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Implications

* For many patients with chronic organ failure, trans-
plantation is the only therapeutic option, but the num-
ber of donated human organs and tissues falls far short
of the need.

* Porcine cells, tissues, and organs likely will be an al-
ternative transplant source, since pigs can be genetic-
ally engineered to overcome rejection mechanisms and
physiological incompatibilities, and to reduce the risk
of transmitting zoonotic pathogens.

» Significant progress has been made in many areas of
xenotransplantation, including pancreatic islets, neur-
onal cells, and corneas, but also vascularized organs,
especially kidneys and hearts.

» In view of recent preclinical breakthroughs, such
as consistent long-term survival of baboons
after orthotopic transplantation of a genetically
multimodified porcine heart, xenotransplantation can
be considered as a realistic future therapeutic option.
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Infroduction

The number of donated human organs and tissues for pa-
tients with terminal organ failure falls far short of the need.
According to the United Network for Organ Sharing (www.
unos.org), more than 113,000 candidates for transplant are cur-
rently on the U.S. national waiting list, but only 36,527 organ
transplants could be performed in 2018. Alternative sources,
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such as organs and tissues from animals, are therefore ur-
gently needed. For a number or reasons, including size, ana-
tomical, and physiological similarities with humans, the pig is
the preferred donor species (reviewed in Cooper et al., 2016).
Importantly, pigs can be optimized by genetic engineering as
a source of cells, tissues, and organs for xenotransplantation.
Recent advances in gen(om)e editing are speeding up progress
in this field. Numerous genetically (multi-)modified pig lines
have been generated to prevent immune rejection of xenotrans-
plants, to overcome physiological incompatibilities, and to
reduce the risk of transmitting zoonotic pathogens (Table 1;
reviewed in Kemter et al., 2018).

Genetic modifications to overcome hyperacute
and acute vascular rejection of pig-to-primate
xenofransplants

Hyperacute rejection of vascularized pig-to-primate xeno-
transplants is triggered by binding of preformed antibodies of
the recipient to specific antigens on the xenogeneic tissue and
subsequent activation of the complement system. The major
xeno-antigen is galactose-al,3-galactose (aGal) synthesized by
a-1,3-galactosyltransferase (GGTA1). Humans and Old World
monkeys lack GGTAI1 and aGal epitopes, but are exposed to
bacterial aGal epitopes eliciting a persistent anti-aGal anti-
body response in early life. Other prominent xeno-antigens
are N-acetylneuraminic acid (Neu5Gc) synthesized by cyti-
dine monophosphate-N-acetylneuraminic acid hydroxylase
(CMAH) and an Sd(a)-like glycan made by porcine $-1,4-N-
acetyl-galactosaminyl transferase 2 (B4GALNT?2) (reviewed in
Byrne et al., 2015).

An important step toward long-term survival of vas-
cularized porcine xenotransplants in nonhuman primates
was the generation of pigs lacking functional GGTAI al-
leles (Phelps et al., 2003). Subsequently, multiple GGTAI
knockout pig lines were generated, initially by gene
targeting (reviewed in Klymiuk et al., 2010) and later by
gene editing (e.g., Hauschild et al., 2011). In addition, pigs
with knockout mutations of CMAH, B4GALNT2 or com-
binations of these modifications were generated (Estrada
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Table 1. Selection of genetic modifications of donor pigs for xenotransplantation

Aim/Genetic modification (GM)

Reference

Deletion of sugar moieties of pig cells with pre-formed recipients’ antibodies
a-1,3-galactosyltransferase knockout (GGTA1-KO)

Cytidine monophosphate-N-acetylneuraminic acid hydroxylase knockout (CMAH-KO)

B-1,4-N-acetyl-galactosaminyl transferase 2 knockout (B4GALNT2-KO)
Complement regulation by human complement-regulatory gene expression

Human membrane cofactor protein transgenic (hCD46-tg)

Human decay-accelerating factor transgenic (hCD55-tg)

Human protectin or membrane inhibitor of reactive lysis transgenic (hCD59-tg)
Human complement-regulatory protein Cl inhibitor transgenic (hC1-INH-tg)

Coagulation regulation by human coagulation-regulatory gene expression
Human thrombomodulin transgenic (hnTBM-tg)
Human endothelial protein C receptor transgenic (hEPCR-tg)
Human tissue factor pathway inhibitor transgenic (h"TFPI-tg)

Human ectonucleoside triphosphate diphosphohydrolase-1 transgenic (hCD39-tg)

Human ecto-5"-nucleotidase transgenic (hCD73-tg)
Prevention of cell-mediated rejection - T cells

Human LEA29Y transgenic (LEA29Y-tg)

Human CTLA4-Ig transgenic (hCTLA4-1g-tg)

Porcine CTLA4-Ig transgenic (pCTLA4-Ig-tg)

SLA class I knockout

Human dominant-negative mutant class II transactivator transgenic (CIITA-DN-tg)

Human TNF-related apoptosis-inducing ligand transgenic (hnTRAIL-tg)

Human-programmed cell death 1 ligand | transgenic (PD-L1-tg)
Prevention of cell-mediated rejection - natural killer cells and macrophages

HLA-E/human b2-microglobulin transgenic (HLA-E/b2M-tg)

Human CD47 transgenic (hCD47-tg)

(Phelps et al., 2003)
(Kwon et al., 2013; Lutz et al., 2013)
(Estrada et al., 2015)

(Diamond et al., 2001)
(Cozzi and White, 1995)
(Fodor et al., 1994)
(Kwon et al., 2017)

(Wuensch et al., 2014)
(Iwase et al., 2014)
(Lin et al., 2010)
(Wheeler et al., 2012)
(Lee et al., 2017)

(Klymiuk et al., 2012; Béhr et al., 2016)
(Martin et al., 2005)

(Phelps et al., 2009)

(Reyes et al., 2014)

(Hara et al., 2013)

(Klose et al., 2005)

(Buermann et al., 2018)

(Weiss et al., 2009)
(Tena et al., 2014)

Expression of anti-inflammatory proteins or knockout of pro-inflammatory proteins

Human tumor necrosis factor a—induced protein 3 (TNFAIP3) transgenic (A20-tg)

Human heme oxygenase 1 transgenic (hHO-1-tg)
Soluble human TNFRI-Fc transgenic (shTNFRI-Fc-tg)

Reduction/elimination of the risk of PERV transmission
Knockdown of PERV expression

Genome-wide inactivation of PERV pol gene

Genetically multimodified pigs
GGTA1-KO/hCD46-tg/hCD39-tg
GGTAI1-KO/hCD46-tg/hTFPI-tg/pCTLA4-Tg-tg
GGTA1-KO/hCD46-tg/hTFPI-tg/pCTL4-Ig-tg/hCD39-tg
GGTAI1-KO/hCD55-tg/hCD59-tg/human fucosyltransferase (HT)-tg
GGTA1-KO/hCD55-tg/hCD59-tg
GGTA1-KO/hCD55-tg/hCD39-tg/TFPI-tg/hC1-INH-tg/hTNFAIP3-tg
GGTA1-KO/CMAH-KO/hCD46-tg/hCD55-tg/hCD59-tg/hA20-tg/hHO1-tg

(Oropeza et al., 2009)
(Petersen et al., 2011)
(Yan et al., 2016)

(Miyagawa et al., 2005; Dieckhoff et al., 2008;
Ramsoondar et al., 2009)

(Niu et al., 2017)

(Bottino et al., 2014)

(Bottino et al., 2014)

(Bottino et al., 2014)

(Le Bas-Bernardet et al., 2011)
(Hawthorne et al., 2014)
(Kwon et al., 2017)

(Fischer et al., 2016)

et al., 2015). The authors showed that cells from GGTA1/
CMAH/B4GALNT2-deficient pigs exhibited reduced
human IgM and IgG binding compared with cells lacking
only GGTAI1 and CMAH.

A complementary strategy is the generation of transgenic
pigs that express human complement-regulatory proteins, such
as CD46 (membrane cofactor protein, MCP), CD55 (comple-
ment decay-accelerating factor, DAF), or CD59 (membrane
inhibitor of reactive lysis, MIRL), singly or in combination.
These complement-regulatory proteins attenuate complement

activation and significantly prolong survival of pig-to-nonhuman
primate xenotransplants (reviewed in Cooper et al., 2016).

By combination of GGTAI knock-out with the expression
of one or more human complement-regulatory proteins, the
problem of hyperacute rejection of porcine xenotransplants in
nonhuman primates has been solved. For clinical trials, add-
itional knock-outs of CMAH and B4GALNT2 may be re-
quired (reviewed in Kemter et al., 2018).

Besides preformed antibody binding to carbohydrate
antigens, xenotransplantation of porcine cells, tissues, or
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organs elicits a humoral immune response (reviewed in Vadori
and Cozzi, 2015). The risk is likely increased in presensitized
patients with antibodies against major histocompatibility
complex (MHC) class I molecules/human leukocyte antigens,
since these antibodies may cross-react with conserved epitopes
of swine MHC subclasses/swine leukocyte antigens (Mulder
et al., 2010). To overcome this problem, pigs lacking MHC
class I have been generated. These pigs showed reduced levels
of CD4~ CD8" T cells in the peripheral blood, but appeared
healthy and developed normally (Reyes et al., 2014).

Genetic modifications to overcome cellular rejec-
tion of pig-to-primate xenotransplants

Cellular rejection of pig-to-primate xenotransplants involves
both innate and adaptive components of the cellular immune
system. Immune cell infiltration of tissue and solid organ xeno-
transplants starts with neutrophils, followed by macrophages
and T cells (reviewed in Vadori and Cozzi, 2015). In addition,
natural killer cells may induce endothelial cell activation in the
xenotransplant and lyse porcine cells directly and via antibody-
dependent cytotoxicity (reviewed in Weiss et al., 2009).

Cellular xenotransplants such as porcine islets in
nonhuman primates are mainly rejected by CD4" T cells.
Their activation can be induced by direct binding of primate
T-cell receptors to swine leukocyte antigen class 1 and class 2
molecules of porcine cells, or indirectly by antigen-presenting
cells of the recipient expressing MHCs with processed xeno-
antigens (reviewed in Vadori and Cozzi, 2015). In addition,
co-stimulatory signals, which may induce and amplify an ef-
fective immune response, or exhibit an inhibitory function, are
involved in the regulation of T-cell function. The most prom-
inent T-cell co-stimulatory signaling complexes are CD40
(on APCs)-CD154 (on T cells) and CD80/CD86 (on antigen-
presenting cells)-CD28 (on T cells). The CD80/CD86-CD28
co-stimulation pathway can be blocked by systemic treatment
with CTLA4-Ig (abatacept) or its affinity-optimized version
LEA29Y (belatacept) (reviewed in Bartlett et al., 2016). These
molecules can also be expressed in genetically modified donor
pigs, opening the prospect of inhibiting T-cell activation lo-
cally at the graft site, thus avoiding systemic immunosuppres-
sion of the recipient and the consequent risk of infection.
Protective effects of human CTLA4-Ig expression on por-
cine cells and tissues were shown in xenogeneic neuronal cell
(Aron Badin et al., 2016) and skin transplantation experi-
ments (Wang et al., 2015).

LEA29Y expressing transgenic porcine neonatal islet-like
cell clusters transplanted into immunodeficient diabetic mice
normalized blood glucose levels and, in contrast to wild-type
neonatal islet-like cell clusters, were not rejected after the re-
cipient mice were reconstituted with human immune cells
(Figure 1) (Klymiuk et al., 2012). A subsequent study using
diabetic mice with a long-term “humanized” immune system
as recipients showed that LEA29Y expressing porcine neo-
natal islet-like cell clusters survived for several months and
normalized the recipients’ blood glucose levels, whereas

wild-type islets did not engraft in this model (Wolf-van Buerck
et al., 2017). Neonatal islet-like cell clusters have a number of
advantages over adult porcine islets, most importantly their
straightforward isolation, their proliferation capacity, their su-
perior revascularization after transplantation, and the fact that
donor animals do not need to be maintained for a long period
under expensive designated pathogen-free conditions (reviewed
in Kemter and Wolf, 2018). However, neonatal islet-like cell
clusters are immature and not fully functional after isolation.
To visualize the maturation and proliferation of neonatal islet-
like cell clusters, we generated transgenic pigs expressing en-
hanced green fluorescent protein (eGFP) under the control of
the porcine insulin gene (/NS) promoter. The reporter gene is
expressed specifically in beta cells and the level of expression
increases upon beta-cell maturation (Kemter et al., 2017). This
model is useful to study beta-cell maturation and expansion in
vivo, e.g., after transplantation into the anterior eye chamber
of mice. Moreover, eGFP-expressing beta cells can be re-
covered by fluorescence-activated cell sorting and processed for
molecular profiling studies, such as single-cell RNA sequencing
(Kemter and Wolf, 2018).

To prevent lysis of xenogeneic cells by natural killer cells,
transgenic pigs expressing HLA-E/beta2-microglobulin were
generated. Their cells were effectively protected against human
natural killer-cell mediated cytotoxicity, depending on the level
of CD94/NKG2A expression on the natural killer cells (Weiss
et al., 2009). To control macrophage activity, human CD47 has
been expressed on porcine cells to activate the “don’t eat me
signal” receptor SIRPa on (human) monocytes/macrophages
and to suppress phagocytic activity (reviewed in Cooper et al.,
2016).

Genetic modifications fo overcome dysregulation
of coagulation and inflammation

Dysregulation of coagulation and disordered hemostasis
are frequent complications in preclinical pig-to-nonhuman pri-
mate xenotransplantation studies. Inflammation, vascular in-
jury, innate, humoral and cellular immune responses, and, in
particular, molecular incompatibilities between porcine and
primate regulators of coagulation are discussed as potential
causes (reviewed in Cowan and Robson, 2015).

Key endothelial anticoagulant/antithrombotic proteins that
have been modified/supplemented by genetic engineering of
donor pigs include human thrombomodulin (TBM), endo-
thelial protein C receptor, tissue factor pathway inhibitor, and
ectonucleoside triphosphate diphosphohydrolase 1 (CD39) (re-
viewed in Cowan and Robson, 2015). Porcine thrombomodulin
binds human thrombin, but is a poor co-factor for activation
of human protein C. Therefore, we generated transgenic pigs
expressing human thrombomodulin under the control of the
porcine thrombomodulin gene (THBD) promoter (Figure 2)
(Wuensch et al., 2014). A GGTAI knockout, hCD46/hTBM
transgenic pig heart survived for 945 d after heterotopic ab-
dominal transplantation into a baboon with appropriate im-
munosuppression (Mohiuddin et al., 2016).
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Figure 1. Protection of xenotransplanted porcine pancreatic islets against T-cell mediated rejection by local expression of LEA29Y. (A) Principle of
co-stimulation blockade of T cells. Activation of T cells requires interaction between the T-cell receptor and a peptide-loaded MHC on an antigen-presenting

cell (APC). In addition, a second signal such as the interaction between CD28 und CD80/CD86 is required. The interaction of CTLA4 and CD80/CD86 blocks
T-cell activation. The latter can also be achieved by the soluble molecule CTLA4-Ig or its affinity-optimized version LEA29Y. (B) Immunohistochemical staining
of LEA29Y in pancreas sections from INS-LEA29Y transgenic pigs. (C) Transplantation of neonatal islet-like cell clusters (NICCs) from wild-type (WT) or
INS-LEA29Y transgenic pigs (LEA29Y) under the kidney capsule of immune deficient streptozotocin (STZ)-diabetic NSG mice results in an insulin-positive cell
mass that is able to normalize their blood glucose level. If the mice are subsequently reconstituted with human peripheral blood mononuclear cells (hPBMCs),
the WT islets are rejected while the LEA29Y transgenic islets are protected (Klymiuk et al., 2012). (D) Histology of the transplantation site. In recipients of

WT NICCs, very few insulin-positive cells were found, but a massive T-cell infiltration (shown by CD45 staining) was evident. In contrast, LEA29Y expressing
NICCs survived and formed large clusters of insulin-positive cells. T-cell infiltration was observed in the periphery, but not within the insulin-positive cell clusters.

In addition to modifications targeting coagulation dis-
orders in xenotransplantation, transgenic pigs expressing
antiapoptotic and antiinflammatory proteins, such as human
tumor necrosis factor-alpha-induced protein 3 (A20) (Oropeza
et al., 2009) and human heme oxygenase-1 (HO-1) (Petersen
et al., 2011), have been produced.

Genetic modifications to decrease the risk for
zoonoses

Xenotransplantation may be associated with the risk of
transmission of porcine microorganisms including bacteria,
fungi, and viruses able to adapt in the recipient and to induce a
disease (zoonosis or xenosis) (reviewed in Fishman, 2018). Many
microorganisms can be eliminated from the donor pigs by selec-
tion, treatment with antibiotics, antimycotics or antiviral drugs,
by vaccination, by early weaning and colostrum deprivation, by
caesarean delivery or embryo transfer, and by maintenance of
the donor animals in designated pathogen-free housing facilities
(reviewed in Kemter et al., 2018). An example is the elimination
of porcine cytomegalovirus by early weaning of piglets, even if
their mothers were infected (Egerer et al., 2018).

In contrast, porcine endogenous retroviruses (PERVs)
cannot be eliminated this way, because they are integrated in
the genome of all pigs and can be released from pig tissues as
infectious virus particles. Until now, no transmission of PERV
has been observed in preclinical and clinical trials (Denner,
2018). To prevent PERV transmission despite their integration
in the pig genome, several strategies have been developed: 1) se-
lection of pigs with a low copy number and a low expression
of PERV-A and PERV-B proviruses; 2) selection of PERV-C
free animals to avoid PERV-A/C recombinants with increased
replication competence; 3) knockdown of PERV expression by
RNA interference in transgenic pigs; and 4) vaccination against
transmembrane and surface envelope proteins of PERV (re-
viewed in Kemter et al., 2018).

A breakthrough was achieved when the CRISPR/Cas9
technology was used to inactivate PERVs integrated in the
pig genome. After proof of principle in immortalized PK-15
pig cells (Yang et al., 2015), all PERV copies (altogether
25) were inactivated in primary pig cells and these were used
for somatic cell nuclear transfer to produce live healthy pig-
lets (Niu et al., 2017). The technical feasibility of reducing
the risk of PERV transmission to zero is exciting, but it is
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Figure 2. Expression of human thrombomodulin (hnTBM) in genetically (multi-)modified pigs. (A) Expression vector with the porcine THBD gene promoter.
(B) Immunofluorescence staining of hTBM in transgenic porcine endothelial cells. (C) Expression of hTBM in vascular endothelial cells of myocardium from
transgenic pigs. (D) Beads covered with hTBM expressing endothelial cells from genetically (multi-)modified pigs delay clotting of human blood (Wuensch

et al., 2014).

not clear at this stage if genome-wide PERV inactivation
by CRISPR/Cas9 is actually required for entering clinical
xenotransplantation trials.

Recent breakthrough in orthotopic pig-to-baboon
cardiac xenotfransplantation

Heart transplantation is the only cure for patients with
terminal cardiac failure, but the supply of human donor or-
gans does not meet the clinical need. Xenotransplantation
of genetically modified pig hearts is a potential alternative
as demonstrated by long-term survival (up to 945 d) of
genetically multimodified pig hearts (GGTA1 KO, hCD46/
hTBM transgenic) after heterotopic abdominal transplant-
ation in baboons (Mohiuddin et al., 2016). Although this
model demonstrated long-term acceptance of discordant
cardiac xenotransplants with safe immunosuppression, their
life supporting function remained to be proven. Therefore,
Langin et al. (2018) used the same genetic background of
donor pigs and adapted the immunosuppressive regimen de-
veloped by Mohiuddin et al. (2016) to perform a series of
orthotopic heart transplantation (= heart replacement) ex-
periments in baboons, finally resulting in consistent long-
term success with survival times up to 195 d (Figure 3). The
most essential improvements were 1) specific perfusion pres-
ervation of the xeno-hearts after explantation and during im-
plantation with 8 °C-oxygenated hyperoncotic cardioplegic

solution containing nutrition, hormones, and erythrocytes;
and 2) post-transplantation growth control of the xeno-hearts
by early weaning of glucocorticoids, lowering the recipients’
blood pressure, and inhibition of mTOR (mechanistic target
of rapamycin) activation to counteract cardiomyocyte hyper-
trophy. Consistent life-supporting function of xeno-hearts
for up to 195 d in the most relevant and stringent preclinical
animal model is a milestone on the way to clinical cardiac
xenotransplantation (Langin et al., 2018).

Conclusions and Perspectives

Recent studies of life-supporting cardiac (Langin et al.,
2018) and kidney xenotransplantation (survival > 400
d; Kim et al., 2019) in nonhuman primates have achieved
survival times that the initiation of clinical xenotransplant-
ation trials may be justified. This requires an internation-
ally accepted regulatory framework covering safety and
quality standards of donor pigs, requirements for preclin-
ical data, selection and information of trial participants,
post-transplant long-term patient follow-up, and storage of
appropriate pre- and post-procedure specimens from donor
pigs and patients. Pertinent recommendations from the Third
WHO Global Consultation on Regulatory Requirements
for Xenotransplantation Clinical Trials (Changsha, China,
December 12-14, 2018) will be published as The 2018
Changsha Communiqué.
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Donor pig Perfusion Recipient baboon

Explantation

Implantation

GGTA1 knockout Oxygenated Immunosuppression

hCD46 transgenic hyperoncotic Early weaning of cortisone

hTBM transgenic blood-based Growth inhibition
solution Reducing blood pressure

3 51 days (euthanasia due to occlusion of thoracic duct)

2> 90 days
> 90 days

} euthanasia (study protocol)

> 182 days

> 195 days

Survival time after orthotopic cardiac xenotransplantation

Figure 3. Factors enabling consistent success in life-supporting pig-to-baboon cardiac xenotransplantation. In addition to genetically multimodified porcine donor

hearts (lacking aGal epitopes and expressing human CD46 as well as human thrombomodulin) and appropriate immunosuppression, two steps were key to
success: 1) nonischemic preservation of the donor hearts by perfusion with oxygenated hyperoncotic blood-based solution; and 2) prevention of detrimental

xeno-heart overgrowth by early weaning of cortisone, lowering of blood pressure and treatment with the mTOR inhibiting prodrug temsirolimus (Langin et al.,

2018).
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