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Abstract

As the prevalence of diabetes increases worldwide, it is important to continue research

in this field. The majority of people who have diabetes suffer from type 2 diabetes.

One consequence of the increasing number of patients is the increasing burden on the

health care system. Furthermore, diabetes can cause some secondary complications,

such as cardiovascular diseases.

One possible approach improving the treatment of diabetes is precision medicine.

The optimization of treatment, but also of diagnosis, prediction and prevention, is

performed by using knowledge about human biological variation and multidimensional

data (e.g. electronic medical records), with attention to the individual characteristics

of each patient.

At the moment, the potential of precision medicine in the treatment of type 2 diabetes

is still unknown. The aim of this thesis is to quantify this potential. This is done using

the CVR, the coefficient of variation ratio, of the HbA1c level after treatment. A

coefficient of 1 is equivalent to equal variability in the treatment and control group. A

coefficient greater than 1 is equivalent to a higher variability in the treatment group

compared to the control group. This would indicate that there is a heterogeneous

treatment effect and, therefore, potential for precision medicine.

A meta-analysis was performed because the estimate of the overall effect is more

precise when several studies are combined. The data basis for this is provided by the

systematic reviews by Palmer et al. and Tsapas et al. To consider the between-study

variation, a random effects model was applied. The analysis was conducted in R with

the metafor package. Finally, 174 studies were included in the meta-analysis. The

remaining trials did not provide sufficient information on the number of study parti-

cicpants who completed the study and the HbA1c level after treatment incl. standard

deviation to be included in the analysis. The overall estimate for the CVR is 1.034

(95% CI 1.007 to 1.062) with a p-value of 0.0147. Consequently, the result is statistic-

ally significant at a 5% level. However, the effect is so close to 1 that the result is not

clinically relevant. It can be assumed that there is almost no potential for precision

medicine in type 2 diabetes.
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1 Introduction

The best-known forms of diabetes are type 1 diabetes and type 2 diabetes. Addition-

ally, there is the rare monogenic diabetes which is the result of single gene mutations.

Maturity Onset Diabetes of the Young (MODY) is part of this form (Antosik et al.,

2016, p. S157). For this subtype, the precision medicine approach has already proven

to be very successful. The treatment response differs depending on which gene the

mutation is in. The resulting subgroups without any overlapping are the reason why

the precision medicine approach is well suited for monogenic diabetes. Thus, some

patients need no treatment at all and others respond well to the treatment with low

doses of sulfonylureas. In type 2 diabetes, this approach is more difficult to implement

because it is a polygenic disease which is also influenced by the environment. Therefore,

the definition of individual subgroups is more complicated. Alternatively, subgroups

can be defined based on the differences in treatment response to several drugs. Patient

characteristics such as sex, BMI or certain biomarkers should be used for identification

of the subgroups. The aim is to use this information to calculate how effective the

treatment will be. A success of this approach would be desirable, as it would be easy

to realise (Hattersley et al., 2017, pp. 769-776).

The aim of the following thesis is to find out whether there is potential for precision

medicine in type 2 diabetes. For this purpose, a meta-analysis of variance is conduc-

ted. The data basis is constituted by several RCTs from which the relevant data are

extracted.

The work is structured as follows: First, it is explained what precision medicine is

and why the field of diabetology in particular is such an interesting one. In the next

chapter, the statistical methods used are described. Afterwards, it is clarified on which

data the conducted meta-analysis is based, how the data was processed and how the

analysis was carried out. Finally, the limitations of the conducted meta-analysis are

discussed, which alternatives exist and what the result of the analysis implies.
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2 Epidemiology of type 2 diabetes and

precision medicine approach

The field of diabetology is a very interesting and important area of research due to

the increasing prevalence worldwide (Tönnies et al., 2019, p. 1217). The resulting

problem can be well explained using Germany as an example. According to current

calculations, ∼ 6.7 million people in Germany suffer from diabetes. Most of the affected

people have type 2 diabetes (Jacobs, Hoyer, Brinks, Icks et al., 2017, p. 855). The

aim of the study by Tönnies et al. was the projection of the case numbers of type 2

diabetes in Germany between 2015 and 2040. Data from every person insured by the

statutory health insurance and estimates for the type 2 diabetes incidence and mortality

were used in a illness-death model for the calculation. Different scenarios regarding

temporal trends in incidence and mortality rates were considered, yielding different

results. According to the projections, between 10.7 million (+54%) and 12.3 million

(+77%) type 2 diabetes cases are expected in Germany in 2040 (Tönnies et al., 2019,

pp. 1217-1219). As the burden of diabetes patients on the health care system is already

high, this problem will increase over the years. In 2010, the average annual cost per

capita for people with type 2 diabetes was e5146 in Germany. For people without type

2 diabetes, the average annual cost per capita was only e1956. Accordingly, health care

expenditure for people with type 2 diabetes was 2.6-fold higher than for people without

diabetes (Jacobs, Hoyer, Brinks, Icks et al., 2017, pp. 855-857). Furthermore, diabetes

belongs to the ten most common causes of death worldwide because many people with

diabetes die of cardiovascular diseases. Indeed, 16% of all deaths in Germany are

associated with type 2 diabetes in 2010 (Jacobs, Hoyer, Brinks, Kuss et al., 2017,

pp. 1703-1706).

Therefore, it is very important to treat type 2 diabetes in the right way. The aim of

every clinician has always been to provide the best treatment for every patient. Today,

increasing knowledge about human biological variation is opening up a wide range of

new possibilities. Combined with information from electronic medical records, know-

ledge about lifestyle and environment and big data analytical methods, new devices are

emerging for the identification of various predictors of treatment response. For diabetes

in particular, the idea of precision medicine is very meaningful, as it offers hope that

2



2 Epidemiology of type 2 diabetes and precision medicine approach 3

the growing burden of diabetes will be reduced (Chung et al., 2020, p. 1672). Precision

diabetes medicine can be generally defined as ‘an approach to optimise the diagnosis,

prediction, prevention or treatment of diabetes by integrating multidimensional data,

accounting for individual differences’ (Chung et al., 2020, p. 1675). This data can

originate from traditional medical records, but also from big data (e.g. sensors for

blood glucose measuring). At the same time, patient preferences, individual outcomes

and cost-effectiveness are also taken into account. All this is highly relevant in type

2 diabetes, which is a very heterogeneous disease with many different representations.

There are different treatment options, e.g. patient education and a resulting lifestyle

adjustment, but also drugs for lowering the HbA1c level. For each treatment option,

the treatment response is highly variable among several patients. The aim of precision

treatment is to find an appropriate treatment for each patient based on their individual

characteristics, with the least possible side effects (Chung et al., 2020, pp. 1675-1683).

At the current time, the potential for precision medicine in diabetes type 2 is still

unknown.



3 Methods

3.1 Meta-analysis

In medicine, there are typically several studies carried out for one research question.

However, the results of these studies can be partly contradictory. A meta-analysis tries

to solve this problem by combining the results of multiple independent studies. These

studies are usually RCTs (Haidich, 2010, pp. 29-30).

Meta-analysis can be defined as ‘a quantitative, formal, epidemiological study design

used to systematically assess the results of previous research to derive conclusions

about that body of research’ (Haidich, 2010, pp. 29-30). Systematic reviews that aim

to gather available knowledge on a particular research question often include meta-

analyses (Haidich, 2010, p. 30).

The treatment effect estimates from meta-analyses are often more accurate than the

estimates from individual studies. But for this purpose, it is necessary to include as

many trials as possible to avoid publication bias. This bias occurs because published

studies can differ systematically from non-published studies. For example, studies with

a significant, positive result are published with a higher probability than studies with

a non-significant, negative result. Hence, it is often necessary to look for information

outside the published literature. Whether publication bias is present can be checked

by a funnel plot after the meta-analysis has been carried out. A symmetric inverted

funnel shape suggests no existing publication bias (Haidich, 2010, pp. 30-34).

Meta-analysis distinguishes between two different models: a fixed effect model and a

random effects model (Haidich, 2010, p. 32).

The fixed effect model is based on the assumption that all estimated effects are from

one homogeneous population (Schwarzer et al., 2015, p. 28). To be concrete, this means

that study population, subject selection criteria and way of treatment are the same in

each study (Haidich, 2010, p. 32). θ̂k is the estimated treatment effect from study k

assuming that k = 1, . . . ,K studies are included in the analysis. The aim is to estimate

the treatment effect θ in the population. So, the associated fixed effect model is given

by

θ̂k = θ + σkϵk

with ϵk
i.i.d.∼ N (0, 1). In this case, σ̂2

k is the sample estimate of Var
(
θ̂k

)
. θ̂F is the fixed

4



3.1 Meta-analysis 5

effect estimate of θ which can be determined using the maximum-likelihood principle

with given estimates
(
θ̂k, σ̂k

)
by

θ̂F =

K∑
k=1

θ̂k/σ̂
2
k

K∑
k=1

1/σ̂2
k

=

K∑
k=1

wkθ̂k

K∑
k=1

wk

.

This is also referred to as the inverse variance method with weights wk = 1
σ̂2
k
(Schwarzer

et al., 2015, p. 28). These weights are supposed to represent the evidence of the studies.

Thus, small studies are given less weight than large studies and low-quality studies (e.g.

no control of measurement variation) are given less weight than high-quality studies

(Haidich, 2010, p. 32). The estimation of the variance of θ̂F can be expressed as

V̂ar
(
θ̂F

)
=

1
K∑
k=1

wk

.

Therefore, the (1− α) CI for θ̂F can be calculated using

θ̂F ± z1−α
2
SE
(
θ̂F

)
with the standard error SE

(
θ̂F

)
=

√
V̂ar

(
θ̂F

)
and the 1− α

2 quantile of the standard

normal distribution z1−α
2
(Schwarzer et al., 2015, pp. 28-29).

In comparison, the random effects model is based on the assumption that the estim-

ated effects vary and do not come from one homogeneous population (Schwarzer et al.,

2015, p. 34). Specifically, this means that the effects are heterogeneous between studies

with heterogeneity parameter τ2. However, if the heterogeneity (variability in the treat-

ment effects, between-study variance) is very high, it does not make sense to present

an overall estimator, despite the random effects model (Haidich, 2010, pp. 32-33). The

random effects model is given by

θ̂k = θ + µk + σkϵk

with ϵk
i.i.d.∼ N (0, 1) and µk

i.i.d.∼ N
(
0, τ2

)
whereby ϵk and µk are assumed to be

independent. Since µk is drawn independently from N
(
0, τ2

)
, µk is a random value. As

a result, conducting study k again does not necessarily lead to the same µk. This is also

called exchangeability assumption. For τ2 = 0, a fixed effect model is obtained. There

are many ways of estimation, e.g. the DerSimonian-Laird estimator. The weighted sum

of squares about the fixed effect estimate can be expressed as

Q =
K∑
k=1

wk

(
θ̂k − θ̂F

)2



3.2 Effect measures for continuous responses 6

with wk = 1
σ̂2
k
. If Q < (K − 1), then τ̂2 = 0 and θ̂R = θ̂F . Otherwise, the definition

S =

K∑
k=1

wk −

K∑
k=1

w2
k

K∑
k=1

wk

is needed for estimating the heterogeneity parameter

τ̂2 =
Q− (K − 1)

S
.

The random effects estimate θ̂R of θ and its variance can be estimated by

θ̂R =

K∑
k=1

w∗
kθ̂k

K∑
k=1

w∗
k

V̂ar
(
θ̂R

)
=

1
K∑
k=1

w∗
k

with weights w∗
k = 1

σ̂2
k+τ̂2k

. Due to the weights, this is also referred to as inverse variance

method. Hence, the (1− α) CI for θ̂R can be calculated using

θ̂R ± z1−α
2
SE
(
θ̂R

)
with the standard error SE

(
θ̂R

)
=

√
V̂ar

(
θ̂R

)
and the 1− α

2 quantile of the standard

normal distribution z1−α
2
(Schwarzer et al., 2015, pp. 34-35).

The most common method of presenting the results of a meta-analysis are forest

plots. They show all studies with their effect sizes incl. 95% CI and, additionally, the

pooled effect of the model incl. 95% CI (Haidich, 2010, p. 33).

Q is also the test statistic of Cochran’s Q. This statistical test can be used to

check for the presence of heterogeneity. The null hypothesis is the equality of means,

accordingly H0 = θ1 = θ2 = . . . = θK . Under the null hypothesis, the test statistic is

χ2-distributed with (K − 1) degrees of freedom (df) (Khan, 2020, p. 26). In addition,

heterogeneity can be quantified with I2 = 100% · (Q − df)/Q. This measurement lies

between 0% and 100% and indicates the percentage of the between-study variance in

the total variance (Higgins et al., 2003, p. 558).

3.2 Effect measures for continuous responses

The classical meta-analysis usually compares two groups: the experimental group (E)

and the control group (C). In general, for a continuous outcome, the mean, the standard
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deviation and the sample size are given for both groups (Schwarzer et al., 2015, p. 22).

In all following calculations, x̄E , sE , nE denote the sample mean, standard deviation

and sample size of the experimental group and x̄C , sC , nC denote the sample mean,

standard deviation and sample size of the control group.

It is shown by Nakagawa et al. (2015) that the first approach to compare two means is

the standardized mean difference (called Cohen’s d) or the bias-corrected standardized

mean difference (called Hedge’s d). Cohen’s d can be calculated using

d =
x̄E − x̄C
spooled

with

spooled =

√
(nC − 1) s2C + (nE − 1) s2E

nC + nE − 2
.

For Hedge’s d, the bias correction for small sample sizes J = 1− 3
4(nC+nE−2)−1 is added:

d =
x̄E − x̄C
spooled

J.

In both cases, the sampling variance s2d is determined as follows:

s2d =
nC + nE

nCnE
+

d2

2 (nE + nC)
.

As can be derived from the formulae, both measures depend also on the standard

deviations of both groups. This problem does not appear with the response ratio

lnRR. This is the natural logarithm of the ratio between the two means x̄E and x̄C .

Accordingly, the calculation is performed using

lnRR = ln

(
x̄E
x̄C

)
.

The corresponding sampling variance s2lnRR is given by

s2lnRR =
s2C

nC x̄2C
+

s2E
nE x̄2E

.

Then, it was recognised that the difference of the standard deviations is also inter-

esting, because these are also affected by treatments. The basis for this is provided by

the unbiased estimator of the natural logarithm of the population standard deviation

lnσ. The estimation using the sampling standard deviation s can be expressed as

ln σ̂ = ln s+
1

2 (n− 1)

with related sampling variance

s2ln σ̂ =
1

2 (n− 1)
.
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If sample size and σ are large enough, lnσ can be assumed to be normally distributed

with variance s2lnσ. Consequently, the variability ratio lnVR – the natural logarithm

of the ratio of the two standard deviations sE and sC – is given by

lnVR = ln

(
sE
sC

)
+

1

2 (nE − 1)
− 1

2 (nC − 1)
.

The associated sampling variance can be expressed as

s2lnVR =
1

2 (nC − 1)
+

1

2 (nE − 1)
.

However, in the case of lnVR, the mean and variance are dependent on each other which

can be problematic in some applications. This mean-variance relationship signifies

that when x̄E is larger than x̄C , sE is larger than sC in most cases, too. A more

general approach was proposed by Nakagawa et al. (2015). The difference in variability

can be also investigated using the coefficient of variation ratio lnCVR. This is the

natural logarithm of the ratio between the two cofficients of variation CVE = sE
x̄E

and

CVC = sC
x̄C

. The lnCVR and its sampling variance can be calculated using

lnCVR = ln

(
CVE

CVC

)
+

1

2 (nE − 1)
− 1

2 (nC − 1)

s2lnCVR =
s2C

nC x̄2C
+

1

2 (nC − 1)
− 2ρln x̄2

C , ln sC

√
s2C

nC x̄2C

1

2 (nC − 1)

+
s2E

nE x̄2E
+

1

2 (nE − 1)
− 2ρln x̄2

E , ln sE

√
s2E

nE x̄2E

1

2 (nE − 1)
.

ρln x̄2
C , ln sC

is the correlation between the means and standard deviations in the control

group and ρln x̄2
E , ln sE

the correlation between the means and standard deviations in

the experimental group. If the sample size is small enough, the correlations can be

approximated by ρln x̄2
C , ln sC

= ρln x̄2
E , ln sE

. This means that a common correlation

between all means and standard deviations can be estimated (Nakagawa et al., 2015,

pp. 143-145).



4 Data set analysis

4.1 Purpose

The aim of the project is to quantify the potential of precision medicine in type 2

diabetes. The applied study design comes from the field of psychiatry. The idea is that

a larger variance after treatment in the experimental group compared to the control

group is an indicator of a heterogeneous treatment effect (Winkelbeiner et al., 2019,

p. 1064). For this purpose, the project considers the CVR, the coefficient of variation

ratio, of the HbA1c level after treatment. If the coefficient is 1, the variability in the

treatment and control group is equal. A coefficient smaller than 1 means that the

variability in the control group is greater than in the treatment group. If the coefficient

is greater than 1, the variability in the treatment group is greater than in the control

group which indicates the presence of individual treatment responses. The size of the

coefficient quantifies the magnitude of the potential of precision medicine (Winkelbeiner

et al., 2019, p. 1064). A meta-analysis was conducted because estimating the overall

effect is more precise than considering a single study (Haidich, 2010, p. 30). Only RCTs

are included in the meta-analysis because they have a high level of evidence (Uetani

et al., 2009, p. 307). This will help to determine whether the approach of precision

medicine is appropriate in type 2 diabetes.

4.2 Data extraction and processing

The meta-analysis to be performed relies on the systematic reviews by Palmer et al.

with 301 trials (Palmer et al., 2016, p. 313) and Tsapas et al. with 453 trials (Tsapas

et al., 2020, p. 278). Therefore, only RCTs published in English are included. The

German Diabetes Center has provided the relevant published papers and a table with

the variables to be extracted for each study arm (experimental and control). The

variables to be extracted have been:

� study id

� primary author of the study

� duration of the study

9



4.2 Data extraction and processing 10

� drug and dosage

� size of the ITT-population

� number of participants who completed the study

� mean baseline characteristics

– duration of diabetes [years]

– age [years]

– proportion of men [%]

– body weight [kg]

– BMI [kg/m2]

– mean HbA1c level [%] at baseline incl. standard deviation, standard error

� mean HbA1c level [%] after treatment incl. standard deviation, standard error,

CI

� mean change in HbA1c level [%] from baseline to the end of the study incl. least

square variant, standard deviation, standard error, CI, p-value of a significance

test

� mean change in HbA1c level [%] after treatment adjusted for baseline values com-

pared to placebo or comparator drug incl. least square variant, standard devi-

ation, standard error, CI, p-value of a significance test

As some relevant information was not directly available in the desired form, some

conversions were made.

Thus, in a few studies, the HbA1c levels were only given in mmol/mol. However,

since these were to be analysed on the %-scale, they were converted using the following

formula (Weykamp, 2013, p. 396):

HbA1c[%] = 0.0915 ·HbA1c[mmol/mol] + 2.15.

In many cases, the median m, the IQR or the first quartile q1 and third quartile q3

were given. Then the mean x̄ can be calculated using the following formula (Wan et al.,

2014, p. 6):

x̄ ≈ q1 +m+ q3
3

.

The associated standard deviation s can be calculated using this formula (Wan et al.,

2014, p. 6):

s =
q3 − q1

2Φ−1
(
0.75n−0.125

n+0.25

)
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with the number of study participants n and the cumulative distribution function of

the standard normal distribution Φ.

Furthermore, the median m, the minimum min and maximum max are often given.

Then the mean x̄ is calculated using the following formula (Hozo et al., 2005, p. 8):

x̄ ≈

{
min+2m+max

4 n ≤ 25,

m n > 25
.

The associated standard deviation s can be calculated using this formula (Wan et al.,

2014, p. 4):

s =
max−min

2Φ−1
(
n−0.375
n+0.25

)
with the number of study participants n and the cumulative distribution function of

the standard normal distribution Φ.

Moreover, in some publications the standard error of the mean (SEM) was given.

The conversion to the standard deviation s was done by the following equation (Koschack,

2008, p. 259):

SEM =
s√
n
.

If the lower and upper bound of a CI for the mean were given, the standard error

and the standard deviation s could be determined. The (1− α) CI is given by[
x− z1−α

2

s√
n
, x+ z1−α

2

s√
n

]
with the 1 − α

2 quantile of the standard normal distribution z1−α
2
and the number of

study participants n. This calculation was made on the basis of a normal distribution

assumption (Fahrmeir et al., 2016, pp. 358-359).

In some studies, the HbA1c levels were examined at several points in time, for example

as an interim report or by extending the study. In most cases, however, the number

of participants who had taken part in the study up to this point was missing for these

time points. In order to still be able to include the values in the analysis, the group

size was interpolated or extrapolated via a linear regression model. For this purpose,

a linear model of the form

y = β0 + β1 · x1 + ϵ

is set up. y is the response variable, x1 is the explanatory variable, β0 and β1 are

the unknown parameters and ϵ the error term. The following assumptions are valid:

E (ϵ) = 0, Cov (ϵ) = E (ϵϵ′) = σ2I and ϵ ∼ N
(
0, σ2I

)
(Fahrmeir et al., 2013, pp. 73-77).

In the present case, y is the number of participants in the study arm at the beginning

of the study or the number of participants in the study arm who have completed the

study at a specified time point. x is the given time point. If the number of subjects in
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the study arm at the beginning of the study is considered, x is 0. Otherwise, x is the

number of days, weeks or months at which the number of subjects in the study arm

who have completed the study is given. With the help of this linear model, the values

of y at different times x can now be predicted. In principle, the longest duration with

the most information is included in the analysis.

4.3 Characteristics of included trials

After processing, the data set consists of 296 trials. This complies with 141 258 indi-

vidual observations. All studies were published between 1987 and 2020. The median

study duration is 24 weeks (IQR 24-28.25 weeks). The drugs in the treatment group

were taken from ten different drug classes. The ten drug classes are: SGLT-2-Inhibitors,

Metformin, DPP-4-Inhibitors/Gliptines, GLP-1-Receptor-Agonists, Thiazolidinediones/

Glitazones, Sulfonylureas, Alpha-Glucosidase-Inhibitors, Insulins, Combination and

Others. Figure 4.1 represents the frequency of all drug classes.

Figure 4.1: Frequency of drug classes in all trials. The y-axis indicates the ten drug

classes, the x-axis the corresponding frequencies.

As can be seen in Figure 4.1, most of the drugs belong to the drug class DPP-

4-Inhibitors/Gliptines and GLP-1-Receptor-Agonists. There are thus a total of 500

treatment groups. Furthermore, 303 placebo groups are available. Based on this, it
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becomes clear that there are some studies with more than one treatment group.

Figure 4.2 illustrates the baseline characteristics of the study participants for the

experimental and control groups separately. The baseline characteristics include the

following variables: duration of diabetes, age, proportion of men, body weight, BMI

and HbA1c level at baseline.

Figure 4.2: Representation of the six baseline characteristics: duration of diabetes, pro-

portion of men, age, body weight, BMI and HbA1c level at baseline. The

orange boxes represent the experimental groups, the petrol boxes the con-

trol groups.

As Figure 4.2 underlines, the distribution of all variables in both groups is very

similar. This results from the fact that only RCTs are included in the analysis. The

median, the first quartile, the third quartile and the minimum and maximum are almost

identical. A small exception is the duration of diabetes, where the values of the control

group are generally higher. For the duration of diabetes, the minimum of both groups

is 0, which means that there is at least one study in which the participants have been

newly diagnosed with diabetes. For the proportion of men, the maximum of both

groups is 100, which means that there is one study in which only men participated.

Figure 4.3 shows the mean values of the HbA1c level after treatment incl. standard

deviation separated by group.
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Figure 4.3: HbA1c level after treatment incl. standard deviation. The orange bar rep-

resents the experimental group, the petrol bar the control group.

It is evident that the HbA1c level after treatment is higher in the control group than

in the experimental group. However, the standard deviations are comparable in both

groups.

4.4 Meta-analysis

174 studies with 86 940 individual observations were eligible for the original meta-

analysis. This corresponds to 272 pairwise comparisons. The effect size to be investig-

ated in the meta-analysis was the lnCVR of HbA1c level after treatment. Accordingly,

only studies for which the number of participants who completed the study and the

HbA1c level after treatment incl. standard deviation are available could be included.

The analysis was carried out in R (R Core Team, 2020) with the metafor package

(Viechtbauer, 2010). A random effects model was applied to consider the between-

study variation. Furthermore, the inverse variance method was used for weighting.

The lnCVR was calculated with the function escalc. However, it is assumed for the

calculation that the data are normally distributed. Accordingly, the correlation terms

are omitted from the calculation of the variance s2lnCVR, since mean and variance are

independent in the case of normal distribution. Consequently, the following formula
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was used to calculate the variance s2lnCVR:

s2lnCVR =
s2C

nC x̄2C
+

1

2 (nC − 1)
+

s2E
nE x̄2E

+
1

2 (nE − 1)
.

The results were also compared with the formulas with correlation terms. Since very

similar results were obtained, the normal distribution assumption seems to be valid.

Figure 4.4 shows the forest plot of some example trials. The remaining forest plots

can be found in the appendix.

Figure 4.4: Forest plot of some example trials. The names of the trials can be read

in the left column. The right column shows the CVR incl. 95% CI. In

the middle, this is presented again graphically, with the area of the squares

proportional to the weight. At the bottom the estimation of the random

effects model incl. 95% CI is shown.

The CVR lies between 0.301 and 3.510. This wide range is already an indicator that

the studies are heterogeneous. This is also confirmed by Cochran’s Q test. The result

Q (df = 271) = 1769.7528 with p-value < 0.0001 implied that there is heterogeneity

between the studies. According to the I2 = 84.69%, heterogeneity is to be classified as

high. This is because the studies are heterogeneous in terms of variance. This would

have been expected and does not diminish results of the performed meta-analysis.

A funnel plot to control for publication bias is not necessary, as this has already been

checked in the systematic reviews of Palmer et al. and Tsapas et al. In both cases, no
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evidence for publication bias was found (Palmer et al., 2016, p. 320; Tsapas et al., 2020,

p. 280).

When the CVR is 1, the variability in the treatment and control groups is equal.

Consequently, with a CVR of 1.034, the variability in the treatment group is slightly

higher than in the control group. Since the 95% CI ranges from 1.007 to 1.062 and

the p-value is 0.0147, the result is statistically significant. However, the effect is that

minimal that the result is not clinically relevant. Accordingly, in this case there is

nearly no potential for precision medicine.



5 Discussion

The aim of the project was the quantification of the potential of precision medicine in

type 2 diabetes. After data processing, a meta-analysis could be conducted. The most

time-consuming part was the data extraction and processing.

The meta-analysis resulted in a CVR of 1.034 (95% CI 1.007 to 1.062). This implies

that the variance in the treatment group is not considerably higher than in the con-

trol group. Accordingly, there is almost no potential for precision medicine in type 2

diabetes. Consequently, the treatment effect is constant, so that the occurrence of the

average treatment effect can be assumed for all patients. The question of whether a

treatment generally works can be investigated with the help of RCTs. The resulting

estimated treatment effect is the average treatment effect (Winkelbeiner et al., 2019,

p. 1064). So, in the future, research should be based on one treatment guideline for all

patients.

There are some studies with more than one treatment group. In these cases, several

treatment groups are accordingly compared with a common placebo group. For this

purpose, it is assumed that these comparisons are independent of each other. But this

assumption is not correct. Since several treatment groups are compared with a common

control group in a study, one study provides several effect sizes for the meta-analysis.

This leads to the fact that the effect sizes are correlated (Cooper et al., 2009, p. 358).

An alternative approach to this classical meta-analysis is the network meta-analysis. It

is an extension of the classical pairwise meta-analysis. Here, it is possible to compare

more than two interventions directly or indirectly. This does not create the problem of

placebo groups being counted more than once (Dias et al., 2019, p. F8).

Furthermore, there are some limitations of the lnCVR. Thus, the lnCVR can only

be applied to ratio scaled data. Accordingly, the lnCVR cannot be used as an effect

measure if this condition is not met. In addition, the lnCVR is based on the assumption

that the standard deviation is proportional to the mean. But it is known that this

assumption is not valid in many cases. An alternative approach is a random intercept

and slope linear mixed-effects model. At this ln σ̂ is the response and ln x̄ and group

membership (control or treatment) are the explanatory variables. This results in the

following model equation:

ln σ̂j = (β0 + τi) + (β1 + φi)Groupj + β2 ln x̄j + ϵj +mj

17
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with (
τi

φi

)
∼ N

((
0

0

)
,

(
σ2
τ ρστσφ

ρστσφ σ2
φ

))
and

ϵj ∼ N
(
0, σ2

ϵ

)
and

mj ∼ N
(
0, σ2

lnσj

)
.

j = 1, . . . , n effect sizes from i = 1, . . . ,K studies are included in the model. Ac-

cordingly, ln σ̂j is the effect size j and ln x̄j is the mean estimate for the effect size

j. Group is a dummy variable to represent group membership (controlgroup = 0 and

treatmentgroup = 1). β0 is the grand intercept and τi the deviation from β0 for study

i. β1 is the grand slope and φi the deviation from β1 for study i. β2 is the regression

coefficient for ln x̄. ϵj is the residual of effect size j and mj is a sampling error effect

for effect size j (Nakagawa et al., 2015, pp. 147-148).

The network meta-analysis and the random intercept and slope linear mixed-effects

model can be carried out to verify the result from the conducted meta-analysis. Fur-

thermore, the potential of precision medicine could be examined on the basis of other

outcomes. This could be weight loss or fasting plasma glucose, for example. Moreover,

a survival time analysis could also be implemented.

Based on the conducted meta-analysis, it can be concluded that the potential for

precision medicine in type 2 diabetes is very low. This, of course, eliminates some of

the hopes. However, other research approaches can now be focused on.
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R-Code

Descriptive analysis

1 # libraries and data ------------------------------------------------------

2 library(dplyr)

3 library(haven)

4 library(ggplot2)

5 library(ggpubr)

6

7 # read data

8 data <- read_sas("analysedatensatz_20210716.sas7bdat")

9

10 # delete trial T70

11 data <- data[-c(681, 682), ]

12

13

14 # description -------------------------------------------------------------

15 # number of trials

16 length(unique(data$StudyID))

17

18 # number of individual observations (n_completed)

19 sum(data$n_completed)

20

21 # arms per trial

22 arms <- data %>%

23 group_by(StudyID) %>%

24 summarize(number = n()) %>%

25 as.data.frame ()

26

27

28 # arms with LogMean , LogSD and n_completed

29 compl <- data %>%

30 group_by(StudyID) %>%

31 summarize(complete = sum(complete.cases(LogMean , LogSD ,

32 n_completed))) %>%

33 as.data.frame ()

34

35 # merge

36 comp <- merge(arms , compl , by = "StudyID")

37

38 # number of trials with LogMean , LogSD and n_completed

39 sum(comp$number == comp$complete)

40

41 # number of individual observations (n_completed)

42 stud <- comp[comp$number == comp$complete , ]

43 stud <- data[data$StudyID %in% stud$StudyID , ]

44 sum(stud$n_completed)

45

46

47 # drug classes ------------------------------------------------------------

48 # number of drug classes

49 drugclasses <- data %>%

50 group_by(Drugclass) %>%
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51 summarize(number = n()) %>%

52 as.data.frame ()

53

54 # number of treatment groups

55 sum(drugclasses$number[1:10])

56

57 # convert Drugclass to factor

58 drugclasses$Drugclass <- as.factor(drugclasses$Drugclass)

59

60 # barplot

61 barplot_drugclasses <- ggplot(drugclasses[1:10, ],

62 aes(x = reorder(Drugclass , -number),

63 y = number)) +

64 geom_bar(stat = "identity", fill = "#473C8B") +

65 labs(title = "Number of drug classes",

66 y = "Frequency", x = "Drug class") +

67 scale_x_discrete(labels = c("DPP -4-Inhibitors/

68 Gliptines",

69 "GLP -1-Receptor -Agonists",

70 "SGLT -2-Inhibitors",

71 "Thiazolidinediones/

72 Glitazones",

73 "Alpha -Glucosidase -

74 Inhibitors",

75 "Metformin",

76 "Combination",

77 "Sulfonylureas",

78 "Others",

79 "Insulins")) +

80 coord_flip () +

81 theme_bw () +

82 theme(plot.title = element_text(size = 24,

83 margin =

84 margin(0,0,8,0)),

85 axis.title.x = element_text(size = 22,

86 margin =

87 margin(0,8,0,0)),

88 axis.title.y = element_text(size = 22,

89 margin =

90 margin(0,8,0,0)),

91 axis.text.x = element_text(size = 20),

92 axis.text.y = element_text(size = 20),

93 legend.position = "none")

94 ggsave(path = "graphics", filename = "barplot_drugclasses.png",

95 plot = barplot_drugclasses , width = 20, height = 13, units = "in")

96

97 # delete title

98 barplot_drugclasses_without_title <- barplot_drugclasses +

99 theme(plot.title = element_blank ())

100 ggsave(path = "graphics", filename = "barplot_drugclasses_without_title.png",

101 plot = barplot_drugclasses_without_title , width = 20, height = 13,

102 units = "in")

103

104
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105 # convert Placebo to factor -----------------------------------------------

106 data$Placebo <- as.factor(data$Placebo)

107

108

109 # dataframes with statistical parameters ----------------------------------

110 # dm_years , men , age , weight , BMI , hba1c_bl

111 vars <- c("dm_years", "men", "age", "weight", "BMI", "hba1c_bl")

112 for (i in vars) {

113 assign(paste(i, "_df", sep = ""),

114 data %>%

115 group_by(Placebo) %>%

116 summarize(mean = mean(get(i), na.rm = TRUE),

117 median = median(get(i), na.rm = TRUE),

118 first_quartile = quantile(get(i),

119 probs = 0.25, na.rm = TRUE),

120 third_quartile = quantile(get(i),

121 probs = 0.75, na.rm = TRUE),

122 minimum = min(get(i), na.rm = TRUE),

123 maximum = max(get(i), na.rm = TRUE)) %>%

124 as.data.frame ())

125 }

126

127 # hba1c_end (exp(LogMean))

128 hba1c_end_df <- data %>%

129 group_by(Placebo) %>%

130 summarize(mean = mean(exp(LogMean), na.rm = TRUE),

131 median = median(exp(LogMean), na.rm = TRUE),

132 first_quartile = quantile(exp(LogMean),

133 probs = 0.25,

134 na.rm = TRUE),

135 third_quartile = quantile(exp(LogMean),

136 probs = 0.75,

137 na.rm = TRUE),

138 minimum = min(exp(LogMean), na.rm = TRUE),

139 maximum = max(exp(LogMean), na.rm = TRUE)) %>%

140 as.data.frame ()

141

142 # hba1c_end_SD (exp(LogSD - 1/(2*n_completed)))

143 sd_df <- data %>%

144 group_by(Placebo) %>%

145 summarize(mean = mean(exp(LogSD - 1/(2*n_completed)),

146 na.rm = TRUE)) %>%

147 as.data.frame ()

148

149 # duration

150 groups <- data[! duplicated(data$StudyID), ]

151 duration_df <- groups %>%

152 summarize(mean = mean(duration , na.rm = TRUE),

153 median = median(duration , na.rm = TRUE),

154 first_quartile = quantile(duration ,

155 probs = 0.25,

156 na.rm = TRUE),

157 third_quartile = quantile(duration ,

158 probs = 0.75,
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159 na.rm = TRUE),

160 minimum = min(duration , na.rm = TRUE),

161 maximum = max(duration , na.rm = TRUE)) %>%

162 as.data.frame ()

163

164

165 # boxplots baseline characteristics ---------------------------------------

166 # dm_years

167 boxplot_dm_years <- ggplot(data , aes(x = Placebo , y = dm_years)) +

168 geom_boxplot(aes(fill = Placebo), na.rm = TRUE) +

169 scale_y_continuous(limits = c(0, 20),

170 breaks = c(0, 5, 10, 15, 20)) +

171 scale_fill_manual(values = c("#FFA500", "#00868B"),

172 name = "Group",

173 breaks = c("0", "1"),

174 labels = c("experimental",

175 "control")) +

176 labs(title = "Boxplot of duration of diabetes per group",

177 y = "Duration of diabetes [years]",

178 x = element_blank ()) +

179 theme_bw () +

180 theme(plot.title = element_text(size = 24,

181 margin =

182 margin(0,0,8,0)),

183 axis.title.x = element_blank (),

184 axis.title.y = element_text(size = 22,

185 margin =

186 margin(0,8,0,0)),

187 axis.text.x = element_blank (),

188 axis.text.y = element_text(size = 20),

189 legend.key.size = unit(1, "cm"),

190 legend.title = element_text(size = 22),

191 legend.text = element_text(size = 20),

192 axis.ticks.x = element_blank ())

193 ggsave(path = "graphics", filename = "boxplot_dm_years.png",

194 plot = boxplot_dm_years , width = 20, height = 13, units = "in")

195

196 # men

197 boxplot_men <- ggplot(data , aes(x = Placebo , y = men)) +

198 geom_boxplot(aes(fill = Placebo), na.rm = TRUE) +

199 scale_y_continuous(limits = c(0, 100),

200 breaks = c(0, 25, 50, 75, 100)) +

201 scale_fill_manual(values = c("#FFA500", "#00868B"),

202 name = "Group",

203 breaks = c("0", "1"),

204 labels = c("experimental",

205 "control")) +

206 labs(title = "Boxplot of proportion of men per group",

207 y = "Proportion of men [%]",

208 x = element_blank ()) +

209 theme_bw () +

210 theme(plot.title = element_text(size = 24,

211 margin =

212 margin(0,0,8,0)),
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213 axis.title.x = element_blank (),

214 axis.title.y = element_text(size = 22,

215 margin =

216 margin(0,8,0,0)),

217 axis.text.x = element_blank (),

218 axis.text.y = element_text(size = 20),

219 legend.key.size = unit(1, "cm"),

220 legend.title = element_text(size = 22),

221 legend.text = element_text(size = 20),

222 axis.ticks.x = element_blank ())

223 ggsave(path = "graphics", filename = "boxplot_men.png",

224 plot = boxplot_men , width = 20, height = 13, units = "in")

225

226 # age

227 boxplot_age <- ggplot(data , aes(x = Placebo , y = age)) +

228 geom_boxplot(aes(fill = Placebo), na.rm = TRUE) +

229 scale_y_continuous(limits = c(0, 80),

230 breaks = c(0, 20, 40, 60, 80)) +

231 scale_fill_manual(values = c("#FFA500", "#00868B"),

232 name = "Group",

233 breaks = c("0", "1"),

234 labels = c("experimental",

235 "control")) +

236 labs(title = "Boxplot of age per group",

237 y = "Age [years]",

238 x = element_blank ()) +

239 theme_bw () +

240 theme(plot.title = element_text(size = 24,

241 margin =

242 margin(0,0,8,0)),

243 axis.title.x = element_blank (),

244 axis.title.y = element_text(size = 22,

245 margin =

246 margin(0,8,0,0)),

247 axis.text.x = element_blank (),

248 axis.text.y = element_text(size = 20),

249 legend.key.size = unit(1, "cm"),

250 legend.title = element_text(size = 22),

251 legend.text = element_text(size = 20),

252 axis.ticks.x = element_blank ())

253 ggsave(path = "graphics", filename = "boxplot_age.png",

254 plot = boxplot_age , width = 20, height = 13, units = "in")

255

256 # weight

257 boxplot_weight <- ggplot(data , aes(x = Placebo , y = weight)) +

258 geom_boxplot(aes(fill = Placebo), na.rm = TRUE) +

259 scale_y_continuous(limits = c(0, 120),

260 breaks = c(0, 20, 40, 60,

261 80, 100, 120)) +

262 scale_fill_manual(values = c("#FFA500", "#00868B"),

263 name = "Group",

264 breaks = c("0", "1"),

265 labels = c("experimental",

266 "control")) +
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267 labs(title = "Boxplot of body weight per group",

268 y = "Body weight [kg]",

269 x = element_blank ()) +

270 theme_bw () +

271 theme(plot.title = element_text(size = 24,

272 margin =

273 margin(0,0,8,0)),

274 axis.title.x = element_blank (),

275 axis.title.y = element_text(size = 22,

276 margin =

277 margin(0,8,0,0)),

278 axis.text.x = element_blank (),

279 axis.text.y = element_text(size = 20),

280 legend.key.size = unit(1, "cm"),

281 legend.title = element_text(size = 22),

282 legend.text = element_text(size = 20),

283 axis.ticks.x = element_blank ())

284 ggsave(path = "graphics", filename = "boxplot_weight.png",

285 plot = boxplot_weight , width = 20, height = 13, units = "in")

286

287 # BMI

288 boxplot_BMI <- ggplot(data , aes(x = Placebo , y = BMI , fill = Placebo)) +

289 geom_boxplot(aes(fill = Placebo), na.rm = TRUE) +

290 scale_y_continuous(limits = c(0, 50),

291 breaks = c(0, 10, 20, 30, 40, 50)) +

292 scale_fill_manual(values = c("#FFA500", "#00868B"),

293 name = "Group",

294 breaks = c("0", "1"),

295 labels = c("experimental",

296 "control")) +

297 labs(title = "Boxplot of BMI per group",

298 y = expression("BMI [" ~ kg/m^{2} * "]"),

299 x = element_blank ()) +

300 theme_bw () +

301 theme(plot.title = element_text(size = 24,

302 margin =

303 margin(0,0,8,0)),

304 axis.title.x = element_blank (),

305 axis.title.y = element_text(size = 22,

306 margin =

307 margin(0,8,0,0)),

308 axis.text.x = element_blank (),

309 axis.text.y = element_text(size = 20),

310 legend.key.size = unit(1, "cm"),

311 legend.title = element_text(size = 22),

312 legend.text = element_text(size = 20),

313 axis.ticks.x = element_blank ())

314 ggsave(path = "graphics", filename = "boxplot_BMI.png",

315 plot = boxplot_BMI , width = 20, height = 13, units = "in")

316

317 # hba1c_bl

318 boxplot_hba1c_bl <- ggplot(data , aes(x = Placebo , y = hba1c_bl)) +

319 geom_boxplot(aes(fill = Placebo), na.rm = TRUE) +

320 scale_y_continuous(limits = c(0, 15),
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321 breaks = c(0, 5, 10, 15)) +

322 scale_fill_manual(values = c("#FFA500", "#00868B"),

323 name = "Group",

324 breaks = c("0", "1"),

325 labels = c("experimental",

326 "control")) +

327 labs(title = expression("Boxplot of" ~ HbA[1*c] ~

328 "at baseline per group"),

329 y = expression(HbA[1*c] ~ "[%] at baseline"),

330 x = element_blank ()) +

331 theme_bw () +

332 theme(plot.title = element_text(size = 24,

333 margin =

334 margin(0,0,8,0)),

335 axis.title.x = element_blank (),

336 axis.title.y = element_text(size = 22,

337 margin =

338 margin(0,8,0,0)),

339 axis.text.x = element_blank (),

340 axis.text.y = element_text(size = 20),

341 legend.key.size = unit(1, "cm"),

342 legend.title = element_text(size = 22),

343 legend.text = element_text(size = 20),

344 axis.ticks.x = element_blank ())

345 ggsave(path = "graphics", filename = "boxplot_hba1c_bl.png",

346 plot = boxplot_hba1c_bl , width = 20, height = 13, units = "in")

347

348 # delete title and legend

349 boxplot_dm_years_without_title <- boxplot_dm_years +

350 theme(plot.title = element_blank (),

351 legend.position = "none")

352 boxplot_men_without_title <- boxplot_men +

353 theme(plot.title = element_blank (),

354 legend.position = "none")

355 boxplot_age_without_title <- boxplot_age +

356 theme(plot.title = element_blank (),

357 legend.position = "none")

358 boxplot_weight_without_title <- boxplot_weight +

359 theme(plot.title = element_blank (),

360 legend.position = "none")

361 boxplot_BMI_without_title <- boxplot_BMI +

362 theme(plot.title = element_blank (),

363 legend.position = "none")

364 boxplot_hba1c_bl_without_title <- boxplot_hba1c_bl +

365 theme(plot.title = element_blank (),

366 legend.position = "none")

367

368 # arrange

369 boxplots_characteristics <- ggarrange(boxplot_dm_years_without_title ,

370 boxplot_men_without_title ,

371 boxplot_age_without_title ,

372 boxplot_weight_without_title ,

373 boxplot_BMI_without_title ,

374 boxplot_hba1c_bl_without_title ,
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375 common.legend = TRUE , legend = "bottom")

376 ggsave(path = "graphics", filename = "boxplots_characteristics.png",

377 plot = boxplots_characteristics , width = 20, height = 13, units = "in")

378

379

380 # barplot hhba1c_end (exp(LogMean)) with errorbar -------------------------

381 errorbar_df <- data %>%

382 group_by(Placebo) %>%

383 summarize(errorbar1 = mean(exp(LogMean), na.rm = TRUE) -

384 mean(exp(LogSD - 1/(2*n_completed)), na.rm = TRUE),

385 errorbar2 = mean(exp(LogMean), na.rm = TRUE) +

386 mean(exp(LogSD - 1/(2*n_completed)), na.rm = TRUE),

387 mean_LogMean = mean(exp(LogMean), na.rm = TRUE)) %>%

388 as.data.frame ()

389

390 barplot_hba1c_end <- ggplot(errorbar_df , aes(x = Placebo , y = mean_LogMean ,

391 fill = Placebo)) +

392 geom_bar(stat = "identity", width = 0.5) +

393 geom_errorbar(aes(ymin = errorbar1,

394 ymax = errorbar2),

395 width = 0.5, size = 1) +

396 scale_x_discrete(breaks = c("0", "1"),

397 labels = c("experimental",

398 "control")) +

399 scale_fill_manual(values = c("#FFA500", "#00868B")) +

400 labs(title = expression("Barplot of mean" ~ HbA[1*c] ~

401 "after treatment per group"),

402 y = expression(HbA[1*c] ~ "[%] after treatment"),

403 x = "Group") +

404 theme_bw () +

405 theme(plot.title = element_text(size = 24,

406 margin =

407 margin(0,0,8,0)),

408 axis.title.x = element_text(size = 22,

409 margin =

410 margin(0,8,0,0)),

411 axis.title.y = element_text(size = 22,

412 margin =

413 margin(0,8,0,0)),

414 axis.text.x = element_text(size = 20),

415 axis.text.y = element_text(size = 20),

416 legend.position = "none")

417 ggsave(path = "graphics", filename = "barplot_hba1c_end.png",

418 plot = barplot_hba1c_end , width = 20, height = 13, units = "in")

419

420 # delete title

421 barplot_hba1c_end_without_title <- barplot_hba1c_end +

422 theme(plot.title = element_blank ())

423 ggsave(path = "graphics", filename = "barplot_hba1c_end_without_title.png",

424 plot = barplot_hba1c_end_without_title , width = 20, height = 13,

425 units = "in")
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Meta-analysis

1 # libraries and data ------------------------------------------------------

2 library(dplyr)

3 library(haven)

4 library(metafor)

5 library(tidyr)

6

7 # read data

8 data <- read_sas("analysedatensatz_20210716.sas7bdat")

9

10 # convert to wide format

11 data_wide <- pivot_wider(data = data ,

12 id_cols = c("StudyID", "StudyAbb", "duration"),

13 names_from = "Placebo",

14 values_from = c("LogSD", "Weight_LogSD", "LogSD_ADJ",

15 "n_completed", "LogMean", "Drug",

16 "Drugclass", "dm_years", "age", "men",

17 "hba1c_bl", "weight", "BMI"))

18

19 # number of placebo arms per trial

20 lengths(data_wide$LogMean_1)

21

22 # trials with 0 oder more than 1 placebo arm

23 unname(data_wide[which (( lengths(data_wide$LogMean_1) != 1) == TRUE), ]$StudyID)

24 # -> S213, P1037, P1111, P1163, T70, T51, T429

25

26 # split trials with more than 1 placebo arm

27 for (i in c(231, 232, 364, 365, 366, 476, 477, 564,

28 565, 566, 754, 755, 756, 757, 780, 781)) {

29 data[i, "StudyID"] <- paste(data[i, "StudyID"], "a", sep = "")

30 data[i, "StudyAbb"] <- paste(data[i, "StudyAbb"], "a", sep = "")

31 }

32 for (i in c(233, 234, 367, 368, 478, 479, 567,

33 568, 758, 759, 760, 761, 782, 783)) {

34 data[i, "StudyID"] <- paste(data[i, "StudyID"], "b", sep = "")

35 data[i, "StudyAbb"] <- paste(data[i, "StudyAbb"], "b", sep = "")

36 }

37 for (i in c(369, 370)) {

38 data[i, "StudyID"] <- paste(data[i, "StudyID"], "c", sep = "")

39 data[i, "StudyAbb"] <- paste(data[i, "StudyAbb"], "c", sep = "")

40 }

41

42 # rename T-Emerge trials

43 data[c(105, 106, 107), "StudyAbb"] <- "T-Emerge2012"

44 data[c(243, 244), "StudyAbb"] <- "T-Emerge2013"

45

46 # delete trial T70

47 data <- data[-c(681, 682), ]

48

49 # convert to wide format

50 data_wide <- pivot_wider(data = data ,

51 id_cols = c("StudyID", "StudyAbb", "duration"),

52 names_from = "Placebo",



R-Code 40

53 values_from = c("LogSD", "Weight_LogSD", "LogSD_ADJ",

54 "n_completed", "LogMean", "Drug",

55 "Drugclass", "dm_years", "age", "men",

56 "hba1c_bl", "weight", "BMI"))

57

58 # one row for each comparison

59 unnested_data <- unnest(data_wide ,

60 cols = c(LogSD_0, Weight_LogSD_0, LogSD_ADJ_0,

61 n_completed_0, LogMean_0, Drug_0,

62 Drugclass_0, dm_years_0, age_0, men_0,

63 hba1c_bl_0, weight_0, BMI_0))

64

65 # unlist each column

66 unlisted_data <- data.frame(lapply(unnested_data , function(x) unlist(x)))

67

68

69 # meta -analysis -----------------------------------------------------------

70 # calculate ln CVR

71 meta_data <- escalc(measure = "CVR",

72 n2i = unlisted_data$n_completed_1,

73 sd2i = exp(unlisted_data$LogSD_1 -

74 1/(2*( unlisted_data$n_completed_1 - 1))),

75 m2i = exp(unlisted_data$LogMean_1),

76 n1i = unlisted_data$n_completed_0,

77 sd1i = exp(unlisted_data$LogSD_0 -

78 1/(2*( unlisted_data$n_completed_0 - 1))),

79 m1i = exp(unlisted_data$LogMean_0),

80 data = unlisted_data)

81

82 # number of pairwise eligible comparisons

83 sum(!is.na(meta_data$yi))

84

85 # summary of ln CVR

86 summary(exp(meta_data$yi))

87

88 # id per group for slab argument

89 meta_data <- meta_data %>%

90 group_by(StudyID) %>%

91 mutate(id = row_number ())

92

93 # random effects model

94 re_model <- rma(yi = yi, vi = vi , weighted = TRUE , method = "DL",

95 slab = paste0(

96 unlist(

97 regmatches(x = meta_data$StudyAbb ,

98 m = gregexpr(pattern = "(^[\u00C0-\u017FA-z

-]+_([0-9]){1})|(^[\u00C0-\u017FA -z-]+)",

99 text = meta_data$StudyAbb ,

100 perl = TRUE))),

101 ", ",

102 unlist(

103 regmatches(x = meta_data$StudyAbb ,

104 m = gregexpr(pattern = "(?≤\\D|_2|_3)[0-9]{4

}[abc]{0,1}$",
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105 text = meta_data$StudyAbb ,

106 perl = TRUE))),

107 " (",

108 meta_data$id,

109 ")"),

110 data = meta_data)

111

112 # extract weights of random effects model with inverse variance weights

113 W <- diag(1/( re_model$vi + re_model$tau2), nrow = re_model$k, ncol = re_model$k)

114 wi <- as.vector(diag(W))

115 manual <- rep(NA_real_ , re_model$k.f)

116 manual[re_model$not.na] <- wi

117 weight_sum <- sum(manual , na.rm = TRUE)

118

119 # edit weights.rma.uni in metafor package for splitting plots

120 metafor <- asNamespace("metafor")

121 .weights.rma.uni <- get("weights.rma.uni", envir = metafor)

122 .get.mstyle <- get(".get.mstyle", envir = metafor)

123 .chkclass <- get(".chkclass", envir = metafor)

124

125 my.weights.rma.uni <- function (object , type = "diagonal", ...) {

126 mstyle <- .get.mstyle("crayon" %in% .packages ())

127 .chkclass(class(object), must = "rma.uni", notav = "rma.uni.selmodel")

128 na.act <- getOption("na.action")

129 if (!is.element(na.act , c("na.omit", "na.exclude",

130 "na.fail", "na.pass")))

131 stop(mstyle$stop("Unknown ’na.action ’ specified under options ()."))

132 type <- match.arg(type , c("diagonal", "matrix"))

133 x <- object

134 if (x$weighted) {

135 if (is.null(x$weights)) {

136 W <- diag(1/(x$vi + x$tau2), nrow = x$k, ncol = x$k)

137 }

138 else {

139 W <- diag(x$weights , nrow = x$k, ncol = x$k)

140 }

141 }

142 else {

143 W <- diag(1/x$k, nrow = x$k, ncol = x$k)

144 }

145 if (type == "diagonal") {

146 wi <- as.vector(diag(W))

147 weight <- rep(NA_real_ , x$k.f)

148 weight[x$not.na] <- wi/weight_sum * 100

149 names(weight) <- x$slab

150 if (na.act == "na.omit")

151 weight <- weight[x$not.na]

152 if (na.act == "na.fail" && any(!x$not.na))

153 stop(mstyle$stop("Missing values in weights."))

154 return(weight)

155 }

156 if (type == "matrix") {

157 Wfull <- matrix(NA_real_ , nrow = x$k.f, ncol = x$k.f)

158 Wfull[x$not.na , x$not.na] <- W
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159 rownames(Wfull) <- x$slab

160 colnames(Wfull) <- x$slab

161 if (na.act == "na.omit")

162 Wfull <- Wfull[x$not.na , x$not.na , drop = FALSE]

163 if (na.act == "na.fail" && any(!x$not.na))

164 stop(mstyle$stop("Missing values in results."))

165 return(Wfull)

166 }

167 }

168

169 assignInNamespace("weights.rma.uni", my.weights.rma.uni , metafor)

170

171 # rerun rma with manual weights

172 manual_model <- rma(yi = yi, vi = vi, weighted = TRUE , weights = manual ,

173 method = "DL",

174 slab = paste0(

175 unlist(

176 regmatches(x = meta_data$StudyAbb ,

177 m = gregexpr(pattern = "(^[\u00C0-\u017FA

-z-]+_([0-9]){1})|(^[\u00C0-\u017FA-z

-]+)",

178 text = meta_data$StudyAbb ,

179 perl = TRUE))),

180 ", ",

181 unlist(

182 regmatches(x = meta_data$StudyAbb ,

183 m = gregexpr(pattern = "(?≤\\D|_2|_3)[0-9

]{4}[abc]{0,1}$",

184 text = meta_data$StudyAbb ,

185 perl = TRUE))),

186 " (",

187 meta_data$id,

188 ")"),

189 data = meta_data)

190

191 # for -loop to create forest plots

192 for (i in list(1:20, 21:37, 38:92, 93:118, 119:181, 182:214,

193 215:242, 243:262, 263:304, 305:344, 345:372,

194 373:395, 396:419, 420:448, 449:477, 478:500)) {

195 list_weights <- list(1:17, 18:34, 35:51, 52:68, 69:85, 86:102,

196 103:119, 120:136, 137:153, 154:170, 171:187,

197 188:204, 205:221, 222:238, 239:255, 256:272)

198 z <- list(1:20, 21:37, 38:92, 93:118, 119:181, 182:214,

199 215:242, 243:262, 263:304, 305:344, 345:372,

200 373:395, 396:419, 420:448, 449:477, 478:500)

201 a <- which(sapply(z, FUN = function(X) i[[1]] %in% X))

202 png(filename = paste0("graphics/forestplot", a, ".png"),

203 width = 20, height = 13, units = "in", res = 300)

204 forestplot <- manual_model

205 forestplot$vi <- forestplot$vi[i]

206 forestplot$vi.f <- forestplot$vi.f[i]

207 forestplot$yi <- forestplot$yi[i]

208 forestplot$yi.f <- forestplot$yi.f[i]

209 forestplot$slab <- forestplot$slab[i]
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210 forestplot$not.na <- forestplot$not.na[i]

211 forestplot$weights <- forestplot$weights[list_weights [[a]]]

212 forestplot$k <- 17

213 forestplot$k.f <- 17

214 forest(forestplot ,

215 transf = exp ,

216 refline = 1,

217 header = TRUE ,

218 digits = 3L,

219 cex = 1.7)

220 dev.off()

221 }

222

223 # re-edit weights.rma.uni in metafor package

224 assignInNamespace("weights.rma.uni", .weights.rma.uni , metafor)

225

226

227 # compare calculations of variance of ln CVR ------------------------------

228 # functions for ln CVR of Nakagawa

229 # ln CVR

230 Calc.lnCVR <- function(CMean , CSD , CN, EMean , ESD , EN){

231 ES <- log(ESD) - log(EMean) + 1/(2*(EN-1)) -

232 (log(CSD) - log(CMean) + 1/(2*(CN-1)))

233 return(ES)

234 }

235

236 # variance of ln CVR

237 Calc.var.lnCVR <- function(CMean , CSD , CN, EMean , ESD , EN,

238 Equal.E.C.Corr = TRUE) {

239 if (Equal.E.C.Corr == TRUE) {

240 mvcorr <- cor.test(log(c(CMean , EMean)),

241 log(c(CSD , ESD)))$estimate

242 S2 <- CSD^2/(CN*(CMean^2)) + 1/(2*(CN-1)) -

243 2*mvcorr*sqrt((CSD^2/(CN*(CMean^2)))*(1/(2*(CN-1)))) +

244 ESD^2/(EN*(EMean^2)) + 1/(2*(EN -1)) -

245 2*mvcorr*sqrt((ESD^2/(EN*(EMean^2)))*(1/(2*(EN-1))))

246 }

247 else {

248 Cmvcorr <- cor.test(log(CMean), log(CSD))$estimate

249 Emvcorr <- cor.test(log(EMean), log(ESD))$estimate

250 S2 <- CSD^2/(CN*(CMean^2)) + 1/(2*(CN-1)) -

251 2*Cmvcorr*sqrt((CSD^2/(CN*(CMean^2)))*(1/(2*(CN-1)))) +

252 ESD^2/(EN*(EMean^2)) + 1/(2*(EN -1)) -

253 2*Emvcorr*sqrt((ESD^2/(EN*(EMean^2)))*(1/(2*(EN-1))))

254 }

255 return(S2)

256 }

257

258 # version1: escalc

259 version1 <- meta_data$vi

260 # version2: function of Nakagawa with equal correlation between mean and SD

261 version2 <- Calc.var.lnCVR(CMean = exp(meta_data$LogMean_1),

262 CSD = exp(meta_data$LogSD_1 -

263 1/(2*( unlisted_data$n_completed_1 - 1))),
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264 CN = meta_data$n_completed_1,

265 EMean = exp(meta_data$LogMean_0),

266 ESD = exp(meta_data$LogSD_0 -

267 1/(2*( unlisted_data$n_completed_0 - 1))),

268 EN = meta_data$n_completed_0,

269 Equal.E.C.Corr = TRUE)

270 # version3: function of Nakagawa with separate correlation between mean and SD

271 version3 <- Calc.var.lnCVR(CMean = exp(meta_data$LogMean_1),

272 CSD = exp(meta_data$LogSD_1 -

273 1/(2*( unlisted_data$n_completed_1 - 1))),

274 CN = meta_data$n_completed_1,

275 EMean = exp(meta_data$LogMean_0),

276 ESD = exp(meta_data$LogSD_0 -

277 1/(2*( unlisted_data$n_completed_0 - 1))),

278 EN = meta_data$n_completed_0,

279 Equal.E.C.Corr = FALSE)

280 # comparison

281 df_versions_varlnCVR <- data.frame(version1, version2, version3)
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