, 10, 20}.

never correctly predict non-ON-OFF events and, as a consequence, HR@1 on non-ON-OFF
events is close to zero.

Despite the limited representativeness, we thus decide to use sequence-level data with all
ON and OFF events removed from the underlying app-level data for the analysis of the effect
of test sequence positions.

Position in Test Sequence
Like in the app-level setting, here we consider test sequence positions and how they affect model
performance. The HR@1 results for the first ten prediction positions are shown in Figure 12
(see Table 20 in the appendix for the underlying numbers). As opposed to the app-level setting,
however, we do not see a clear trend for any of the models as the position of the event within
the test sequence increases. We do observe, however, that performance for the first position is
relatively weak for all algorithms.

Next, we again look at positional cutoffs instead of individual positions. From the results in
Table 10, again in terms of HR@1, we can now see that all models except SKNN perform better
on later positions of the test sequences, with the precise positioning of the cutoff - after the
second, fifth, or tenth position - not appearing to be influential. For the neural network-based
models, this performance improvement for later events is in line with what we expected, yet
it is precisely the opposite of what we observed for these models in the app-level setting. One
potential explanation for the difference in performance across positions for app- versus sequence-
level data is that in the app-level setting tuning and training was performed on predominantly
short sequences, while in the sequence-level setting the large majority of sequences is long by
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Figure 12: HR@1 performance across the first ten prediction positions on five-window sequence-level
data for all selected algorithms.

construction. This would corroborate our conclusion from Section 5.1.1 that differences in
sequence lengths between training and evaluation data negatively affect the performance of
neural network-based algorithms.

Algorithm position ≤ 2 position > 2 position ≤ 5 position > 5 position ≤ 10 position > 10

AR 0.4770 0.5310 0.4839 0.5328 0.4933 0.5351
SR 0.4760 0.5321 0.4833 0.5340 0.4944 0.5361
SR_BR 0.4767 0.5323 0.4856 0.5340 0.4964 0.5360
CT 0.4760 0.5323 0.4857 0.5340 0.4952 0.5362
SKNN 0.4509 0.5312 0.4743 0.5330 0.4900 0.5350
STAN 0.3819 0.5321 0.4351 0.5348 0.4726 0.5364
VSTAN 0.3823 0.5318 0.4345 0.5346 0.4718 0.5363
VSTAN_EBR 0.4776 0.5316 0.4861 0.5334 0.4952 0.5355
GRU4Rec 0.4777 0.5306 0.4838 0.5324 0.4931 0.5347
GRU4Rec_R 0.4506 0.4998 0.4574 0.5015 0.4712 0.5029
HGRU4Rec 0.3840 0.5172 0.4257 0.5200 0.4519 0.5231

Table 10: Performance results on five-window sequence-level data, by positional cutoff within
test sequence.

However, the strong dependence of RNN-based model performance on training sequence
length and the weak overall performance on sequence-level data might also hint towards an
even bigger problem: the amount of data at our disposal might simply be insufficient for proper
learning of behavioral sequences, in particular in the sequence-level setting where the dataset
is much smaller again. In order to explore the full potential of the algorithms presented here
and to examine the impact of dataset size, a larger study in terms of both number of users and
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observation period is therefore needed.18

6 Discussion

6.1 Conclusion

In this paper, we explore how to model behavioral sequences through next-event prediction by
using the PhoneStudy project data (Stachl et al., 2019), which contains smartphone app data
for 310 participants over a 86-day period. Due to the sequentiality of the smartphone sessions
- which impose a natural order on the data - and considering that there are almost 2,500
distinct events, we employ a broad selection of algorithms from the RS domain for modeling
and next-event prediction.

We observe strong predictive performance of most algorithms across a variety of tasks,
with HR@1 exceeding 40% and HR@20 exceeding 90% in some cases. Across all pieces of
analysis, the CT algorithm performs particularly well, especially in terms of top-1 and top-5
recommendations. The co-occurrence frequency-based models AR, SR, and SR_BR also show
strong overall performance, in particular when the recommendation list length is larger. The
nearest neighbor-based SKNN algorithm is oftentimes the weakest of all models, with all other
neighborhood-based models - being extensions of SKNN - performing better.

Regarding neural network-based models, we observe the following: first, they usually per-
form well in terms of HR@1 and HR@5, yet they never achieve top performance, always being
outperformed by CT. HGRU4Rec is the worst-performing neural model most of the times,
which is surprising since this session-aware method is supposed to be designed for this type of
data with user-level information being available. One possible explanation is that HGRU4Rec
does not yet employ the improved TOP1-max loss function used by GRU4Rec. Second, neu-
ral model performance is very sensitive to sequence length: in general, performance improves
when sequence length of both training and evaluation sequences increases, yet it worsens if
only the length of evaluation sequences increases but training is conducted on predominantly
short sequences. Third, neural network-based models are amongst the worst performers in the
sequence-level setting after dropping ON-OFF events, which might well be due to the small
data size, with neural networks known to require large amounts of training data. And fourth,
in terms of runtime and computational effort the neural algorithms are orders of magnitude
more expensive than all other algorithms.

This leads us to conclude that non-neural models are the preferable modeling choice in our
case, in line with the conclusions reached by Latifi et al. (2021) for their datasets. In particular,
CT is recommendable for its strong performance when the desired recommendation list length

18For instance, the most recent PhoneStudy project, conducted by the Ludwig-Maximilians-University Munich
and the Leibniz Institute for Psychology, collects smartphone usage data similar to the one used here, yet the
observation period amounts to six months and the number of users is around 800.
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is small (i.e., when HR@1 and HR@5 are of special interest) and because it requires no tuning.
The co-occurrence frequency-based models are particularly suited because of their fast run-time
and strong performance in terms of HR@10 and HR@20.

Finally, from the fact that session-aware models do not consistently outperform session-based
models we conclude that there are no overarching user-level effects in our data. This in turn
means that for predicting future behavioral sequences of a particular user, it is not overly helpful
to know this particular person’s past smartphone usage patterns. Still, the inexpensive heuristic
user-level extensions we included are mostly effective, especially for short sequences and early
positions. However, this is not due to these extensions adding some profound user-level learning
to the session-based algorithms; instead, the extensions simply address some of the conceptual
weaknesses. For instance, VSTAN_EBR alleviates the poor early-position performance of other
neighborhood-based models, stemming from the low informational content in short sequences,
through its extensions.

6.2 Limitations

While the overall objective - the explorative modeling of behavioral sequences - can be achieved
given our algorithm selection and data, there are also limitations to this work.

First and foremost, the dataset size might simply be insufficient, also taking into account
the low informational content of ON and OFF events. In particular for sequence-level analysis,
this might be giving a relative advantage to non-neural methods, while neural methods might
potentially benefit more than others from being trained on a larger dataset.

Second, our selection of algorithms far from covers the entire range of applicable RS methods.
Especially in terms of deep learning-based RS, there are plenty of modern, usually sophisticated
approaches we did not consider here, such as the attention-based SHAN (Xiao et al., 2019) and
BERT4Rec (Sun et al., 2019). However, neural network-based models in general need plenty
of training data, and attention-based models even more so. Furthermore, the main advantage
of the attention mechanism over RNNs is its capability of handling long-term dependencies -
which is precisely the opposite of the issue at hand, with our data predominantly containing
very short app sessions. Because of that, we do not consider attention-based RS models as
naturally applicable to our data and task.

Third, although we believe that our definition of an app session - beginning with an ON
event and ending with an OFF event - is very reasonable, there might be other, more efficient
ways to define and represent the raw data. For instance, one could try to take into account the
duration and exact daytime of each app usage as well as to avoid the (almost) non-informative
ON and OFF tokens.
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6.3 Suggestions for Future Research

Based on the results from our analyses, there are two key points to be considered in future
research: the size of the data and the amount of information an algorithm can incorporate.

As for the dataset size, at the end of Section 5.2 we already pointed to the most recent
PhoneStudy project. Future research might want to use such sizeable datasets to corroborate
the findings from our explorative analysis and, additionally, investigate the impact of data size
on (neural network-based) model performance.

However, not only the mere size of a dataset matters, but also how much information can
be extracted from it. Our data representation approach only uses an app’s timestamp for the
chronological ordering of a session. The exact timestamp, though, might be very informative
about user behavior itself - be it the duration spent on an app or the exact moment of the
day (or week) at which the app is opened. Moreover, additional information such as a user’s
geolocation might be incorporated. Unfortunately, the RS methods presented in this work are
not capable of processing information beyond time-ordered event IDs. Therefore, converting
all of the abovementioned information into natural language and subsequently feeding it to a
(pre-trained) transformer, as suggested in Section 3.2.3, is certainly a promising direction for
future research.

Altogether, when modeling behavioral sequences one can resort to a rich range of non-
complex and strongly performing RS methods, while at the same time the topic remains a field
of ample opportunities for new methods and research.

42



7 Appendix

Algorithm Hyperparameter App-level Sequence-level

SR steps 2 30
weighting div div

SR_BR

steps 13 15
weighting quadratic div
boost_own_sessions 3.9 0.9
reminders True True
remind_strategy hybrid hybrid
remind_sessions_num 1 10
weight_IRec 0 1

SKNN k 1500 100
sample_size 500 500

STAN

k 100 100
sample_size 10000 1000
lambda_spw 7.24 0.4525
lambda_snh 100 40
lambda_inh 1e-05 0.4525

VSTAN

k 200 500
sample_size 10000 10000
similarity vec cosine
lambda_spw 7.24 0.905
lambda_snh 5 2.5
lambda_inh 1.81 1e-05
lambda_ipw 7.24 3.62
lambda_idf 5 False

VSTAN_EBR

k 200 100
sample_size 5000 2500
similarity vec cosine
lambda_spw 7.24 1.81
lambda_snh 10 10
lambda_inh 1.81 1e-05
lambda_ipw 0.4525 3.62
lambda_idf 2 False
extend_session_length 24 6
boost_own_sessions 2.5 3.1
reminders True True
remind_strategy hybrid hybrid
weight_IRec 2 3
weight_SSim 3 3

Table 11: Optimal hyperparameters for non-neural models for app- and sequence-level data.
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Algorithm Hyperparameter App-level Sequence-level

GRU4Rec

loss bpr-max top1-max
final_act elu-0.5 linear
dropout_p_hidden 0.4 0.7
momentum 0.0 0.0
learning_rate 0.01 0.4
constrained_embedding False True

GRU4Rec_R

loss bpr-max top1-max
final_act elu-0.5 elu-0.5
dropout_p_hidden 0.1 0.7
momentum 0.4 0.2
learning_rate 0.01 0.01
constrained_embedding True True
reminders True True
remind_strategy hybrid hybrid
remind_sessions_num 9 4
weight_IRec 1 3

HGRU4Rec

final_act relu linear
dropout_p_hidden_usr 0.0 0.2
dropout_p_hidden_ses 0.2 0.7
dropout_p_init 0.3 0.1
momentum 0.1 0.6
learning_rate 0.03 0.5
user_propagation_mode init all
batch_size 100 50

Table 12: Optimal hyperparameters for neural network-based models for app- and sequence-
level data.

Algorithm HitRate@1 HitRate@5 HitRate@10 HitRate@20 MRR@5 MRR@10 MRR@20 Coverage@20 Popularity@20

AR 0.1928 0.5752 0.7256 0.8432 0.3227 0.3431 0.3514 0.1794 0.2318
SR 0.2400 0.6264 0.7944 0.8616 0.3953 0.4185 0.4234 0.2053 0.1879
SR_BR 0.2616 0.6848 0.8312 0.8600 0.4249 0.4457 0.4479 0.2076 0.1895
CT 0.3608 0.6968 0.8104 0.8848 0.5045 0.5201 0.5255 0.1990 0.2470
SKNN 0.0032 0.5320 0.6736 0.7608 0.1909 0.2112 0.2171 0.0201 0.2395
STAN 0.1400 0.2896 0.2920 0.2920 0.2025 0.2029 0.2029 0.0656 0.0876
VSTAN 0.1464 0.5560 0.6408 0.6800 0.3012 0.3130 0.3157 0.1420 0.1826
VSTAN_EBR 0.2440 0.6176 0.8056 0.8936 0.3777 0.4051 0.4115 0.3726 0.2123
GRU4Rec 0.2784 0.5208 0.6432 0.7320 0.3750 0.3923 0.3985 0.6504 0.0897
GRU4Rec_R 0.2464 0.5280 0.6184 0.6944 0.3539 0.3663 0.3718 0.6446 0.1007
HGRU4Rec 0.2992 0.4344 0.4728 0.5056 0.3520 0.3574 0.3596 0.5446 0.0220

Table 13: Performance results on single-window app-level data. For HR@k and MRR@k, the
best performance per metric is highlighted in bold.
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Algorithm HitRate@1 HitRate@5 HitRate@10 HitRate@20 MRR@5 MRR@10 MRR@20 Coverage@20 Popularity@20

AR -0.0096 -0.0174 0.0006 0.0025 -0.0147 -0.0124 -0.0123 -0.1414 -0.0010
SR -0.0191 -0.0167 0.0108 0.0048 -0.0103 -0.0063 -0.0066 -0.1499 -0.0013
SR_BR -0.0102 -0.0054 0.0109 0.0041 -0.0065 -0.0039 -0.0044 -0.1502 0.0003
CT -0.0225 -0.0038 -0.0089 0.0008 -0.0085 -0.0089 -0.0081 -0.1277 -0.0021
SKNN -0.0127 0.0030 -0.0140 -0.0089 0.0000 -0.0007 -0.0007 -0.0288 -0.0068
STAN -0.0143 -0.0490 -0.0531 -0.0539 -0.0282 -0.0288 -0.0288 -0.0739 -0.0007
VSTAN -0.0079 -0.0075 -0.0361 -0.0402 -0.0074 -0.0114 -0.0119 -0.2234 -0.0012
VSTAN_EBR 0.0004 -0.0286 -0.0234 -0.0342 -0.0045 -0.0026 -0.0035 -0.1850 -0.0007
GRU4Rec -0.0406 -0.0621 -0.0269 -0.0183 -0.0468 -0.0415 -0.0409 -0.1498 0.0002
GRU4Rec_R -0.0641 -0.1000 -0.1057 -0.1005 -0.0746 -0.0754 -0.0749 -0.1754 -0.0431
HGRU4Rec 0.0014 0.0097 0.0022 -0.0126 0.0034 0.0026 0.0016 -0.1378 -0.0029

Table 14: Differences between single- and multiple-window performance on app-level data.

Algorithm HitRate@1 HitRate@5 HitRate@10 HitRate@20 MRR@5 MRR@10 MRR@20 Coverage@20 Popularity@20

AR 0.2265 0.5717 0.6721 0.7905 0.3648 0.3784 0.3868 0.6149 0.1840
SR 0.3140 0.6303 0.7390 0.8256 0.4337 0.4482 0.4544 0.6447 0.1618
SR_BR 0.3419 0.6804 0.7858 0.8280 0.4696 0.4841 0.4872 0.6688 0.1668
CT 0.4257 0.7222 0.7925 0.8523 0.5443 0.5539 0.5580 0.6521 0.2048
SKNN 0.0130 0.3480 0.5366 0.6849 0.1117 0.1379 0.1483 0.0609 0.2070
STAN 0.2570 0.6350 0.6595 0.6610 0.4085 0.4121 0.4122 0.3316 0.0707
VSTAN 0.0977 0.3368 0.3992 0.4438 0.1836 0.1922 0.1954 0.4884 0.0373
VSTAN_EBR 0.2232 0.5737 0.7242 0.8788 0.3466 0.3665 0.3775 0.7121 0.1295
GRU4Rec 0.3693 0.6093 0.6840 0.7616 0.4651 0.4752 0.4806 0.8887 0.0610
GRU4Rec_R 0.3516 0.6612 0.7673 0.8451 0.4673 0.4817 0.4873 0.9722 0.1050
HGRU4Rec 0.3067 0.4602 0.5073 0.5595 0.3666 0.3729 0.3765 0.7059 0.0224

Table 15: Performance results on five-window app-level data when only considering sequences
of at least 20 events for both training and evaluation. For HR@k and MRR@k, the best
performance per metric is highlighted in bold.

Algorithm HitRate@1 HitRate@5 HitRate@10 HitRate@20 MRR@5 MRR@10 MRR@20 Coverage@20 Popularity@20

AR 0.1890 0.4647 0.5921 0.7895 0.2964 0.3135 0.3274 0.1315 0.2349
SR 0.1810 0.4747 0.6646 0.7987 0.2932 0.3176 0.3272 0.1665 0.1832
SR_BR 0.1903 0.5183 0.7357 0.7974 0.3158 0.3453 0.3498 0.1633 0.1833
CT 0.3123 0.5908 0.7314 0.8492 0.4221 0.4405 0.4492 0.1608 0.2460
SKNN 0.0042 0.2962 0.5733 0.6433 0.0791 0.1140 0.1190 0.0384 0.2462
STAN 0.2440 0.6113 0.6330 0.6330 0.3908 0.3940 0.3940 0.0738 0.0959
VSTAN 0.2307 0.6056 0.7499 0.8178 0.3803 0.3999 0.4048 0.2012 0.2010
VSTAN_EBR 0.1345 0.4392 0.7024 0.9016 0.2385 0.2740 0.2886 0.1467 0.2141
GRU4Rec 0.2846 0.5013 0.5874 0.6798 0.3683 0.3797 0.3860 0.4380 0.0477
GRU4Rec_R 0.2091 0.4544 0.5679 0.6695 0.2963 0.3116 0.3186 0.4580 0.1213
HGRU4Rec 0.2716 0.4096 0.4696 0.5225 0.3251 0.3330 0.3366 0.4225 0.0165

Table 16: Performance on five-window app-level data when training on all sequences but only
considering sequences of at least 20 events for evaluation. For HR@k and MRR@k, the best
performance per metric is highlighted in bold.
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Algorithm position = 1 position = 2 position = 3 position = 4 position = 5 position = 6 position = 7 position = 8 position = 9 position = 10

AR 0.3110 0.0974 0.2257 0.1605 0.1361 0.1957 0.2116 0.1745 0.1817 0.1858
SR 0.3110 0.1075 0.2657 0.2404 0.3389 0.3658 0.3363 0.2793 0.3273 0.2923
SR_BR 0.3218 0.1445 0.2678 0.2389 0.3566 0.3647 0.3384 0.3108 0.3814 0.3496
CT 0.3110 0.5042 0.3550 0.3323 0.3936 0.4759 0.4512 0.3949 0.4425 0.4355
SKNN 0.0072 0.0256 0.0143 0.0264 0.0440 0.0226 0.0160 0.0195 0.0294 0.0069
STAN 0.0072 0.0254 0.1456 0.2254 0.1734 0.2959 0.2531 0.2784 0.2879 0.2704
VSTAN 0.0294 0.0295 0.1488 0.2244 0.1876 0.2360 0.2039 0.2530 0.2452 0.3085
VSTAN_EBR 0.3571 0.2593 0.1820 0.2877 0.2211 0.2665 0.1969 0.2469 0.2728 0.1863
GRU4Rec 0.3240 0.4096 0.2696 0.2871 0.2858 0.2952 0.2941 0.2942 0.3320 0.3197
GRU4Rec_R 0.3368 0.4075 0.2474 0.3108 0.3257 0.3479 0.2673 0.2954 0.3740 0.3355
HGRU4Rec 0.2825 0.4890 0.2286 0.2922 0.2133 0.2956 0.2628 0.2973 0.2793 0.2773

Table 17: HR@1 performance results on five-window app-level data, by position within test
sequence.

Algorithm position = 1 position = 2 position = 3 position = 4 position = 5 position = 6 position = 7 position = 8 position = 9 position = 10

AR 0.8493 0.0016 0.0000 0.0017 0.0045 0.0082 0.0000 0.0000 0.0000 0.0000
SR 0.8493 0.3231 0.2359 0.3297 0.4489 0.3644 0.4825 0.3673 0.3897 0.4217
SR_BR 0.8558 0.3570 0.2599 0.3595 0.4693 0.4204 0.4966 0.3751 0.3978 0.4460
CT 0.8838 0.3170 0.2386 0.3189 0.4134 0.3261 0.4196 0.3391 0.3424 0.3539
SKNN 0.0000 0.0663 0.1248 0.1358 0.1333 0.1258 0.1360 0.1317 0.1235 0.1034
STAN 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
VSTAN 0.1507 0.0361 0.0067 0.0054 0.0069 0.0000 0.0000 0.0000 0.0000 0.0000
VSTAN_EBR 0.6067 0.4888 0.4201 0.3579 0.3092 0.2598 0.2694 0.2491 0.2170 0.2083
GRU4Rec 1.0000 0.0898 0.0548 0.0295 0.0698 0.0278 0.0000 0.0186 0.0105 0.0118
GRU4Rec_R 0.9377 0.0850 0.1550 0.2178 0.3411 0.2335 0.1923 0.1735 0.1405 0.1540
HGRU4Rec 0.0439 0.0479 0.0226 0.0085 0.0021 0.0032 0.0107 0.0000 0.0000 0.0000

Table 18: Relative frequency of predicting an OFF event as top-ranked recommendation on
five-window app-level data, by position in the test sequence.

Algorithm HitRate@1 HitRate@5 HitRate@10 HitRate@20 MRR@5 MRR@10 MRR@20 Coverage@20 Popularity@20

AR 0.5189 0.6781 0.7420 0.7988 0.5796 0.5882 0.5921 0.2237 0.0733
SR 0.5188 0.6933 0.7540 0.8058 0.5878 0.5959 0.5995 0.6626 0.0724
SR_BR 0.5202 0.6533 0.7055 0.7725 0.5713 0.5783 0.5829 0.5253 0.0618
CT 0.5203 0.7083 0.7630 0.8124 0.5952 0.6026 0.6061 0.8867 0.0725
SKNN 0.5188 0.6761 0.7388 0.7907 0.5741 0.5825 0.5861 0.0990 0.0722
STAN 0.5143 0.6613 0.7121 0.7348 0.5680 0.5750 0.5767 0.4185 0.0648
VSTAN 0.5143 0.6558 0.7025 0.7131 0.5666 0.5730 0.5739 0.1842 0.0567
VSTAN_EBR 0.5177 0.6465 0.6950 0.7601 0.5680 0.5744 0.5789 0.5428 0.0614
GRU4Rec 0.5183 0.5190 0.5193 0.5197 0.5186 0.5187 0.5187 0.0432 0.0502
GRU4Rec_R 0.4918 0.6603 0.7198 0.7820 0.5549 0.5628 0.5671 0.4723 0.0636
HGRU4Rec 0.3240 0.3424 0.3512 0.3611 0.3309 0.3321 0.3328 0.9703 0.0343

Table 19: Performance results on single-window sequence-level data. For HR@k and MRR@k,
the best performance per metric is highlighted in bold.

Algorithm position = 1 position = 2 position = 3 position = 4 position = 5 position = 6 position = 7 position = 8 position = 9 position = 10

AR 0.1350 0.1612 0.1662 0.1629 0.1763 0.1881 0.1991 0.1944 0.1756 0.1600
SR 0.2126 0.2261 0.2306 0.2253 0.2145 0.2309 0.2359 0.2492 0.2171 0.2321
SR_BR 0.2017 0.2044 0.2061 0.2146 0.2153 0.2274 0.2256 0.2190 0.2145 0.2062
CT 0.2170 0.2390 0.2423 0.2191 0.2266 0.2241 0.2329 0.2509 0.2337 0.2324
SKNN 0.1595 0.2004 0.1807 0.1496 0.1722 0.1697 0.1679 0.1491 0.1510 0.1403
STAN 0.1583 0.1911 0.1863 0.1783 0.1915 0.2070 0.2156 0.2144 0.2120 0.1915
VSTAN 0.1583 0.1955 0.1869 0.1684 0.1835 0.1923 0.2031 0.2031 0.1906 0.1694
VSTAN_EBR 0.1413 0.1398 0.1649 0.1620 0.1930 0.1905 0.2010 0.1649 0.1901 0.1642
GRU4Rec 0.0963 0.1130 0.1168 0.1077 0.1072 0.1117 0.1227 0.1159 0.1247 0.1128
GRU4Rec_R 0.1430 0.1372 0.1277 0.1273 0.1539 0.1642 0.1747 0.1621 0.1627 0.1482
HGRU4Rec 0.0364 0.0450 0.0395 0.0478 0.0445 0.0473 0.0499 0.0741 0.0606 0.0641

Table 20: Performance results on five-window sequence-level data, by position within test se-
quence.
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