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Abstract

Abstract

The aim of this work is to predict the progressions from mild cognitive impairment (MCI)
to Alzheimer’s disease (AD) based on heterogeneous data provided by the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) (Jack Jr et al., 2008). We consider a slice of
the coronal plane of the 3D MRIs of the brain and tabular biomarker data. To pursue
this, we leverage state of the art methods in the area of Deep Survival Analysis. While
the predictive performances are already promising, it is still a challenging task to inte-
grate them into medical diagnosis systems. This is due to a lack of transparency and
interpretability of these algorithms and their predictions (Singh et al., 2020). To enhance
interpretability, Shapley values (Shapley, 1953) depict a prominent choice to determine
which structures in the brain are responsible for an either accelerated or decelerated
disease progression. Shapley values, however, rely on a specified baseline against which
the considered MRI and its corresponding prediction is compared. To identify a suitable
baseline has turned out to be challenging (Sturmfels et al., 2020). The literature refers
to that as the baseline selection problem (Shih et al., 2020). We argue that the optimal
baseline must represent a meaningful and contrasting example to the original MRI. If the
original MRI contributes to an accelerated/decelerated progression, the baseline must
contribute to a decelerated/accelerated progression. To ascertain meaningfulness, we re-
quire the baseline to represent a realistic sample which differs from the original MRI only
in those features that are directly linked to AD progression. The latter criterion prevents
us from selecting a sample from the available data, but rather requires to synthetically
generate a hypothetical MRI. To pursue this, we rely on the general ideas of image-to-
image translation. We propose a novel and unique framework - the baseline generator -
that allows to uniquely identify an optimal baseline for each MRI. While similar methods
have already been proposed for binary classification (Bass et al., 2020), our proposed
framework is applicable to survival analysis. Within this work it will become evident
why this general conceptual transfer is essential. Due to the limited scope of this thesis,
we refrain from applying the baseline generator framework on the ADNI data. Instead,
we identify a unique simulation setting to fully verify the functioning of the established
framework. By doing so, we can conclude that the framework fills a non-negligible gap
for making survival times predictions - based on unstructured image data - interpretable.
We argue that this serves as a decisive step to enhance interpretability of predictions of
AD progression.
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1. Introduction

1 Introduction

For people over 70 years of age it is common to suffer from cognitive impairments (Knop-
man & Petersen, 2014). While some patients merely suffer from mild cognitive impair-
ments (MCI) and therefore are not limited in their everyday activities, a non-negligible
share of affected patients develop Alzheimer’s disease (AD), the most common form of
dementia. In such cases, the cognitive and motor abilities are heavily limited to such
a degree that an independent living is impossible (McKhann et al., 2011). While it is
understood that MCI represents a pre-dementia stage, it remains challenging to fully
understand why some patients remain stable and others progress to dementia. To pursue
this, it is crucial to correctly diagnose whether a patient with MCI actually suffers from
dementia but has not yet developed to the severe stage or merely shows cognitive impair-
ment symptoms. To correctly diagnose the neurodegenerative disorder, experts rely on
biological biomarkers which arguably serve as suitable predictors for the progression of
the disease. To enable researchers to identify strong predictors for conversion from MCI
to AD, the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Jack Jr et al., 2008) -
a longitudinal study started in 2003 - collects clinical and biomarker data as well as MRI
scans of the brain from patients affected by MCI or AD.

A vast amount of studies have already investigated the problem of predicting the conver-
sion from MCI to AD. The progression to AD is often modeled as a binary classification
task, where class 0 means, the corresponding patient did not yet convert to AD and 1
otherwise (Moradi et al., 2015; Tong et al., 2016). The length of the observation period
is fixed, so that only conversions that took place within a specified time span are consid-
ered. For this approach to be valid, two major assumptions must hold. Firstly, it must be
assumed that once a patient has remained stable for the fixed time span, she will remain
stable and will not convert to AD any time later. This assumption, however, is highly
restrictive and if violated implies that the patient has been erroneously considered stable,
even though conversion took place. While there exists evidence that some patients remain
stable (Clem et al., 2017), there is neither an empirical nor a theoretical justification for
arguing that after a certain time stability is guaranteed. Secondly, it must be assumed
that any dropouts can be considered random. If this assumptions holds, those patients
can simply be ignored. If, however, the dropout is not random w.r.t. progressing to AD,
the binary classification approach is not a valid choice. Again, we cannot observe for
any dropout whether she converted to AD or remained stable. In summary, the binary
classification approach assumes that every patient and the development of her disease
is fully observed. If, however, some of the patients can only be partially observed, the
validity of the approach breaks.

To avoid to rely on these restrictive assumptions, the need for exactly determining whether
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1. Introduction

conversion took place or not has to be given up. Given a patient who has not progressed
to AD until the end of the study, it is not justified to argue that she will remain sta-
ble. By contrast, reasoning about conversion probabilities or conversion time is indeed
justified - e.g. a statement that the probability of conversion is comparably low once a
certain time has been passed is valid. This type of inference can be obtained by applying
standard techniques from the survival analysis literature, where conversion probabilities
are predicted for each patient over time. This also allows to reason about conversion
probabilities for partially observed observations which is prohibited within binary classi-
fication. Besides a theoretical justification for survival analysis, there is also a practical
motivation for refraining from binary classification and adhering to survival analysis. So
far there is no cure for AD, but there are effective treatments for delaying and decelerating
the progression of cognitive and functional decline (Rountree et al., 2013; Yiannopoulou
and Papageorgiou, 2013). For the treatments’ effectiveness, however, it is crucial to start
treatments at an early stage of cognitive impairments (Dubois et al., 2010; Sperling et al.,
2011). To pursue this, we must predict conversion times to identify when introducing a
treatment is sensible. Binary classification is not suitable, as predictions only indicate
whether conversion occurs or not, but not when it occurs. There is extensive work on
leveraging both tabular clinical data and MRI scans for predicting survival times (e.g.
Platero and Tobar, 2020). However, these approaches are mostly based on extracting
and engineering hand-crafted features from the raw MRIs which are then fed into a linear
survival model. Recent studies have proposed methods that allow the training of a multi-
modal approach in an end-to-end fashion (Kopper et al., 2020; Nakagawa et al., 2020;
Pölsterl et al., 2019). However, instead of training on the raw MRIs of the brain, they
use 3D anatomical shape representations (point clouds) or the volume extracted from the
3D MRI. Within this study, we will build upon the approach introduced by Pölsterl et al.
(2019), except that we will use 2D slices from the coronal plane of the raw MRIs.

While the predictive performances of the proposed methods are already promising, it is
still challenging to integrate them into medical diagnosis systems. The reluctant accep-
tance of these algorithms by regulators, doctors and patients is mainly driven by the
lack of transparency and interpretability of these algorithms and their predictions (Singh
et al., 2020). To increase acceptance and trust, a variety of explainability methods have
been introduced, the class of attribution methods being one of the most prominent ones
(Montavon, 2019). In general, these methods are simple to compute and their results are
intelligible. The attribution methods aim at determining an importance score for each
pixel in the MRI which are then visualized by attribution maps. Thereby, the recipient
yields a visual understanding of which regions in the MRIs were the driving forces for
the prediction. Besides an intelligible interpretation method, it is evident to also demand
robust and unambiguous results derived by the attribution methods. A set of theoretical
axioms have been established to flash out the notion of robustness and unambiguity. In
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1. Introduction

this context, these axioms allow to infer which types of interpretations are admissible
for each attribution method (Friedman, 2004). It was shown that Shapley values (Shap-
ley, 1953) represent the unique method that satisfies all axioms and thus allows for the
highest degree of interpretability. Shapley values determine the marginal contributions
of each pixel to the overall prediction by inherently comparing the original prediction
to a baseline prediction. The narrative is as follows: For each pixel, the corresponding
baseline value shall simulate missingness so that the derived contribution reflects the
impact on the prediction if the pixel was missing. In other words, the baseline serves as a
reference point against which the original prediction is compared. To identify a baseline
that indeed represents missingness has turned out to be challenging (Sturmfels et al.,
2020). The literature refers to that as the baseline selection problem (Shih et al., 2020).

In the domain of predicting AD progression, we can pursue the objective of simulating
missingness as follows: For an MRI that corresponds to a sick/healthy patient, we seek to
identify a baseline MRI that represents a healthy/sick patient. The structural differences
between the original and the baseline MRI reflect missingness - either sickness or health-
iness is missing. Thereby, to fully reflect missingness, the optimal baseline contributes
neither to an accelerated nor to a decelerated AD progression which is fulfilled when the
survival model predicts a zero risk score for the baseline MRI. But for the baseline to
represent missingness is not a binding criterion, since any baseline is potentially opti-
mal as long as it represents a semantically meaningful reference point. Aligned with the
objective to predict survival times, we can require the baseline to represent a specific
quantile of the predicted survival times - e.g. the median survival time - against which
the original MRI is compared. Then, we can infer which pixels contributed to a more
decelerated/accelerated AD progression, when the predicted survival time of the MRI is
before/beyond the specified quantile. To yield a reliable reference point, we require the
baseline MRI to only differ from the original MRI in those features that are responsible for
AD progression, while all other domain-unspecific characteristics must remain constant.
But since the opposite clinical picture of a patient is not observed, we must synthetically
generate the unique baseline MRIs. To pursue this, we propose a framework, the baseline
generator, which allows to uniquely identify for each MRI a corresponding meaningful
baseline. Thereby, we rely on the general concepts of image-to-image translation (e.g.
Isola et al., 2017). Previous works have already proposed frameworks to translate MRIs
with MCI to MRIs with AD and vice-versa (Bass et al., 2020; Baumgartner et al., 2018).
However, these methods are not applicable in survival analysis as they rely on a binary
classification setting. Hence, by introducing the baseline generator, we are the first to
transfer the concept of image-to-image translation from the classification domain to the
survival analysis domain. Beyond that, we are the first to discuss the baseline selection
problem in the context of survival analysis. This is a significant contribution to enhancing
interpretability in the field of predicting AD progression.
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1. Introduction

The remaining is structured as follows: in chapter 2, we will provide a detailed expla-
nation on how AD progression can be explicitly modelled by means of a Cox-PH model
(David et al., 1972). This serves as a preliminary to understand how the loss function is
derived to train on the unstructured MRIs and the clinical tabular data, jointly. Subse-
quently, the orthogonalization trick is elaborated which is essential to avoid identification
issues when training in a multi modal setting. Once the Deep Cox-PH model and the
orthogonalization trick is introduced, chapter 3 focuses on a theoretic derivation of the
most suitable interpretation methods w.r.t. the unstructured MRIs. We will then con-
clude that Integrated Gradients (Sundararajan et al., 2017) as well as sampled Shapley
values (Castro et al., 2009) represent the most suitable choices for our purposes. The
chapter concludes with a theoretical definition of the chosen methods. Thus completed,
in chapter 4 we will formally introduce the baseline generator framework in the following
steps. First, we point to the baseline selection problem and its practical implications. By
understanding the inherent problem, we can establish a set of criteria which constitute
an optimal baseline. We can then establish an identification strategy for finding the op-
timal baseline. It will become apparent that our proposed framework embeds well in the
current research of image-to-image translation within the medical domain. This will also
complete the theoretical section of this study, leading to chapter 5, which will continue
with the experimental section. A brief overview of the experimental setup, as well as the
experimental strategy will be given. The first experiments are conducted on the data
provided by ADNI. Here, the primary focus is put on whether the orthogonalization has
any impact on the model performance or on the learned coefficients that correspond to
the structured part of the model. The second part of the experimental section focuses on
the validity of the baseline generator framework. We pursue this by training the baseline
generator on simulated data. We first visually assess the quality of the generated baseline
images, before we evaluate to what extent the generated images represent an appropri-
ate baseline choice for the attribution methods. The latter is pursued by benchmarking
two types of attribution maps: those derived from the generated baseline images with
those derived from more naive baseline choices. The discussion in chapter 6 deals with
three important considerations. First, we will emphasize the stand-alone importance of
the generated baseline images in the context of interpretability. In the second part, we
will show that the baseline generator framework is easily transferable to variety of other
survival models. Lastly, we will discuss the external validity of the proposed framework
and thereby, examine whether the framework is transferable to other relevant domains.
Finally, we conclude in chapter 7.
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2. Survival analysis

2 Survival analysis

Chapter 1 showed why studying AD progression requires techniques from survival anal-
ysis. In what follows, we will first elaborate the basic concepts of survival analysis. This
will serve as a preliminary to define a general formula for the likelihood for (semi-) para-
metric estimations on the basis of which we can derive the likelihood for the Cox-PH
model (Cox, 1972). Consequently, we can elaborate the approach proposed by Pölsterl et
al. (2019) which allows us to train a Cox-PH model on both the tabular data and the un-
structured MRIs jointly (multi modal Deep Cox-PH model). This multi modal approach
is possible, as the derived likelihood can be leveraged for gradient descent optimization
during training (Faraggi & Simon, 1995). Finally, we elaborate the orthogonalization trick
from Rügamer et al. (2020) which prevents identification issues that otherwise occur when
training a Deep Cox-PH model in a multi modal fashion.

2.1 Basic concepts

Hazard rate describes for each time point t the conditional likelihood that a conversion
will take place at time t, given that the patient has not converted until time t:

λ(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)
∆t ≥ 0 (1)

The conditional modelling of event probabilities is crucial, as it cannot be assumed that
the observations during the follow-ups of a patient are independently distributed. Further,
the hazard rate is an important component to determine the survival function.

Survival function corresponds to the probability that a patient is not converting to AD
prior to or at time t. It indicates the minimum time for the patient to convert.

S(t) = 1− F (t) = P (T > t) (2)

where F (t) = P (T ≤ t) is the cumulative distribution function of T . The survival
function can also be written as the integral of the probability density function f(t)

S(t) = P (T > t) =
∫ ∞
t

f(t) dt (3)

where f(t) approximates the probability that conversion will take place at time t. This
is the central function, as it allows to reason about conversion probabilities of patients
who are only observed until time t. Recall, while we had to make restrictive assumptions
for the partially observed patients when applying a binary classification, we can now
explicitly model this problem by applying the survival function. We can compute for
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2. Survival analysis

every patient at any time a probability of remaining stable until time point t. The
survival function can also be written as a function of the cumulative hazard rate Λ(t):

S(t) = exp(−Λ(t)) (4)

whereby Λ(t) is defined as:

Λ(t) =
∫ t

0
λ(u) du (5)

which reveals a direct relationship between the hazard rate λ(t) and S(t). The relationship
between λ(t), Λ(t) and S(t) can be intuitively interpreted in case of discrete conversion
times. If Λ(t) is large, it follows that the probability S(t) is close to 0. If Λ(t) is large,
then the respective hazard rates λ(t) for time points t1 < .... < tn < t must have been
comparably large. In short, at any time until t, the patient was likely to convert but
somehow did not. The longer the conversion is prolonged, against the odds, the more
likely it becomes that conversion takes place at the next time - S(t) decreases.

Censoring one main argument for not analyzing AD progression within the framework
of binary classification was the presence of partially observed data. In survival analysis,
every subject is considered censored for whom the conversion has not taken place during
the observation period. Hence, we do not fully observe the patient. While there are
different types of censoring, we will assume that all partially observed patients are right
censored. Of all patients who entered the study with MCI, those who are censored either
dropped out or did not convert to AD during the study period.

2.2 Likelihood for (semi-) parametric estimation

Given the basic quantities, it remains to be clarified how the likelihood must be specified,
to fully consider censored data. In case of no censoring - all conversions from MCI to
AD are observed - the standard likelihood for parametric estimations L = ∏n

i=1 f(ti) is
applicable. While the likelihood contribution f(ti) is still valid for all subjects were the
conversion was observed, we have to adjust the likelihood contribution for those who
are censored. We know, by observation, that for those who are censored, conversion
did not take place until t = Cr where Cr represents the time of censoring. Information
about conversion beyond Cr are not available and therefore, we can only reason about
its probability, which is well defined as the survival function evaluated at the time of
censoring S(Cr). From that, we can derive the total likelihood for all observations
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2. Survival analysis

L ∝
∏
i∈D

f(ti)
∏
i∈R

S(ti) (6)

where set D includes all patients for whom exact conversion times are observed and set
R subsumes all right censored patients. We can simplify equation 6, by introducing an
indicator function δi which is δi = 1 when for patient i conversion was observed and
δi = 0, if the patient i is right censored. Then the total likelihood is defined as

L ∝
n∏
i=1

[f(ti)]δi [S(ti)]1−δi (7)

We can also rewrite the probability of event times f(ti) as a function of the hazard
rate λ(ti) and the survival probability S(ti), which yields a different expression of the
likelihood

L ∝
n∏
i=1

λ(ti)δiS(ti) (8)

which will be useful to derive the Cox-PH model in the following chapter.

2.3 Cox-PH model

The Cox-PH model (Cox, 1972) allows to evaluate the effect of a set of covariates
(x1

T , ...,xn
T )T =: X ∈ Rn×p on the hazard of conversion at time t by establishing

the following structural assumption

λ(t|X) = λ0(t) exp(Xβ) (9)

where β = (β1, ..., βp) are the corresponding coefficients. The hazard rate λ(t|X) depends
on the baseline hazard rate λ0(t) which is identical for all subjects and solely depends on
the time t. The risk score Xβ is determined by time constant covariates and therefore,
remains constant over time. As the data were collected within a longitudinal study,
it is reasonable to question the strong assumption of time constant covariate effects.
However, this will not be a subject of discussion within the scope of this work. If the
assumption holds, however, the Cox-PH model comes with advantageous properties w.r.t.
interpreting the effects. We can interpret the coefficients β as multiplicative factors on
the hazard rate, e.g. if the covariate x1 increases by one unit, the risk of conversion
at time t increases ceteris paribus by a factor of exp(β1). By transforming the hazard
rate λ(t|X) on the log scale, we can directly interpret the learned coefficients β. Given
the semi-parametric structural assumption, we can now model the total likelihood from

7



2. Survival analysis

equation 8 by adhering to the idea of profile likelihood. We first fix β and consider the
likelihood L(λ0(t),β) as a function of λ0(t) only, which results in the following

L(λ0(t),x|β) =
n∏
i=1

λ(ti)δiS(ti) (10)

=
n∏
i=1

λ0(ti)δi exp(xiTβ)δi exp(−Λ0(ti) exp(xiTβ)) (11)

=
[ m∏
i=1

λ0(t(i)) exp(x(i)
Tβ)

]
exp

[
−

n∑
j=1

Λ0(tj) exp(xjTβ)
]

(12)

=: Lβ(λ0(t)) (13)

where j = 1, ..., n is the set of indeces for the subjects and i = 1, ...,m represent the set
of indices for the discrete survival times 0 < t(1) < .. < t(m) where t0 is set to 0. If we
assume discrete survival times, we can leverage that the cumulative baseline hazard rate
can be written as Λ0(ti) = ∑

t(i)≤ti λ0(t(i)) which yields

Lβ(λ01, ..., λ0m) =
m∏
i=1

exp(x(i)
Tβ)︸ ︷︷ ︸

=:c

 m∏
i=1

λ0i

 exp
− n∑

j=1
Λ0(tj) exp(xjTβ)

 (14)

= c

 m∏
i=1

λ0i

 exp
− n∑

j=1

∑
t(i)≤tj

λ0i exp(xjTβ)
 (15)

= c

 m∏
i=1

λ0i

 exp
− n∑

j=1
λ0i

∑
j∈Ri

exp(xjTβ)
 (16)

where Ri is defined as the riskset at time t(i) which includes all subjects who did not
yet convert to AD and have not been censored until time t(i). We can now take the
derivative of the log profile likelihood lβ(λ01, ..., λ0m) = logLβ(λ01, ..., λ0m) w.r.t. the
discrete baseline hazard rates (λ01, ..., λ0m)

lβ(λ01, ..., λ0m) = log(c) +
m∑
i=1

log(λ0i)−
m∑
i=1

∑
j∈Ri

exp(xjTβ) (17)

∂lβ
∂λ0i

= 1
λ0i
−
∑
j∈Ri

exp(xjTβ) (18)

which yields the profile likelihood estimator of λ0i = 1∑
j∈Ri

exp(xj
Tβ) which can be plugged

back into equation 16 to yield the partial likelihood which only depends on the covariates
x and coefficients β.
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2. Survival analysis

L(β) ∝
m∏
i=1

exp(x(i)
Tβ)

m∏
i=1

1∑
j∈Ri

exp(xjTβ) ∝
m∏
i=1

exp(x(i)
Tβ)∑

j∈Ri
exp(xjTβ) = PL(β) (19)

2.4 Multimodal Deep Cox Proportional Hazards model

As already discussed, ADNI not only collects structured, tabular biomarkers and socio-
economic data, but also unstructured MRI scans of the brain. Hence, we want to de-
termine the predictive power of the structured and the unstructured data, jointly. To
pursue this, we follow the approach proposed by Pölsterl et al. (2019). Except for the
fact that they were analyzing point clouds instead of MRIs, the objective of their study
is identical to ours. By training a neural network fθ : Rn×c×h×w → Rn×q, we aim to learn
a meaningful, lower dimensional representation (u1

T , ...,un
T )T =: U ∈ Rn×q of the raw

MRI scans (z1
T , ...,zn

T )T =: Z ∈ Rn×c×h×w, which serve as predictors for the Cox-PH
model. Then, we can concatenate the p features from the tabular data with the q features
from the latent representation to obtain the predictor

η = Xβ +Uγ (20)

where β = (β1, ..., βp) are the coefficients that correspond to the structured part X and
γ = (γ1, ..., γq) represent the coefficients corresponding to the unstructured part U . As
introduced in chapter 2.3, we can now directly model the hazard rate λ(t|X,U) by

λ(t|X,U) = λ0(t) exp(Xβ +Uγ) = λ0(t) exp(η) (21)

Hence, the structural assumption of the Cox-PH model remains unchanged, except for
the fact that the predictor is extended by the latent representation U . To train the
model in an end-to-end fashion, we can minimize the log-likelihood from equation 19 as
proposed by Faraggi and Simon (1995) and rewrite such that the linear predictor includes
both, the structured part X and the latent representation U from the unstructured part

arg min
Θ

=
n∑
i=1

δi

xiβ + fθ(zi)γ − log
 ∑
j∈Ri

exp(xjβ + fθ(zj)γ)
 (22)

where Θ = (θ,β,γ) denotes the set of all parameters, whereby θ correspond to the
learned weights of neural network fθ to map the raw MRIs to the lower dimensional
representation. β and γ correspond to the learned weights of the last linear layer of our
network after concatenation.
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2.5 The orthogonalization trick

We proposed to jointly estimate the effects derived from the structured part and the
unstructured part in the last layer of the network. Yet, the learned coefficients that
correspond to the unstructured part may overlap with the learned coefficients from the
structured part. If that is the case, the effects are not uniquely identifiable - the latent
representation U captures effects that are also present in X. Rügamer et al. (2020)
discussed this identification problem and proposed to constrain the learned latent rep-
resentation such that it does not overlap with the features from the structured part.
They show that it is sufficient to orthogonalize the latent representation U to the space
spanned by the linear features X. Two vectors that are orthogonal to each other are also
independent, which precludes any overlap. To pursue this, we need to learn the projec-
tion matrix PX to then determine the orthogonal complement PX := In − PX . We can
then left multiply the latent representation with the orthogonal complement Ũ = PXU

which results in a new predictor ηk = Xβ + Ũγ . A more detailed discussion, includ-
ing a proof of the concept, is provided by Rügamer et al. (2020). We know from linear
regression that the projection matrix is defined as PX = X(XTX)−1XT , whereby it
is necessary to find a numerically stable computation of the projection matrix. Among
others, the Demmler-Reinsch orthogonalization represents a valid approach to that (Rup-
pert et al., 2003). While the orthogonalization ensures uniquely identifiable estimates,
it also decisively enhances the interpretability of the results. The learned effects β and
γ are independent and therefore, they can also be interpreted independently. This, has
also direct implications on the interpretation of the unstructured part.
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3 Attribution methods

The orthogonalization trick represents not only a suitable method to make the structured
part interpretable, but also allows to consider the challenge of interpreting the unstruc-
tured part in isolation. While disentangled, both parts cannot be interpreted in the same
manner, as the learned latent representation has no comprehensible semantic meaning.
Hence, interpreting its corresponding coefficients is hardly expressive. Yet, to obtain a
high degree of interpretability, it is essential to yield a better understanding of the input-
output mapping process that corresponds to the unstructured MRIs. A vast amount of
methods has been proposed, and yet there is clearly no unique solution that satisfies all
needs for interpretability. Rather, the appropriate choice for a method is highly depen-
dent on the specific needs of the applicant.

In the following, we aim to deduce a small subset of the available methods that arguably
fit best for our purposes. We will proceed by assessing the validity of different methods
based on a set of meta-level criteria. By doing so, we will conclude that the class of
attribution methods represents the most appropriate choice for our specific needs. By
adhering to the selection process, it will also become apparent why there is no universal
best interpretation method. We will then use an axiomatic set of criteria to select the
most promising and robust methods within the class of attribution methods. It will
become evident why we opt for Integrated Gradients (Sundararajan et al., 2017) and
sampled Shapley values (Castro et al., 2009). The chapter will conclude with a more
detailed and theoretical definition of the selected methods. A formal definition of the
attribution methods is mandatory to understand the baseline selection problem discussed
in chapter 4.

3.1 Attribution methods - a meta level consideration

As outlined previously, the following will serve as a preliminary to derive a consistent
reasoning for choosing a suitable class of interpretation methods. The considered meta-
level criteria are entirely derived from Ras et al. (2018) and eventually complemented by
further studies. As no method will satisfy all criteria and there is no objective ranking of
those criteria, we will elaborate a ranking according to the usefulness with regard to the
specific needs of our study and will then opt for the class of interpretation methods that
is arguably the best aligned with the derived ranking.

3.1.1 Definition of meta-level criteria

From a high level perspective, Ras et al. (2018) argue that a suitable interpretation
method should meet the criteria of high fidelity, high interpretability, high generalizability
and high explanatory power.
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High fidelity corresponds to the requirement that an interpretation method is able to
capture the input-output mapping of a deep neural network. Fong and Vedaldi (2019)
refer to this property as faithfulness which is fulfilled when the internal processes (how
did the model decide?) as well as the external properties of a model (what has the model
learned?) are understood. Both insights are arguably of equal importance, as it sheds
light on the question of whether the model learned something meaningful or not.

High interpretability refers to the need that the explanation is unambiguous and of low
complexity. It must be comprehensible for a human expert and thereby her limitations
must be taken into account. Within the medical domain, the human expert is likely to
be a physician with little or no machine learning knowledge. Hence, the need for low
complexity is high. Ribeiro et al. (2016) discuss the trade-off between fidelity and inter-
pretability and point out that the complexity of an interpretation increases considerably
with increasing fidelity. Further, while a ML expert might be able to classify ambiguous
results, as she understands the properties of the underlying method, we probably cannot
expect that from a domain expert.

High generalizability requires that the interpretation method should not depend on the
choice of the architecture or any other configuration. In the best case, we want to obtain a
two stage approach where training the model for the prediction task is independent from
the interpretation method. Hence, we can first fully focus on the model performance
before making the predictions interpretable. The lower the generalizability, the more
entangled these two steps are. A high entanglement may inherently restrict the model’s
capacity and subsequently its performance for the sake of interpretability.

High explanatory power is given when an interpretation method answers different kinds
of relevant questions. Ras et al. (2018) refer to the varying needs of different stakeholders
who require different types of interpretations. What this means in concrete terms can
ultimately only be clarified if the stakeholders and their needs are clearly defined.

3.1.2 Ranking of meta-level criteria

As already partially indicated, the above defined meta-level criteria cannot be satisfac-
torily fulfilled simultaneously. For instance, some methods will come with a high degree
of interpretability, but will lack in generalizability while others are hard to interpret but
have a high explanatory power. As no method will completely outrank the others, we
have to establish a ranking of the meta-level criteria. For instance, do we either prefer
a method with high interpretability or one with a high degree of generalizability? Since
an objective ranking is infeasible we have to determine a set of priorities to then infer a
ranking of the criteria.
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Model performance vs. interpretability? For our specific use case, the highest priority is
model performance. We argue that if the model lacks in performance, it becomes useless
and the need for interpretability is pointless. Once the model performance is maximized,
we can care about the interpretability of the results.

Recipient of explanation While pursuing the goal of interpretability, it remains to clarify
for whom and for which purposes the interpretability has to be assured. As mentioned
before, the domain expert is considered to be the most important recipient. The domain
expert is arguably also primarily interested in having a well-performing model and only
secondarily in its interpretability. In general, she wants to have two main questions
answered. What was the prediction and which regions in the MRI were the driving forces
for the prediction. Note, if we also considered regulators, we would probably conclude
differently, as they would probably focus more on an understanding of the model’s internal
workings.

Within or post-hoc? We must recall that we prioritize model performance over inter-
pretability. Given a within approach, we would try to directly incorporate the objective of
interpretability into the model. For instance, in the field of representation learning, it is
often considered useful to learn a disentangled representation (Kumar et al., 2017). Yet,
a disentangled representation is often less useful for potential downstream tasks than an
entangled representation. In such case, we sacrifice model performance for interpretabil-
ity and thus violate our highest priority. Yet, Baumgartner et al. (2018) argue that a
classifier is likely to ignore features with low discriminative power, if features with large
discriminative power are identified. Their reasoning is based on the findings of Shwartz-
Ziv and Tishby (2017) who show that during training the mutual information between
input and output is minimized and hence, only the most salient features are considered
by the model. Therefore, a post-hoc interpretation method will not be able to identify the
unconsidered features in retrospective, while a within method might enforce the model to
not ignore those features. Yet, we do not share the urge of fully identifying all discrimi-
native features for two reasons. First, it is reasonable to assume that ignoring them has
no impact on the model performance. Secondly, we are not interested in interpreting the
data but rather the model. By focusing on the latter, we derive a potential validation
check for whether the model has learned what we expected. Further, the model might
have distilled information unknown to the domain expert which is only revealed when
we interpret the model and its predictions, instead of the data. Thus, we advocate for
post-hoc interpretation methods.

Global vs. local explanation? A global explanation is mainly concerned about the inter-
nal workings of a model - how the model makes decisions and how inputs are processed
to produce the outputs. The need for global explanation is of special importance, if the
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standard performance measures do not imply trust in the model and therefore fail to
ascertain faithfulness (Ribeiro et al., 2016). Many models such as decision trees, sparse
linear models or some Bayesian models do inherently come with a certain degree of global
intepretability (Lipton, 2018). For more complex models, however, it is very difficult to
yield a complete understanding of the model’s internal workings (Oh et al., 2019). If we
still aim for a high degree of global interpretability, we must either sacrifice an uncomplex
interpretability for model performance or vice-versa. Yet, since we do not want to sacri-
fice one for the other a global explanation is not realisable. By contrast, local methods
provide only explanations for one specific observation at a time. They function mostly
in a post-hoc fashion and therefore do not have any impact on the model performance.
This case-by-case consideration is also probably more in line with the needs of the do-
main expert. She wants to understand why a specific patient converted or not and not
necessarily, how the internal workings of a model are functioning. Again, she requires an
unambiguous and uncomplex interpretation which is more satisfied with local methods.
Thus we prefer a local explanation over a global explanation.

Based on this set of priorities we can now derive the subjective ranking of the meta-level
criteria. We argue that a high degree of interpretability and a high degree of gener-
alizability is paramount compared to fidelity and explanatory power. We argue that
interpretability depicts the second priority after model performance which is founded in
the recipient’s limitations. Even though both criteria seem to interfere with each other,
a high performance can still be enforced by both, requiring a high generalizability of
the interpretation method and opting for a post-hoc interpretation. By doing so, the
objective of interpretability is disentangled from the objective of performance. As fidelity
conflicts with interpretability, the former is conceded only a minor importance. Further,
Lipton (2018) argues that interpretation can be informative without revealing the inner
workings of the model. Within our use-case, it might be sufficient to yield interpretations
that allow the domain expert to stress the model’s behavior against her own intuition.
Further, the need for a high degree of explanatory power is arguably limited, as we merely
consider the problem of intepretability from the perspective of a domain expert. Hence,
the need for a variety of different explanations is limited.

3.1.3 Classes of interpretation methods - a comparison

We have now determined that we rather prefer methods that assure a high degree of inter-
pretability and generalizability and not necessarily fidelity and explanatory power. Based
on that ranking we can compare the following three classes of interpretation methods.
The definition of the classes are obtained from Ras et al. (2018) who distinguish between
rule-extraction methods, intrinsic methods and attribution methods. This abstraction level
is appropriate, as the partitions are mutually exclusive and to a large extent collectively
exhaustive.
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Rule-extraction methods are mainly concerned with extracting human interpretable de-
cision rules from the learned model. By doing so, we aim at a high level of fidelity as
it allows a holistic understanding of the internal workings of the model. However, these
methods are more concerned with providing a global instead of a local interpretation.
With an increasing number of extracted decision rules, interpretability decreases. While
these methods are considered to have a high explanatory power, they mostly lack in gen-
eralizability.1 Although these methods are indeed a valid choice we conclude that, due
to the shortcomings in interpretability and generalizability, they are not suitable for our
use-case.

Intrinsic methods enhance the degree of interpretability by directly incorporating the ob-
jective of interpretability into the modeling process. This can be either done by adapting
the loss function (i.e. disentanglement learning with Variational Autoencoders (Mathieu
et al., 2019)) or some internal structures of the architecture (e.g. Goudet et al., 2018).
While such methods may have some advantageous properties w.r.t. interpretability, they
clearly lack in generalizability. However and more importantly, it is also likely that the
model’s capacity and therefore prediction performance is limited. Since our highest pri-
ority is model performance, we argue that intrinsic methods are in general not suitable
for our purposes. Note, for the intrinsic methods the same reasoning applies as that made
us opt for post-hoc instead of within methods.

Attribution methods are concerned with assigning for each feature i ∈ {1, ..., n} of an
observation x a contribution score [φ1(x, f), .., φn(x, f)] ∈ Rn to a model’s prediction
f(x). This allows us to infer which feature made a contribution to the prediction and
which not. Without too much loss of generality, attribution methods can be categorized
in perturbation- and gradient-based methods (Ancona et al., 2017, Montavon, 2019). The
former subsumes methods that perturb or remove features in order to then determine how
the output has changed. Gradient-based methods rely on the calculated gradient of the
output w.r.t. the considered feature. The magnitude of the gradient indicates the impact
of a small perturbation of the feature on the prediction (Ancona, Ceolini, et al., 2019).
In both cases, the magnitude of the attributed value indicates the importance and its
sign indicates in which direction the prediction has changed due to the feature. Further,
it is standard to visualize the attributions by superimposing the values over the original
input which results in attribution maps. This approach neglects global interpretability,
but allows for a high degree of local interpretability. This is due to the fact that only
single observations are considered and no information about the internal workings of
the model are revealed. The visualization of the results do ensure a high degree of
interpretability, as it directly allows to infer which regions or even features in the image
were responsible for the prediction. As discussed above, this is perfectly in line with the

1Ras et al. (2018) provides a more detailed discussion of the rule-extraction methods.
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requirements of the domain expert. Beyond that, the attribution methods are in most
cases highly generalizable, as they do not require any alterations on the original model
and can be classified as post-hoc interpretation methods. Hence, the attribution method
has no impact on the model performance. Despite a considerable lack in fidelity and
explanatory power, we still argue that attribution methods depict the most suitable class
of interpretation methods for our purposes.

3.2 Requirements on attribution methods

As an intermediate result, we conclude that attribution methods meet our criteria best.
Yet, within the class of attribution methods, the appropriateness of the methods varies
decisively. To reliably identify the most appropriate methods, the literature has estab-
lished a set of theoretical axioms which must be satisfied so that a method is considered
valid. The raison d’être for these axioms is as follows: It is almost impossible to empiri-
cally evaluate whether wrongly determined attributions stem from errors of the model or
from a flawed attribution method. Consider a pixel which has assigned a high attribution,
but the ground-truth indicates a low attribution. Now we have to find out whether this
divergence is due to a flawed attribution method or due to a poorly performing model.
In case of the latter, we would actually expect this divergence, as we are interested in
interpreting the model and not the ground-truth data. In case of the former, we must
conclude that the attribution method is not appropriate. A purely qualitative evaluation
of the resulting attribution maps has proven to be deficient and biased (Adebayo et al.,
2018) and therefore, some sort of quantitative assessment is recommended. Besides, the
interpretability criteria demands not only an uncomplex interpretation but also an un-
ambiguous one. Therefore, it must be clarified in advance which types of interpretations
are admissible and which are not by elaborating the implications of each axiom on the
interpretation. This will be dealt with in the following paragraphs.

Axiom: Implementation Invariance as decscribed by Sundararajan et al. (2017). If two
differently implemented networks are functionally equivalent. i.e. the same outputs are
generated, we expect the attribution method to yield identical results. Hence, the results
do not depend on the model configuration, but only on inputs, outputs and what the
model has learned. Implementation invariance is crucial as it allows for a certain degree of
generalizability of the attribution method. Otherwise, the interpretations corresponding
to two different but functionally equivalent models would differ.

Axiom: Continuity requires that for two almost identical inputs, the respectively as-
signed attributions must also be almost identical, e.g. φi(x) ≈ φi(x + ε). Hence, the
predictions must also be nearly identical. Although this represents a standard criterion
it can be shown that some attribution methods do not satisfy it (Ancona, Oztireli, et al.,
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2019). If not satisfied, the resulting diverging interpretations are likely to contradict hu-
man intuition. For two inputs that are almost identical, we would expect to yield almost
identical attribution maps.

Axiom: Linearity as defined in Sundararajan et al. (2017). Given two submodels f1

and f2, we obtain attribution values for each of the submodels. Now, if both models are
combined to αf1 + βf2, we want the attribution method to allocate the shares of the
total attribution depending on its shares. This property is important within the context
of multi-modality networks. If we combine the structured with the unstructured part, we
expect the attribution method to consistently assign the true attributions accordingly.
If not satisfied, the attribution method might overemphasize one part which results in
misleading conclusions.

Axiom: Null Player is satisfied if the method attributes always zero to a feature which
the function does not depend on. This is crucial as it ensures that irrelevant features
are not erroneously considered important. If the ground-truth indicates no importance,
but the attribution method assigns a non-zero value, while the axiom is satisfied, we can
confidently infer that the model has learned something wrong. Otherwise, if the axiom
is not satisfied, we cannot reliably interpret any attribution score.

Axiom: Sensitivity (a) complements the null player axiom in cases where an attribution
method relies on some baseline value. The axiom states that if the input differs from the
baseline only in one feature and the outcome difference is non-zero, then the attribution
score for that feature must be non-zero as well. If the axiom is violated, relevant features
might be considered irrelevant.

Axiom: Conservation allows for a new dimension of interpretability. If only the above
discussed axioms are fulfilled, we can indeed distinguish between relevant and irrelevant
features but a direct interpretation of the features’ absolute and relative importance is
not given. To enable the latter, this axiom must hold. It requires that the returned score
of the attribution method shall match the magnitude of the predicted outcome. In short,
the attribution method shall correctly distribute the shares of the predicted risk scores to
the relevant features, where the size of the share is equivalent to its absolute importance.

Axiom: Completeness extends the conservation axiom in cases where the attribution
method relies on some baseline values. If the input differs from the baseline only in one
feature and the outcome difference is non-zero, then the attribution score for that feature
must be non-zero as well. Further, it states that if the function is evaluated at input
x and baseline x′, the attribution method must fully account for the output difference
f(x) − f(x′). The completeness becomes even more crucial, if the output and hence,
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the output differences can be numerically interpreted. While the outcome differences in
the context of binary classification might be not semantically meaningful, the outcome
difference between two predicted risk scores definitely are. By considering the relative
increase/decrease of the risk score, we can evaluate to what extent the AD progression
has accelerated/decelerated compared to the baseline.

3.3 Shapley values

It is desirable to apply attribution methods that satisfy these axioms. Yet, most of the
methods that can be assigned to the class of attribution methods do not satisfy all of the
axioms. In most cases, the important axiom of Completeness or relatively weak axioms
such as Sensitivity (a) or Continuity are violated (Ancona, Oztireli, et al., 2019). If that
is the case, the expressiveness of the interpretation is decisively limited. We can merely
obtain an indication of whether a feature has contributed to the prediction, but by no
means a measure of the actual magnitude of contribution.

Friedman (2004) shows that Shapley values (Shapley, 1953) represent the unique method
that satisfies all axioms. The Shapley value has its initial motivation from cooperative
game theory, where the outcome of a function f is considered to be a total surplus that
is generated by a coalition of N players. Thereby, the Shapley value reflects for each
player its marginal contribution to the total surplus. In other words, it determines the
importance of each single player in isolation. To obtain that, it is not sufficient to compare
the total surplus while all players are participating with the total surplus that is generated
without the considered player. Instead, to obtain the marginal contribution we have to
integrate out all other players. Therefore, we have to average the total surplus differences
over all possible coalitions that can be formed with the available players. Thereby, the
size of a possible coalition can vary from only one player to all players included. While
Shapley values are quite intuitive within economic game theory, they can also be directly
translated to machine learning problems. Within our context, the predicted risk score for
one observation corresponds to the total surplus, while each player corresponds to a pixel
of the input image2. The maths behind calculating the average marginal contribution of
a feature is rather straightforward. Given a function f : RN → R and a set of features
N , the contribution of feature i is given by:

φi =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!
|N |!

[
f(S ∪ {i})− f(S)

]
(23)

where S is a subset of N and f(S ∪ {i}) corresponds to the prediction given subset S
and feature i and f(S) corresponds to the prediction given subset S without feature i.

2Lundberg and Lee (2017) introduced the idea of transferring Shapley values to machine learning. Further, they showed
empirically that the calculated Shapley values agree considerably with human intuition.
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Note, again, as we want to integrate out all other features −i, it is not sufficient to calcu-
late the prediction difference for only one subset, but rather we have to average over all
possible coalitions. Thus, calculating the marginal contribution for each feature becomes
computationally infeasible with an increasing number of features, as for N players, there
are 2N−1 possible coalitions. Therefore, we rather rely on two methods Integrated Gra-
dients (Sundararajan et al., 2017) and Sampled Shapley values (Castro et al., 2009) that
approximate the true Shapley values but still maintain its advantageous properties.

3.3.1 Integrated Gradients

We know from the first theoreom of calculus that the difference between the outcome
given the explicand f(x) and the outcome given the baseline f(x′) can be expressed as

f(x)− f(x′) =
∫ x

x′

∂f(x)
∂x

dx (24)

The intuition is as follows. The integral defines a path from the baseline value x′ to the
explicand x, whereby the calculated gradients reflect the change in outcome for any given
point along the path. Hence, the integral of the gradients determines the overall, absolute
change in outcome when going from baseline x′ to explicand x. It can be shown that the
equivalent is achieved when calculating the Integrated Gradient for each observation i,
which is defined as follows

IGi(x) = (xi − x′i)×
∫ 1

α=0

∂f(x′ + α× (x− x′))
∂xi

dα (25)

to then sum over all observations i

f(x)− f(x′) =
n∑
i=1

IGi(x) (26)

Thereby it becomes evident, that the Integrated Gradients satisfy the completeness axiom.
Further, as the derivative is taken w.r.t. the i-th feature, it is assured that any changes in
the outcome are only assigned to the i-th feature. While we could theoretically show that
the Integrated Gradients are equivalent to Aumann-Shapley values (Aumann & Shapley,
2015) and therefore fulfill the desired axioms, we will rather focus on a more intuitive
explanation on the equivalence between Shapley values and Integrated Gradients. To
pursue this, we will adhere to the illustration provided by Sundararajan and Najmi (2020).
The intuition is as follows: The Integrated Gradients define a smooth path between the
baseline and the original input. By contrast, equation 23 achieves that by following a
discrete path, whereby in each step one more feature is turned on. The followed path is
defined by the edges of a hypercube where each node represents one feature that is turned
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on. The Shapley value is then the average over all discrete paths, whereas the Integrated
Gradients choose the internal diagonal of the hypercube. To make this computationally
feasible, we can approximate equation 25 by taking the sum of gradients from a subset
of m points that lay along the path between x and x′

IGapprox
i (x) = (xi − x′i)×

m∑
k=1

∂f(x′ + k
m
× (x− x′)

∂xi
× 1
m

(27)

In general, the points k are chosen such that they are equally distributed along the path.
The approximation via Integrated Gradients is favorable, as its implementation allows
for an simple and fast computation of the features’ attributions.

3.3.2 Sampled Shapley values

A more intuitive but also naive approach was introduced by Castro et al. (2009). They
leverage the fact that the Shapley value for feature i as defined in equation 23 can also
be expressed as

φi = 1
n!

∑
O∈π(N)

[
f(Prei(O) ∪ i)− f(Prei(O))

]
(28)

where π(N) corresponds to an ordered set of all possible permutations with cardinality
n! and Prei(O) corresponds to the set of features that precede feature i in the respective
permutation O ∈ π(N). For instance, for a given permutation O ∈ π(N) with cardinality
n, the feature i is placed in k-th position, then Prei(O) includes all features −i that are
in positions 1, ..., k−1, while the remaining are left unconsidered. It is straightforward to
see that if π(N) includes all possible permutations, equation 28 is equivalent to equation
23. To approximate equation 28, we consider a randomly sampled subset of size M of
all possible ordered sets O ∈ π(N). The corresponding pseudo algorithm is outlined here:
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Algorithm 1: Approximate Shapley values proposed by Castro et al. (2009)
Input: model: f
Input: ordered set with cardinality N !: π(N)
Input: number of samples: M
Output: Shapley values φi for ∀i ∈ N
Initialize: φi = 0 for ∀i ∈ N
for m = 1→M do

Sample O ∈ π(N) with probability 1
N !

for i ∈ N do
Derive Prei(O)
Calculate φmi = f(Prei(O) ∪ i)− f(Prei(O))
φi = φi + φmi

end
end
φi = φi

M
for ∀i ∈ N

The authors further show that the approximation is unbiased and consistent in probabil-
ity. For a large enough M the approximation converges towards the exact value. Štrum-
belj and Kononenko (2014) proposed an extension of this approximation which allows
to further reduce the computational complexity. As it will become apparent in chapter
5, we will apply the attribution methods only in a simulation setting. Our concerns
are therefore not directed to computational complexity. Hence, we opt for the arguably
simplest approximation. If, however, we were to apply the attribution methods on the
ADNI data, it is definitely recommended to opt for the method that comes with lowest
complexity. For such purposes, Ancona, Oztireli, et al. (2019) proposed an efficient ap-
proximation which reduces the computational complexity from O(2N) to O(KN), where
K corresponds to the number of sampled coalitions and N to the number of features. This
approach, however, comes with one non-negligible shortcoming. It requires to transform
the deterministic point estimates of the outputs and activations of the learned model
to probabilistic output layers and distributions, respectively. To pursue this, they rely
on the concept of Lightweight Probabilistic Deep Networks introduced by Gast and Roth
(2018). The framework, however, is not applicable for all potential activation functions
(e.g. tanh activation). Therefore, this attribution method is limited in its generalizability
that ought to be maximized, as discussed in chapter 3.1.2.
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4 The baseline generator

The calculation of Shapley values, either via Integrated Gradients or sampled Shapley
values, relies on the specification of a baseline value. If the choice of the baseline impacts
the interpretability of the derived Shapley values, then it is reasonable to assume that
there exist more appropriate and less appropriate baseline choices. This chapter serves to
clarify which factors constitute an appropriate baseline and how to identify the baseline
as a consequence. We pursue this by adhering to the following three steps. In chapter 4.1,
we will discuss the problems if a sub optimal baseline is chosen. Chapter 4.2 establishes a
set of criteria that allow to infer what constitutes an optimal baseline. In chapter 4.3, we
will then elaborate an identification strategy to obtain a baseline that satisfies all criteria
in order to - at least theoretically - solve the discussed problems. Finally, in chapter 4.4
we put the derived baseline generator in the context of current research and thereby point
towards the strengths of this framework.

For the remaining, it is important to note that we assume an uni modal setting - only the
unstructured MRIs are considered while the structured tabular data is left unconsidered.
We emphasize that for notational reasons. To consider the MRIs in isolation is justified
due to the orthogonalization trick (chapter 2.5).

4.1 The baseline selection problem

To thoroughly understand the problem, we have to once again consider Shapley values
from the cooperative game theoretical perspective. We permute over all possible coali-
tions, whereby the size of a coalition varies from one player to all players. When only a
subset of players is involved, the remaining players are excluded from the game. In other
terms, the remaining players are missing for this particular round. In the transfer of the
concept of Shapley values from game theory to machine learning, we have to exclude all
features that are not included in a current subset. Thereby the following question re-
mains: How do we exclude features? Applying the equivalent by simply removing those
features is technically impossible - we cannot just cut out pixels from the image. Hence,
we have to find a replacing baseline value that appropriately simulates the case of miss-
ingness.

To pursue this, the literature often suggests to replace the original features values with
zero (Sundararajan et al., 2017). While this can indeed depict a valid choice for tabular
data, it does definitely not apply to images. For instance, Jha et al. (2020) state that
within a variety of genomic applications the value zero has a biological meaning. Also in
the application of grading diabetic retinopathy, the zero value is far away from represent-
ing missingness (Sayres et al., 2019). In the case of predicting AD progression, the zero
value might artificially increase the size of the hippocampus which is arguably a strong
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predictor for AD progression.

In view of this problem, Sturmfels et al. (2020) analyze the impact of different baseline
value choices w.r.t. the objective of simulating missingness. They do so by training a
convolutional neural network on the ImageNet dataset (Deng et al., 2009) and applying
different baselines such as Maximum Distance, Uniform, Gaussian and Blurred as input
for Integrated Gradients. They argue that inducing randomness into the determination
of a baseline value increases the chance of selecting a baseline that has no semantic mean-
ing. While this argument is potentially valid, inducing randomness is far away from an
universally valid approach. The authors provide a qualitative discussion of the different
choices, as well as a first attempt at quantitative assessment and thereby admit that they
were not able to identify an optimal choice. We argue that their failure is mainly due to
a lack of an elaborate, theoretical discussion of the actual problem.

A theoretical discussion of what indeed represents missingness has to consider the actual
practical implication of choosing a sub optimal baseline. One of the dominant reasons
to opt for Shapley values lies in the fact that they theoretically satisfy the axiom of
completeness. While this holds for any arbitrary choice of the baseline, the interpretation
of the Shapley values is decisively influenced by that. To better understand that, we must
deviate from the term missingness, but rather consider what missingness implies for the
prediction task. In both contexts, game theory and machine learning, a missing player or
feature implies a zero contribution to the outcome. In short, a feature that contributes
nothing is equivalent to a feature that does not participate. Identifying a non-contributing
baseline yields an unambiguous interpretation - the relative contribution of the feature
is equivalent to the absolute contribution. By contrast, if the baseline has a non-zero
contribution, we have to interpret the feature’s contribution in reference to the baseline’s
contribution: If we have no understanding why the prediction of the baseline is non-zero,
we have no chance to obtain a meaningful interpretation. This problem is unavoidable
when we randomly select a baseline as there is no semantic meaning. In the worst case,
features could possible be assigned a non-zero attribution value, even though the model
did not focus on that. If that is the case, any conclusion is definitely misleading and
therefore, wrong. The problem becomes even more severe, if we demand a certain degree
of robustness. Given the same data, the same model and the same attribution method,
but different baselines, the resulting Shapley values differ (Merrick & Taly, 2020). Due
to the fact that the reference point which is determined by the baseline varies, we can
conclude that there is an urgent need for identifying a unique and meaningful baseline
that leaves no room for ambiguities.
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4.2 The optimal baseline

When we apply attribution methods or more specifically, when we calculate Shapley
values, it is not advisable to entirely rely on its axiomatic properties. In the previous
chapter, we examined why an ill-considered baseline choice is likely to break the entire
interpretability of the results, despite the axioms being satisfied. This happens if the
baseline produces a non-zero outcome, while its reasons are not understood. If we do
not know what the baseline represents, we have no chance to obtain a meaningful inter-
pretation where the baseline serves as a reference point. Merrick and Taly (2020) argue
that, for this specific reason, the baseline choice should not be considered merely as an
implementation detail, but rather as "a first-class argument to the framework" (Merrick
and Taly, 2020, p.10). For them the optimal baseline must allow to yield a meaningful
contrasting explanation. In short, we require a baseline which serves as a meaningful
reference to the original outcome.

For illustration, imagine an MRI of the brain for which the model predicts a positive
risk score - the MRI reveals structures that lead to an accelerated AD progression. Now,
we aim to understand which pixels were responsible for the prediction and what was the
share of contribution, respectively. To answer that, a proper reference point represents an
image that is considered healthy. Then, we can assign outcome differences to those pixels
which differ between input and reference point, while the pixels that remain constant
cannot have made any contribution to the prediction of the risk score. To obtain this
contrasting explanation, it is key to formulate the corresponding contrasting question
which should be answered by means of the baseline. In our case, a valid and expressive
contrasting question could be formulated as follows:

Given an MRI of the brain for which the model predicted a positive/negative
risk score, how is the corresponding baseline defined so that the model predicts
a negative/positive risk score?

This discussion brings us one step closer to answering the contrasting question, but does
not guarantee an identification of the optimal baseline. Recall, we require a baseline
which only differs from the input in those pixels that are, according to the trained model,
relevant for predicting the risk score. In fact, the contrasting question ensures that a
baseline is identified which contrasts to a healthy/sick input image, however, it does not
ensure that irrelevant pixels remain unchanged. If the latter is not guaranteed, the to-
tal contribution (outcome difference) is not only shared among the relevant pixels but
also among the irrelevant pixels. Thus, the interpretation of the assigned attributions
is deteriorated. Further, it was argued that different reference points result in different
attributions. As answering the contrasting question does not provide us with a unique
reference point, the reference explanation is not unique either.
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To avoid this shortcoming, we define three criteria that ensure a robust and unique
identification of the optimal baseline. To pursue this, we adhere to the set of criteria
established by Shih et al. (2020).

Criterion 1: The baseline belongs to the target domain (w.r.t. the model) If the model
predicts a positive risk score for the input, we require that the baseline results in a negative
risk score and vice versa. Then, we can contrast the explanation for a sick brain with a
healthy brain and vice versa. The resulting interpretation is quite intuitive as we can now
evaluate which structural characteristics were responsible for an accelerated/decelerated
AD progression.

Criterion 2: The baseline is a realistic sample We require the baseline to represent a
realistic sample, as it allows to effectively understand structural differences between the
target and the baseline image. In addition to a quantitative assessment of outcome
differences, we can also yield a domain-specific qualitative assessment. If the baseline did
not represent a realistic sample, we could again not comprehend why the baseline belongs
to the target domain and hence the reference point is not meaningful.

Criterion 3: The baseline is close to the input This criterion ensures that only structural
changes that are linked to AD are captured. All other characteristics visible in the MRI
must stay constant. If we did not require to meet this criteria, we could simply select
a sample from the training data that belongs to the target domain and compare it to
the sample of interest. However, this implies that we compare the sick/healthy brain
of person A, with a healthy/sick brain of person B. Rather, we want to compare the
sick/healthy brain of person A with a hypothetical healthy/sick brain of person A. If
that criterion is not satisfied, the baseline image would also differ in domain unspecific
characteristics so that the attribution method assigns non-zero scores to structures (fea-
tures) that were irrelevant for predicting AD progression.

Figure 1 serves as an illustration for an intuitive explanation on how the optimal baseline
is identified and how the fulfillment of the criteria enforce the optimal solution. The
blue areas represent the latent space covered by realistic samples, whereas the red areas
represent the latent space covered by observed training samples. The decision boundary
in the latent space represents all instances where the model predicts a zero risk score.
To the right all instances correspond to a negative risk score and to the left all instances
correspond to a positive risk score. Observations that are farther away from the decision
boundary correspond to a more positive/negative risk score. For a given input, three
potential baselines are illustrated. The yellow rectangle represents a baseline that is clos-
est to the input but does not represent a realistic sample. Therefore it is not a valid
choice. The green rectangle (MDTS = mimimum distance training sample) lies within
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the target domain and indeed represents a realistic image. However, as it is a sample
from the training data, it does not only differ in domain-specific characteristics from the
input image. Therefore it is not a valid choice, either. The red point represents the
only baseline which satisfies all three criteria and therefore represents the unique optimal
baseline. The baseline lies within the area of realistic samples, it lies in the target domain
and - if those two criteria are fulfilled - is closest to the input.

Figure 1: Illustration of a discontinuous latent space and the learned decision boundary of the survival model.

Even though figure 1 illustrates the concurrence of the three criteria rather well, the
schematic depiction is not accurate. In a survival analysis setting, it is reasonable to
assume that the latent space is continuous and not discontinuous. In this case, the deci-
sion boundary is likely to intersect both the red and the blue area. Then, however, the
illustration in figure 1 is not suitable anymore to reliably identify the optimal baseline.
Every baseline that lies infinitesimally close to the decision boundary is equally favorable
- at least on a visual level. They represent a realistic sample and lie in the target domain.
But we cannot distinguish between a baseline that violates the closeness criterion and
a baseline that satisfies that criterion. The indistinguishability is due to the fact that
the latent space merely captures the domain-specific characteristics but not the domain-
unspecific characteristics upon which we evaluate to what extent the closeness criterion
is satisfied. To circumvent this limitation of figure 1, we additionally introduce figure 2.
There, the assumption of a discontinuous latent space is voided. In order to display the
closeness criterion, we add a second dimension - deviation from closeness - which captures
to what extent the baseline differs from the the original input in the domain-unspecific
characteristics. The degree of deviation is indicated by the dashed lines in red, as shown
for the yellow and the blue rectangles, respectively. By doing so, we can conclude that
the red circle is favorable over the yellow rectangle, even though both are infinitesimally
close to the decision boundary and therefore correspond to a zero risk score prediction
(see figure 2a).
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By acknowledging the presence of a continuous latent space, we can narrow down the
conditions of criteria 1 to the extent that the baseline not only lies within the target
domain but also that the baseline fully represents the pre-specified reference point which
is determined by the decision boundary. We prefer an exact and unambiguous baseline
in order to obtain a more robust interpretation. Only by tightening criterion 1, we can
control to what extent the baseline deviates from the optimal reference point. Otherwise,
a certain degree of variability is induced which prohibits a unique and robust identifica-
tion of the baseline which again is essential for an unambiguous interpretation. Further,
by tightening the criterion 1 we achieved to identify a baseline that indeed represents
missingness even though we refrained from explicitly looking for it. In the domain of
predicting AD progression missingness corresponds to the case where the observed struc-
tures in the MRI contribute neither to accelerated nor to decelerated progression. Hence,
the baseline image makes no contribution to the overall predicted risk score. Put differ-
ently, for a sick MRI sickness is missing, while for a healthy MRI healthiness is missing.

(a) Unique decision boundary (b) Multiple decision boundaries

Figure 2: Illustration of a discontinuous latent space and the learned decision boundary of the survival model.

It is also important to note that this identification strategy allows to yield further ref-
erence points, apart from the zero risk score. Then, however, the baseline identification
can no longer be motivated by the objective to represent missingness. Yet, we argued
that as long as the criteria are satisfied and the baseline is semantically meaningful, any
reference point is potentially suitable. Hence, we can map any original MRI to any de-
sired reference point, as long as the reference point is meaningful. This consideration will
be resumed in chapter 4.3. On a visual level, this corresponds to a right or left shift of
the decision boundary in the latent space as depicted in figure 2b. The dashed lines in
green represent two possible reference point choices, respectively. In this case the optimal
baseline lies on the new decision boundary.

4.3 Identification of the optimal baseline

Given the elaborated criteria, we still have to clarify how the optimal baseline can be
identified. As the third criteria must hold, it is not valid to select a sample from the
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training data as baseline, but instead we must synthetically generate a unique baseline
for each data instance, respectively. To achieve this, the class of generative modeling
depicts a valid choice. To meet the criteria of generating a baseline that belongs to
the target domain, but also maintains all domain-unspecific characteristics, the family
of image-to-image translation networks first introduced by Isola et al. (2017) is suitable.
This family is only applicable, if the main goal is to map an input image to a desired out-
put image which fully reflects our goal of baseline generation. While there is a variety of
image-to-image translation networks that hypothetically could yield the desired results,
we opted for StarGAN (Choi et al., 2018), because it allows to directly incorporate the
pre-trained survival model as a discriminator.

The StarGAN consists of three parts which are illustrated in figure 3. The generator
G(x, d) : Rn×(c+d)×h×w → Rn×c×h×w generates realistic baseline images that belong to
the respective target domain. Given the input tuple (x,d), the generator G produces a
baseline image x̃ that only differs from the input image in the domain-specific character-
istics and thereby represents a realistic image. The one-hot encoded vector d indicates
into which domain the generator G has to map the original image. The discriminator
D(x) : Rn×c×h×w → [0, 1] learns to distinguish between real and fake images which en-
forces the generator G to indeed produce realistic images. Lastly, the survival model
S(x) : Rn×c×h×w → R judges whether the generated baseline image belongs to the target
domain or not. Hence, the survival model S provides feedback to the generator G to
what extent the generated images lie within the target distribution.

Figure 3: Illustration of StarGAN framework in the setting of survival times prediction
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How the three models interact during training can be understood if we consider the cor-
responding loss functions for optimization. In the following, the adversarial loss Ladv,the
domain loss Lcls, the reconstruction loss Lrec and the gradient penalty Lgp are discussed.

Adversarial loss is adopted to ensure that the generator G produces realistic images

Ladv = Ex[logD(x)] + Ex,d[log(1−D(G(x,d))] (29)

where G produces the baseline images given the tuple (x,d) and the discriminator dis-
tinguishes between real and fake images. The generator G aims to minimize Ladv while
the discriminator D aims to maximize the objective. Note, the adversarial loss does not
enforce to generate baseline images that belong to desired target domain, but merely
enforces realistic baseline images.

Domain loss enforces the generator G to produce images that belong to the target do-
main. In a classification task setting, this can be pursued by the following loss function

Lcls = Ex,d[−log(Dcls(d|G(x,d)))] (30)

where Dcls represents a second discriminator which learns to classify the images correctly.
The generator G tries to minimize the objective so that the discriminator classifies the
synthetic image to the desired target class d. In the standard StarGAN setting, it is
assumed that the labels are known, while such labels do not exist in the survival times
setting. Therefore, it needs to be determined how the labels can be obtained. As il-
lustrated in figure 1, we could define a fixed decision boundary (threshold) where the
predicted risk score that corresponds to the MRI is 0. In one domain (class), all corre-
sponding MRIs contribute to an accelerated AD progression, while in the other domain
(class) all corresponding MRIs contribute to a decelerated AD progression. Then, we
can define d = {0, 1} where d takes 0, when the target domain represents a negative
risk score and 1, vice-versa. Now we can similarly adapt the domain loss in equation 30.
However, this only enforces the generator G to produce baseline images that lie in the
target domain with a high confidence. Yet, we aim to find the baseline that lies on the
decision boundary in the latent space (see figure 2). To pursue this, we can apply the
following quantile loss

Lsurv = (1− α)
∑
y>dτ

‖y − (τ + δ)‖+α
∑
y≤dτ
‖y − (τ + δ)‖ (31)

where τ represents a threshold which is considered to be optimal at τ = 0. Any deviation
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of the predicted risk scores y from the optimal threshold τ is penalized. To further
increase the confidence that the baseline image lies in the corresponding target domain,
we add a small residual to the threshold τ+δ, whereby δ > 0 if d = 1 and δ < 0 if d = −1.
To additionally strengthen the penalization when the target domain is not fulfilled, the
parameter α ∈ [0, 1] can be set to α > 0.5. In short, deviations of y from τ are less
penalized when y lies in the target domain. Figure 4 illustrates the loss function when
the target domain lies in the range of negative (see figure 4a) and positive risk scores
(see figure 4b), respectively. Note, the illustration assumes the L1-norm, whereby any
reasonable distance norm is applicable.

(a) Target domain: negative risk scores (b) Target domain: positive risk scores

Figure 4: Illustration of the domain loss for two different target domains, respectively

Even though the derived domain loss is applicable in theory, it can be questioned whether
the optimal threshold τ = 0 is in fact a suitable choice in practice. The problem be-
comes apparent when we consider the loss function for optimizing the DeepCoxPH model
(equation 22). While the loss function enforces the survival model S to learn the correct
ordering of the survival times, it does not directly encourage the survival model S to
learn the exact risk scores. Hence, there is no guarantee that the predicted risk scores are
aligned with the ground truth. In the worst case, the decision boundary where τ = 0 is
not covered by the latent space and therefore, determining a reference point that satisfies
τ = 0 does not represent a realistic sample. To circumvent this, we have to identify a
more robust choice of the threshold τ . We require a threshold τ that is in line with the
ordering objective of the survival model S. One applicable choice for the threshold τ is
determined by the median survival time prediction which can be derived as follows. We
know that the survival function S(t) can be expressed as

S(t) = exp(−Λ0(t) exp(xTβ)) (32)

where the risk score, and therefore the threshold τ , can be written as

τ = xTβ = log
(
− logS(t)

Λ0(t)

)
(33)
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If we aim for a threshold that corresponds to the median survival time, we set S(t) = 0.5
which yields

τ = log
(
− log 0.5

Λ0(t)

)
(34)

Thereby the target domain d = −1 relates to all observations that had an event beyond
the median survival time and d = 1, if the observation had an event before the median
survival time. As illustrated in figure 2b, the median survival time threshold merely
corresponds to either a left or right shift of the decision boundary so that the validity
of the loss function remains. This alternative derivation of the threshold τ comes with
two advantages. Firstly, it does not rely on an exact prediction of the risk scores, but
only on the correct ordering which is better aligned with the general evaluation of the
survival times prediction. Secondly, the choice of the threshold τ is not limited to one
unique value. While τ = 0 depicts the only semantic meaningful threshold for the risk
score related derivation of the threshold τ , the choice of the survival time quantile is not
bound to the median survival time. In fact, there might be use-cases where a smaller
or larger quantile is more sensible. Such cases are subject to discussion in chapter 6.3.
This flexibility of the threshold choice allows for extended interpretations of the baseline
images which will be discussed in chapter 6.1.

Reconstruction loss causes the generator G to produce baseline images that only differ in
domain-specific characteristics, but not in the domain-unspecific ones. Both, the domain
loss Lsurv and the adversarial loss Ladv do not guarantee the preservation of domain-
unspecific characteristics, unless we adopt the cyclic reconstruction loss from Choi et al.
(2018)

Lrec = Ed,d′,x∈d′ [||x−G(G(x,d),d′)||1] (35)

which takes the point-wise L1-difference between the generated image and the original
image. Note, we obtain the generated image G(G(x,d),d′) by applying the generator G
twice. First, we produce a synthetic image that belongs to the target domain d and then
we map the synthetic image back to the original domain d′ of the input image x.

Gradient penalty corresponds to an additional penalization term for the discriminator
D. Training a GAN often suffers from non-convergence or mode collapse which can occur
if the discriminator D overfits, while the generator G still outputs low quality images
(Arjovsky et al., 2017). Then, the gradients of the generator G diminish and hence,
the generator G is prevented from learning. To circumvent the problem of vanishing
gradients, Gulrajani et al. (2017) proposed the method of gradient penalty which is
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defined as follows

Lgp = Ex̂∼Px̂

[
(‖∆x̂D(x̂)‖2−1)2

]
(36)

where x̂ is defined as

x̂ = γx̃+ (1− γ)x (37)

where x̃ and x correspond to a batch of generated images and a batch of original images,
respectively and γ is uniformly sampled with 0 ≤ γ ≤ 1. It has been empirically shown
that the penalization term Lgp contributes considerably to the stability of the GAN train-
ing (Gulrajani et al., 2017). Note that, adding the gradient penalty Lgp has no impact
on the general framework, but will only improve training.

Given the defined objective functions Ladv, Lrec, Lsurv and Lgp, we can now define the ob-
jective function for the discriminator D and generator G, respectively. The discriminator
tries to minimize the following objective function

LD = −Ladv + λgpLgp (38)

while the generator G tries to minimize

LG = Ladv + λsurvLsurv + λrecLrec (39)

The hyper-parameters λgp, λsurv and λrec control the relative importance of the gradient
penalty, the domain loss and the reconstruction loss, respectively and in comparison to
the adversarial loss. As desired, the survival model S is not further optimized during
the training, as we aim to explain the predictions made by the survival method S in a
post-hoc fashion. By including the survival model S during optimization, the prediction
performance may be negatively influenced3.

4.4 The baseline generator in the context of current research

The objective to translate MRIs of the brain with AD to MCI and vice-versa has al-
ready been extensively studied. Baumgartner et al. (2018) pursued an approach, called
VA-GAN, where 3D MRIs of the brain with AD were translated to MCI. They pursue
this by learning an effective disease map which captures the class specific characteristics
that distinguish the MRI with AD from a corresponding MRI with MCI. They pass an

3The problem of within interpretation methods has been thoroughly discussed in chapter 3.1.2
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original image x from the baseline class c = 0 (AD) through a generator which outputs
the disease map M(x). The learned disease map is then added to the original MRI
y = x + M(x), where y belongs then to the target class c = 1 (MCI). Similar to our
approach, the generated and original MRI shall only differ in the domain-specific charac-
teristics while all other characteristics remain constant. However, their approach comes
with a major drawback. As the framework only allows to translate AD to MCI and
not vice versa, it is required to know the class labels a priori. To circumvent this, Bass
et al. (2020) introduced an approach, called VAE-GAN, which also leverages the idea
of image-to-image translation to learn effective disease maps. By slightly modifying the
approach from Lee et al. (2018), they encode each class specific MRI in a class irrelevant
and class relevant latent representation, respectively. The class relevant encoding is then
used for classification, while a cross-combination of the class specific encodings is passed
to a generator which translates the original MRI to the target domain. Then, taking the
point-wise difference between the original MRI and the generated MRI yields the effective
disease map. While this approach does not require to know the class labels a priori, it
is still not applicable for our purposes for one specific reason. In chapter 3, we argued
that we want to explain the model in a post-hoc fashion. Within their approach, how-
ever, the classification model is trained simultaneously with the generator framework and
therefore, a within approach has been chosen. A flexible adaption to a post-hoc setting
seems not feasible. Beyond that, both methods require a binary classification setting. As
discussed in chapter 1, this depicts a poor framework when studying progression from
MCI to AD. Although Bass et al. (2021) have extended their original approach by also
allowing for regression tasks, this framework still requires to distinguish between sick and
healthy MRIs a priori4.

To sum up, there exists a variety of elaborate approaches that seek to identify the disease-
specific characteristics and thereby yield similar outputs as our derived attribution maps.
Yet, we still argue that our proposed baseline generator framework is superior. From a
pure theoretical perspective, our framework is applicable to survival models which clearly
depicts a more appropriate choice to model AD progression. Further, the generated base-
line images are inputs for axiomatic verified attribution methods. Thus, the admissibility
of interpretations are theoretically founded. This is not given with the learned effective
disease maps. Lastly, our framework allows for interpretations that are more revealing.
In our case, both the baseline’s prediction and the prediction corresponding to the orig-
inal MRI have a numeric semantic meaning. Hence, the prediction difference can be
interpreted and as the completeness axiom is satisfied, the prediction difference is fully
captured by the assigned attribution scores. By contrast, the predicted logits from binary
classification are hardly meaningful as they only indicate the confidence of the model’s

4The regression tasks are apparently only applied to translate within the domain of ages. Thus, the framework allows
to translate any young MRI to any old MRI and vice versa. Yet, the fact that the need to distinguish between MRIs with
MCI and AD a priori prohibits a transfer to survival analysis

33



4. The baseline generator

prediction. Hence, the prediction differences are also not that revealing. As we not only
require the baseline to contrast an MRI that corresponds to an accelerated/decelerated
AD progression, but also require a baseline that reflects the pre-specified quantile, we
know exactly what the reference point represents. Hence, we can reliably assess to what
extent the original MRI contributes to a more accelerated or decelerated AD progression
compared to the identified baseline. As our framework provides for all original MRIs
reference points that represent the median survival time, we can justifiably also compare
the resulting attribution maps between observations. By contrast, the current methods
do only enforce to translate the respective MRIs to their contrasting clinical picture and
thereby it is not assured that the reference point is consistent for all MRIs. Given two
MRIs with MCI, one baseline represents AD distinctly, while the other baseline represents
AD only weakly. Then, for two (almost) identical MRIs with the same clinical picture,
the effective disease maps differ because the reference points are not identical. If that is
the case, the reliability of the resulting interpretations are questionable.
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5 Experiments

5.1 Experimental setup

For conducting the experiments, we were provided with a single GPU from LRZ. Further,
we published the entire code on GitHub5 to enable a certain degree of reproducibility of
the conducted experiments. Further instructions on how the experiments can be repro-
duced can be found on the GitHub repository itself.

5.2 Experimental strategy

Our experimental strategy is subdivided into two phases. In the first phase, we train
survival models on the ADNI data (chapter 5.3). Thereby we aim to understand to what
extent the multi-modal approach (tabular data and MRIs) can enhance performance in
comparison to the uni-modal approaches (tabular data or MRIs). Thereby, we also seek to
understand to what extent the orthogonalization (chapter 2.5) impacts the performance
of the survival model. If the performance of the model with orthogonalization does not
decline decisively, we can conclude that we obtained a higher degree of interpretability
without any sacrifice in performance. Beyond mere performance considerations, we will
also investigate whether the orthogonalization has any impact on the estimated linear
weights that correspond to the structured part. To pursue both, we will benchmark four
models. First, we train a simple linear Cox-PH model (Cox, 1972) on the tabular data
only. Secondly, we train a Deep Cox-PH model on the MRI data only and lastly, we train
two multi modal Deep Cox-PH models with and without orthogonalization, respectively.

In the second phase of our experiments (chapter 5.4), we will focus on the applicability of
the baseline generator framework (chapter 4). To pursue this, we refrain from applying
the framework on the ADNI data, but rather aim for identifying a simulation setting
which allows to fully understand the internal workings of this framework. By doing
so, we can show that the framework indeed generates baseline images that satisfy the
criteria which were established in chapter 4.2. To further emphasize the necessity of the
baseline framework, we evaluate the attribution maps derived from Integrated Gradients
(Sundararajan et al., 2017) and sampled Shapley values (Castro et al., 2009). It will
become evident that the attribution maps provide only sensible insights when applied on
the generated baselines, while arbitrary baseline choices deteriorate interpretability to a
non-negligible extent.

5This GitHub repository entails the full codebase to run all experiments. To do so please follow the instructions in the
Readme. [Link: https://github.com/MoritzWag/DeepSurvival]
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5.3 ADNI

5.3.1 Data

In the first part of the experiments, we use the data provided by the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) (Jack Jr et al., 2008) which represents a longitudinal
study that started in 2003. The initiative aims at identifying strong predictors for the
conversion from MCI to AD, by collecting clinical and biomarker data as well as MRI
scans of the brain. For our purpose, we selected 795 subjects with MCI at the entry of
the study and at least one follow-up visit. To reduce computational complexity, we take
one slice from each raw 3-dimensional MRI to obtain a 2-dimensional representation of
the brain. The slices are taken from the coronal plane, as this arguably represents the
hippocampus the best. There seems to be some evidence that the size of the hippocam-
pus is a strong predictor for AD progression (Goukasian et al., 2019). By following this
approach, we reduce the size of one MRI from (128, 160, 128) to (160, 128). Note, for
each MRI scan, we took the same slice from the coronal plane which might imply that for
some instances the hippocampus is better represented than for others. To what extent
a fairly naive choice of the slices impacts the performance of predicting survival times is
left for future research. With respect to pre-processing the MRI scans, we normalized
the data from a range of 0 to 255 to 0 to 1. Besides that we refrained from applying any
other pre-processing on the image data.

The MRIs are further complemented by tabular clinical data which include the level of
education, age and sex. Beyond that, we consider relevant biomarker data such as: FDG-
PET, AV45-PET, APOE4, levels of beta amyloid 42 peptides (Aβ42), total tau protein
(T-tau), and Tau phosphorylated at threonine 181 (p-Tau). All covariates are normalized
between 0 and 1, to obtain a higher degree of stability during training. Regarding the
biomarker data, we had to cope with missing data. We set the covariate’s value to 0,
for those where no information was available. To control for missingness, we additionally
included missingness indicators into our model. We augment the clinical data by entirely
following the approach suggested by Pölsterl et al. (2019). We account for non-linear
effects of the covariate age, by applying a natural B-spline expansion with four degrees
of freedom and additionally include an interaction term between age and gender. The
categorical variable education was encoded with an orthogonal polynomial coding. We
replicate the pre-processing steps suggested by Pölsterl et al. (2019), in order to assess
more reliably how much information for predicting AD progression is contained in the
2d-slices compared to the used point clouds. Note, however, a final comparison is still
invalid as the data selection process is not identical.

In total, 795 observations were available for training, validation and testing. We split
training and test data into 90% and 10% shares, whereby we further exclude 20% of
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the training data for validation purposes. This results in 572 instances for training, 143
instances for validation and 80 instances for testing. Splitting the data was repeated 5
times with different splits to obtain cross-validated results.

5.3.2 Training

We trained a ResNet (He et al., 2016) with two residual blocks and two residual bottle-
neck blocks on the MRI 2d-slices. The latent representation is then concatenated with
the tabular clinical information to train one last linear layer for predicting survival times,
jointly. We adhere to the approach from Pölsterl et al. (2019) which was first introduced
by Cheng et al. (2016). To ensure distinct interpretability, we also replace the simple
concatentation with an orthogonalization of the unstructured latent representation on
the tabular data, as discussed in chapter 2.5. A detailed description of the architectural
design can be found in table 1.

We trained the model for 150 epochs using AdamW (Loshchilov & Hutter, 2017) and
weight decay. While the architectural design of the ResNet was not subject to tuning,
we tuned the size of the latent representation of the unstructured part with Hyperband
(Li et al., 2017). The learning rate, weight decay and the scheduler gamma were also
considered for tuning. In total, we tuned the model for 24h on the validation data, with-
out cross-validation. Furthermore, we initialized the weights of the ResNet with Glorot
initialization (Glorot & Bengio, 2010) and the linear weights that correspond to the tab-
ular data were pre-trained with a linear Cox-PH model (David et al., 1972). As the liner
Cox-PH model already yielded good performance results, we decided to exclude the last
linear layer from weight decay. An overview of the hyperparameter specifications is given
in table 6a.

The performance was evaluated with Harrell’s concordance index (c-index), which evalu-
ates whether the ordering of the predicted survival times is concordant with the observed
survival times (Harrell et al., 1982). A c-index of 50% corresponds to random guessing
by the model, while a c-index of 100% states that the model has perfectly learned the
ordering of the observed survival times. While we can evaluate the model’s discriminative
power, the c-index does not indicate how accurately the model is able to predict exact
survival times. Further, we compare the performance of the multi-modal approach with
the performance of two baseline models. The first baseline model was trained on the MRI
scans of the brain only, while the second baseline model was trained on the tabular data
only. This allows us to draw three conclusions. Firstly, we can judge which modality
contributes the most to predicting survival times and secondly, we can assess whether
the multi-modal approach can boost performance compared to the uni-modal baseline
results. Lastly, we compare the multi-modal model with and without orthogonalization
to understand whether the latter has any negative impact on the performance results.

37



5. Experiments

5.3.3 Results

Figure 5 illustrates the performance of the multi-modal models (with and without or-
thogonalization) and the baseline models. It reveals that the tabular data with a median
c-index of 74.76% are stronger predictors than the 2D-slices of the MRIs with a median
c-index of 63.38%. When we combine the tabular data with the MRIs we slightly out-
perform the linear model with a median c-index of 76.20% when no orthogonalization is
applied and a median c-index of 77.00% with orthogonalization. The results are robust
over all 5 splits and comparable with the results derived from Pölsterl et al. (2019). In-
terestingly, the multi-modal model with orthogonalization consistently outperforms all
other models. Therefore, we can conclude that no performance was sacrificed for the sake
of interpretability.

Figure 5: Performance of the different models across five random splits of the data. w/o orth: multi-modal
model is trained without orthogonalization. w/ orth: multi-modal model is trained with orthogonalization

Beyond that, we compare and interpret the coefficients of the linear model with the
linear part of the multi-modal model with and without orthogonalization in figure 6. The
coefficients can be interpreted either as multiplicative factors on the hazard rate or directly
on the log scale. The coefficients are shown across all five splits. A negative coefficient
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implies that the corresponding feature contributes to a decelerated AD progression, while
a positive coefficient implies contribution to an accelerated AD progression. We observe
that the signs of the coefficients are in line with those reported by Pölsterl et al. (2019).
Interestingly, the pre-trained coefficients remained stable while training the multi-modal
framework. This contradicts the findings from Pölsterl et al. (2019), who observed a
shrinkage of the coefficients towards 0 when training the multi-modal model with pre-
trained weights. We argue that the stable coefficients are due to the fact that we excluded
the coefficients from weight decay. The results further suggest that the orthogonalization
does not impact the results and therefore, we can finally conclude that interpretability is
achieved without any loss in performance.

Figure 6: Comparison of the learned coefficients corresponding to the tabular clinical features. w/o orth:
multi-modal model is trained without orthogonalization. w/ orth: multi-modal model is trained with
orthogonalization.

5.4 Simulations

5.4.1 Data

To simulate survival times, we have to follow a two step approach. In a linear regression
model, the response variable is directly associated with the covariates, the coefficients
and the error terms. However, within the setting of a Cox-PH model, we associate the
simulated terms to the hazard rates, so that we have to translate the hazard rates to sur-
vival times (R. Bender et al., 2005). Even though, both terms are direct expressions of
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each other, the algorithm requires survival times instead of hazard rates. In what follows,
we will make use of a general formula that specifies the relation between hazard rates and
survival times, derived by R. Bender et al. (2005). Further, the practical implementation
of the theoretical concepts is fully reproduced from the blog post published by Pölsterl
(2019).

We know, that the survival function is associated with the cumulative baseline hazard
Λ0(t) and the risk score η = xTβ as follows

S(t|x) = exp[−Λ0(t)× exp(η)] (40)

where

Λ0(t) =
∫ t

0
λ0(u) du (41)

Furthermore, we can use the relation of the survival function and the distribution function
to yield

F (t|x) = 1− exp[−Λ0(t)× exp(η)] (42)

Now, we can leverage the idea of inverse transform sampling (Devroye, 2006), where we
can generate random numbers from any probability distribution by using its inverse cu-
mulative distribution F−1. The probability integral transform states that given a random
variable X with continuous distribution function FX , the random variable U = FX(X)
follows a uniform distribution on [0, 1] (Angus, 1994). Then, the random variable F−1

X (U)
follows the same distribution as X. Further, it is straightforward to see that (1−U) fol-
lows equivalently a uniform distribution on [0, 1]. Given the distribution function in
equation 42, we can now write

U = exp[−Λ0(t)× exp(η)] ∼ Uni[0, 1] (43)

which yields

t = Λ−1
0 [− log(U)× exp(η)] (44)

Given structural assumptions about Λ0(t) and a specification of the predictors η, we can
now sample from a uniform distribution function to generate survival times t. In what
follows, we assume that the survival times follow an exponential distribution t ∼ exp(λ)
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with scale parameter λ ∈ R+ for which the inverse cumulative baseline hazard is defined
as (see R. Bender et al., 2005)

Λ−1
0 (t) = λ−1t (45)

we can now insert equation 45 into equation 44 to yield

t = λ−1[− log(U)× exp(−η)] = − log(U)
λ× exp(η) (46)

Here, it is important to note, that assuming the survival times to be exponentially dis-
tributed implies that the baseline hazard rate λ0(t) is constant over time. Yet, we argue
that this depicts no shortcoming, as we are merely interested in identifying a suitable
simulation setting for stressing the validity of baseline generator framework. λ is chosen
such that the median survival time is 20 days. Further, we randomly sample censored
survival times from a uniform distribution which results in an approximate 45% of cen-
sored survival times which allows us to determine the event indicator e where e = 1 if an
event is observed and e = 0 if an observation is censored (see Pölsterl, 2019).

At this point, we still have to determine an appropriate choice for simulating the risk
scores η = xTβ. To do this, our major focus is on identifying a setting which allows
to fully stress the functioning of the baseline generation framework. To stress whether
the framework is able to generate baseline images that satisfy the established criteria,
we rely on two different settings. In the first setting, we generate images with colored
rectangles on a black background. For each generated image, the positioning as well as
the size of the rectangle is equivalent. Hence, the color of the rectangle which is solid
represents the only varying factor and uniquely determines the risk score. During first
experiments, we witnessed that training with RGB channels makes training the baseline
generator considerably more complex. To simplify, we did not train the model on RGB
images but on HSL images. Thereby, for different coloring of the rectangles, we only need
to vary the hue (H) channel while holding the saturation (S) and lightness (L) channel
constant. Hence, for each image, we randomly sample a hue value between 0 and 255
while fixing the saturation at 50 and the lightness at 100. The color palette reaches
from dark red H = 0 to dark blue H = 255. The hue channel is then standardized
on [-1, 1] and the only predictor for the risk scores. Hence, the simulated risk scores
are equivalently in the range of [-1, 1]. Therefore, an image with a dark red rectangle
corresponds to a strongly negative risk score and an image with a dark blue rectangle
corresponds to a strongly positive risk score. Note that we refrained from artificially
inducing a multi modal setting, as doing so would not enhance the ability to validate
the baseline generator framework. Recall, we aim to identify for each original image a
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baseline image which represents the median survival time. Hence, we expect the baseline
generator to generate images that only differ from the original images in the coloring
of the rectangles. Further, the color must correspond to the median survival time and
as the color is the only varying factor, the generated baseline images should ideally be
identical. However, within this simulation, we are limited in the ability to stress whether
the baseline generator indeed outputs synthetic images that only differ from the original
images in the domain-specific characteristics (coloring of the rectangle). To cope with
this limitation, we also consider the second simulation setting. The second simulation is
equivalent to the first, with the exception that now different geometric shapes with varying
locations are introduced. In short, the rectangles are further complemented by triangles
and circles, whereby the coloring of the geometric shape still uniquely determines the
risk score. Now, we expect the baseline generator to output generated images that keep
location and shape of the geometric figure while only changing the coloring. Thereby,
all generated baseline images should represent the same coloring with shapes that are
equivalent to the corresponding original image. Figure 7 shows samples of the simulated
images, for both the first simulation setting (see figure 7a) and the second simulation
setting (see figure 7b).

(a) Simulation setting 1: Rectangles with different coloring

(b) Simulation setting 2: Different geometric shapes with different coloring

Figure 7: Illustration of the simulated images for both settings. The images are ordered w.r.t. their associated
risk scores. The leftmost image corresponds to a strong negative risk score and the rightmost to a strong
positive risk score. Both figures depict merely an extract of the sampled colors.

In total, 1000 samples were available for training, validation and testing. We split train-
ing, validation and test data into 70%, 20% and 10% shares. This results in 700 instances
for training, 200 instances for validation and 100 instances for testing.

5.4.2 Training

For training on the simulated data, we chose a simple three layer CNN to predict survival
times. Note, its configuration was not subject to tuning, as the prediction task proved
uncomplex. The architectural designs of the discriminator and the generator to train the
baseline generator were also not subject to tuning, mainly because no valid objective to
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tune upon could be identified. Instead, we adhered to the architectural design proposed
by Choi et al. (2018). The generator takes as inputs a batch of real images and a one-hot
encoded vector which defines the target domain. In the first part, we used two down-
sampling layers with instance normalization (Ulyanov et al., 2016) and ReLU activation
(Xu et al., 2015) which was followed by six residual bottleneck blocks. The last part of
the generator consists of one up-sampling layer with deconvolution and one last convolu-
tion layer to obtain an output that matches the shape of the input images (see table 3).
The discriminator consists of four convolutional layers with LeakyReLU activation (Xu
et al. (2015)). In the standard GAN setting, the discriminator outputs one probability
score for whether the image being fake or real. Instead, we follow the typical approach
used in image-to-image translation setting where the standard discriminator is replaced
with a PatchGAN (see Zhu et al., 2017 or Isola et al., 2017). Thereby, the PatchGAN
outputs a patch P of size N ×N where Pij indicates whether the patch ij in the image
is real or fake (see table 4).

Regarding the main hyperparameters, we distinguish between those belonging to the sur-
vival model (see table 6b) and those that belong to the baseline generator framework
(see table 7). The survival model was trained for 30 epochs. To enhance stability of
the training, we added an additional tanh activation layer after the last linear layer. By
doing so, we did not observe any deterioration in prediction performance, possibly due to
the simplicity of the prediction task. By contrast, it provides considerably more stability
w.r.t. the range of predicted risk scores. When the tanh activation was not included, we
observed that given the same data, model and training configurations, the predicted risk
scores varied decisively while the overall prediction performance remained constant. As
the objective function (see equation 22) does not enforce the model to predict the exact
risk scores but only the right ordering of the risk scores, a shift or scaling of the range
of predicted risk scores has no impact on the performance. Yet, leaving the stochasticity
unconsidered would have serious implications for the training of the baseline generator.
The threshold τ for the domain loss Lsurv would vary to a non-negligible extent which
would impede a robust identification of the loss weights. Thus, for one run, a given
configuration may work well, while another run on the same configuration may perform
poorly.

The baseline generator’s specific set of hyperparameters that were subject to changes
included the number of steps trained, the learning rates for the discriminator and the
generator, the loss weights (λrec, λsurv, λrec) as well as the linear rampup length of λsurv.
Further, we observed that the parameter α for balancing the domain loss λsurv had a
decisive impact on training and was set for both simulations to 0.6. The tolerance δ for
deviating from the threshold τ was set for both experiments to 0.001, as we specifically did
not want to allow strong deviations from the optimum. The generator and discriminator
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were trained for a total of 20,000 steps with equal learning rates while the generator
parameters were updated every fifth parameter update of the discriminator. Again, we
followed the training approach proposed by Choi et al. (2018). The loss weights λrec,
λsurv, λgp were determined by visually evaluating the quality of the generated baseline
images and by an evaluation on how well the generated baseline images represent the
specified reference point. As the desired degree of stable results could not be assured to
a full extent, we logged the results on the test data every 500 steps. After the training
was completed, we visually assessed on the validation data at which step the generator
yielded the most satisfying results. The remaining discussions of the results are then
based on the test data.

5.4.3 Results

The discussion of the results is conducted as follows: We evaluate the quality of the
generated baseline images. Given satisfactory results, we then evaluate to what extent
the generated baseline images serve as a better baseline choice compared to the zero
baseline and a colored baseline where the color corresponds to the color of the geometric
figure. It will become evident that the generated images are more appropriate from both
a quantitative and a qualitative perspective. Thus completed, we will discuss whether the
baseline images themselves might in fact allow for a more expressive visual interpretation
of what the model has learned compared to the attribution maps.

Baseline generation Figure 10a and figure 10b show a sample of the baseline generator
results for the first simulation setting. Each figure shows a sample of original images
(right column) and their corresponding generated baseline images (left column). To vi-
sually assess the quality of the baseline images, we have to assess to what extent the
three defined criteria (see chapter 4.2) are satisfied. Firstly, the baseline images must
represent realistic samples. The background of the generated baseline images is black
and the geometric shapes and their location are also in line with those from the original
images, while their coloring is part of the original color palette. Thus, we conclude that
the requirement for realistic samples is satisfied. Secondly, we require the baseline im-
ages to be close to their corresponding original images. Again, they must only differ from
the original images in the domain-specific characteristics while all other characteristics
remain constant. As discussed, to fully stress whether this criterion is satisfied, the first
simulation setting is only of limited suitability. Therefore, we consider the baseline gen-
eration results corresponding to the second simulation setting (see figure 11a and figure
11b). We observe that only the coloring of the geometric shapes has changed, while the
shape, its location and the background color remains unchanged. Therefore we can con-
clude that only the domain-specific characteristic of the original images was subject to
changes while generating the baseline images. To assess whether the generated baselines
belong to the specified target domains, figure 8 provides more revealing insights. We plot
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the predicted risk scores that correspond to the real images (x-axis) against the predicted
risk scores which correspond to the generated baseline images (y-axis). The horizontal
magenta line depicts the threshold which equals the risk score that corresponds to the
median survival time. To conclude that the third criteria is satisfied, we expect that the
points in the negative range of the x-axis are slightly above the horizontal line and the
points in the positive range of the x-axis are slightly below the horizontal line. In short,
for observations for which a prolonged survival time was predicted, we seek a reference
point that corresponds to a survival time slightly before the median survival time and
vice versa. For the first simulation (see figure 8a) we observe that in fact the results are
in line with our expectations so that we can conclude that the third criteria is satisfied.
Given the second simulation setting (see figure 8b) the results are less distinct. Indeed,
the predicted risk scores that correspond to the generated baseline images are centered
around the magenta line, however, the clear pattern from the first simulation is not ob-
served. Yet, we find that this is not due to a malfunctioning of the baseline generator but
rather because of some unexpected behavior of the survival model. Hence, we conclude
that at least to some extent the third criteria is satisfied here as well. These findings can
be further confirmed by looking at the generated baseline images (see figures 10, 11). For
all generated baseline images, the geometric shapes have equal coloring which represents
the color that corresponds to the median survival time. Hence, the baseline generator
understood to generate a reference point that corresponds to the median survival time,
it must only change the coloring of the geometric shapes which must then be identical
for all instances.

(a) Simulation setting 1: Rectangles with different coloring (b) Simulation setting 2: Different geometric shapes with
different coloring

Figure 8: Scatterplot of original risk scores (x-axis) and generated risk scores (y-axis). The magenta
horizontal line depicts the risk score that corresponds to the median survival time.

Figures 12, 13 and 14 illustrate the resulting attribution maps based on the chosen base-
lines and attribution methods. Each figure illustrates the attribution maps for four differ-
ent samples of the test data. Thereby we can directly compare the attribution maps that
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depend on different baseline choices. Note, the derived attribution maps based on the
sampled Shapley values seem to provide visually more distinct results. Yet, as expected,
the Integrated Gradients and sampled Shapley values lead to the same results.

Attribution maps: Zero baseline At first glance, the attribution maps based on the zero
baseline yield meaningful results. The shapes and the position of the rectangles are well
covered so that one understands which region the model focused on. Yet, independently
from the input image, the pixel-wise attributions are positive (red colored) except for the
red and orange colored rectangles. For that to happen, the zero baseline image must cor-
respond to a strongly negative prediction so that almost every input image corresponds
relatively to a more positive prediction. This finding contradicts the premature assump-
tion that the zero baseline corresponds to a zero prediction (Sundararajan et al., 2017). If
the reference point was semantically meaningful, an interpretation beyond a spatial one
would be still feasible. As, however, this reference point is not semantically meaningful
this is impossible. In fact, the zero baseline yields a negative risk score because the hue
channel is set to 0 which corresponds to the most negative risk group (H = 0 for a red
geometric shape). We conclude that even within a strongly simplified simulation setting,
it can be shown that the zero baseline choice can result in misleading interpretations. If
one interprets the results naively, she would always conclude that most rectangles make
a positive contribution to the overall risk score. This is clearly wrong.

Attribution maps: Colored baseline By contrast, the attribution maps based on the
colored baseline are less intuitive. The results suggest that the model did not spatially
focus on the rectangle but rather on its surroundings. Indeed, this could be meaningful if
the shape or location of the geometric figure was the predictor. As, however, the coloring
of the geometric figure is the decisive factor, the attribution maps do not allow for any
sensible interpretation. Beyond that, the pixel-wise attributions and their values are also
hardly meaningful. While the zero baseline is a quite common choice, the colored baseline
choice is admittedly arbitrary. Yet, it illustrates well how an ill-considered choice can
deteriorate the entire interpretability of the attribution maps.

Attribution maps: Generated baseline Similarly to the zero baseline, the generated base-
lines result in attribution maps that allow a spatial interpretation of the results. More
importantly, however, by using a semantically meaningful baseline, the pixel-wise attri-
butions can be interpreted in a concise and reliable manner. We know that the baselines
represent the median survival time. Therefore, we expect that for any attribution map
with positive pixel-wise attributions (red) the original image corresponds to an instance
for which the predicted survival time is beyond the median survival time. Similarly, we
expect that for any negative attributions (blue) the predicted survival time of the origi-
nal image is before the median survival time. We observe for images with dark green or
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blue rectangles, the attributions are positive (red), while for images with orange or red
rectangles the attributions are negative (blue). Further, we observe that the thickness of
the attributions increases, the more the predicted survival time deviates from the median
survival time. Therefore, we can conclude that the generated baseline images allow for
a reliable interpretation that goes beyond a spatial one. Thus, the generated baseline is
clearly superior to the remaining baseline choices.

In chapter 3.2, it became evident that the completeness axiom represents the ultimate
axiom an attribution method should satisfy. According to the literature, the axiom is
fulfilled when the attribution method fully captures the prediction difference between
the baseline and the input. We argued, however, in chapter 4.1, that the completeness
axiom is only favorable, if the baseline prediction is semantically meaningful. To illustrate
that, we selected four different samples for which to report both the actual corresponding
predictions and the differences between the prediction and the prediction that corresponds
to a respective baseline choice (see table 9). Further, table 9 enlists for each sample and
each baseline the sum of attributions generated by Integrated Gradients and sampled
Shapley values, respectively. It reveals that independently of the input and baseline,
both attribution methods do fully capture the prediction differences. Consequently, to
fulfill the theoretical axiom of completeness, the chosen baseline represents no critical
factor. This finding illustrates that even though theoretically no assumption is violated,
there is no guarantee that the practical implications are meaningful. The predictions that
correspond to the zero baseline or the colored baseline can simply not be understood and
therefore the completeness axiom does not help to yield more interpretable attribution
maps.

Delta Integrated gradient Shapley value
Prediction Zero Colored Generated Zero Colored Generated Zero Colored Generated

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
-0.96 -0.14 -0.14 -0.98 -0.14 -0.14 -0.98 -0.14 -0.14 -0.98
0.94 1.76 0.97 0.94 1.76 0.97 0.94 1.76 0.97 0.94
-0.52 0.3 0.3 -0.54 0.3 0.3 -0.54 0.3 0.3 -0.54
0.76 1.58 0.92 0.75 1.58 0.92 0.75 1.58 0.92 0.75

Figure 9: The table illustrates that for any sample of the test data, the completeness axiom is satisfied
independently of the baseline choice or attribution method. Column (1): prediction corresponding to an
original image. Columns (2) - (4): reflect the prediction difference between the prediction of the original image
and the prediction corresponding to the respective baseline. Columns (5) - (7): correspond to the sum of
attributions derived via Integrated Gradients for each baseline, respectively. Columns (8) - (10): correspond to
the sum of attributions derived via sampled Shapley values for each baseline, respectively.

This whole work was devoted to emphasize the importance of a proper identification of
the baseline. Yet, the generated baselines are still considered as a mere input to the
attribution methods. However, we argue that the baseline itself provides a considerable
degree of interpretability. The baseline always serves as a semantically meaningful refer-
ence point against which we compare the actual prediction. Thereby we pursue to answer
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two fundamental questions. Firstly, which structures in the images must change and sec-
ondly, how must the structures change to yield the reference point which corresponds
in our case to the median survival time. In fact, the attribution maps answer the first
question, but on closer consideration do not provide any insights for reliably answering
the second. For instance, given the two simulation settings, the attribution maps do only
allow for a spatial interpretation: we understand which structures must change. However,
we only understand the coloring of the geometric shapes as the domain-specific charac-
teristic, if we directly look at the generated baseline images. Even if we can infer from
the attribution maps that the color represents the domain specific characteristic, we still
do not know which color represents the reference point. Hence, we conclude despite an
attribution method satisfying all theoretical axioms and a properly identified baseline,
the attribution maps only provide limited insights on what the model has learned. A
more detailed discussion of the limitations of attribution maps and the potential of the
baseline images will be given in chapter 6.1.

6 Discussion

6.1 Baseline images and interpretability

While we primarily focused on the necessity of a proper identification of the baseline as
input for the attribution methods, we also pointed towards the stand alone importance
of the generated baselines. While attribution maps allow for a spatial interpretation, the
generated baseline images do provide insights on what is different. This finding is fur-
ther supported by Narayanaswamy et al. (2020) who argue that the attribution methods
merely provide a spatial support by indicating where the model looked, but do not pro-
vide any insights on how the structures must change to yield the reference point. This,
however, becomes necessary if the model distills information unknown to the domain
expert, as she might be interested in a visual understanding of how MRIs differ. As this
cannot be provided by the attribution methods, Narayanaswamy et al. (2020) conclude
that attribution methods are useful for validation but lack in the capability of exploration.

Narayanaswamy et al. (2020) also argue that it might be revealing to not only under-
stand the structural differences between input and reference point, but to also consider
the interpolations between them. With our proposed framework, we can implement that.
Recall, our framework relies on the StarGAN (Choi et al., 2018) which allows to translate
an image to a variety of different domains. So far, we only considered an image translation
from the source domain (before/beyond median survival time) to the respective target
domain (beyond/before median survival time). Thereby, the threshold which corresponds
to the median survival time uniquely identifies the boundary between source and target
domain. Yet, our baseline generator framework is neither restricted to one target domain,
nor to the median survival time as threshold choice. Hence, we can directly and simulta-
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neously translate an original image towards a reference point that represents any quantile
of the survival times. For instance, we can visually evaluate how an image must change
so that it corresponds to the 25%-quantile, the median quantile, and the 75%-quantile or
any other quantile of the survival times. By doing so, we can then understand how grad-
ual changes in the input affect the predictions. This in return yields a complete picture
of what the model has learned. Therefore, we can potentially yield a more sophisticated
understanding on how small structural changes in the brain affect the progression of AD.

The conjecture that the generated baseline images provides a better explanation than
the attribution maps is further confirmed by Jeyakumar et al. (2020). In their study, the
authors evaluate which explanation method is preferred by end-users who have no explicit
expertise in machine learning. They trained a simple CNN on Cifar10 (Krizhevsky et al.,
n.d.) and applied a variety of explanation methods on the predictions. Among others,
the explanation methods included Shapley values, saliency maps (Simonyan et al., 2013),
LIME (Ribeiro et al., 2016) and explanation-by-example (Caruana et al., 1999). The
authors then asked the users which explanation method they preferred. They found that
approximately 90% of the users preferred the explanation-by-example method. The au-
thors found that the prioritization was due to the intuitive and semantically meaningful
results - the nearest training examples represented the considered input and the model’s
decision well. By contrast, the remaining methods often gave fairly unintuitive results.
For instance, for an image with an airplane depicted, the remaining methods marked the
background sky as important, while the users would rather expect to mark the airplane
itself as important. Again, by obtaining a direct reference point, we can reliably distin-
guish between the domain-specific and the domain-unspecific characteristics which is not
always guaranteed with attribution maps.

Note, however, that a definite evaluation of whether the baseline images or the attribution
maps provide better insights is impossible but rather depends on the preferences of the
domain expert and also on the domain. In case of the predicting AD progression the
resulting attribution maps might be less ambiguous and the domain expert might be
capable to infer from the attribution maps what the structural changes actually are. In
this case, the baseline images would probably not provide too much new information.
Yet, regardless of the amount of additional information provided by the baseline images,
we can still conclude that the baseline images can at least clarify interpretations. Hence,
we recommend a holistic view where both outputs are considered jointly.

6.2 Generalizability to further survival models

The discussed results confirmed the theoretically derived advantageous properties of the
baseline generator framework. It was shown that the generated baselines represent the
only valid baseline choice for the considered attribution methods (among the considered
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baseline choices). Further, in chapter 6.1 it was emphasized that the generated base-
lines do not only serve as inputs for the attribution methods, but are also key to yield a
thorough understanding of what the model has learned. In what follows, we will stress
whether the baseline generator framework can be transferred to a variety of other survival
models that might be in some cases more appropriate than the Cox-PH model. To pursue
this we consider the additive Cox model, the piecewise exponential models (PEM) (Cox,
1972) as well as the piecewise additive mixed models (PAMM) (A. Bender et al., 2018).

The additive Cox-PH model differs from the Cox-PH model to the extent that it allows
for nonlinear and time-variant effects of the covariates, so that the hazard can be written
as

λ(t,x) = λ0(t) exp(
P∑
p=1
xp(t)βp +

L∑
l=1

fl(xl(t))) (47)

where the covariates x(t) now depend on time t and β capture the linear effects and the
function f(.) captures the non-linear effects of the covariates x(t) on the hazard which is
often defined via basis representations. From a practical perspective, we have to prepare
the data set in a longitudinal format, whereby the number of observations for each subject
depends on the length of the observation. In this case, the applicability of the baseline
generator framework breaks, as a specific covariate has varying effects on the hazard and
therefore on the survival time. Therefore, we cannot uniquely identify baseline values for
all covariates x(t) that represent the median survival time.

Yet, it remains to be clarified if we can maintain the applicability of the framework, if we
make the restrictive assumption that only the structured part has time-varying effects on
the hazard. Then, we can rewrite equation 47 as

λ(t,x) = λ0(t) exp(
P∑
p=1
xp(t)βp +

Q∑
q=1
uqγq +

L∑
l=1

fl(xl(t))) (48)

where the covariates u correspond to the latent representation of the unstructured part
and the covariates x to the structured part. The coefficients γ capture only time-constant
effects and are therefore independent from time t. Then, the survival function S(t) is
given by

S(t) = exp
(
− Λ0(t) exp

( P∑
p=1
xp(t)βp +

Q∑
q=1
uqγq +

L∑
l=1

fl(xl(t)
))

(49)

To identify the threshold that corresponds to the median survival time S(t) = 0.5, we
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can rearrange equation 49 as follows

0.5 = exp
(
− Λ0(t) exp

( P∑
p=1
xp(t)βp +

Q∑
q=1
uqγq +

L∑
l=1

fl(xl(t)
))

(50)

log 0.5 = −Λ0(t) exp
( P∑
p=1
xp(t)βp +

Q∑
q=1
uqγq +

L∑
l=1

fl(xl(t)
)

(51)

τ =
Q∑
q=1
uqγq = log

(
− log 0.5

Λ0(t) exp(∑P
p=1 xp(t)βp +∑L

l=1 fl(xl(t))

)
(52)

Still, however, the survival time depends on time varying effects and thus a unique iden-
tification is not possible. Therefore, we have to consider the time-constant unstructured
part in isolation which reduces equation 52 to

τ =
Q∑
q=1
uqγq = log

(
− log 0.5

Λ0(t)

)
(53)

If the effects from the unstructured part u and the structured part x(t) are independent,
this approach is valid. We can still uniquely identify a threshold τ that corresponds to
the median survival time. Note, however, that the median survival time does not refer
to the overall predicted survival times anymore. Instead, it refers only to the effects that
stem from the unstructured part. If, however, the effects are not independent, we have to
apply the orthogonalization trick. Then, however, the orthogonalized unstructured latent
representation ũ is not constant over all time intervals anymore as it depends on the
space spanned by the time-varying structured part x(t). To still maintain applicability,
we could additionally assume that it is sufficient to only consider the risk scores∑Q

q=1 ũqγq

where ũq corresponds to the latent representation of each subject at entry of the study.
Then, we can assure that for each subject we obtain a unique latent representation that
does not depend on the time t. To what extent such an assumption is too restrictive
cannot be evaluated a priori.

In what follows, we can show that the same reasoning applies for a PAMM. The PAMM
as described by Kopper et al. (2020) is specified as

λ(t|x) = exp(f(x(t), t)) (54)

which describes the hazard λ at time t ∈ T , conditional on a vector x(t) ∈ Rp which
can include time-varying as well as time-constant covariates. The function f(.) specifies
the effect of the features x(t) on the hazard. If we omit the dependence on t, equation
54 reduces to the Cox-PH model. If t is not omitted, equation 54 is approximated
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via piecewise constant hazards. To pursue this, we decompose time t into intervals
α0, α1, ..., αm:

(0 = α0, α1], (α1, α2], ..., (αt−1, αt], ..., (αm−1, αm], (αm,∞) (55)

whereby we assume for each interval a piecewise constant baseline hazard:

λ0(t) = λk for t ∈ Ik = (αk−1, αk] (56)

To estimate the piecewise baseline hazards, we have to transform the data such that each
row corresponds to one time interval (αk−1, αk], k = 1, ..., K. Without going more into
detail 6, the hazard in its explicit form can then be written as

λk = exp(log λ0(t) +
P∑
p=1
xk,pβp +

L∑
l=1

fl(xk,l)) (57)

where log λ0(t) corresponds to the baseline hazard and β captures the linear effects and
fl(xk,l) the univariate, non-linear covariate effects and is in general defined via basis
representations. The modelling approach differs from the additive Cox-PH model by
estimating a hazard for each interval k = 1, ..., K separately. If we assume again that the
effects derived from the unstructured part are time constant, we can rewrite equation 57
as

λk = exp(log λ0(t) +
P∑
p=1
xk,pβp +

Q∑
q=1
uqγq +

L∑
l=1

fl(xk,l)) (58)

where the effects γq are constant for each time interval k = 1, ..., K. Now, we can derive
the survival function S(t) as follows

S(t) = exp(−
∫ t

0
λ(s|x) ds) (59)

S(t) = exp(−
M∑
k=1

λk) (60)

whereby the integral can be simplified to a summation term as we have discrete time
interval and M defines the last interval that entails time point t. Plugging equation 58
into equation 60 then yields

6Kopper et al. (2020) provides a more detailed explanation of PAMs.
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S(t) = exp(−
M∑
k=1

exp(log λ0(t) +
P∑
p=1
xk,pβp +

Q∑
q=1
uqγq +

L∑
l=1

fl(xk,l))) (61)

Again, the survival time still depends on the time-constants and time varying effects.
Hence, identifying the threshold that corresponds to the median survival time S(t) = 0.5
is still not feasible. If we adhere to the same reasoning as above, we can determine the
median survival time equivalently to equation 53. Again, to what extent this is justified
must be considered on a case by case basis. The same applies to the PEM, as we merely
omit the basis representations f(.) from the equation.

To transfer the baseline generator to a variety of other survival models, we have to induce
some restrictive assumptions. First, the effects that correspond to the unstructured part
must be time constant. Second, we must assume that the orthogonalization trick does
not alter the latent representation of the unstructured part too much. Then, it might
be reasonable to take the orthogonalized latent representation that corresponds to the
time at study entry of each subject. To what extent the assumption of time-constant
effects is justified, must be clarified for each application individually. If, however, these
assumptions are justified, the baseline generator is arguably strong as the complexity of
the structured part is not restricted.

6.3 External Validity

The external validity of our proposed framework depicts another strong property. In
chapter 6.1, it was discussed that the framework is not restricted to the median survival
time as a reference point, but rather the reference point can be defined by any quantile
of the survival times. This comes with the advantage that the framework is applicable
to domains where the median survival time might be a sub optimal choice. For instance,
Miao et al. (2018) predicted the hospital mortality for patients with heart failure and
showed that approximately 15% of the patients die within the first 40 days, while after-
wards the hazard for dying approaches almost 0. In this case, the median survival time as
threshold would clearly depict a poor choice, as during the whole study period the total
share of observed events was considerably below the 50%. Hence, in this case, it would
be advisable to set the threshold to e.g. the 15%-quantile. Widodo and Yang (2011)
studied the degradation of machines within the context of survival analysis. The authors
observed that the hazard for failure remains quite low for a long period of time and after
a certain time the survival probability decreases drastically. While more than 50% of the
observed machines failed during the study period, it would still be not advisable to choose
the median survival time as threshold. A more insightful threshold corresponds to the
time when the steep decline in survival probabilities occurred. To sum up, independently
from domain and the general structure of the survival probabilities, our framework is
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arguably robust and therefore, suitable to many applications. This is not only true due
to the flexible threshold choices, but also because of the generalizability to a variety of
survival models, as discussed in chapter 6.2.

7 Conclusion

This work established the baseline generator framework to address the baseline selection
problem (Shih et al., 2020) in the context of survival analysis and proposed a solution
for it. A theoretical discussion and an empirical verification of the framework provided
detailed insights on its functioning. The raison d’être of this framework was further
strengthened in chapter 6. There, we pointed towards further advantageous properties of
this framework that were not covered in this work.

While the framework is robust in theory, its applicability to more complex use cases
must be still verified. While the simulation settings indeed proved that the framework
is capable of working, one still has to acknowledge the simplicity of the task. For in-
stance, the location and shape of the geometric shapes are in fact domain-unspecific, but
they are not observation-specific. Every shape and location is observed multiple times in
the data. It is probably justified to argue that the task would be more complex if the
domain-unspecific characteristics were in fact unique to each observation, respectively.
Yet, to what extent this would impact the performance of the baseline generator cannot
be determined a priori. Hence, it is essential to test this framework on real data where the
domain-unspecific characteristics are in fact unique to each observation. Therefore within
the next steps the framework must be applied on the ADNI data. This, however, would
have exceeded the scope of this work and therefore we leave this open for future research.
If the framework enables to yield robust results on the ADNI data, we could conclude to
have made a significant contribution to make predictions of AD progression interpretable.

Yet, applying the baseline generator framework on the simulated data was an important
exercise. By knowing the ground-truth, we were able to reliably assess the proposed
framework. Reliably assessing the proposed framework becomes impossible when apply-
ing the framework on the ADNI data as the ground-truth is unknown.
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Appendix B: Main hyperparameters

Appendices

A Architectural design

A.1 ADNI

Layer Layer information
Input: 160 × 128 × 1
Conv Block 5 × 5 conv, 32 BN & ReLU, stride 2, padding 2
Residual Block 3 × 3 conv, 32 BN & LR, stride 1, padding 1
Conv Block 3 × 3 conv, 64 BN & ReLU, stride 2, padding 1
Residual Block 3 × 3 conv, 64 BN & LR, stride 1, padding 1
Conv Block 3 × 3 conv, 128 BN & ReLU, stride 2, padding 1
Residual Bottleneck Block 3 × 3 conv, 128 BN & LR, stride 1, padding 1, BF 64
Conv Block 3 × 3 conv, 256 BN & ReLU, stride 2, padding 1
Residual Bottleneck Block 3 × 3 conv, 256 BN & LR, stride 1, padding 1, BF 64
Conv Block 1 × 1 conv, 4 BN & ReLU, stride 1, padding 0
Linear Layer FC 320 → 60, ReLU

Table 1: Survival model architecture (ADNI). BN: Batch Normalization, LR: LeakyReLU, FC: Fully
connected, BF: bottleneck filters for the Residual Bottleneck Block. The Residual Block consists of two
convolutional layer with batch normalization and ReLU activation and a skip connection. The Residual
Bottleneck Block consists of three convolutional layer with batch normalization and ReLU activation and a skip
connection. Leaky ReLU activation was used with a negative slope of 0.01.

A.2 Simulations

Layer Layer information
Input: 28× 28× 3
Conv Block 5 × 5 conv, 6 ReLU & MP(kernel=2), stride 1, padding 0
Conv Block 5 × 5 conv, 12 ReLU & MP(kernel=2), stride 1, padding 0
Linear Layer FC 192 → 120, ReLU
Linear Layer FC 120 → 84, ReLU
Linear Layer FC 84 → 10

Table 2: Survival model architecture (Simulation). FC: Fully connected, MP: Max Pooling layer with kernel
size 2.

Part Layer Layer information
Down-sampling Conv Block 7 × 7 conv, 64 IN & ReLU, stride 1, padding 1

Conv Block 5 × 5 conv, 128 IN & ReLU, stride 2, padding 1
Bottleneck Residual Block 3 × 3 conv, 128 IN & ReLU, stride 1, padding 1

Residual Block 3 × 3 conv, 128 IN & ReLU, stride 1, padding 1
Residual Block 3 × 3 conv, 128 IN & ReLU, stride 1, padding 1
Residual Block 3 × 3 conv, 128 IN & ReLU, stride 1, padding 1
Residual Block 3 × 3 conv, 128 IN & ReLU, stride 1, padding 1
Residual Block 3 × 3 conv, 128 IN & ReLU, stride 1, padding 1

Up-sampling Deconv Block 3 × 3 upconv, 64 IN & ReLU, stride 1, padding 2
Conv Block 5 × 5 conv, 3 ReLU, stride 1, padding 3

Table 3: Generator architecture (Simulation). IN: Instance Normalization. For all layers, we use instance
normalization except the last one. The instance normalization Residual Blocks consists of two convolutional
blocks and a skip connection.
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Layer Layer information
Conv Block 4 × 4 conv, 64 LR, stride 2, padding 1
Conv Block 4 × 4 conv, 128 LR, stride 2, padding 1
Conv Block 4 × 4 conv, 256 LR, stride 2, padding 1
Conv Block 3 × 3 conv, 256 LR, stride 1, padding 0

Table 4: Discriminator architecture (Simulation). LR: Leaky ReLU. Leaky ReLU activation was used with a
negative slope of 0.01.

B Main hyperparameters

(a) Hyperparameters (ADNI)
Parameter Values
MRIs only
Batch size 256
Latent space dimension 60
Optimizer AdamW
AdamW: weight decay 13.13
AdamW: learning rate 0.0000335
AdamW: scheduler gamma 0.99456
Number of epochs 150
MRIs + tabular data
Batch size 256
Latent space dimension 60
Optimizer AdamW
AdamW: weight decay 2.21404
AdamW: learning rate 0.0001329
AdamW: scheduler gamma 0.990049
Number of epochs 150

(b) Hyperparameters (Simulation)
Parameter Values
Batch size 64
Latent space dimension 10
Optimizer AdamW
AdamW: weight decay 0.0
AdamW: learning rate 0.01
AdamW: scheduler gamma 0.95
Number of epochs 30

Table 5: Survival models: main hyperparameters. For models that were trained on the ADNI data: We
distinguish between the configuration used for training on the MRIs only and the configuration used for
training on the MRIs and tabular data jointly.

Model Parameter Value (SIM1) Value (SIM2)
Discriminator optimizer Adam Adam

Adam: learning rate 0.0001 0.0001
λgp 10.0 10.0
number of steps trained 20,000 20,000

Generator optimizer Adam Adam
Adam: learning rate 0.0001 0.0001
λrec 2.0 2.0
λsurv 200.0 500.0
λsurv: linear rampup length 10,000 10,000
Lsurv: α 0.6 0.6
Lsurv: δ 0.001 0.001
number of steps trained 20,000 20,000

Table 7: Baseline generator: main hyperparameters. SIM1: Simulation setting 1 (colored rectangles); SIM2:
Simulation setting 2 (colored geometric figures)

C Main results
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