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Abstract

This work aims at improving the transparency of sequential model-based optimiza-

tion (SMBO), a powerful algorithm for hyperparameter (HP) tuning, by explaining

the proposals of the acquisition function (AF) with the help of the Shapley value

(SV). The SV guarantees a fair distribution of the desirability of a proposed con-

figuration among the involved parameters. What is more, with the linearity axiom

and the confidence bound (CB) criterion, the utility of a parameter can be further

decomposed into desirability for mean optimization and uncertainty reduction. The

contribution of this work is encapsulated in a new tool called ShapleyMBO. In the

first analysis, using a synthetic setting, we show that our tool provides consistent

results with our expectations and that the SV reveals interesting insights of the

explore-exploit-trade-off (EETO). In the second analysis, we demonstrate that our

tool can also furnish useful diagnostics results in real tuning examples.
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1 Introduction

With the advent of automated machine learning (AutoML) automated hyperpa-

rameter optimization (HPO) has recently become a popular research field. Auto-

mated HPO is particularly beneficial because, among others, it can improve the

performance of algorithms and facilitate the use of machine learning (ML) applica-

tions [12, p.3]. Out of the many methods available (refer to [25] for an overview)

SMBO, also known as Bayesian optimization (BO) or simply model-based optimiza-

tion (MBO), has shown to be a valid alternative to well established methods such

as random search [2]. SMBO has gained much of its success because of its sample

efficient capacity to optimize expensive black-box target functions, that are, like in

the case of some ML algorithms’ performance, analytically intractable and expen-

sive to evaluate. Starting from a set of observations with evaluated target values

(initial design), the same steps are repeated in an iterative fashion. First, a surro-

gate model (SM) is fitted to the given design. Then an AF, for instance the lower

confidence bound (LCB), uses the predictive distribution of the SM to choose which

point in the input space to evaluate. Among all candidates, the chosen point has

the highest acquisition and it is considered the most promising and desirable point

for improving the optimization. Essentially the choice of the AF is based on mean

and uncertainty prediction of the SM. A good mean prediction is desirable because

it can indicate good target values. High uncertainty is appealing because it helps to

increase knowledge about the target space. Ideally, proposals fulfill both desirabil-

ity properties, but eventually this is not possible and the algorithm is faced with a

decision problem, which is known in the literature as the EETO [8, p.2]. The phe-

nomenon states that it is impossible to optimize a promising region locally (mean

optimization) and simultaneously explore unknown areas of the space (uncertainty

reduction). This decision problem is indeed tackled by the AF, which proposes

points balancing exploration and exploitation and finally allows the algorithm to

search for the optimum efficiently.

Undoubtedly the AF, or more precisely the choice of the AF, plays a fundamental

role in the optimization problem, and yet it lacks transparency. When new instances

are proposed, explanations behind the choice of the AF are possible only in low di-

mensional problems. For instance, take a look at figure 1, which displays the results

of a univariate BO optimization run. In the first iteration the AF proposes a point

with a relative good mean prediction, but not the best, and high uncertainty, but

not the highest (explore-exploit-trade-off)1. Both mean and uncertainty positively

1Here, relative means compared to other (candidate) points in the domain.
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influence the desirability of the proposal. This must not necessarily hold for the

entire process and their influence can change over time. Indeed as shown in the

third and final iteration of the process, the choice is mostly dictated by the mean as

the proposed point has a very low mean prediction and relatively small uncertainty.

When dealing with higher dimensional problems, which are far from rare in SMBO

applications, such explanations becomes more complicated, or even impossible, be-

cause multiple, possibly interacting parameters influence the AF choice. To give an

intuition on the seriousness of the problem, consider the same optimization prob-

lem, but with three dimensions (results are displayed in table 1). Which parameter

among x1, x2 and x3 has the biggest influence on the LCB? Was the value of x1

primarily proposed because of its effect on the mean or uncertainty of the proposal?

How do contributions between parameters differ? How do the contributions of each

parameter change over time?

iter x1 x2 x3 y ĉb ŝe m̂

1 0.15 0.41 0.47 0.33 0.16 0.32 0.48

2 0.61 0.16 0.43 0.67 0.18 0.27 0.45

3 -0.30 0.32 0.49 0.39 0.17 0.23 0.40

Table 1: Same problem as in figure 1 but in three dimensions. ĉb, ŝe and m̂ indicate the (predicted)

LCB, uncertainty and mean of the proposals.

Given the limited visualization possibilities in higher dimensions and the scarce in-

formation about the black-box function in real life, users are usually left with little

information regarding the choice of specific parameter values. On the contrary, users

shall understand why the algorithm selects specific configurations. This information

is essential to increasing trust and transparency of SMBO, which otherwise can only

be treated as a black-box algorithm. To the best of our knowledge, there is no cur-

rent work that tackles this problem and this work aims indeed to fill this research

gap. Without much further ado, the desirability concept mentioned previously can

be applied to multidimensional problems by splitting the desirability of a proposal

into individual desirability scores of its parameters 2. As such, the solution to the

problem reduces to solving a local parameter attribution problem. Among

possible alternatives, we will show that the best solution to reveal previously un-

known aspects of the EETO is the Shapley value (SV) [34], a concept that originates

form cooperative game theory but has become a state of the art local interpreta-

tion method for prediction models. This method is preferred over its competitors

because of its (i) fair distribution of the payout between interacting parameters and

2A parameter value, or simply a parameter, is said to be desirable if it has a positive influence on

the acquisition of the proposal and hence a positive influence on the mean or uncertainty prediction.
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(ii) strong theoretical properties, especially the linearity axiom. To the best of our

knowledge, this is the first time the SV is used to explain SMBO and as such the

main goals of this work are to give exploratory evidence that the SV is a valid method

to explain the choices of AF and to introduce a new framework named ShapleyMBO,

which users can benefit from to hopefully increase trust and transparency of their

SMBO tuning applications. To accomplish that, the analysis will be twofold. In

the first part, results for different AF settings are tested against our expectations

using a function with known analytical properties. In the second part, a tuning

example is conducted to see how ShapleyMBO reacts in a real scenario and to show

how users might benefit from it. The remainder of the thesis is structured as follows.

After useful definitions and notations in section 2, an overview of related works re-

garding explanation tools for AutoML in general and HPI specifically is given in

section 3. Then, selected theoretical concepts regarding SMBO (section 4) and the

SV (section 5.1) are explained. Section 5 is further extended in 5.2 with a brief in-

troduction of the SV in the context of SMBO and the presentation of ShapleyMBO.

Before getting to the results of both analyses in section 7, the experimental setup

is described separately in section 6. Finally, methodological aspects of ShapleyMBO

are discussed in section 8. The paper ends in section 9 with a summary and outlook

for future work. Last but least in the appendix part all figures and algorithms,

as well as additional materials, can be found. All data and codes are available at

https://github.com/croppi-f/ShapleyMBO.

2 HPO: problem definition and notation

In this section the hyperparameter optimization problem is formalized and the no-

tation adopted in this paper is introduced. For a comprehensive overview about

current topics in HPO the curious reader is referred to [12]. The HPO problem is

also known in the literature as the algorithm configuration problem [17, p.8], which

can be defined as follows. Let A be an algorithm with hyperparameters θ1, . . . , θp

and domain Θ1, . . . ,Θp such that Θ = Θ1×. . .×Θp is the HP or configuration space,

which can be real-valued, categorical, binary, conditional or even mixed [12, p.5].

Further, let L(Aθ,Dtrain,Dvalid) quantify the validation loss of algorithm A achieved

on Dvalid, that has been previously trained with configuration θ on Dtrain. Then
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given data set D the goal is to find the optimal θ∗ for equation 1a.

θ∗ = arg min
θ∈Θ

EDtrain,Dvalid∼DL(Aθ,Dtrain,Dvalid) (1a)

≈ arg min
θ∈Θ

1

K

K∑
k=1

L(Aθ,D
(k)
train,D

(k)
valid) (1b)

≈ arg min
θ∈Θ

ĝ(θ) (1c)

Because of limited data availability in practice the expectation in equation 1a can be

approximated with the help of resampling strategies like K-fold cross-validation [5,

p. 254] (equation 1b). To speed up the process, recently Hutter et al. suggest

approximating the interesting quantity with a so-called empirical performance model

(EPM) ĝ : Θ→ R, namely a powerful prediction model [20, p.79]. The optimization

problem can then be summarized with equation 1c, which reflects a hypothetical

optimization problem that can be solved using SMBO.

Several synonyms in the HPO literature define the same object. Throughout the

thesis, the HP space Θ will be called configuration, parameter, or input space, and an

element thereof θ will be called HP setting, configuration, instance, or observation.

To avoid confusion with the HP of the SMBO algorithm, like the control parameter

λ of the LCB, if needed, we will explicitly mention what we are referring to. In

conclusion, note that concepts in sections 4 and 5 are usually applied to features

x of a ML model. Still, the same concepts can be applied to configurations θ

because within SMBO for tuning HP are effectively parameters or ”features” of the

optimization problem. Hence notations will be adjusted accordingly. Finally, as

regarding HPI, notice that importance, contribution, and influence will be used as

synonyms.

3 Related work

A recent study conducted by Drozdal et al. highlighted the need for transparency in

AutoML applications and HPO [10]. In particular the authors identify three types

of transparency: model-oriented (e.g. shows various performance metrics), data-

oriented (e.g. shows the data distribution) and finally process-oriented (e.g. shows

how AutoML performs HPO) [10, p.300]. To overcome this issue several frameworks

have been offering solutions to explain the results of a tuning process [15, 22, 23,

28, 40]. While all of them offer abundant analysis tools, only [15, 22, 23] implement
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the HPO task within their framework3 and in particular only Google Vizier uses,

among other algorithms, SMBO as a tuning strategy [15, p.1491]4. This shrinks the

universe of the comparable related work within the AutoML applications to only

Google Vizier. The major advantage of Google Vizier’s analysis tool is the interactive

dashboard, with which the user can for instance display various ”performance-over-

time metrics” (model-oriented) or analyze HP trajectories with parallel plots (data-

oriented) [15, p.1490]. To the best of our knowledge, this is much of what Google

Vizier offers in terms of transparency and, if this is the case, it does not directly

provide a solution to our research question, namely a tool that rather explains how

SMBO performs HPO (process-oriented transparency).

Outside the context of AutoML, HPO, seen as an independent research field, has

a long history [12, p.4] and in recent years, much attention within this field was

given to assessing the influence of HPs on the performance of an algorithm. This

branch of HPO is known as hyperparameter importance (HPI) and state-of-the-art

methods today include (global) functional ANOVA (fANOVA) [18], local parameter

importance (LPI) [4] and ablation analysis (AA) [11]. Since the goal in this work is

to assess the importance of the HP on the AF, basically any of the just mentioned

HPI methods can be adapted to our purposes by replacing the performance metric

with the acquisition function5. In the following paragraphs, though, we will explain

why these methods are not sufficient.

LPI and fANOVA are strictly related, as the former was introduced as the local vari-

ant of the latter. Since this work aims to explain individual configurations, namely

the proposals in each iteration of the SMBO process, we exclude the latter method

as a possible solution but notice that the considerations regarding LPI also apply

to fANOVA. The idea of LPI is based on the concept of functional decomposition,

after which a function can be decomposed into additive components of parameter

interactions [16]. Among others, functional decomposition fulfills a property called

variance decomposition [16, p.714]. LPI exploits this property and decomposes the

variance of the algorithm’s performance to measure the importance of a parameter

in the neighborhood of a configuration (therefore the name local) [4, p.124]. Given

a configuration space Θ of p hyperparameters with P = {1, 2, . . . , p} being the set

of all HP, a configuration θ and validation loss L(Aθ,Dtrain,Dvalid) estimated with

3As stated in [28, p.1] and [40, p.2] their framework can be integrated within AutoML systems,

yet we do not know if they provides specific solutions for interpreting SMBO results.
4To the best of our knowledge both Hypertuner and H2O do not implement SMBO as a tuning

strategy [22, p.1] [23, p.19].
5Notice also that Golovin et al. do not mention any HPI analysis tools in their paper and we

can not say if Google Vizier offers any.

Page 5



EPM ĝ, the local contribution of parameter j ∈ P with domain Θj can be formulated

as

contrLPI(j) =
V ara∈Θj ĝ(θ[θj = a])∑
l∈P V arb∈Θl ĝ(θ[θl = b])

, (2)

where θ[θj = a] indicates configuration θ with value of parameter j equal to a.

A HP is said to be important if it accounts for a large fraction of the variance of

the performance [39, p.2370]. Notice that Biedenkapp et al. indeed use an EPM

to approximate the performance [4, p.124]. Now imagine LPI is used to assess the

desirability of a configuration proposed by the AF (in equation 2 ĝ is replaced with

the AF). Since contrLPI is element of R+
0 the contribution of a parameter can only

be assessed in absolute terms. To explain the EETO it is essential to distinguish also

the sign of the contribution because the AF might choose configuration values that

are convenient for one scope but not for the other. Finally fANOVA and therefore

also LPI, are limited to the decomposition of the variance up to low order interactions

[18, p.757]. This could bring misleading results if higher order interactions play a

substantial role.

Previous to LPI, AA was proposed as a complementary local method to fANOVA

[11]. Starting from a source configuration θs each parameter value is sequentially

flipped according to the value of a target configuration θt. Normally as source a

default configuration provided in libraries and as target, a tuned configuration is

chosen [11, p.435]. The flipping sequence is determined to maximize the gain over

previous configurations6. The bigger the improvement the more important a HP.

For a detailed description of the method refer to [11, p.436]. As shown in equation

3 within AA the contribution of a HP is element of R and therefore, unlike LPI, it

would allow different contribution signs. However, this method hides a disadvantage,

implicit in its greedy and iterative way of measuring importance. The problem occurs

when parameters interact. Consider again the notation of the previous paragraph

and notice that also AA has been improved with EPMs [3]. The idea is to measure

the importance of parameter j by computing the marginal contribution of its target

value θtj at the time it has been flipped. For instance, in the first ablation round, it

is defined as

contrAA(j) = ĝ(θs)− ĝ(θs[θsj = θtj ]). (3)

In equation 3 the value of θsj is flipped according to θtj , leaving the remaining HP

unchanged to their source values. As the process goes on, one source value in each

round is changed until all have been flipped. The particularity of this greedy proce-

dure is that parameter values remain unchanged after being switched. Therefore the

marginal contribution of parameters after the first round is computed conditional

6This is the general workflow when lower target values indicate higher performance.
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on other parameters being previously flipped. In other words, AA does not consider

interactions between the HP, which could cause misleading results in the presence

of any. Indeed Fawcett and Hoos state in a conclusive remark that an ”avenue for

further work is to make support for complex parameter interdependencies more flex-

ible, for example [...] to allow sets of parameters without conditional relationships

to be modified in the same ablation round” [11, p.456]. For a better intuition on

this issue consider the following data generating model

u = θ1 + θ2 · θ3 + ε

θ1, θ2, θ3
i.i.d∼ U(0, 1), ε ∼ N (0, 0.052),

where u denotes the AF. Further suppose that u is minimized. According to the

model for equal parameter values we expect θ2 and θ3 to have same contributions

and smaller than θ1 because of their interaction. To assess the importance of the

parameters an AA is conducted. A training data set with 10000 instances is simu-

lated and a random forest is trained to predict u. Source and target are respectively

θs = (0.5, 0.5, 0.5)T and θt = (0, 0, 0)T . Results are displayed in table 2. While

results for the non interacting θ1 meet the expectations, results for the interacting

parameters do not, since θ3 is far less important than θ2 (see relative AA). The for-

mer parameter is left with little contribution since most of their joint contribution

is absorbed by the latter. This is clearly unfair for θ3, which has a very similar,

unconditional effect in the first round of the analysis (see AA round 1). To assess

contributions correctly a method that can better handle interactions is necessary.

parameter AA round 1 relative AA relative SV

θ1 0.483 0.66 0.66

θ2 0.262 0.31 0.21

θ3 0.258 0.03 0.17

Table 2: Comparison of ablation analysis and Shapley value results for data generating model in

section 3. The source configuration in AA was chosen s.t. similar payouts (quantity distributed)

with both methods are obtained. The flipping order resulting from AA was θ1, θ2, θ3. Columns

from left to right: parameter, contributions in the first round of the AA, relative importance

with AA (final results) and SV. The latter results will be presented later in section 5.2. Relative

importance is the marginal contribution divided by the payout. The approximation error of SV

(0.66 + 0.21 + 0.17 > 1) is negligible and does not change the interpretation of the results.

In conclusion, both HPI methods, LPI and AA, have few disadvantages and as shown

later in section 5.2 the Shapley value turns to be a better choice for this work. Before

getting there, the core theory of SMBO will be presented in the next section.
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4 SMBO for hyperparameter optimization

Sequential model-based optimization is a popular method for the global optimization

of expensive black-box functions. One of its most successful applications is indeed

HPO [2, 17, 35, 38], as evaluating the performance of a ML algorithm can be quite

expensive and the target function, i.e. the validation loss, is usually analytically

intractable (black-box ) [12, p.4]. If an EPM is used to approximate the interesting

quantity, based on the notations provided in section 2 the optimization problem

can be formalized as minθ∈Θ ĝ(θ). It is realistic to assume that the true objective

is noisy. That is, repeated target evaluations of the same argument θ result in

different target values. In the case of HPO this observation noise, also called nugget

effect, may be caused for instance by randomness implicit in resampling strategies

(see equation 1b). For the sake of simplicity assume that this noise ε is additive.

Then, the objective function becomes Ψ(θ) = ĝ(θ) + ε with Ψ : Θ → R and the

optimization problem can be finally summarized as minθ∈Θ Ψ(θ) .

The core steps of the SMBO procedure are now explained along with algorithm 1.

For further details, we refer the curious reader to the tutorials provided in [8, 33].

Given a set of instances with evaluated target values D, also known as design, the

first step is to approximate Ψ by fitting a surrogate (prediction) model f̂ on D. It

is essential that for any instance θ the SM provides an estimate of the target value

as well as an estimate for the uncertainty of that prediction. A popular choice is

the Gaussian process (GP) regression model [21]7. Before getting to the regression

model, let us clarify important concepts of a Gaussian process. A GP is an infinite-

dimensional stochastic process, an infinite set of random variables, with any finite

sample thereof being Gaussian distributed [8, p.7].

Definition 1 (Gaussian Process). A function f(θ) is generated by a Gaussian

process GP (m(θ), k(θ,θ′)) if for any finite set of points {θ(i)}ni=1 the vector f =

(f(θ(1)), . . . , f(θ(n))) follows a (multivariate) Gaussian distribution

f ∼ N (m,K)

m = (m(θ(1)), . . . ,m(θ(n))), K =


k(θ(1),θ(1)) · · · k(θ(1),θ(n))

...
. . .

...

k(θ(n),θ(1)) · · · k(θ(n),θ(n))

 ,

where m is the mean vector and K is the covariance or kernel matrix.

Hence, a GP places a probability distribution over functions and, like a Gaussian

7Another possibility would be to use Random Forests [19].
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distribution, it is fully specified by a mean function m and kernel function k. While

the former reflects the trend, the latter, in a nutshell, determines the smoothness

of the functions f . An equivalent interpretation would be that the kernel function

measures the similarity between two points θ and θ′ [17, p.132]. A common choice

for the kernel function is the 3
2 -Matérn kernel [32, p.85], which for any two points is

defined as

k(θ,θ′) =

(
1 +

√
3‖θ − θ′‖

`

)
exp

(
−
√

3‖θ − θ′‖
`

)
, (4)

where ` denotes the characteristic length scale and ‖θ−θ′‖ the distance between two

points (e.g. the euclidean norm). Using the properties of the Gaussian distribution

and the notions just explained, the predictive posterior distribution can be derived.

Definition 2 (Predictive Posterior Distribution). Given a GP with m = 0 and

kernel function k, design D = {(θ(i), f(θ(i))}ni=1 of input matrix Θ and vector f

and finally observation noise ε
i.i.d∼ N (0, σ2

noise). Then, the predictive (posterior)

distribution of a function f at input θ(n+1), or simply f(θ(n+1)), is

f |θ(n+1),Θ,f ∼ N
(
µ, σ2

)
where

µ = µ(θ(n+1)) = kT
[
K + σ2

noiseI
]−1

f ,

σ2 = σ2(θ(n+1)) = k(θ(n+1),θ(n+1)) + σ2
noise − kT

[
K + σ2

noiseI
]−1

k,

k = (k(θ(1),θ(n+1)), . . . , k(θ(n),θ(n+1))),

K is the Kernel matrix of definition 1 and I is the Identity matrix.

Now explaining the surrogate model is straightforward. The GP regression model f̂

is the estimated predictive posterior distribution of definition 2, where predictions

for target values are obtained with estimated posterior mean µ̂ and their uncertainty

with the estimated posterior variance σ̂2.

After the SM has been trained, in a second step both mean and uncertainty pre-

diction are passed on to the acquisition function, also known in the literature as

infill criterion (IC), which has the role to guide the search for the optimum [8, p.11].

Thereby the AF is optimized and unlike the target, this optimization problem is

computationally inexpensive [8, p.6]. For a better intuition consider the AF as a

utility function u : Θ→ R, which measures the utility of a point u(θ|D) conditional

on the surrogate model previously fitted on design D. Among many infill criteria

proposed so far, the confidence bound (CB), first introduced by Cox and John [9], is

arguably a valid alternative to more complex criteria like the EI [6, p.6]. When deal-
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ing with a minimization problem the CB is usually known as the lower confidence

bound.

Definition 3 (Lower Confidence Bound). The LCB of an instance θ is

cb(θ, λ) = µ̂(θ)− λσ̂(θ),

where λ > 0 is a control parameter set by the user before the optimization starts.

For a better intuition, throughout the paper we will refer to the cb simply as m−λse.
The simplicity of the LCB is evident: an instance is desirable (has a high utility)

if (i) the mean prediction m is low (the target value is expected to be low) or (ii)

the uncertainty prediction se is high (the model has scars information about the

target function in that area). When the AF subsequently proposes points with a

better mean and relatively low uncertainty, then the algorithm is said to exploit a

potentially promising region in the input space. Conversely, when the AF proposes

points with high or increasing uncertainty, then it is said to explore. Given the

nature of the optimization, it is hard to say which goal is more important. Whereas

exploitation is important to converge towards an optimum, in the case of multi-

modal objective functions, exploration can avoid getting stuck in local optima and

consequently avoid missing the global optimum. As mentioned in the introductory

section, both duties can not be fulfilled (EETO), yet the algorithm’s behavior can be

controlled with λ and higher values force it to explore more. Although inexpensive,

the optimization of the AF requires numerical methods, so-called infill optimizers,

because, as the target function, the AF is analytically intractable. Bischl et al. pro-

pose a method called focussearch, a search over the input space that enables to focus

on promising regions by repeatedly shrinking the space around points with highest

utility [6, p.6]. One of the strengths of SMBO relies indeed in the infill optimization

because through the EETO the AF can select points efficiently and this implicitly

minimizes the number of target function’s evaluations in the optimization. [8, p.3].

Once the best point θnew is found the target function is evaluated Ψ(θnew) and the

design D is updated with the pair (θnew,Ψ(θnew)). Training a SM and optimizing

AF are the heart of SMBO and these two steps are repeated until a termination

condition ends the process. When the optimization is limited by a budget, one

possible termination condition is to set a maximal number of target evaluations [6,

p.7]. Finally, when the optimization is over, the best point observed in the process

or, in case of a noisy function, the point with the best prediction according to the

final SM is returned [6, p.7].
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5 The Shapley value

In section 5.1 the theoretical background, as well as the computation of the SV,

are presented. In section 5.2 we describe its application to SMBO and present

ShapleyMBO.

5.1 Theory and computation

Most of the theoretical aspects in the upcoming paragraphs are taken from chapters

9, 17, and 18 of [29] and, if not otherwise stated, we refer to it using only page

numbers in brackets. The Shapley value was originally introduced by Lloyd Shapley

as a solution concept to attribution problems in the field cooperative games with

transferable utility (TU-game), which can be defined as follows [p.153].

Definition 4 (TU-game). A cooperative game with transferable utility is a pair

(P, v), where P = {1, . . . , p} with p ∈ N is the set of players, and v : 2P → R is

a function assigning to each coalition S, i.e. to each subset S ⊆ P a real number

v(S), such that v(∅) = 0. The function v is known as the characteristic function, or

contribution function, and v(S) is the worth of coalition S. The coalition P is called

the grand coalition. A payoff distribution for coalition S is a vector of real numbers

(xi)i∈S.

Given (P, v), let Π(P ) be the set of all permutations of the grand coalition and

π be a permutation in Π(P ). Further let Preπ(j) be the coalition consisting of

the predecessors of player j in π and v(Preπ(j) ∪ {j}) − v(Preπ(j)) the marginal

contribution of player j to that coalition. Then, the Shapley value is defined as

follows.

Definition 5 (Shapley Value). The Shapley value φ is a map, which assigns to

every TU-Game (P, v) a unique payoff distribution φ(v) = (φ1(v), . . . , φp(v)), where

φj(v) is the average marginal contribution of player j and

contrSV (j) = φj(v) =
1

p!

∑
π∈Π(P )

v(Preπ(j) ∪ {j})− v(Preπ(j)). (5)

In a nutshell, the SV of player j is the average of all its marginal contributions.

What is more, the marginal contribution of player j is path independent [p.324]. In

other words, it is irrelevant how the players before as well as after j are ordered in

each permutation of Π(P ) because the worth of the coalition does not change. As a

consequence, exactly |S|! (p−1−|S|)! times an arbitrary order Preπ(j) in equation 5
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5.1 Theory and computation

is represented by the same coalition S, a subset of P not containing j (S ⊆ P\{j}).
The first factor refers to the number of permutations of S (players preceding j)

and the second factor to the permutations of P\(S ∪ {j}) (players after j) [p.307].

This considerations lead to an equivalent, permutation independent, definition of

φj(v) as the weighted sum of a player j’s marginal contributions over all possible

coalitions in game (P, v) (equation 6). Notice that players involved in a coalition

are considered equally responsible for its worth and hence they are remunerated

equally within that coalition [p.311]. This is a crucial distinction to the ablation

analysis.

contrSV (j) = φj(v) =
∑

S⊆P\{j}

|S|! (p− 1− |S|)!
p!

[v(S ∪ j)− v(S)] (6)

The Shapley value is a fair solution because it fulfills the axiomatic properties of

dummy player, efficiency, linearity, and symmetry. The dummy player property

says that if a player only contributes his worth to any coalition, then it should

also be rewarded accordingly [p.309]8. The efficiency axiom tells that the game

payout to be distributed among all participating players equals the worth of the

grand coalition (given v(∅) = 0). Following the linearity axiom, there should not be

any difference between the reward of a combined game and the reward obtained in

a linear combination of separated games [p.308, 331]. The symmetry axiom states,

that if two players have equal contributions to any coalition they should be rewarded

equally in the game [p.308].

Dummy player. If v(S ∪ {j})− v(S) = v(j) for player j and all S ⊆ P\{j}, then

φj(v) = v(j).

Efficiency.
∑p

j=1 φj(v) = v(P )− v(∅)

Linearity. Given two games (P, v1) and (P, v2), for a, b ∈ R it holds

φj(av1 + bv2) = aφj(v1) + bφj(v2)

Symmetry. If v(S ∪ {j}) = v(S ∪ {l}) for players j, l and every S ⊆ P\{j, l}, then

φj(v) = φl(v).

A particularity of the SV is the flexibility of the contribution function, which does

not require any specific properties and the SV can hence be used in many different

applications [13, p.3]. Indeed recently, not only it has become a state of the art

8Note that this property also includes the Null-player property, after which a player should be

rewarded with 0 if its contribution is zero to any coalition including S = ∅ [p.308].
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5.1 Theory and computation

method within the field of interpretable machine learning (IML), but it has also

been adapted in AutoML to explain algorithm selection problems [13]. Within the

context of IML the SV falls under the umbrella of the model agnostic local inter-

pretation methods. In particular, it breaks down a model’s prediction into feature

contributions for single instances (feature attribution method). While it is intuitive

that the features become the players, coalitions become feature interactions, and

their worth becomes the model’s prediction, it is unclear how to define the contri-

bution function. Up to today many variants have been proposed (refer to [37] for an

overview) and arguably the most prominent choice is the conditional expectation of

the model prediction [24,36]. This method justifies the concept of missing or ignored

features excluded from the coalition by computing the expectation of the model out-

put conditional only on the subset of known features that form the coalition. Let

f̂ : Θ → R be a prediction model, θ̃ the instance to explain or explicand, then the

worth of a coalition of features S is given by v(S) = E[f̂(θ)|ΘS = θ̃S ]. It follows

that the expected model output given no information about the feature values v(∅)
is E[f̂(Θ)] . A common assumption of the Conditional Expectation Shapley value

(CES) is feature independence. More formally, if S̄ = P\S is the complement of S

then v(S) simplifies to

v(S) = E[f̂(θ)|ΘS = θ̃S ]

= E[f̂(θS ,θS̄)|ΘS = θ̃S ]

=

∫
f̂(θS ,θS̄) p(θS̄ |ΘS = θ̃S) dθS̄

≈
∫
f̂(θS ,θS̄) p(θS̄) dθS̄ .

(7)

Last but not least the exact computation of the SV has an exponential time com-

plexity [36, p.651] and therefore approximations are almost inevitable to reduce the

computational burden. ShapleyMBO uses (through the {iml} package) the method

proposed by Štrumbelj and Kononenko, which is based on Monte Carlo sampling.

The core steps of the estimation are summarized in algorithm 2. Notations in the

algorithm are also taken from section 5.9.3.3 in [26]. Although the choice of the op-

timal Monte Carlo samples K is less clear [26, section 5.9.5], if enough are provided,

then according to the central limit theorem

φ̂j(v)
a∼ N

(
φj(v),

σ2
j

K

)
,

that is φ̂j(v) is an unbiased and consistent estimator of the true SV φj(v) [36, p.652].

Before proceeding, here are the main characteristics of the SV: it has solid theoretical

properties, can nicely handle interactions and finally the contribution of a player or

feature is computed relative to the reference value v(∅) (efficiency axiom).
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5.2 The Shapley value within SMBO

5.2 The Shapley value within SMBO

When moving from prediction models to acquisition functions the use of the SV is

straightforward, since an AF is nothing but a transformed surrogate model. Hence

the SV can be applied to any AF to assess the desirability of the chosen parameter

values. Yet among all AFs, the LCB, thanks to its simple functional form, makes

the SV the perfect method for this work. Let the choice of the LCB be a TU-

game defined as (P, cb), or two games (P,m) and (P, se), with P being the grand

coalition of HP involved in the choice problem and respectively m and se the mean

and uncertainty prediction of the SM. Then according to the linearity axiom the

cb contribution of any parameter j of explicand θ̃ can be decomposed into mean

contribution and uncertainty contribution (equation 8).

φj(cb) = φj(m− λse) = φj(m)− λφj(se) (8)

The linearity axiom, therefore, enables not only to assess for each parameter the

overall desirability of the chosen parameter value (φ(cb)), but it allows to go one

step further and bring to light previously unknown aspects of the explore-exploit-

trade-off, namely to understand how both contributions φ(m) and φ(se) influence

and motivate the choice of proposed parameters’ values. While the interpretation

of the dummy player axiom and the symmetry axiom are straightforward, it is

worth spending a few words on the efficiency axiom. It states that the payout to

be distributed is the difference between the desirability of the proposal ĉb(θ) and

expected desirability or utility in space E[ĉb(Θ)]. This resembles the idea of the AF

comparing different candidate points globally in the configuration space and finally

picking the best one.

The SV has also other advantages compared to the HPI methods presented in section

39. The major drawback of LPI was that parameters have contributions in R+
0 . The

SV does not have this limitation because contributions are in R, which is more

appropriate to explain the EETO. The biggest problem with the ablation analysis

was the poor consideration of interactions. Notice how similar AA and SV are:

both methods compute importance relative to a reference value. Yet the latter

method better incorporates interactions by including all possible coalitions in the

computation. To see why this is advantageous, take again the data generating model

of section 3 but this time the SV is used to explain the target instance (0, 0, 0)T .

9To the best of our knowledge the SV is the only competing method that fulfills the Linearity

property. In [4, 11, 18] we have not found any explicit declaration for a linearity property. We do

not exclude that some methods fulfills it, but at least it is was not as clear as for the SV.
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5.2 The Shapley value within SMBO

We expect θ2 and θ3 to have same contributions and smaller than θ1 because of

their interaction. The results are displayed in the last column of table 2. While

both methods seem to behave similarly with the non-interacting parameter θ1 it is

quite clear that the SV distributes the payout more equally among interacting and

similarly important parameters θ2 and θ3 leading to more realistic and trustworthy

results10.

After motivating the choice of the SV the remainder of this section is dedicated to

the introduction of ShapleyMBO, whose main steps are summarized in algorithm 3.

Note that the method is built upon the {mlrMBO} package and can be therefore used

only in combination with it. After the optimization is terminated, users can choose

which iteration(s) should be analyzed. For the estimation of the SV, a sampling

population is required, which provides the basis for the Monte Carlo sampling (see

algorithm 2 line 2) and the global average prediction. More importantly, the global

search of the AF should be simulated. Hence 1000 ·p points, with p being the dimen-

sion of the HP space, are sampled at random with Latin Hypercube Sampling from

the configuration space. Note that this sampling method is computationally cheap

and independent of the infill optimizer. To compute φ̂(m) and φ̂(se) the {iml}
package is used [27]. While the estimation of the former is straightforward using

the SM f̂m, the estimation of the latter is easily solved with a customized function

f̂se that predicts the uncertainty of the model. Finally φ̂(cb) is constructed using

the linearity axiom (see Appendix B for more details). Thereby it is important that

both objects, φ̂(m) and φ̂(se), differ only in the prediction function (same sam-

pling population and Monte Carlo samples), otherwise the resulting φ̂(cb) would be

wrong. After ShapleyMBO has run, another method called plotShapleyMBO facili-

tates the visualization of the results. Users can choose between individual iterations

or so-called desirability paths, which display how contributions evolve throughout

the optimization process. With the help of confidence intervals the estimation un-

certainty can also be plotted. Since φ̂j
a∼ N (φj ,

σ2
j

K ) the 1− α confidence interval is

CI1−α = [φ̂j ± t(1−α
2
,K−1)

σ̂j√
K

], where the quantiles of the t-Distribution with K − 1

degrees of freedom are taken since σ2
j is unknown.

10Note that the exact SV is (− 1
2
,− 1

8
,− 1

8
)T leading to a relative importance of ( 2

3
, 1
6
, 1
6
)T , where

θ2 and θ3 would get the exact same importance.
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6 Experimental setup

In this section the experimental setting for the analysis is presented, in 6.1 for

the synthetic and in 6.2 for real data application example. In addition, the aim

and the hypothesis will be stated. All analyses are executed on a local computer

(2,2 GHz Intel Core i7 quad-core CPU, 16GB RAM) with R software version 3.6.3

[31] in combination with the {mlrMBO} package version 1.1.4 [6]. For the SMBO

hyperparameters, where possible, default values are used. In the following table

common choices for the SMBO setting are displayed.

hyperparameter value

min objective function TRUE

noisy objective TRUE

initial design size 4p sampled with maximin LHS

surrogate model GP regression

kernel function 3
2 -Matérn

acquisition function LCB

min acquisition function TRUE

infill optimizer focussearch (nr = 3, ni = 5, np = 1000)

termination condition max. evaluations 20p

Table 3: Common SMBO set up for the analysis. For focussearch subscripts r, i, p stand for

restart, iters, points. Termination condition is set according to [30, p.614].

6.1 Application on test function

This analysis aims to explore if ShapleyMBO is a valid method to explain the choices

of the LCB for different λ parameters. The method is tested with a synthetic

function and results are finally compared to our expectations. Using a synthetic

function is essential to validate the method. First of all, it allows to formulate

concrete expectations for the contributions, in particular its functional form for the

mean and the domain of the parameters for the uncertainty. Second, together with

the algorithm’s optimization path, it allows to better understand and justify the

results. As objective function the 4p Hyper-Ellipsoid f : R4 → R+
0 provided by the

{smoof} package [7] is used

f(θ) =
4∑
j=1

j · θ2
j , θj ∈ [−5.12, 5.12] for j = 1, . . . , 4

θ∗ = (0, 0, 0, 0)T and f(θ∗) = 0.

Page 16



6.1 Application on test function

To make the optimization problem more realistic i.i.d Gaussian noise with zero-

mean and standard deviation set as 5% of the estimated standard deviation of the

objective function is artificially added [30, p.613] (see figure 2). The baseline LCB

control parameter is λ = 1, which is the default {mlrMBO} value for this optimization

problem. To control for the stochastic behavior of SMBO 30 optimization problems

are run. After each optimization problem is over ShapleyMBO is applied using sample

size K = 1000. Results in each iteration are then averaged overall runs. Finally,

the same analysis is repeated with λ = 10 to see how ShapleyMBO reacts to a more

explorative algorithm11.

Results obviously depend on the feature values proposed by the LCB. As regarding

the mean we expect the contribution of a parameter to depend on the distance to

its optimal value: the closer a parameter is to its optimal value θ∗j the bigger its

mean contribution. Further, according to the functional form of the Hyper-Ellipsoid

replacing higher parameters causes bigger changes of the target. Hence, in general,

we expect higher parameters to be more important12. Intuitively for the uncertainty

the more a specific parameter value is isolated (higher model uncertainty) the better

its uncertainty contribution should be. What is more, its contribution might be also

influenced by how much the dimension has been explored previously. If a parameter

dimension is explored less the contribution of an uncertain parameter value should

be lower compared c.p. to a better explored dimension since in the former case

proposing other values is likely to reduce similarly uncertainty in space. In other

words, the less a dimension is explored, the less special an uncertain parameter

value is. That said, assuming similar parameter values and explored dimensions

c.p. we expect similar uncertainty contributions because parameters have the same

domain. It is hard to guess which contribution is dominant for the overall desir-

ability of a parameter and how contributions evolve because algorithm trajectories

are not exactly predictable. Yet, given the rather simple test function, we expect

the algorithm to converge towards the optimum smoothly after initial exploration

rounds. If so, the mean should become relatively more important during conver-

gence than the uncertainty, as was also captured in the figure 1. Hence, we expect

parameters’ contributions on the LCB to be initially dominated by the uncertainty

and then by the mean. Finally when increasing exploration with λ = 10 the mean

11As shown in section 7.1 with λ = 1 the algorithm does not really explore the space and hence

we need to increase λ to test how ShapleyMBO reacts in different regions of the domain.
12Take for instance θ = (0.05, 0.15, 0.25, 0.35)T . By individually replacing these values in the

noise-free function e.g. with 2.56 (average distance to the optimal value 0), we can see that replacing

θ4 causes the biggest objective change although this parameter is the most distant from the optimum

(f(θ)− f(0.05, 0.15, 0.25, 2.56) = −25.72).
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6.2 Application on real data

contribution should not show many differences, whereas we expect the uncertainty

to influence the results more heavily than with λ = 1. The following table sums up

our expectations in the Hyper-Ellipsoid analysis.

expectations

φ(m), λ = 1 • depends on distance to optimum: the closer, the bigger

• for similar values higher parameters are more important

φ(se), λ = 1 • depends on uncertainty value and dimension exploration:

the more isolated and explored, the bigger

• for similar values and equally explored dimensions,

parameters are similarly important

φ(cb), λ = 1 • initially dominated by uncertainty, then by mean

φ(m), λ = 10 • like λ = 1

φ(se), λ = 10 • like λ = 1 but with stronger effect

φ(cb), λ = 10 • same as λ = 1 with pronounced uncertainty effect

Table 4: Expectations for the results of the Hyper-Ellipsoid analysis. Expectations on φ(cb) should

be used carefully as the results strongly depend on the algorithm trajectories.

6.2 Application on real data

The goal of this analysis is to provide an application example of ShapleyMBO on

a real data set to show how our framework can be used to explain tuning results.

For that, seven HP of a multilayer perceptron (MLP), summarized in table 5, for a

speech recognition classification task are tuned with one single SMBO run13. Being

a real black-box application example without comparable literature we do not have

any specific expectations regarding the results. Instead of evaluating each proposed

configuration, the validation performance is predicted with a random forest (EPM as

an objective function), which was trained on data taken from LCBench14. The LCB

is used with λ = 1 and after the optimization problem is over results are explained

with ShapleyMBO using sample size K = 20000. The sample size is found with

checkSampleSize, a new method proposed to find a sufficiently high sample size for

individual explanations. In this analysis, the ”optimal” sample size is computed once

for the proposed configuration with the best-predicted value of the process (using

13Additional information regarding the task can be found on OpenML https://www.openml.org/

d/1489
14More precisely the EPM predicts the accuracy on the validation set but the metric being

optimized (here minimized) is the validation error. Additional information regarding LCBench can

be found at https://github.com/automl/LCBench.
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the final surrogate model) and then applied to all other proposals for consistency.

Further information on checkSampleSize are found in Appendix C.

HP Notation Type Lower Upper Trafo

batch size bs numeric log2 16 log2 512 2x

max dropout md numeric 0 1

max units mu numeric log2 64 log2 1024 2x

number of layers nl integer 1 5

learning rate lr numeric 0 0.01

momentum mom numeric 0.1 1

weight decay wd numeric 0 0.1

Table 5: Parameter set of the MLP application example. Parameter max unit indicates the

maximum number of units per layer and max dropout is the dropout rate.

7 Results

In the following sections, the results of the analysis are presented. Since the AF is

minimized in both analyses, the LCB of the proposed points will be lower than the

average LCB in space and the payout to distribute negative. The lower the acqui-

sition of a proposal the higher its desirability (the bigger its utility). Consequently,

the SV of a parameter will be negative in general and, the smaller the bigger the

contribution. To avoid confusion with the interpretation, when the payout and the

SV of a parameter is smaller than zero we say that the payout and the contribution

is positive. If the SV decreases over time (goes to −∞) we say that the contribution

increases. The same logic applies to mean and uncertainty contributions.

7.1 Hyper Ellipsoid

The analysis’ results are displayed in figure 5 and 6. We will start by explaining the

former and then pass on the latter figure. In figure 5 the results in iteration 59 are

visualized on top for λ = 1 (i and ii) and at the bottom for lambda λ = 10 (iii and iv).

Additional information is provided in tables 6, 7 and 8. By focusing on λ = 1 first,

notice how every parameter contributes positively on the LCB but higher pars more

than lower (plot ii). For instance, replacing the value of θ1 is expected to change

the utility of the proposed configuration by only 5.35 c.p., decreasing its desirability

only a little compared to a change of e.g θ4 (32.56). The plot on the left shows

how the desirability of each parameter is made of. As the proposed configuration is
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7.1 Hyper Ellipsoid

close to its optimum, every parameter has a positive mean contribution, but higher

parameters are more influential as expected. Take for instance θ4, which is not as

close to zero as θ3, but replacing it would cause the biggest change in the mean

prediction: replacing it is expected to increase c.p. the predicted target value on

average by 36.58.

θ1 θ2 θ3 θ4

λ = 1 φ̂(cb) -5.35 (2.12) -12.14 (3.33) -21.12 (4.11) -32.56 (4.44)

φ̂(m) -7.20 (2.4) -14.64 (3.83) -24.63 (4.46) -36.58 (4.83)

φ̂(se) 1.85 (0.42) 2.50 (0.66) 3.51 (0.47) 4.02 (0.67)

λ = 10 φ̂(cb) -3.82 (0.7) -8.14 (0.65) -12.32 (1.26) -18.77 (1.5)

φ̂(m) -8.09 (0.71) -16.22 (0.75) -25.31 (0.84) -36.99 (1.09)

φ̂(se) 4.27 (0.81) 8.08 (0.74) 12.99 (1.37) 18.22 (1.64)

Table 6: Contributions in iteration 59 for both λ. Results for each are averaged over the 30 BO

runs. Negative values are associated with positive contributions and vice versa. Standard deviation

of the results in brackets.

Contrary to the mean, the uncertainty has a low and negative influence. By looking

at table 7 evidently its influence is weak because the payout P(se) is relatively small.

Also, the uncertainty ŝe of the proposed configuration is lower than the average s̄e

and therefore the payout is greater than zero (negative contributions). As a conse-

quence, the payout of the LCB is smaller than the mean payout in absolute terms. In

other words, uncertainty contributions push down the mean effect, making parame-

ters appear less desirable overall. Bad influences are somehow counter-intuitive, but

recall that the algorithm also desires to explore unknown regions in space. With

that in mind, proposing a configuration with uncertainty prediction lower than

the average can be interpreted as an exploration sacrifice (in favor of mean re-

duction). Obviously, the sacrifice can be further divided among the parameters

such that worse uncertainty contributions indicate bigger exploration sacrifice in

the respective dimensions. In the case of λ = 1 the sacrifice seems similar for all

configurations and replacing any of those values would increase the desirability of

the proposal by roughly the same amount (see φ̂(se) in table 6). The reason for

similar contributions might be, as mentioned in section 6.1, that all dimensions have

been equally explored up to that point and apparently this is the case, as shown in

table 815.

15To measure the exploration of dimension j the standard deviation of the average distance of

the configuration value from its optimal value is computed. Formally, given the average distance in

iteration t d
(t)
j = 1

R

∑
r |θ̃

(r)
j − 0| where r stands for run and R = 30, the exploration of dimension

j is
√

1
T−1

∑
t(d

(t)
j − d̄j)2, with T = 58 + 16 if initial design is included and 58 otherwise.
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7.1 Hyper Ellipsoid

y ĉb c̄b P(cb) m̂ m̄ P(m) ŝe s̄e P(se)

λ = 1 0.34 -1.41 71.13 -72.54 0.73 85.38 -84.64 2.14 14.25 12.11

λ = 10 0.66 -19.83 24.57 -44.40 0.72 89.47 -88.75 2.06 6.49 44.3

Table 7: Predictions (actual and average), payout P and target value y of explicand in iter 59 for

both λ. Values are averaged over 30 BO runs. The payout is the difference between prediction and

average prediction (scaled with −λ for the se).

with id θ1 θ2 θ3 θ4

λ = 1 yes 0.95 0.99 1.01 0.98

[1− 58] no 0.24 0.15 0.08 0.07

λ = 10 yes 1.29 1.26 1.15 1.07

[1− 58] no 1.40 1.31 1.11 0.97

Table 8: Exploration of each dimension up to iteration 58 (iteration 1 to 58 are included). Column

with id indicates if the initial design was included or not. The exploration is measured as the

standard deviation of the average distance of the configurations from its optimal value θ∗j = 0.

To see how contributions for a similar configuration16 change when increasing λ the

focus is moved to plots iii and iv in figure 5. Also here, higher parameters are more

appealing but this time contributions are smaller. Plot iii on the left again indicates

that only the mean contribution positively influences parameters’ desirability. It is

interesting to see how similar mean contributions are to λ = 1. Even more impressive

is the drastic change in the uncertainty contributions, which are even worse now.

Apparently, when exploration is more important the ”same” configuration causes a

bigger sacrifice, that pushes down even stronger cb contributions. To understand

more about the relationship between λ and the exploration sacrifice consider the

LCB payout, which is defined as

P(cb) = ĉb− c̄b

= m̂− λŝe− m̄+ λs̄e

= (m̂− m̄) + λ(s̄e− ŝe),

(9)

where the left part is the mean payout P(m) and the right part, included λ, is the

uncertainty payout P(se). In equation 9 notice how, unlike LPI (see section 3), po-

tentially different payouts for mean and uncertainty allow contrasting contributions

16This iteration was chosen because the proposals were the most similar ones according to the

euclidean distance. The goal was to assess how contributions for similar proposals but different

λ differ. Although parameter values differ, both mean m̂ and uncertainty ŝe predictions are very

similar (table 7). Average uncertainty s̄e is lower for λ = 10 because, as predictable, space is

explored more.
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7.1 Hyper Ellipsoid

within the same parameter. Recall that the LCB is minimized and therefore if P(cb)

increases (goes to −∞) more payout is distributed and contributions will be higher.

Now it is evident that the effect of an exploration sacrifice (ŝe < s̄e) is c.p. more

drastic when λ increases.17 By decreasing λ, i.e. to λ = 1, the P(cb) of the same

explicand would improve from −44.40 to −84.32 and get closer to −72.54. Speaking

in terms of cooperative game theory we could say, that a higher λ decreases c.p. the

worth of the grand coalition (of the proposed parameter values). Going back to the

uncertainty contributions in plot iii, it looks like for higher parameters the sacrifice

is higher. By looking again at table 8 indeed higher dimension have been explored

less up to that point (for instance the standard deviation of θ1 is 1.2 times higher

the one of θ4).

The configurations just explained were in proximity of the optimum (see also y

in table 8). Recall though that contributions depend on parameter values. To

assess how results change for different configurations in the following paragraphs,

the desirability paths will be analyzed, which are displayed in the figure 6. To

further investigate the results figures 3, 4, 7, 8 and table 9 are used. For λ = 1

the paths show a very homogeneous picture: contributions are almost constant and

higher parameters are more desirable throughout the entire process. Looking at

the decomposition below, also mean and uncertainty contributions are constant and

the former clearly dominates while the latter has a little and negative effect on the

LCB. These results do not show substantial differences from the results explained

previously. In fact, the averaged contributions over the entire process shown in

table 9 are close to the ones in iteration 59. The influence of the parameters is

almost constant because both mean and se prediction, and therefore also the LCB,

rapidly shrink (in less than ten iterations) and since then no longer change (see figure

3). This in turn is determined by the proposed configurations. As seen in the left

visualization in figure 4 plot ii, the algorithm quickly spots the optimal region in the

input space without leaving it for the rest of the process. There is little exploration,

especially for θ1 in the beginning, but this is barely noticeable compared to the

impressive cut between the initial design and the proposals. Indeed, the exploration

(until iteration 58) for λ = 1 drops substantially, particularly the one of θ4, when the

initial design is not included (compare the first two lines in table 8). In conclusion,

paths for λ = 1 are constant because the LCB chose very similar instances in each

iteration.

17Note that this equation explains in general how P(cb) is affected by m, se and λ . For instance

exploitation sacrifices are possible when m̂ < m̄.
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7.1 Hyper Ellipsoid

θ1 θ2 θ3 θ4

λ = 1 φ̂(cb) -5.29 (2.22) -11.97 (3.57) -21.6 (4.41) -32.59 (4.41)

[1− 64] φ̂(m) -7.10 (2.53) -14.44 (4.09) -24.66 (4.54) -36.57 (4.81)

φ̂(se) 1.81 (0.48) 2.47 (0.68) 3.50 (0.52) 3.98 (0.70)

λ = 10 φ̂(cb) -33.04 (16.06) -30.35 (14.83) -37.68 (16.62) -38.88(14.21)

[1− 10] φ̂(m) 8.43 (9.06) 10.97 (15.62) 9.05 (27.14) 2.42 (34.65)

φ̂(se) -41.47 (21.48) -41.33 (26.12) 46.73 (37.29) 41.3 (39.38)

λ = 10 φ̂(cb) -3.81(0.77) -8.12(0.8) -12.31(1.31) -19.01(1.54)

[55− 64] φ̂(m) -7.79 (1.16) -16.12 (1.01) -25.09 (1.47) -39.96 (1.27)

φ̂(se) 3.98 (1.06) 8.00 (0.89) 12.78 (1.64) 17.94 (1.76)

Table 9: Contributions averaged over multiple iterations in the process. Like in table 6 negative

values are associated with positive contributions and vice versa. Standard deviation of the results

in brackets. Range in brackets below λ indicates the iterations included.

Contrary to λ = 1, with λ = 10 the algorithm explores the configuration space

much better (plot ii on the right in figure 4) and results are more interesting. Also

in this case all parameters influence the LCB positively in the entire process, but

relative to λ = 1 two major differences can be identified. First, contributions are

initially higher and parameters’ desirability is more equal. Second, contributions

smoothly decrease over time and, similar to λ = 1, differences between parameters

appear. Yet, other than λ = 1, higher parameters become less desirable overall

18. Let’s start with the former difference. As shown from the decomposition plots

and table 9, in the beginning, the desirability of the proposals is dominated by the

uncertainty and not by the mean. Here the other sacrifice shows up: the LCB chooses

configurations primarily to reduce uncertainty in the space giving up exploitation

(proposing parameter values with bad mean contribution). Because parameters have

similar se contributions, which are much stronger than m contributions, parameters’

desirability φ̂(cb) is more uniform and higher compared to λ = 1 (compare first two

line blocks in table 9). It is also worth mentioning how uncertainty contributions of

θ1 and θ2, unlike those θ3 and θ4, even increase in the initial iterations. By looking

at figure 7 it can be seen that 9 out 10 proposals for θ1 are on the edge of the

parameter’s domain, even more distant than the initial design, which indicates that

this dimension is being heavily explored. The negative trend shown in the figure

indicates that exploration is generally higher for lower dimensions, which might

further explain why the exploitation sacrifice is higher for θ1 (8.43) than for θ4

(2.42). Results in the initial iterations should yet be interpreted carefully because

18Notice how the gap between the constant black line and the grey curve in figure 6 is bigger for

higher parameters.
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7.1 Hyper Ellipsoid

the standard deviation, of θ3 and θ4 in particular, is quite high. To understand

why, take a look at the histograms in figure 8, which shows the distribution of all,

not the averaged, proposed configurations in the first ten iterations for λ = 10.

While for θ1 more than 80% of the values lie on the boundary of the domain, for

θ4 only half as many values (ca. 40%) are as far and the rest is symmetrically

distributed around zero. As if the algorithm would not invest resources in exploring

dimensions that significantly impact the objective function, even when forced to by

λ. As a consequence, a mixture of different parameter values is proposed causing

high uncertainty in the results.

Despite the initial exploration the algorithm begins to converge. Mean and Un-

certainty prediction of the proposals, and consequently also the LCB, decreases

and something remarkable happens: the mean and uncertainty contributions curves

cross. The positive influence of the uncertainty vanishes (decreasing se contribution)

and the mean takes the lead of the parameter’s desirability (increasing m contribu-

tion). The curves do not cross simultaneously for all parameters and for higher ones

it happens earlier in the process: for θ4 already after 10 iterations, while for θ1 after

approximately 25 iterations. By focusing on plot i in figure 4 it can be seen that θ4

has a steeper convergence curve than θ1. Therefore the dimension of the former pa-

rameter is explored faster, or equivalently exploited longer, and consequently curves

cross sooner19. As the process goes on contributions slowly stabilize and by the end

of the process similarities with the λ = 1 appear (compare first and final line blocks

table 9). While the mean contribution of all parameters clearly converges, the un-

certainty contributions of λ = 10 exceed the ones of λ = 1, and as already explained

in iteration 59, this gap is bigger for higher parameters. The mean contributions

nevertheless dominate and therefore cb contributions are still positive but, because

of the higher sacrifice, these are lower than λ = 1.

The analysis of the Hyper-Ellipsoid showed many insights and here is a summary

of the main results. We started by explaining a configuration in proximity of the

optimum. For both lambda, parameters positively impacted the LCB, but contri-

butions were smaller for λ = 10. By filtering the overall contribution we noticed

that parameters were desirable only because of their mean effect and mean con-

tributions were almost equal for the two λ. We further discovered that negative

contributions are not unrealistic at all, indeed uncertainty had a negative influence

on the desirability of the parameters and this could be interpreted as an exploration

sacrifice. While for λ = 1 this sacrifice is negligible for λ = 10 the the effect is

19Also, in plot i of figure 4, notice how the start of the θ1 path is further away than the one of θ4

(average distance of almost 5 compared to lower than 4).
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7.2 MLP

more severe, in particular for less explored dimensions. Because results depend on

parameter values we further analyzed desirability paths to assess how contributions

evolved throughout the algorithm’s convergence. With λ = 1 the weight of the

uncertainty is too low to influence the choice LCB and almost immediately the al-

gorithm jumps to the optimal region in the configuration space, which was rather

unexpected. As consequence paths were not much different than results in iteration

59. Contrary to that, paths for λ = 10 were much more informative. The algorithm

converged slower and explored the configuration space better, starting from the do-

main’s boundaries and finally ending in proximity of the optimum. This allowed us

to discover valuable insights on the behavior of the AF. Initially, the LCB chooses

parameter values to reduce uncertainty in space (positive se contributions), occa-

sionally even sacrificing exploitation. Yet during the process, reducing uncertainty

becomes less appealing than mean reduction, and the LCB begins to prefer well-

performing configurations over isolated, uncertain configurations. As a consequence

mean contributions increase and uncertainty contributions decrease. Sacrificing ex-

ploration seems inevitable as the algorithm aims at finding the optimum of the

target function. The moment when mean reduction becomes more important than

uncertainty reduction is indicated by the contributions curves crossing. In general

this happens earlier for higher dimensions because they are more important for the

optimization. Taking back into consideration table 4 we conclude, that the results

provided by ShapleyMBO were in line with our expectations, especially for λ = 10.

Hence, we consider the Shapley value a suitable method to explain the choices of

the LCB and in the next section we will show how to benefit from it in a real tuning

example.

7.2 MLP

After the optimization has terminated, users can conduct two possible analyses:

explain single proposals or investigate the desirability paths. There is no specific

order to follow and we will simply start with the former analysis. An interesting

instance to explain would be the best-predicted proposal, namely the proposal with

the best mean prediction according to the final surrogate model (see section 4). The

best-predicted proposal was the one in iteration 9520. In figure 9 its target value

and predictions are highlighted within the algorithm path with a red circle. To com-

pute the Shapley Value different sample sizes {100, 1000, 5000, 10000, 15000, 20000}
were tested with checkSampleSize and only the last one was sufficient for cb,m and

20This configuration also has the best target value and best prediction among all visited points

in the optimization problem, initial design included.
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7.2 MLP

se. Although the sample size is relatively large the computation was still inexpen-

sive (elapsed time of 243 seconds). Contribution results are displayed in figure 10.

Although all parameters have a positive contribution on the LCB there are clear

desirability differences between them. Batch size and number of layers are the most

desirable, followed by max units and learning rate. The remaining parameters have

a rather weak contribution. By looking at the decomposition plot it is evident that

the desirability of the parameters is entirely made out of their mean contribution.

In other words, this configuration was chosen because it is expected to perform

well (low validation error). For instance replacing the batch size or the number of

layers is expected to increase c.p. the predicted validation error by approximately

0.015. These parameters are quite important and together they account for more

than 50% of the mean payout P(m). While max units and learning rate still have

a moderate influence on the mean prediction, the contributions of momentum and

max dropout are barely perceptible (see the first line in table 11). Unlike the mean,

the uncertainty has little and negative influence (exploration sacrifice) on the de-

sirability of the proposed configuration. For all parameters except one, the effect

is negligible. Consequences for the learning rate are more dramatic. The sacrifice

for this parameter is so high, that the learning rate appears less desirable than max

units although it has a higher mean contribution. The higher sacrifice could indicate

the its dimension has not been explored enough up to iteration 95.

bs nl mu lr wd md mom

φ̂(cb) -0.014 -0.013 -0.008 -0.007 -0.004 -0.001 -0.001

φ̂(m) -0.016 -0.015 -0.009 -0.010 -0.005 -0.002 -0.001

φ̂(se) 0.002 0.002 0.001 0.003 0.001 0.000 0.000

Table 10: Contributions of the parameters in iteration 95 for the MLP optimization problem.

Actual and average predictions for cb,m and se can be found in figure 10. Payout P for cb,m and

se are respectively −0.048,−0.058, 0.09.

Before further investigating the results with the desirability paths, in this paragraph

we briefly open a parenthesis to demonstrate again why the Shapley value turns out

to be a better choice than ablation analysis. To show that, the mean contributions

resulting from an AA are compared to those in table 10. The target configuration is

again the best-predicted proposal, as prediction model the surrogate model of itera-

tion 95 is used and finally to have similar payouts, a configuration whose prediction

is similar to the SV average prediction is used as source21. As can seen be in table 11

21To find the source, 7000 instances are sampled at random from space, their prediction is com-

puted using the surrogate model and then the configuration with lowest prediction difference to the

SV average prediction in iteration 95 is taken.
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7.2 MLP

there are substantial differences between the methods. Relative to the SV with the

AA the contributions of batch size and number of layers are stronger. In addition,

weight decay becomes surprisingly more influential. More impressive though, is how

little importance is attributed to the learning rate and max units. This anomaly

could be caused by the presence of interactions in the surrogate model between the

mentioned parameters. To test if this is the case, the interaction strength of the

learning rate and max units with the remaining parameters is computed using the

H-Statistic proposed by Friedman and Popescu. In a nutshell, the H-Statistic mea-

sures how much of the variation of the partial dependence between two features is

captured by their interaction effect [14, p.934]22. As shown in figure 11 plot ii and

iii, there is moderate interaction between the learning rate and batch size as well

as between max units and number of layers. Additionally, both parameters seem

to interact with weight decay. Hence, it might be that both the learning rate and

the max units result less important in the AA because their contribution is partly

absorbed by the other mentioned parameters, which in turn appear more influential.

This is not the case when using the Shapley value, where the payout is distributed

more uniformly between the involved parameters (see also figure 11 plot i).

bs nl lr mu wd md mom

relative SV 0.278 0.257 0.166 0.161 0.089 0.027 0.022

relative AA 0.348 0.307 0.076 0.050 0.128 0.044 0.047

Table 11: Relative m contribution of the parameters for configuration proposed in iteration 95.

Relative contribution is the actual contribution divided by the payout.

In the initial paragraph of this section the best-predicted proposal was explained.

To see how the contributions of the parameters evolved, desirability paths, displayed

in figure 12, shall be analyzed. Because results in each iteration can be computed

independently, the computation was run on parallel to keep execution time within

reasonable ranges23. For most of the optimization problem (approximately initial

85 iterations) contributions are rather stable and do not change much. Batch size

and number of layers are the most desirable parameters whereas weight decay, max

dropout, and momentum are barely appealing for the LCB. A first difference can

be spotted in the learning rate, which seems to be more influential than max units

within this time frame. By looking at decomposition plots beneath it becomes clear,

that the mean contribution dominates the desirability of the parameters and the

uncertainty has little and negative influence. For the learning rate instead, the un-

22Refer to equation 44 in the paper for more details. The estimation is done with the Interaction

method from the {iml} package using a grid size of 100.
23With the faster version of ShapleyMBO computation took approximately two hours using 4 cores.
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certainty contribution has a bigger impact. The exploration sacrifice is so big, that

the parameter becomes overall less desirable than number of layers, although they

have almost identical mean contributions up to that point. Contributions in the

optimization problem are not entirely static and in the final iterations of the process

(ca. after iteration 85) something remarkable happens. The mean contribution and

consequently also the desirability of the learning rate converge to zero. Simultane-

ously the exploration sacrifice of the same parameter vanishes. Recall that in section

7.1 we hypothesized that, the less one dimension is being explored the bigger the

exploration sacrifice would result. If so, this path anomaly might be caused by the

sudden decision of the algorithm to explore a bad performing region of the learning

rate dimension. The suspect is confirmed in figure 13, in which a final lr exploration

rush is clearly visible. Let us dive a little deeper into the reasons behind those

exploration rounds. Take for instance the proposal in iteration 108, whose results

are compared to the one of proposal 95 in table 12 and figure 14. As seen in the

right plot of the figure, the chosen learning rate is, contrary to other parameters and

the value in iteration 95, quite distant from the average (from the grey distribution

mass). Further, notice how similar the two highlighted configurations are except for

the learning rate value, which might have actually caused the increase in the uncer-

tainty of the proposal 108 (see also figure 9 green circle). Finally, note how both

proposals have fairly good mean predictions m̂ and optimal validation errors and yet

their contributions strongly differ. On the one hand, in iteration 108 the learning

rate is barely desirable because its influence on the mean prediction is almost invis-

ible (the parameter accounts for only 2% of the mean payout). On the other hand,

the exploration sacrifice is substantially lower than in iteration 95 (the parameter

accounts for only 6% of uncertainty payout). This indicates that the LCB has pro-

posed values in iteration 95 and 108 for different reasons: the former to improve the

validation error and the latter to reduce uncertainty, or increase knowledge, in the

lr dimension. As if the algorithm decided to spend the final resources exploring an

unknown region of the learning rate. This is arguably a precious insight to avoid

false conclusions. For instance, by looking only at the validation error in iteration

108, one could erroneously deduce, that the learning rate exploration might have

been beneficial for the optimization. Looking at its mean contribution instead, one

should not attribute to the learning rate many credits for the achieved performance.

Before proceeding with the next section, here are the main takeaways from this

chapter. In this section a real tuning example was conducted and the results were

explained to provide a general workflow example of ShapleyMBO. Apparently the

mean was the only fundamental contribution to the LCB and only a subset of the

parameters was actually determinant. Of particular interest was the learning rate
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iter lr l̄r error m̂ ŝe φ̂rellr (cb) φ̂rellr (m) φ̂rellr (se)

95 0.0079 0.007 0.2222 0.2226 (3.6) 0.0003 (8.0) 0.15 0.17 0.27

108 0.0041 0.007 0.2225 0.2229 (12.5) 0.0011 (66.1) 0.01 0.02 0.06

Table 12: Comparison of the learning rate proposals in iteration 95 and 108 in the MLP optimiza-

tion. From left to right: proposed value (original scale), average value up to inclusive iteration 108,

target value, mean and se prediction, and relative contributions of the learning rate (SV divided by

the payout). Target values achieved in these iterations are the best among all visited configurations

in the process. The number in brackets is the percentile of the prediction according to the empirical

distribution functions of the proposals up to iteration 108.

path, which showed a sudden desirability decrease associated with the exploration a

non-promising region. In conclusion, also in this application example, ShapleyMBO

has proven to be a valid diagnostic tool to investigate the configurations proposed

during the optimization.

8 Discussion of the method

This section aims to briefly discuss selected aspects of ShapleyMBO, which could be

used as a starting point for further developments of the framework. The first and

more important topic to discuss is the sampling strategy adopted to explain the

choices of the AF and approximate the SV. We intended to approximate the global

search of the LCB for the best candidate in the configuration space. Essentially

the sampling strategy should be (i) independent of the infill optimizer, (ii) com-

putationally inexpensive, (iii) reproducible in each iteration, and more importantly

(iv) approximate the parameter space globally. The last point has a pivotal role in

the analysis results because the sampled configurations form the average prediction

in the SV estimation. On the one hand, covering the entire input space allows for

stable and regular payout paths since, as shown in figure 15 plot i, the average mean

prediction remains constant and the average uncertainty prediction is expected to

decrease throughout the process smoothly. On the other hand, already since the

beginning of the optimization, payouts and contributions will be in favour of mean

and against uncertainty. More precisely, both mean and uncertainty prediction will

be typically much lower than the global average leading to positive m and negative

se contributions. Hence, as was shown by the results of both analyses, parameters

will typically appear desirable only because of their mean contribution. While these

results are reasonable during exploitation, they are harder to justify during explo-

ration because we would expect positive uncertainty contributions. In other words,

with global sampling mean contributions are over- and more importantly uncertainty
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contributions are underestimated. For instance, in the case of the Hyper-Ellipsoid

even with λ = 10 results soon show an exploration sacrifice (figure 15 plot ii),

or in the case of the MLP tuning example also for proposals with relatively high

uncertainty and bad mean, like in iteration 61, most parameters have negative se

contributions (see figure 9 and 12). This effect is almost inevitable when predictions

are compared to the global average and in light of this weakness, users should pay

particular attention to interpret uncertainty contributions correctly. Exploration

is not dichotomous and should be considered more as a continuous quantity. An

exploration sacrifice (negative se contribution) does not mean that a parameter’s

dimension has not been explored at all, but rather that it has not been explored

strongly enough to increase or influence positively the desirability of the parameter.

As such, users should wisely use the sacrifice as an exploration indicator: the lower

the sacrifice, the more a dimension has been explored and vice versa.

To allow more sensitive and impartial results of mean and uncertainty contributions

a local sampling strategy could be adopted. So instead of sampling globally, configu-

rations might be sampled around the proposal in each iteration. This method could

eventually solve the mentioned issue, but notice that it also hides a few disadvan-

tages. First of all, because local configurations are expected to be similar, payouts

would be much smaller and finally, parameters’ contributions would be harder to

distinguish and expensive to compute. Second, since local sampling causes hetero-

geneous sampling populations between iterations, average predictions might differ

strongly, and, finally, desirability paths might become unstable. To take the best

from both worlds, even a hybrid sampling strategy might be adopted, that would in-

clude both global and local configurations. Because the interpretation of the results

changes with different sampling strategies, they should be considered complemen-

tary and not substitutes. Users could for instance investigate paths with a global

and, when focused on specific configurations, repeat the computation with local

sampling.

The second point to be discussed regards another possible extension of ShapleyMBO

with an alternative way to compute the SV proposed by Sundararajan and Najmi,

which the authors named Baseline Shapley value (BS) [37]. Its major difference

to the traditional Conditional Expectation Shapley value (CES) is the contribution

function. As the name also indicates the contribution of a parameter is computed

relative to a baseline θ′. Formally given a prediction model f̂ and an explicand θ̃,

the contribution function for any subset S ⊆ P is given by

v(S) = f̂(θ̃S ;θ′P\S).

So instead of measuring the worth of S by marginalizing out the ”missing” param-
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eters and computing the expectation, these values are replaced with their baseline

values. It follows that v(∅) = f̂(θ′). This apparently simple technique comes with

an advantage. The computation of the SV does not require any, some authors say,

unrealistic parameter independence assumption [1, p.2]. Still, the choice of the base-

line is critical since an inappropriate one may create unrealistic instances [37, p.19].

In the specific case of SMBO for HPO reasonable choices exist though. As the source

in the ablation analysis, one possible baseline might be the default HP configuration

proposed by libraries. Another possibility would be to set an adaptive baseline using

the incumbent configuration, namely the HP setting with the best target value so

far. It is important to mention that in both cases the interpretation of the results

changes. With the BS we can no longer explain the choice of the AF relative to

the entire configuration space, but instead explain the desirability of the proposals

relative to one specific configuration only. Like the local sampling strategy previ-

ously discussed, these results would furnish complementary benefit for the SMBO

users. To the best of our knowledge, the BS is not yet implemented in any software

packages, which sets an additional challenge for integrating this method.

Last but not least, this final paragraph is dedicated to practical implications of a

parameter’s mean contribution. Undoubtedly, the mean is the part of the AF that

guarantees convergence towards an optimum24 and parameters with a strong mean

contribution can be considered the drivers of the optimization. One major benefit

of decomposing the desirability of the proposal is that, with the mean contribution,

users additionally get an inexpensive surrogate HP importance metric. Blind reliance

on this HPI metric, without any deeper analysis, is not recommended yet because

these contributions strongly depend on the quality surrogate model25. While it is

reasonable to use the actual surrogate model to explain the choice of the AF in each

iteration, contributions of the same instance might change when different models

are used, as is the case for the proposal in iteration 95 (see table 13). Hence, it is

important that users take mean contributions only as indicative, treat them with

caution and support results with further analysis rather than make hasty conclusions.

24Any local and not only the global optimum. When dealing with multimodal target functions

convergence to global optimum is supported by exploration, since it avoids the algorithm getting

stuck in local optima.
25Surrogate models are trained with few observations and are not finely tuned. Hence, they might

be unstable and generalize bad when used for prediction purposes.
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bs md mu nl lr mom wd

φ̂(m)sm95 -0.016 -0.002 -0.009 -0.015 -0.010 -0.001 -0.005

φ̂(m)sm113 -0.015 -0.002 -0.012 -0.016 -0.007 -0.001 -0.005

Table 13: Comparison of the mean contributions of the best-predicted proposal (iteration 95) in

the MLP tuning example using the actual surrogate model (iteration 95) and the final surrogate

model, which is fitted using all visited points in the optimization. For most parameters contribution

seems unchanged. For mu and lr there are moderate changes.

9 Conclusion and outlook

SMBO is a powerful method for tuning, which suffers from bad explainability though.

In particular, users do not have much information regarding the configurations cho-

sen by the acquisition function during the optimization process. This thesis aimed

indeed to introduce a tool to explain the choices of the AF to improve trust and

transparency of the SMBO algorithm. Explaining a proposed configuration can be

translated into a parameter attribution problem, in which the utility or desirability

of a proposal is distributed among its parameters. Further, the desirability of a

parameter can be further split into two components, namely mean and uncertainty

contribution. In terms of HPO, this task is equivalent to assessing the importance

of the hyperparameters and hence state the art methods like local parameter impor-

tance and ablation analysis could be applied. In section 3 we demonstrated, though,

that these methods do not fulfill some important requirements for the task. The

former does not allow for different contributions signs and the latter can not han-

dle interactions properly. Later in section 5 we showed that the Shapley value not

only solves the issues of LPI and AA, but in combination with the lower confidence

bound, it also turns to be the perfect solution to the problem. Indeed, thanks to the

linearity axiom, we can precisely decompose the desirability of a parameter into its

two components. This is fundamental to understand how the EETO influences the

choice LCB. After motivating our choice, in section 5.2 we introduced our solution

ShapleyMBO. In addition to that, we provided a method to plot the results, named

plotShapleyMBO, and to find a sufficiently big sample size for the SV estimation,

named checkSampleSize. In the first part of the analysis ShapleyMBO was tested

using the Hyper-Ellipsoid to see whether the results provided were in line with our

expectations. While for λ = 1 they were rather univocal, for λ = 10 they showed

interesting aspects of the acquisition function’s behavior and the EETO: initially,

the desirability of a parameter is dominated by the uncertainty contribution, indi-

cating that the algorithm is exploring, yet sooner or later during convergence the

mean contribution takes the lead, indicating that the algorithm begins to exploit
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promising regions in the input space. What is more, we noticed that opposite con-

tribution signs of mean and uncertainty are not rare, which is an evident sign that

the EETO forces the algorithm to make sacrifices. Overall, for both λ, our method

provided reasonable and consistent results in line with our expectations. In the

second part of the analysis, we wanted to demonstrate how ShapleyMBO could be

used in a real tuning example. For that, we explained the results of a tuning round

of a multilayer perceptron. Next to analyzing specific iterations, attention should

also be given to desirability paths that can reveal anomalies in the evolution of a

parameter’s desirability, as was the case for the learning rate. Here, ShapleyMBO

helped us to understand that the performance achieved in the final iterations (low

validation error) should not be attributed to the learning rate, which had a very

poor mean contribution.

In conclusion, the results of both analyses clearly suggested that the SV is a valid

method and ShapleyMBO is a precious diagnostic tool of great potential. This thesis

only set the first milestone to increase the transparency of the SMBO algorithm

with the help of the SV and several improvements can be made in future. First of

all, ShapleyMBO should undergo a more exhaustive validation phase, which involves

multiple, more demanding test functions and configuration spaces. In addition,

further research should be dedicated to extending the desirability decomposition to

other acquisition functions, for instance, the Expected Improvement, as today the

decomposition is limited to the LCB only. An interesting possibility to enrich the our

framework, as mentioned in section 8, would be to integrate other sampling strategies

for the SV computation as well as the Baseline Shapley value. Last but not least,

in the same section, we briefly addressed the practical implications of a parameter’s

mean contribution. We think that a more detailed research could be invested also in

this topic because mean contributions might be used as an inexpensive HPI metric,

which could potentially avoid more expensive post-hoc HPI analysis after SMBO

tuning rounds.
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Figure 1: Optimization of the univariate cosine mixture function using SMBO with LCB and λ = 1

as acquisition function. For each iteration the target function (solid), surrogate model (dashed) with

uncertainty estimates (grey areas), initial design (red circles), and proposed point in actual (blue

triangle) and previous (green square) iterations are displayed on the top. Below the LCB, low values

are associated with better acquisition and desirability because the target function is minimized.
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Figure 2: Contour plot of a bivariate Hyper-Ellipsoid sample with ε
i.i.d∼ N (0, σ2) observation

noise, where σ = 0.05 · σ̂HE . For σ̂HE 10000 points were sampled at random with Latin Hypercube

Sampling and then the standard deviation of their noise free function values was computed.
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Figure 3: Paths of target y, mean (predicted target), uncertainty and LCB prediction for both λ

in the optimization of the Hyper-Ellipsoid. Results are averaged over 30 BO runs. On the left plots

are on original scale and plots on the right are a zoomed version thereof.
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Figure 4: Paths of the configurations seen throughout the Hyper-Ellipsoid optimization for both

λ. For each parameter the average distance of the actual parameter value to its optimum θ∗j = 0

is displayed. Average distance is computed over 30 BO runs. Plot i shows trajectories of proposed

values for each parameter (initial design is not included). Plot ii is a parallel plot of the same

configurations, but this time initial design is included. Initial design is the same for both λ and can

be spotted on the left plot for λ = 1. The right plot ii is for λ = 10.
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Figure 5: ShapleyMBO results in iteration 59. Plots i and ii for λ = 1 and plots iii and iv

for λ = 10. Contributions are averaged over 30 proposals for each λ. On the right, the overall

desirability of the parameters is displayed (cb contributions), and on the left the decomposition in

m and se contribution. Uncertainty of the estimates is displayed with error bars using one standard

deviation. On the vertical axis, instead of displaying the average parameter value, we used the

average distance of the proposed configuration from their optimum for a better interpretation.
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Figure 6: Desirability paths for the Hyper-Ellipsoid optimization. The plot on the top displays

cb contributions with facets for parameters and λ. Beneath its decomposition in m and se con-

tributions. Like in figure 5 contributions are averaged over 30 proposals in each iteration and the

uncertainty of the estimate is displayed with error bars using one standard deviation. The black

dot-dashed line in the λ = 10 plots displays the average contribution of the parameters in the λ = 1

process (see table 9 for exact values).
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highlighted.
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Figure 8: Histogram of the parameters including all proposed configuration values in the first

10 iterations of the Hyper-Ellipsoid optimization for λ = 10. On the vertical axis is the absolute

frequency and on the horizontal axis the domain of the parameter is displayed. In total every

histogram contains 10 · 30 = 300 observations.
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prediction in the MLP tuning example. Red circle indicate values in iteration 95 and green in

iteration 108.
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Figure 10: Contributions in iteration 95 of MLP tuning example. On top contributions on the cb

are displayed: left decomposition plot and right the overall desirability of the parameters. At the

bottom, m and se contributions are displayed separately. 95%-Confidence intervals (section 5.1) of

the estimates are displayed with error bars. The original se contribution (grey) differs from the one

in the decomposition plot (blue) because values in the latter are scaled with −λ. Above each plot,

actual and average prediction of the proposal is returned. On the vertical axis, the configuration

values are displayed and rounded to four digits for better visibility. This figure shows how the

output of plotShapleyMBO for single iterations may look like.
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Figure 11: Relative m contribution of the parameters for configuration proposed in iteration 95

is displayed for both methods in plot i. To understand the difference in the results the interaction

strength of learning rate (plot ii) and max units (plot iii) with other parameters is computed using

Friedman’s H-Statistic (interaction between two features).
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butions (desirability of parameters), beneath its decomposition in m and se contributions. 95%-

Confidence intervals (section 5.1) of the estimates are displayed with error bars. The vertical dotted

lines indicate respectively iteration 84 (turning point for lr paths change), 95 (explained in figure
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sign included). For a better visibility, parameter values are univariately standardized by subtracting

the mean and dividing by the standard deviation.
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Figure 14: Left: cb contributions of configuration proposed in iteration 108 decomposed in m and

se contributions including 95%-Confidence intervals of the estimates. Right: same parallel plot as

in figure 13 but only proposal in iteration 95 (red) and 108 (green) are highlighted.
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Figure 15: Payout paths for the Hyper-Ellipsoid optimization. Results are averaged over 30 BO

runs. In plot i payouts are displayed separately. Scales are different for better visibility of each

payout. The payout for each is given by the difference between the solid and the dashed line. Here,

se predictions are not scaled with −λ to better compare both λ values. Notice how the average se

for λ = 10 decreases more due to better exploration. In plot ii m and se are displayed together,

both centered around the respective average prediction (dashed line in plot i). Unlike plot i, here

the se payout is scaled with −λ. The sum of both curves gives the cb payout.
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B CB contribution and the linearity axiom

This section shows how the linearity axiom is used with mean m and uncertainty

se to construct the average utility in space c̄b as well as the overall desirability of a

parameter φ̂j(cb).

1) c̄b: let {(θ(i), ĉb(θ(i))}ni=1 be the sampling population for the SV computation.

Then the average desirability or utility in space is

c̄b =
1

n

n∑
i=1

ĉb(θ(i))

=
1

n

n∑
i=1

m̂(θ(i))− λŝe(θ(i))

=
1

n

n∑
i=1

m̂(θ(i))− λ 1

n

n∑
i=1

ŝe(θ(i))

= m̄− λs̄e.

2) φ̂j(cb): this computation is carried out by computePhiCb (see GitHub repository).

Refer to algorithm 2 for the notation. Let θ̃ be the proposal or explicand and K the

number of Monte Carlo samples. The desirability of a parameter is

φ̂j(cb) =
1

K

K∑
k=1

ĉb(θ̃
(k)
+j )− ĉb(θ̃(k)

−j )

=
1

K

K∑
k=1

[
m̂(θ̃

(k)
+j )− λŝe(θ̃(k)

+j )
]
−
[
m̂(θ̃

(k)
−j )− λŝe(θ̃(k)

−j )
]

=
1

K

K∑
k=1

∆ĉb
(k)
.

Finally the variance of the estimate is

V̂(φ̂j(cb)) =
1

K − 1

K∑
k=1

( ∆ĉb
(k) −∆cb )2.
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C checkSampleSize

This method offers a possible way to find a sufficient sample size for the SV estima-

tion. Formally, let P(v) = f̂v(θ̃)− 1
n

∑
i f̂

v(θ(i)) be the payout to distribute among

the parameters of explicand θ̃, where f̂v is the model that predicts v = {cb,m, se}
and {θ(i)}ni=1 is a set of instances. According to the efficiency axiom it should

hold
∑

j φj(v) = P(v), though because the true contributions are approximated,

the computation comes with an efficiency error, which can be defined as ∆K
eff (v) =∑

j φ̂
K
j (v) − P(v) with K being the number of Monte Carlo samples. The higher

the sample size the smaller ∆K
eff (v) should get according to the asymptotic distri-

bution of φ̂j(v) (see section 5.1). When the error is greater (smaller) than zero too

much (less) payout has been distributed and the quantity should be subtracted from

(added to) the contributions. It can be especially problematic if, after adjusting for

it, the ranking of the SVs changes. Although it is unknown which contributions

exactly must be modified (unknown where the error(s) exactly happens), arguably

the most unfair correction would be to entirely assign or detract ∆K
eff (v) from one

parameter only. Notice, that we are not actually interested in correcting the results,

but instead in assessing if K was set high enough. Further, notice that adding the er-

ror to one parameter is equivalent to subtracting it from another for the scope of the

task. Hence, to facilitate the computation we define ∆K
eff (v) as |

∑
j φ̂

K
j (v)−P(v)|.

Finally, let δK(v) = min{d1(φ̂Kj (v), φ̂Kl (v))j 6=l} be the smallest absolute difference

(L1 distance) between the Shapely values of two different parameters. If condition

∆K
eff (v) < δK(v) holds, then K is sufficiently high, because adding the efficiency

error to the weaker parameter between j and l or equivalently removing the error

from the stronger one will not change the importance ranking in the results. If the

condition does not hold, then K should be increased. Starting from a lower size, a

sufficient sample size can then be found trough greedy forward search. In the figure

below an intuitive example of the method is shown and in algorithm 4 the main

steps are summarized.
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increase K sufficient K

x1 x2 x1 x2

0

1

2

3

ph
i

error
estimate

Figure 16: Example of the idea behind checkSampleSize. Estimated SVs of parameters x1 and

x2 in grey are purely indicative and give threshold δK = 3−2 = 1. The efficiency error in red varies

for different K. Suppose ∆K
eff (v) < 0 and the error is hence added entirely to x2. In the left plot

the sample size K is not sufficient because redistributing the resulting error would make x2 more

important than x1. Instead in the right plot K would be sufficient. In case ∆K
eff (v) > 0 removing

the error entirely from x1 would lead to the same conclusion for K.
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D Algorithms

Algorithm 1 Sequential Model-Based Optimization basic procedure

1: create an initial design D = {(θ(i),Ψ(i))}niniti=1

2: while termination criterion is not fulfilled do

3: fit a surrogate model f̂ on design D
4: propose θnew = arg maxθ∈Θ u(θ|D)

5: evaluate Ψ on θnew and update D ← D ∪ (θnew,Ψ(θnew))

6: end while

Algorithm 2 Estimation of the Conditional Expectation Shapley value

Require: explicand θ̃, feature index j, model f̂ and sample size K

1: for k = 1→ K do

2: sample (at random and with replacement) an instance z ∈ Θ

3: sample (at random and with replacement) an order π ∈ Π(P )

4: order θ̃ and z according to π

5: θ̃π = (θ̃(1), . . . , θ̃(p))

6: zπ = (z(1), . . . , z(p))

7: construct two new instances

8: θ̃+j = (θ̃(1), . . . , θ̃(j−1), θ̃(j), z(j+1), . . . , z(p))

9: θ̃−j = (θ̃(1), . . . , θ̃(j−1), z(j), z(j+1), . . . , z(p))

10: φ̂kj (v) = f̂(θ̃+j)− f̂(θ̃−j)

11: end for

12: φ̂j(v) = 1
K

∑K
k=1 φ̂

k
j (v)

Algorithm 3 ShapleyMBO

Require: SMBO result object mbo, iteration of interest t, sample size K

1: get explicand from mbo: θ̃ = θnewt

2: sample 1000 · p points Z from Θ to approximate the space

3: compute φ̂(m) = (φ̂1(m), . . . , φ̂p(m)):

4: get SM from mbo: f̂m = f̂meant

5: explain θ̃ with iml::Shapley() using Z, f̂m and K

6: compute φ̂(se) = (φ̂1(se), . . . , φ̂p(se)):

7: get SM from mbo: f̂se = f̂uncertaintyt

8: explain θ̃ with iml::Shapley() using Z, f̂se and K

9: compute φ̂(cb) with linearity axiom: φ̂(cb) = φ̂(m)− λφ̂(se)
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Algorithm 4 checkSampleSize

Require: ShapleyMBO results for θ̃t with size K, models f̂v with v = {cb,m, se}
1: for w in v do

2: compute payout P(w), error ∆K
eff (w) and threshold δK(w)

3: if ∆K
eff (w) < δK(w) then

4: Kw = T

5: end if

6: if ∆K
eff (w) ≥ δK(w) then

7: Kw = F

8: end if

9: end for

10: if (Kcb,Km,Kse) = (T, T, T) then

11: K is high enough

12: else if (Kcb,Km,Kse) 6= (T, T, T) then

13: K should be increased
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