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Abstract I 

 

Abstract 

This thesis is a dedicated comparison between two popular programming languages: R and Python. 

An experiment will be conducted in order to provide the most unbiased substantive information. This 

experiment is split into quantitative and qualitative analysis. The quantifiable experiment will be 

performed on two projects, with two different sizes of dataset. The objective of the two projects is to 

apply multiple traditional data analysis tasks, with respect to the following criteria: processing time, 

code length, code complexity, design of graphics and used packages, without drawing conclusions. 

The qualitative analysis will support the findings of the quantitative analysis. The conclusion will 

provide useful guidance for software beginners to choose the correct tools in field data analysis or 

data science as well as provide comparative information in data driven areas. A basic knowledge of 

programming is required to understand this thesis.  

Keywords: R, Python, programming language, quantitative analysis, qualitative analysis  
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1. Introduction 

Over the previous decades manufacturing systems, processes, and data are expanding and becoming 

more complex. Additionally, the demand for automated extraction of valuable knowledge from enor-

mously huge amount of data has been dramatically increased. As a consequence, a large variety of 

automated analysis and discovery tools have been built [1].  

Among these tools, R and Python are becoming the most important programming languages in ana-

lytics and data science. According to a recent poll from KDNuggets (KDNuggets annual software 

poll, 2014) given the fact that R (1st place) and Python (3rd place) were in the top 4 of dominant  

languages for analytics, data mining and data science [2]. Five years later, a flash survey conducted 

by Burtch Works, with more than one-thousand responses to assess the preferences for Python, R, 

and SAS, showed that Python with 41 percent of voters is now the most common programming 

language, while about 30 percent chose R as their preferred programming tool [3]. Furthermore, 

according to R Bloggers in 2019, Python and R are the most required data science software skills on 

Indeed.com with 27,374 jobs and around 13,000 jobs respectively (Figure 1). 

 

Figure 1. Job Postings for Popular Data Science Software in 2019 [20]. 
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There have been thousands of online articles written comparing programming languages, there are, 

however, only a few academic research papers on the subject. For example, in 2018, Brittain and his 

colleagues published their paper about the comparison of R, Python, and SAS performance. Simi-

larly, Ozgur et al. (2017) compared R, Python and Matlab in their research [5,6]. However, there has 

never been a dedicated research paper comparing only R and Python. Additionally, as described by 

Brittain et al. (2018), the articles written comparing programming languages ‘often include bias and 

the qualifying element is not measurable’ [5]. They are normally written from an overly subjective 

standpoint. Therefore, this thesis aims to look at these programming languages more objectively by 

walking through their structures. It shall also apply the languages on different projects with different 

sizes of dataset to compare their processing time, code complexity, design of graphics and the number 

of used packages. The research work of Brittain et al. (2018) was a major influence on how this thesis 

was written and the approach taken to compare these two tools. Nevertheless, the work of  Brittain 

et al. (2018) did not write deeply enough about how the qualifiable elements were compared.  This 

thesis will focus in more detail on the comparison between R and Python in order to provide an 

insight about these programming tools. 

The remainder of this thesis is organized as follows. First, Section 2 provides an overview of the 

software metrics of the code complexity. Following this, Section 3 provides an overview of R and 

Python. This includes definitions, strengths, weaknesses, IDEs of these tools and how to install them. 

Next is the methodology used to compare their performances. In this Section, an experiment was 

conducted and separated into the quantifying and qualifying elements. The object of this experiment 

is to wrangle data, visualize data, build linear regression models, split the dataset into train and test 

data, and measure random forest prediction with respect to the following criteria: processing time, 

lines of codes, code complexity, design of graphics and used packages. The results drawn from this 

work can be found in Section 5. Finally, Section 6 sums up all the work and findings, as well as 

future work. The findings of this thesis will offer useful guidance for software beginners to choose 

their correct tools in field data analysis or data science, as well as provide comparative information 

in data driven areas.  
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2. Literature Review 

Software quality is one of the most important factors that determine the development of a software 

driven industry. In software engineering software metrics are the only tools to control this quality. 

Therefore, there have been many different scales proposed for software metrics, such as Lines of 

code, McCabe’s Cyclomatic complexity metrics or Hallstead complexity metrics. Tashtoush et al. 

(2014) stated that ‘Cyclomatic complexity covers the control flow of the program, whereas Hallstead 

complexity measures the data flows’ [17]. 

Cyclomatic Complexity1, introduced by Thomas J. McCabe in 1976, was designed to ‘indicate the 

complexity of a program. It is a quantitative measure of the number of linearly independent paths 

through a source code’ [24]. Equation 1 gives the cyclomatic number v(G):  

v(G) = e − n + p           (1)   

where e is the number of edges in the control flow graph (CFG), n is the number of nodes in the CFG 

and p are separate components.  Consider this example: 

If (Condition 1) 

Statement 1 

Else 

Statement 2 

If (Condition 2) 

Statement 3 

Else 

Statement 4 

Cyclomatic Complexity for this program will be 8-7+2=3. 

There is much discussion about McCabe’s measurement. Many researchers believe that there is a 

high correlation between McCabe’s CC and Lines of code (LOC) [16, 17]. According to Jay et al. 

(2019), ‘LOC and CC have a stable practically perfect linear relationship that holds across program-

mers, languages, code paradigms (procedural versus object-oriented), and software processes’ [16].  

 
1 R Documentation, „cyclocomp,” [Online]. Available: https://www.rdocumentation.org/packages/cyclocomp/ver-

sions/1.1.0/topics/cyclocomp/. [Accessed June 2020]. 
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One year later, Maurice Howard Halstead introduced his complexity measures – known as Halstead 

complexity metrics. According to Halstead, ‘a computer program is an implementation of an algo-

rithm considered to be a collection of tokens which can be classified as either operators or operands’ 

[15]. All Halstead’s metrics are functions based on the number of operators and operands. Based on 

these parameters, the program length (N), program vocabulary (n), volume (V) and program diffi-

culty (D) are computed as follows: 

N = the total number of occurrences of the operators (𝑁1) + the total number of occurrences of the 

operands (𝑁2)   (2) 

n = the number of unique operators (𝑛1) + the number of unique operands (𝑛2)   (3) 

𝑉 = 𝑁 ∗  𝑙𝑜𝑔2𝑛          (4) 

𝐷 =
𝑛1

2
∗

𝑁1

𝑛2
           (5) 

Additionally, programming effort (E) and programming time (T) can be computed differently using 

the following equations: 

𝐸 = 𝐷 ∗ 𝑉           (6) 

𝑇 =
𝐸

𝑆
 (seconds)          (7) 

Where S is the Stroud number2, defined as ‘the number of mental discriminations performed by the 

human mind per second’ [15]. According to Hamer and Frewin (1982) this value for software scien-

tists is set to 18 [5]. One critic pointed out about Halstead’s complexity metrics that there is no strict 

rule which distinguishes between operators and operands [15]. In response, the following convention 

is used in this thesis to define operators and operands. Operators3 are clarified as: 

− break case  continue  default  do  else  for go to  if  return  size of  switch  while 

− function call (Counts as one operator.) 

 
2 In 1967, psychologist John M. Stroud suggested that the human mind is capable of making a limited number of mental 

discrimination per second (Stroud Number), in the range of 5 to 20.   

3 R Documentation, “3.1.4 Operators,” [Online]. Available: https://cran.r-project.org/doc/manuals/r-release/R-

lang.html#Operators. [Accessed July 2020]. 
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− {} () [] (Each pair counts as one operator.) 

− >>=  <<=  +=  -=  *=  /=  %=  &=  ^=  |=  >>  << ++  --  ->  &&  ||  <=  >=  ==  !=  ;  ,  :  =  . 

&  !  ~ -  +  *  /  %  <  >  ^  |  ? 

And identifiers, numbers, characters ('x'), strings ("...") are defined as operands 

For example: 

If (k < 10) 

{ 

If (k > 4) 

x = x * k; 

} 

− Distinct operators: if () {} > < = *; 

− Distinct operands: k 10 4 x. 

− 𝑛1 = 8 

− 𝑛2 = 4 

− 𝑁1 = 10 

− 𝑁2 = 7 

− 𝐷 =
8

2
∗  

10

4
=  10 

− 𝑁 =  𝑁1 +  𝑁2 = 10 + 7 = 17 

− 𝑛 =  𝑛1 +  𝑛2 = 8 + 4 = 12 

− 𝑉 = 17 ∗  log212 = 60.94  

− 𝐸 = 10 ∗ 60.94 = 609.4

While the Halstead’s calculations do not appear complex, there are some issues found in these 

measures [15]. The first issue is the scale type of each equation. There is ambiguity and uncertainty 

about the scale types in Halstead’s metrics. The second issue is the units of measurement for both 

the left-hand and the right-hand sides of most of Halstead’s equations. In general, there are lots of 

debates about these software metrics, they are, however, still continuously used by practitioners [5]. 
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3. Overview of R and Python 

3.1 R 

3.1.1 Definition 

R is a free and versatile open source programming language for statistics and data science. It is de-

rived from the statistical language S developed by AT&T. Unlike Python, R is a functional program-

ming language and includes some support for object-oriented programming (OOP). Many R pack-

ages are written using R Objects, including the core statistics package, lattice, and ggplot2 [9]. R is 

available on a wide variety of UNIX platforms and similar systems (including FreeBSD and Linux), 

Windows and MacOS. R is not only a statistics system but also an environment within which statis-

tical techniques are implemented. Thanks to its flexibility and user friendly interface, R has become 

more popular than its inspiration – S. R was initially written by Robert Gentleman and Ross Ihaka – 

from the Statistics Department of the University of Auckland, however; the current version of R is 

the result of contributions from R core Team and many academics, statisticians, engineers and sci-

entists, all of whom are contributing to a vast community of R users [26]. R has now one of the 

richest ecosystems in which to perform data analysis [5]. There are more than 14,000 packages avail-

able in CRAN (open-source repository). They are meticulously validated (with a hybrid automated-

peer review process) before they get to CRAN. These packages extend the R language in every field 

(e.g. business, industry, government, medicine, academia, and so on).  

3.1.2 Advantages and Disadvantages of R 

The first advantage of R is its tidyverse library, written in part by Hadley Wickham. It is a collection 

of packages (e.g. readr, databases, dplyr, tidyr, tibble, stringr, ggplot2, etc.) that makes common 

data science tasks simple, elegant, reproducible and fast [10]. Next is RMarkdown. This is a docu-

mentation system which ties together simple markdown syntax with R code ‘chunks.’ This process 

is straight-forward, and the documentation can be saved in various formats (e.g. html, pdf, word, 

etc.) [10]. Lastly, R provides its users with a fully functional web application – shiny, by using the 

runApp() command. Shiny is highly accessible when it comes to make the leap from analysis to 

analytics [10].  

When compared to Python, R can be difficult for beginners who have no software engineering expe-

rience or statistical background. Indeed, due to a large number of packages, it can be time-consuming 
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to find the required package in R. Additionally, there are also many dependencies between its pack-

ages. Finally, a poor code in R will be executed slower than other programming languages [8]. 

3.1.3 IDEs for R 

RStudio4 is an IDE with a console and syntax-highlighting editor that supports direct code execution. 

It also has tools for plotting, history, debugging and workspace management. There are also StatET5 

and ESS6, which provide the R programmer with an IDE in the Eclipse and Emacs settings, respec-

tively [6]. 

3.1.4 Installing R and Rstudio 

R is available for download via CRAN7, whereas RStudio can be downloaded on its official website. 

There are two main options to download RStudio: RStudio Desktop and RStudio Server. Depending 

on the users’ purpose and own interest, these two options can be downloaded either with Open Source 

License or with Commercial License. 

3.2 Python 

3.2.1 Definition 

Python – invented by Guido van Rossum and officially released in 1991 – is an interpreted, object-

oriented (OO), high-level programming language with accessible syntax. Like R, Python is also a 

free and open source computer programming language and can be installed using Windows, 

Linux/Unix and Mac OS X [27]. While R is designed mostly for statistical purposes, Python is a 

general-purpose programming tool, meaning anybody can use the language and modify it to suit their 

specific needs. Python’s application domains range from web development, cell phone scripting, and 

education to desktop GUIs, software development and business application [28]. While the imple-

mentation to this programming language is varied, the most common implementation (also known 

as a default byte-code interpreter of Python) is CPython. According to Pedregosa et al. (2011), 

 
4 RStudio, [Online]. Available: https://rstudio.com/. [Accessed May 2020] 

5 StatET, [Online]. Available: http://www.walware.de/goto/statet/. [Accessed June 2020] 

6 ESS (Emacs Speaks Statistics), [Online]. Available: http://ess.r-project.org/. [Accessed June 2020] 

7 CRAN (The Comprehensive R Archive Network), [Online]. Available: https://cran.r-project.org/. [Accessed June 2020] 
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‘CPython makes it easy to reach the performance of compiled languages with Python-like syntax and 

high-level operations’ [13]. Beside CPython, there are several other variants (e.g. Pypy, Jython, 

IronPython, IPython, etc.) that implement the same language standard, but increase the execution 

time. For example, by compiling before or during execution [18]. There are two main versions of 

Python, Python 2.x and Python 3.x. 

Like R, Python also has a large and active software community, namely Python Users Group (PUGs)8 

[12]. Together with Python Software Foundation (PSF) they have contributed to the rich set of built-

in libraries in Python, which are available in source or binary form. For data analysis, interactive 

computing and data visualization, there are some essential Python libraries such as NumPy (numeri-

cal Python) – for mathematical computing, data and model parameters or linear algebra; pandas 

(derived from panel data) – for multidimensional structured datasets; matplotlib – for data visualiza-

tion; SciPy – for numerical integration and optimization; scikit-learn – for data science; and stats-

models – for statistical analysis [11]. 

3.2.2 Advantages and Disadvantages of Python 

Apart from the aforementioned benefits, Python also increases programmers’ efficiency [20, 21]. 

‘Python due to its flexibility and simplicity reduces the amount of time taken from conceptualization 

of an idea to building the application and marketing it, resulting in more demand for Python pro-

grammers in Enterprise setup’ [11]. In case of embedded system, Python, due to its small size, may 

be a best solution for cost reduction. Additionally, Python is an agile code, meaning it is easy to 

change, add or remove modules in Python [19]. Moreover, the “two-languages” problem can be 

solved using Python. This means programmers and developers do not need to switch their program-

ming languages when doing research, prototyping or building production systems [12]. Finally, Py-

thon is a tool to deploy and implement machine learning at a large-scale, because Python codes are 

easier to maintain and more robust than R. Replicability and accessibility are also easier with Python 

compared to R. Python recently began to provide its users with advanced API for Machine Learning 

or Artificial Intelligence [7]. 

However, most Python code will run substantially slower than code written in a compiled language 

like Java or C++, as Python is an interpreted programming language [12]. Furthermore, Python may 

not be a suitable programming language to execute multithreaded parallel code. Due to the global 

 
8 Python Software Foundation, "Diversity Statement," [Online]. Available: https://www.python.org/community/diversity/. 

[Accessed May 2020]. 
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interpreter lock (GIL) Python instruction cannot be executed more than one at a time. To overcome 

this obstacle, Python C extensions can be used, unless they need to regularly interact with Python 

objects [12].  

3.2.3 IDEs for Python 

Unlike R, Python has a various list of IDE. PyCharm9 is one of the most popular IDEs for Python 

programming language. PyCharm was created by the Czech company Jetbrains, a team responsible 

for one of the most famous Java IDE, the IntelliJ IDEA. It comes in three options namely, Profes-

sional Edition, Community Edition and Educational Edition. The Professional Edition of PyCharm 

requires a subscription, while the Community Edition and Educational Edition are free. In addition 

to Python, PyCharm provides support for JavaScript, HTML/CSS, Angular JS, Node.js, and so on. 

This makes it a good option for web development. It provides a graphical debugger, an integrated 

unit tester, coding assistance, support for web development with Django, and integration with Ana-

conda’s data science platform [11].  Beside Pycharm, there are also other IDEs for Python: 

• PyDev10 (free), an IDE built on the Eclipse platform; 

• Python for Visual Studio Code (VSC)11 (for Windows users); 

• Spyder12 (free), an IDE currently included with Anaconda. It includes editing, interactive 

testing, debugging, introspection features, and has the interface similar to RStudio (Figure 

2); 

• Komodo IDE (commercial) [11]. 

 
9  JetBrain, “Pycharm,” [Online]. Available : https://www.jetbrains.com/pycharm/. [Accessed June 2020] 

10 Anaconda Documentation, „Eclipse and PyDev,“ [Online]. Available: https://docs.anaconda.com/anaconda/user-

guide/tasks/integration/eclipse-pydev/. [Accessed June 2020] 

11 Anaconda Documentation, „Python for Visual Studio Code,“ [Online]. Available: https://docs.anaconda.com/ana-

conda/user-guide/tasks/integration/python-vsc/. [Accessed June 2020] 

12 Anaconda Documentation, „Spyder,“ [Online]. Available: https://docs.anaconda.com/anaconda/user-guide/tasks/inte-

gration/spyder/. [Accessed June 2020] 
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Figure 2. Interface from Spyder (version 4.0.1) 

3.2.4 Installing Anaconda - Python Distribution 

PSF released Python interpreter with standard libraries. However, to work in a scientific or enterprise 

environment users also need to install other packages such as Scikit-learn, PyTorch, TensorFlow and 

SciPy. This is complicated and time-consuming. In order to simplify package management and de-

ployment Anaconda13 Distribution was created. It is one of the most popular distributions of Python 

programming language for data scientists. Anaconda contains ‘Conda and Anaconda Navigator, core 

Python interpreter and hundreds of scientific packages. Conda works on local command line inter-

face such as Anaconda Prompt on Windows and terminal on macOS and Linux, [whereas] Anaconda 

Navigator is a desktop graphical user interface that allows its users to launch applications and easily 

manage Conda packages, environments, and channels without using command-line commands’ (Fig-

ure 3) [4]. Anaconda Distribution can be downloaded via its official website. 

 
13 Anaconda Documentation, „Installation,“ [Online]. Available: https://docs.anaconda.com/anaconda/install/. [Accessed 

June 2020] 
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Figure 3. Anaconda Navigator  
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4. Methodology 

In this section, an experiment was conducted to compare the performance of R and Python without 

diving into the statistical data and analysis results. The experiment was divided into quantifiable and 

qualifiable attributes to provide the most unbiased substantive information.  

4.1 Quantifiable Experiment 

In the quantifiable experiment, two projects with two different datasets were identified to measure 

the quantifying attributes: the processing time and the code complexity of selected tools. The objec-

tive of the projects was data wrangling, exploratory data analysis, multiple linear regression and 

random forest prediction without drawing a conclusion. Each test run of the comparative programs 

was run with all extraneous applications closed. 

Table 1. Machine specifications. 

Specifications 

Machine 

Processor Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz 1.50GHz 

HD Size 455 GB 

HD Free Space 362 GB 

RAM 8 GB 

OS Windows 10 

Table 2. Software specifications for both test machines. 

Tool 

Version Installation 

Python 3.7.6 Local PC 

R 4.0.1 Local PC 

Project 1 (small built-in data set) – Motor Trend Car Road Tests (mtcars) 

mtcars data is a built-in data, extracted from the 1974 Motor Trend US magazine. It is a small data 

set, which contains information about 32 cars, including their weight, fuel efficiency (in miles-per-

gallon), aspects of automobile design and performance for many automobiles [21].  The mtcars data 

comes with the dplyr package in R, which is included in tidyverse package. In Python, users can 
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access the mtcars dataset not only through the datasets package in statsmodels library by using the 

get_rdataset function14, but also through the ggplot library, a port of a popular R plotting library 

called ggplot2 (see below).  

In R: 

data(mtcars) 

In Python: 

import statsmodels.api as sm 

mtcars = sm.datasets.get_rdataset("mtcars", "datasets", cache = True).data 

from ggplot import mtcars 

The initial code was written in R and then replicated into Python with some adjustments for balance. 

The projects began with the loading of the data. The mtcars data has 11 columns consisting of 11 

numeric variables and 32 rows (observations). The data wrangling of mtcars data began with replac-

ing the codes of Engine and Transmission variables with human readable value labels. The variable 

labels were added, which make the variables easier to understand without renaming them. Next, some 

codes were written to explore the dataset. Some cross-tabulations were then created to show the 

relationship between Engine variable and Transmission variable. The other cross-tabulation was per-

formed and graphed to show the numbers of cylinders per Engine by Transmission. Multiple bar 

graphs, histograms, boxplots and scatter plots were generated to visualize the data. Beside that a K-

means cluster plot was developed to group similar data points together and discover underlying pat-

terns. Next a heatmap was created for visualization of the correlation. A multiple linear regression 

model was built to understand the relationship between variables. The linear regression was firstly 

performed on 11 variables. 

𝑚𝑝𝑔 = ß0 +  ß1𝑐𝑦𝑙 +  ß2𝑑𝑖𝑠𝑝 + ⋯ +  ß10𝑐𝑎𝑟𝑏      (8) 

 
14 statsmodels, "The Datasets Package," [Online]. Available: https://www.statsmodels.org/devel/datasets/index.html/. [Ac-

cessed June 2020] 
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To fit the model above, the Akaike Information Criteria15 (AIC) was selected. The formula used is: 

−2 ∗ 𝑙𝑜𝑔𝐿 + 𝑘 ∗ 𝑛𝑝𝑎𝑟          (9) 

where L is the value of the likelihood, npar represents the number of estimated parameters, and k = 

2 for the usual AIC.  

After running AIC functions, the statistically significant variables were selected:  Weight, ¼ mile 

time and Transmission in R or Weight, number of cylinders and gross horsepower in Python. This 

optimal model with three (3) variables was trained using 80% of the data and tested with the remain-

ing 20%. Finally, a random forest prediction was developed to compare the data mining algorithms 

functions of both selected programming languages. 

Project 2 (meta data set) – Crash Report Sampling System (CRSS) 

The second dataset was obtained from the Crash Report Sampling System (CRSS), which builds on 

the retiring long-running National Automotive Sampling System General Estimates System (NASS 

GES) of the National Highway Traffic Safety Administration (NHTSA)16. A single file focusing on 

person data for the year 2018 was used. Person data contains all information of involved persons, 

ranging from property-damage-only crashes to those that result in fatalities. The original complete 

data set is composed of 120,230 observations and 54 variables. The data was pre-processed and 

cleaned before usage. After the missing data and untrue values were dropped, the final dataset con-

tained 107,993 observations and 54 variables. 

Like project 1, the initial code in this second project was written in R and then replicated into Python 

with similar adjustments. The experiment also started with the loading of the data. Since it was a 

large dataset, replacing variable names with human readable values or variable labels was not done 

in the data wrangling. However, finding missing values was added to this step. All other data analysis 

tasks were replicated from the first project, except creating the boxplot and cluster plot. More bar-

charts were created to compare the performance of the selected tools. The multiple linear model was 

built with eight (8) variables from the heatmap. Finally, the data was split into train data and test data 

in order to measure a random forest prediction. 

 
15 R Documentation, "stepAIC," [Online]. Available: https://www.rdocumentation.org/packages/MASS/versions/7.3-

51.6/topics/stepAIC/. [Accessed June 2020] 

16 Data can be retrieved from https://www.nhtsa.gov/node/97996/221. 
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4.1.1 Lines of code (LOC) 

In order to count the number of lines in both R code and Python code, cloc17 (Count lines of code), 

a command in Windows command prompt was applied. The version cloc-1.86.exe was installed to 

count the physical lines of source code in each task in both R and Python programming languages. 

Comments and white space were not counted to the final number of lines in the code because they 

often depend on users’ own methods and familiarity. The result was reviewed individually to mini-

mize the mistakes. 

4.1.2 Halstead metrics 

The convention, introduced in the Literature Review Section, was applied to the code for all programs 

to calculate the number of operators and operands. The total operators and operands were consoli-

dated to provide a total, while the unique operators and operands were then identified. The counting 

was done three times on all tasks of each project. The final result is the average of the counting. The 

program length (N), program vocabulary (n), volume (V), program difficulty (D), programming ef-

fort (E), and programming time (T) were then measured based on the number of operands and oper-

ators. The formulas (2) to (7) can be found in the Literature Review Section. 

4.2 Qualifiable Research 

Beside the quantitative aspects, the qualifiable elements of the selected tools were also taken into 

account in order to provide the most unbiased performance comparison of selected tools possible. 

According to Brittain et al. (2018), ‘a tool dedicated to data and statistical analysis should be reada-

ble, writable, able to handle various data types, have different options to manage missing values 

properly, and provide at least basic mathematical and statistical functions, such as the ability to gen-

erate random numbers and probabilistic distributions, as well as high-level visualizations’ [5] (Orig-

inally Huber [14]) . A comparison was then developed based upon these criteria.  

 

 

  

 
17 CLOC, [Online]. Available: http://cloc.sourceforge.net/. [Accessed July 2020] 
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5. Results 

This section provides the results of the previous experiments.  

5.1 Quantifiable Experiment 

The main objective of the quantifiable experiment presented here is to compare the processing time 

and the code complexity between two selected tools. However, a comparison of the graphic design 

of each tool will also be given to support the qualitative experiment. This is in order to provide 

unbiased substantive information. Two projects with two different sizes of data sets were performed. 

The codes of these projects were run in the aforementioned computer. ‘Wall clock’ was used to 

measure the processing time a program needs to execute all codes in order to complete a task. The 

processing time is the overall time of all mentioned data analytics tasks of each project. As explained 

in subsection 4.1.1, the number of code lines were counted without comment lines and white space. 

The summary below highlights the key results of the selected tools. 

5.1.1 Processing time 

The final time performance of each tool, shown in Table 3, was the average of five time measure-

ments with the condition that all other applications were closed. Figure 4 visualizes the average re-

sults of each tool in three different scenarios: (1) Both tools had to run the codes to complete all 

required tasks, (2) both tools ran the codes without the plotting model task, and (3) all the codes were 

run excluding the plotting model and correlation matrix plot codes. 
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Table 3. The time performance of each programming language. 

Project Tasks Tool IDE Processing time 

1 

All tasks 
R Rstudio 6,02 

Python Spyder 6,23 

All tasks (without plotting model) 
R Rstudio 6,01 

Python Spyder 5,64 

All tasks (without plotting mode and 

creating correlation matrix plot) 

R Rstudio 4,24 

Python Spyder 3,44 

2 

All tasks 
R Rstudio 92,15 

Python Spyder 288,27 

All tasks (without plotting model) 
R Rstudio 67,19 

Python Spyder 24,72 

All tasks (without plotting mode and 

creating correlation matrix plot) 

R Rstudio 23,39 

Python Spyder 10,36 

As displayed in Figure 4, there is no clear conclusion about which tool performed better. While R’s 

performance was faster than Python’s in the first scenario, Python allowed the code to run faster than 

R in the other two scenarios. It was noticeable that Python started to run slower, when it came to plot 

the linear regression model. R can easily generate diagnostic plots for the model by using the plot(lm) 

command. Python however, does not have a specific function to call the four plots of the model.  

Each parameter had to be defined and some wrapper functions needed to be built for the four plots. 

It might be the reason why Python performed poorer than R when it came to plot the multiple linear 

regression model. The processing time was tested without creating a correlation matrix, because R 

appeared to perform slower when running the ggpairs() function. While it took less than 10 seconds 

in Python to create a correlation matrix plot, R needed more than 30 seconds. After considering all 

three scenarios, Python is a better tool to start with, when users’ tasks does not include plotting 

statistical models, in which case R would be preferable. 
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Figure 4. Comparison of the average processing time (wall clock time). 

5.1.2 Lines of code 

As mentioned previously, there were five main tasks to identify: data wrangling, descriptive analyt-

ics, linear regression model, train and test data, and random forest prediction. The number of lines in 

the code needed to perform each data analysis task in project 1 and project 2 were illustrated in Figure 

5 and Figure 6 respectively. 

 

Figure 5. Comparison of the number of code lines in the first project (mtcars data). 
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In general, there are more lines of code in Python compared to R when looking at Figure 5 and 6. 

However, the deviation between the tools in most of the activities was small, except in plotting model 

and AIC tasks. In these activities Python needed a huge amount of codes to complete the tasks due 

to the lack of a built-in command in its library. It shows that R has more advantages than Python 

when it comes to data analysis tasks because of its huge number of packages, readily usable tests, 

and the advantage of using formulas. The slight deviations in the number of code lines between R 

and Python in Figure 5 were displayed clearer in Figure 6 due to the larger amount of charts in the 

second project. Even though the number of code lines in Python was generally higher, its syntax is 

still readable. The syntax of R however, requires its user to have a knowledge in statistics to under-

stand it. 

 

Figure 6. Comparison of the lines of code in the second project (Person data). 

The analysis of the code from both projects was measured and compiled in Table 4. Again, no spe-

cific tool had better advantages or disadvantages. The results from Table 4 confirmed that the overall 

code requirements to complete all of the tasks in Python were more extensive than in R, while more 

packages were installed and used in Python than in R. It should be noted however, that a conclusion 

cannot be made about the quality of a programming language based solely on the number of lines of 

code it has [5]. 
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Table 4. Summary of the overall activity in each project. 

 

Project 1 Project 2 

Measured activity R Python R Python 

The total code lines  73 195 103 241 

The total code lines without plotting 

model and AIC 

70 76 101 151 

Packages used 7 16 7 10 

Packages used without plotting 

model and AIC 

6 11 6 8 

Despite the differences in the amount of code and the level of coding in the tools, the experiments 

were able to be completed and duplicated in all tools including graphics. Due to the similarity of all 

the tasks in both projects, only the charts and plots built on mtcars dataset were shown below (Figure 

7 – Figure 18). In the end, both tools provide the same insight, even though the graphic design of 

each tool is slightly different. 

 

Figure 7. Histogram from R. 
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Figure 8. Histogram from Python. 

 

Figure 9. Boxplot from R. 
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Figure 10. Boxplot from Python. 

In R, the function ggpairs() was applied to graphically display a correlation matrix, which indicates 

correlation coefficients among the continuous variables. The GGally package (a helper package of 

ggplot2) needs to be installed to support this function. The generated matrix is shown in Figure 11 

and 13. With seaborn and matplotlib, Python offered a similar figure to the original one made in R, 

which shows the relationship between variables (Figure 12 and 14).  

 

Figure 11. Scatter plot matrix from R. 
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Figure 12. Scatter plot matrix from Python. 

 

Figure 13. Heatmap from R. 
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Figure 14. Heatmap from Python. 

Again, the similarity between R and Python can be seen through the K-means cluster plots (Figure 

15 and 16). Despite the slightly different appearance, the way of creating K-means cluster plot in R 

is similar to in Python. First, all non-numeric columns and missing values were removed. K-mean 

was then calculated and all clusters were formed. Finally, a plot which shows many different groups 

of cluster was created. 

 

Figure 15. K-means cluster plot from R. 
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Figure 16. K-means cluster plot from Python. 

Lastly, unlike R with only one single line of built-in command lm(), Python needed one more step to 

add an intercept into the model and one more step to fit the model in order to create a multiple linear 

regression. The results are shown in Figure 17 and 18. 

 

Figure 17. Multiple linear regression model from R. 
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Figure 18. Multiple linear regression model from Python. 

In conclusion, both R and Python are well-equipped for data visualization. Customizing graphics is 

easier and more intuitive in R with the help of ggplot2 than in Python with matplotlib. The seaborn 

library helps to overcome this, and offers good standard solutions which get by with relatively few 

lines of code. Seaborn uses a programmatic approach whereby the user can access the classes in 

Seaborn and Matplotlib to manipulate the plots. ggplot2 however, uses a layered approach wherein 

the user can add aesthetics and formats in any order to create the figure. It was also noticeable that 

Python plots, when saved as graphics, take up significantly more disk space than R generated 

graphics. 

5.1.3 Halstead metrics 

A summary of Halstead metrics results of each project are displayed in Table 5. While Python had 

higher program length, program vocabulary and volume, it had, compared to R, lower difficulty, 

effort and time scores. 
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Table 5. Summary of Halstead metrics result 

 Project 1 Project 2 

Parameters R Python R Python 

Program length (N) 583 632 983 1,201 

Program vocabulary (n) 139 170 184 218 

Volume (V) 4,150 4,683 7,396 9,330 

Difficulty (D) 181 106 151 109 

Effort (E) 751,270 494,071 1,113,550 1,020,424 

Time (T) 41,737 27,448 61,864 56,690 

5.2 Qualitative Research 

In this section a qualifiable comparison between R and Python is described based on the criteria 

mentioned in subsection 4.2. According to Huber, ‘a programming language dedicated to data and 

statistical analysis should be writable and readable by human not by computers only’ [14]. Therefore, 

this experiment began with writing some basic codes about how to explore a dataset in both lan-

guages, in order to provide an objective point of view on how one language is similar to or different 

from the other (Table 6). Next, in order to explore more deeply the characteristics of each tool, a 

detailed side by side comparison of each of Huber’s requirements between the tools was made.  

Table 6 displays how the codes were written in each language in order to complete the same activity. 

As shown in Table 6, a data frame in Python needed to be written before the function call (e.g. 

df.head()), whereas in R it is usually inside the function parentheses. In general, R and Python 

had in most activities similar function calls.  

Table 6. Qualitative comparison of basic codes in R and Python. 

Activity 
R Python 

Finding the number of 

observations and varia-

bles in the dataset 

dim(df) df.shape() 

Printing the first five 

row of the data 
head(df, 5) df.head(5) 
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Finding the average of 

each statistic 

df %>% 

  select_if(is.numeric) 

%>% 

  map_dbl(mean, na.rm = 

TRUE) 

df.mean() 

Calculating quantile and 

variance of a variable 

quantile(x) or sum-

mary(df$x) 

var(x) 

df.x.describe() or 

df.x.quantile(0.25) 

df.x.var() 

Summary of a data set summary(df) df.describe() 

Next, an objective comparison of how R and Python handle the missing values in a dataset was made. 

Missing values can be either an empty cell (no values provided in the dataset) or a special string of 

characters or numbers (e.g. ? and (?)) as displayed in Figure 19.  

 

Figure 19. Overview of the original data. 

As stated by Banghart (2019), ‘most data processing languages have their own special object to in-

dicate a missing data value’ [23]. In R “NA” is identified as the missing data object, whereas the 

missing value object is “NaN” in Python (Figure 20 and 21). However, according to R Documenta-

tion “NaN” or “Not a Number” is also used in R for exceptional numeric calculations (see 

help(NA)). Normally these missing values will be changed automatically when using the R or Py-

thon's read functions: function read_csv() and pd.read_csv() respectively. However, Python 

and R can only detect the standard missing values (e.g. NA, NaN, and empty cell). The non-standard 

missing values will then be ignored (e.g. na, N/A, “--”, etc.). Hence, it is recommended to create a 

list of all possible missing values then add this list to na parameter of the function read_csv() or 

na_values parameter of function pd.read_csv()in order to avoid some unexpected missing val-

ues that are still in the data. The codes in either language can be written as below: 
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In R: 

missing_values <- c("", "NA", "?", "(?)") 

df <- read_csv(data, na = missing_values, col_types = cols()) 

In Python: 

missing_values = ["n/a", "na", "--", "?", "(?)"] 

df = pd.read_csv("data.csv", na_values = missing_values) 

 

Figure 20. Missing value object in R. 

 

Figure 21. Missing value object in Python. 

In addition to that, Table 7 compares the way each tool finds, replaces and drops the missing values 

in the dataset. In general, despite the different types of the missing value object, both R and Python 

offer various ways to allow for their detection or transformation. Additionally, they also allow for 

the replacement of both numeric and character type missing values, as well as the dropping of un-

known values in the dataset. 

Table 7. Summary of handling missing data in each language. 

 

R Python 

Detecting missing 

values 

is.na(df) or 

anyNA 

df.isnull() or 

df.isnull().values.any() 
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Summarizing 

missing values 

sum(is.na(df)) df.isnull().sum() 

Replacing missing 

values by a me-

dian 

df <- df %>% 

  mutate(col_name = re-

place(col_name, 

is.na(col_name), me-

dian(col_name, na.rm = T)))                                                      

df[col_name].fillna(df[col_

name].median(), 

inplace=True)  

Dropping missing 

values 

drop_na(df) df.dropna() 

 

Moreover, as illustrated in Table 8, both tools provide functions which help its users reproduce their 

results from random numbers. The difference here is that using function set.seed()in R does not 

require any package, whereas random package needs to be installed in order to use function seed() 

in Python. 

Table 8. Random generator functions in R and Python. 

 

R Python 

Function set.seed(1) random.seed(1) 

Used package - import random 

In conclusion, R and Python can handle numbers, characters, logical, complex, and arbitrary data 

types. The capabilities of visualizing data using high-level customizable visualization packages, 

computing linear algebra functions, or doing probabilistic distributions were illustrated and proved 

in the quantitative experiment.  
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6. Conclusion and Future Work 

Notably, the following comparison results are all drawn based on the quantitative and qualitative 

analysis, which is used as the criterion in this study. Similar to the results found by Brittain et al. 

(2018), the quantitative experiment showed that neither language is completely superior to the other. 

Python performed better than R when the plotting model task was not included in the projects, 

whereas R allowed the codes run faster than Python when the statistical model was required. Addi-

tionally, the processing time of Python was two times faster than R when creating the correlation 

matrix plot. They did, however, complete all the data analytics tasks, from exploring datasets and 

visualizing data to building linear models and measuring random forest predictions. Nevertheless, 

the amount of code needed to complete the analysis for the experiment different between the tools. 

Python had in most cases more lines in the code than R. As stated by Brittain et al. (2018), ‘although 

less code is often considered preferable, it may also make the code less readable and more difficult 

to understand. An example of this would be positional parameters used in functions’ [5]. Addition-

ally, the results of the Halstead metrics also showed Python with higher vocabulary, length, and 

volume for both projects, but its program difficulty, program effort and time score were lower than 

these of R. 

The results of the qualifiable research in this thesis confirmed one more time that no tool stood out 

based on Huber’s criteria. Either language has its strengths and weaknesses in various ways. Ulti-

mately, both languages offer the possibility to visualize data in a clear and appealing manner. Despite 

the differences, they both satisfied Huber’s requirements to be a programming language dedicated to 

data and statistical analysis. The final results of the two experiments shows that R is an excellent 

choice if data analytics or visualization is at the core of the project, whereas Python might be a 

preferable alternative if the user’s project needs a flexible, multi-purpose programming language 

with a large community of developers and one that is extendable with Machine Learning packages. 

Some limitations in this thesis should be acknowledged. First, as mentioned in the literature review 

Section, there are some issues found in the Halstead’s metrics which would bias the results of the 

overall analyses. Second, all calculations were done only by one individual. This may also cause bias 

in the results due to author’s own interest, and programming experience. This could be prevented by 

each researcher performing the coding in their best language. Third, due to the restraints of these 

experiments, not all of the characteristics and suitability for various user groups are included in this 

thesis. Finally the use of ‘Wall-Clock’ means the times recorded are not machine perfect and are 

open to slight deviations due to human error.  



6 Conclusion and Future Work   32 

 

In conclusion, the decision between R or Python should consider the programming-language prefer-

ences and experiences of the user as well as the objectives of users’ mission. R is mainly used when 

the data analysis tasks require standalone computing or analysis on individual servers. For explora-

tory work, R is easier for beginners. Statistical models can be written with a few lines of code. Py-

thon, on the other hand, is generally used to develop and demonstrate web applications or piping the 

statistical codes into a production database. Since it is an OO programming language, Python is a 

good tool to implement algorithms for use in production. Furthermore, the choice between the tools 

also depends on which tool is the most-used of the company or industry. According to DZone, Python 

is becoming increasingly popular in data science platforms due to its better performance in produc-

tion. R, on the other hand, is designed to do data science and statistics from the bottom up, which 

also makes it an essential language for data science [25]. 
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Appendix 

Table 9. Processing time measurement 

Project Tasks Tool IDE 1st M18 2nd M 3rd M 4th M 5th M 

1 all tasks R Rstudio 6,20 5,93 5,93 6,03 5,99 

1 all tasks Python Spyder 6,33 6,23 6,25 6,13 6,20 

1 
without plotting 

model 
R Rstudio 6,16 5,89 6,19 5,99 5,80 

1 
without plotting 

model 
Python Spyder 5,66 5,80 5,63 5,59 5,53 

1 

without plotting 

mode and creating 

correlation matrix 

plot 

R Rstudio 4,20 4,22 4,30 4,09 4,38 

1 

without plotting 

mode and creating 

correlation matrix 

plot 

Python Spyder 3,69 3,50 3,27 3,33 3,40 

2 all tasks R Rstudio 85,70 86,96 108,60 86,37 93,10 

2 all tasks Python Spyder 270,65 260,65 386,70 262,16 261,17 

2 
without plotting 

model 
R Rstudio 67,00 67,23 67,50 66,78 67,43 

2 
without plotting 

model 
Python Spyder 24,63 24,70 24,66 24,70 24,90 

2 

without plotting 

mode and creating 

correlation matrix 

plot 

R Rstudio 23,64 23,13 23,53 23,47 23,20 

2 

without plotting 

mode and creating 

correlation matrix 

plot 

Python Spyder 10,56 10,39 10,30 10,40 10,17 

 
18 Measurement 
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Table 10. Result of the Halstead’s metrics measurements in the first project. 

  R Python 

Tasks N1 N2 n1 n2 N1 N2 n1 n2 

Data wrangling 25 10 16 4 33 12 13 6 

Cross-tabulation 35 12 9 0 45 29 3 17 

Barchart 32 13 9 8 21 11 5 8 

Histogram 49 35 3 14 37 22 7 14 

Boxplot 30 14 2 2 18 12 1 3 

Correlation matrix 81 44 6 11 96 53 13 21 

Cluster 45 28 13 15 46 26 8 15 

Linear regression 23 15 4 5 51 31 4 7 

Plot model 8 4 2 1 496 294 32 69 

AIC 2 1 1 0 122 74 12 20 

Train and test data 35 14 5 7 24 18 4 12 

Random forest prediction 23 20 1 5 26 21 1 8 

Total  388 210 71 72 1,015 603 103 200 

Total without plot model 

and AIC 

378 205 68 71 397 235 59 111 

Table 11. Result of the Halstead’s metrics measurements in the second project. 

 
R Python 

Tasks N1 N2 n 1 n 2 N1 N2 n1 n2 

Data wrangling 42 29 13 16 68 39 15 25 

Cross-tabulation 30 13 9 5 47 29 4 20 

Bar chart 198 74 7 36 222 111 5 42 

Stacked bar chart 132 78 5 12 90 75 3 9 

Histogram 54 30 2 6 148 117 5 35 

Correlation matrix 109 70 12 35 81 43 6 13 

Linear regression 15 9 4 3 34 18 5 5 

Plot model 8 4 2 1 496 294 32 69 

Train and test data 35 24 6 7 23 16 6 11 

Random forest prediction  23 18 1 5 22 18 1 8 

Total  646 349 61 126 1231 760 82 237 

Total without plot model 638 345 59 125 735 466 50 168 
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