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Introduction

The number of donated human organs and tissues for pa-
tients with terminal organ failure falls far short of the need. 
According to the United Network for Organ Sharing (www.
unos.org), more than 113,000 candidates for transplant are cur-
rently on the U.S. national waiting list, but only 36,527 organ 
transplants could be performed in 2018. Alternative sources, 

such as organs and tissues from animals, are therefore ur-
gently needed. For a number or reasons, including size, ana-
tomical, and physiological similarities with humans, the pig is 
the preferred donor species (reviewed in Cooper et al., 2016). 
Importantly, pigs can be optimized by genetic engineering as 
a source of cells, tissues, and organs for xenotransplantation. 
Recent advances in gen(om)e editing are speeding up progress 
in this field. Numerous genetically (multi-)modified pig lines 
have been generated to prevent immune rejection of xenotrans-
plants, to overcome physiological incompatibilities, and to 
reduce the risk of transmitting zoonotic pathogens (Table 1; 
reviewed in Kemter et al., 2018).

Genetic modifications to overcome hyperacute 
and acute vascular rejection of pig-to-primate 
xenotransplants

Hyperacute rejection of vascularized pig-to-primate xeno-
transplants is triggered by binding of preformed antibodies of 
the recipient to specific antigens on the xenogeneic tissue and 
subsequent activation of the complement system. The major 
xeno-antigen is galactose-α1,3-galactose (αGal) synthesized by 
α-1,3-galactosyltransferase (GGTA1). Humans and Old World 
monkeys lack GGTA1 and αGal epitopes, but are exposed to 
bacterial αGal epitopes eliciting a persistent anti-αGal anti-
body response in early life. Other prominent xeno-antigens 
are N-acetylneuraminic acid (Neu5Gc) synthesized by cyti-
dine monophosphate-N-acetylneuraminic acid hydroxylase 
(CMAH) and an Sd(a)-like glycan made by porcine β-1,4-N-
acetyl-galactosaminyl transferase 2 (B4GALNT2) (reviewed in 
Byrne et al., 2015).

An important step toward long-term survival of  vas-
cularized porcine xenotransplants in nonhuman primates 
was the generation of  pigs lacking functional GGTA1 al-
leles (Phelps et  al., 2003). Subsequently, multiple GGTA1 
knockout pig lines were generated, initially by gene 
targeting (reviewed in Klymiuk et  al., 2010) and later by 
gene editing (e.g., Hauschild et al., 2011). In addition, pigs 
with knockout mutations of  CMAH, B4GALNT2 or com-
binations of  these modifications were generated (Estrada 

Implications

•	 For many patients with chronic organ failure, trans-
plantation is the only therapeutic option, but the num-
ber of donated human organs and tissues falls far short 
of the need.

•	 Porcine cells, tissues, and organs likely will be an al-
ternative transplant source, since pigs can be genetic-
ally engineered to overcome rejection mechanisms and 
physiological incompatibilities, and to reduce the risk 
of transmitting zoonotic pathogens.

•	 Significant progress has been made in many areas of 
xenotransplantation, including pancreatic islets, neur-
onal cells, and corneas, but also vascularized organs, 
especially kidneys and hearts.

•	 In view of recent preclinical breakthroughs, such 
as consistent long-term survival of baboons 
after orthotopic transplantation of a genetically 
multimodified porcine heart, xenotransplantation can 
be considered as a realistic future therapeutic option.
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et al., 2015). The authors showed that cells from GGTA1/
CMAH/B4GALNT2–deficient pigs exhibited reduced 
human IgM and IgG binding compared with cells lacking 
only GGTA1 and CMAH.

A complementary strategy is the generation of transgenic 
pigs that express human complement-regulatory proteins, such 
as CD46 (membrane cofactor protein, MCP), CD55 (comple-
ment decay-accelerating factor, DAF), or CD59 (membrane 
inhibitor of reactive lysis, MIRL), singly or in combination. 
These complement-regulatory proteins attenuate complement 

activation and significantly prolong survival of pig-to-nonhuman 
primate xenotransplants (reviewed in Cooper et al., 2016).

By combination of GGTA1 knock-out with the expression 
of one or more human  complement-regulatory proteins, the 
problem of hyperacute rejection of porcine xenotransplants in 
nonhuman primates has been solved. For clinical trials, add-
itional knock-outs of CMAH and B4GALNT2 may be re-
quired (reviewed in Kemter et al., 2018).

Besides preformed antibody binding to carbohydrate 
antigens, xenotransplantation of porcine cells, tissues, or 

Table 1. Selection of genetic modifications of donor pigs for xenotransplantation
Aim/Genetic modification (GM) Reference

Deletion of sugar moieties of pig cells with pre-formed recipients’ antibodies

  α-1,3-galactosyltransferase knockout (GGTA1-KO) (Phelps et al., 2003)

  Cytidine monophosphate-N-acetylneuraminic acid hydroxylase knockout (CMAH-KO) (Kwon et al., 2013; Lutz et al., 2013)

  β-1,4-N-acetyl-galactosaminyl transferase 2 knockout (B4GALNT2-KO) (Estrada et al., 2015)

Complement regulation by human complement-regulatory gene expression

  Human membrane cofactor protein transgenic (hCD46-tg) (Diamond et al., 2001)

  Human decay-accelerating factor transgenic (hCD55-tg) (Cozzi and White, 1995)

  Human protectin or membrane inhibitor of reactive lysis transgenic (hCD59-tg) (Fodor et al., 1994)

  Human complement-regulatory protein C1 inhibitor transgenic (hC1-INH-tg) (Kwon et al., 2017)

Coagulation regulation by human coagulation-regulatory gene expression

  Human thrombomodulin transgenic (hTBM-tg) (Wuensch et al., 2014)

  Human endothelial protein C receptor transgenic (hEPCR-tg) (Iwase et al., 2014)

  Human tissue factor pathway inhibitor transgenic (hTFPI-tg) (Lin et al., 2010)

  Human ectonucleoside triphosphate diphosphohydrolase-1 transgenic (hCD39-tg) (Wheeler et al., 2012)

  Human ecto-5′-nucleotidase transgenic (hCD73-tg) (Lee et al., 2017)

Prevention of cell-mediated rejection - T cells

  Human LEA29Y transgenic (LEA29Y-tg) (Klymiuk et al., 2012; Bähr et al., 2016)

  Human CTLA4-Ig transgenic (hCTLA4-Ig-tg) (Martin et al., 2005)

  Porcine CTLA4-Ig transgenic (pCTLA4-Ig-tg) (Phelps et al., 2009)

  SLA class I knockout (Reyes et al., 2014)

  Human dominant-negative mutant class II transactivator transgenic (CIITA-DN-tg) (Hara et al., 2013)

  Human TNF-related apoptosis-inducing ligand transgenic (hTRAIL-tg) (Klose et al., 2005)

  Human-programmed cell death 1 ligand 1 transgenic (PD-L1-tg) (Buermann et al., 2018)

Prevention of cell-mediated rejection - natural killer cells and macrophages

  HLA-E/human b2-microglobulin transgenic (HLA-E/b2M-tg) (Weiss et al., 2009)

  Human CD47 transgenic (hCD47-tg) (Tena et al., 2014)

Expression of anti-inflammatory proteins or knockout of pro-inflammatory proteins

  Human tumor necrosis factor α–induced protein 3 (TNFAIP3) transgenic (A20-tg) (Oropeza et al., 2009)

  Human heme oxygenase 1 transgenic (hHO-1-tg) (Petersen et al., 2011)

  Soluble human TNFRI-Fc transgenic (shTNFRI-Fc-tg) (Yan et al., 2016)

Reduction/elimination of the risk of PERV transmission

  Knockdown of PERV expression (Miyagawa et al., 2005; Dieckhoff et al., 2008; 
Ramsoondar et al., 2009)

  Genome-wide inactivation of PERV pol gene (Niu et al., 2017)

Genetically multimodified pigs

  GGTA1-KO/hCD46-tg/hCD39-tg (Bottino et al., 2014)

  GGTA1-KO/hCD46-tg/hTFPI-tg/pCTLA4-Ig-tg (Bottino et al., 2014)

  GGTA1-KO/hCD46-tg/hTFPI-tg/pCTL4-Ig-tg/hCD39-tg (Bottino et al., 2014)

  GGTA1-KO/hCD55-tg/hCD59-tg/human fucosyltransferase (HT)-tg (Le Bas-Bernardet et al., 2011)

  GGTA1-KO/hCD55-tg/hCD59-tg (Hawthorne et al., 2014)

  GGTA1-KO/hCD55-tg/hCD39-tg/TFPI-tg/hC1-INH-tg/hTNFAIP3-tg (Kwon et al., 2017)

  GGTA1-KO/CMAH-KO/hCD46-tg/hCD55-tg/hCD59-tg/hA20-tg/hHO1-tg (Fischer et al., 2016)
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organs elicits a humoral immune response (reviewed in Vadori 
and Cozzi, 2015). The risk is likely increased in presensitized 
patients with antibodies against major histocompatibility 
complex (MHC) class I molecules/human leukocyte antigens, 
since these antibodies may cross-react with conserved epitopes 
of swine MHC subclasses/swine leukocyte antigens (Mulder 
et  al., 2010). To overcome this problem, pigs lacking MHC 
class I have been generated. These pigs showed reduced levels 
of CD4− CD8+ T cells in the peripheral blood, but appeared 
healthy and developed normally (Reyes et al., 2014).

Genetic modifications to overcome cellular rejec-
tion of pig-to-primate xenotransplants

Cellular rejection of pig-to-primate xenotransplants involves 
both innate and adaptive components of the cellular immune 
system. Immune cell infiltration of tissue and solid organ xeno-
transplants starts with neutrophils, followed by macrophages 
and T cells (reviewed in Vadori and Cozzi, 2015). In addition, 
natural killer cells may induce endothelial cell activation in the 
xenotransplant and lyse porcine cells directly and via antibody-
dependent cytotoxicity (reviewed in Weiss et al., 2009).

Cellular xenotransplants such as porcine islets in 
nonhuman primates are mainly rejected by CD4+ T cells. 
Their activation can be induced by direct binding of  primate 
T-cell receptors to swine leukocyte antigen class 1 and class 2 
molecules of  porcine cells, or indirectly by antigen-presenting 
cells of  the recipient expressing MHCs with processed xeno-
antigens (reviewed in Vadori and Cozzi, 2015). In addition, 
co-stimulatory signals, which may induce and amplify an ef-
fective immune response, or exhibit an inhibitory function, are 
involved in the regulation of  T-cell function. The most prom-
inent T-cell co-stimulatory signaling complexes are CD40 
(on APCs)-CD154 (on T cells) and CD80/CD86 (on antigen-
presenting cells)-CD28 (on T cells). The CD80/CD86-CD28 
co-stimulation pathway can be blocked by systemic treatment 
with CTLA4-Ig (abatacept) or its affinity-optimized version 
LEA29Y (belatacept) (reviewed in Bartlett et al., 2016). These 
molecules can also be expressed in genetically modified donor 
pigs, opening the prospect of  inhibiting T-cell activation lo-
cally at the graft site, thus avoiding systemic immunosuppres-
sion of  the recipient and the consequent risk of  infection. 
Protective effects of  human CTLA4-Ig expression on por-
cine cells and tissues were shown in xenogeneic neuronal cell 
(Aron Badin et  al., 2016) and skin transplantation experi-
ments (Wang et al., 2015).

LEA29Y expressing transgenic porcine neonatal islet-like 
cell clusters transplanted into immunodeficient diabetic mice 
normalized blood glucose levels and, in contrast to wild-type 
neonatal islet-like cell clusters, were not rejected after the re-
cipient mice were reconstituted with human immune cells 
(Figure 1) (Klymiuk et  al., 2012). A  subsequent study using 
diabetic mice with a long-term “humanized” immune system 
as recipients showed that LEA29Y expressing porcine neo-
natal islet-like cell clusters survived for several months and 
normalized the recipients’ blood glucose levels, whereas 

wild-type islets did not engraft in this model (Wolf-van Buerck 
et al., 2017). Neonatal islet-like cell clusters have a number of 
advantages over adult porcine islets, most importantly their 
straightforward isolation, their proliferation capacity, their su-
perior revascularization after transplantation, and the fact that 
donor animals do not need to be maintained for a long period 
under expensive designated pathogen-free conditions (reviewed 
in Kemter and Wolf, 2018). However, neonatal islet-like  cell 
clusters are immature and not fully functional after isolation. 
To visualize the maturation and proliferation of neonatal islet-
like  cell clusters, we generated transgenic pigs expressing en-
hanced green fluorescent protein (eGFP) under the control of 
the porcine insulin gene (INS) promoter. The reporter gene is 
expressed specifically in beta cells and the level of expression 
increases upon beta-cell maturation (Kemter et al., 2017). This 
model is useful to study beta-cell maturation and expansion in 
vivo, e.g., after transplantation into the anterior eye chamber 
of mice. Moreover, eGFP-expressing beta cells can be re-
covered by fluorescence-activated cell sorting and processed for 
molecular profiling studies, such as single-cell RNA sequencing 
(Kemter and Wolf, 2018).

To prevent lysis of xenogeneic cells by natural killer cells, 
transgenic pigs expressing HLA-E/beta2-microglobulin were 
generated. Their cells were effectively protected against human 
natural killer-cell mediated cytotoxicity, depending on the level 
of CD94/NKG2A expression on the natural killer cells (Weiss 
et al., 2009). To control macrophage activity, human CD47 has 
been expressed on porcine cells to activate the “don’t eat me 
signal” receptor SIRPα on (human) monocytes/macrophages 
and to suppress phagocytic activity (reviewed in Cooper et al., 
2016).

Genetic modifications to overcome dysregulation 
of coagulation and inflammation

Dysregulation of coagulation and disordered hemostasis 
are frequent complications in preclinical pig-to-nonhuman pri-
mate xenotransplantation studies. Inflammation, vascular in-
jury, innate, humoral and cellular immune responses, and, in 
particular, molecular incompatibilities between porcine and 
primate regulators of coagulation are discussed as potential 
causes (reviewed in Cowan and Robson, 2015).

Key endothelial anticoagulant/antithrombotic proteins that 
have been modified/supplemented by genetic engineering of 
donor pigs include human thrombomodulin (TBM), endo-
thelial protein C receptor, tissue factor pathway inhibitor, and 
ectonucleoside triphosphate diphosphohydrolase 1 (CD39) (re-
viewed in Cowan and Robson, 2015). Porcine thrombomodulin 
binds human thrombin, but is a poor co-factor for activation 
of human protein C. Therefore, we generated transgenic pigs 
expressing human thrombomodulin under the control of the 
porcine thrombomodulin gene (THBD) promoter (Figure 2) 
(Wuensch et  al., 2014). A GGTA1 knockout, hCD46/hTBM 
transgenic pig heart survived for 945 d after heterotopic ab-
dominal transplantation into a baboon with appropriate im-
munosuppression (Mohiuddin et al., 2016).
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In addition to modifications targeting coagulation dis-
orders in xenotransplantation, transgenic pigs expressing 
antiapoptotic and antiinflammatory proteins, such as human 
tumor necrosis factor-alpha-induced protein 3 (A20) (Oropeza 
et  al., 2009) and human heme oxygenase-1 (HO-1) (Petersen 
et al., 2011), have been produced.

Genetic modifications to decrease the risk for 
zoonoses

Xenotransplantation may be associated with the risk of 
transmission of porcine microorganisms including bacteria, 
fungi, and viruses able to adapt in the recipient and to induce a 
disease (zoonosis or xenosis) (reviewed in Fishman, 2018). Many 
microorganisms can be eliminated from the donor pigs by selec-
tion, treatment with antibiotics, antimycotics or antiviral drugs, 
by vaccination, by early weaning and colostrum deprivation, by 
caesarean delivery or embryo transfer, and by maintenance of 
the donor animals in designated pathogen-free housing facilities 
(reviewed in Kemter et al., 2018). An example is the elimination 
of porcine cytomegalovirus by early weaning of piglets, even if  
their mothers were infected (Egerer et al., 2018).

In contrast, porcine endogenous retroviruses (PERVs) 
cannot be eliminated this way, because they are integrated in 
the genome of all pigs and can be released from pig tissues as 
infectious virus particles. Until now, no transmission of PERV 
has been observed in preclinical and clinical trials (Denner, 
2018). To prevent PERV transmission despite their integration 
in the pig genome, several strategies have been developed: 1) se-
lection of pigs with a low copy number and a low expression 
of PERV-A and PERV-B proviruses; 2)  selection of PERV-C 
free animals to avoid PERV-A/C recombinants with increased 
replication competence; 3) knockdown of PERV expression by 
RNA interference in transgenic pigs; and 4) vaccination against 
transmembrane and surface envelope proteins of PERV (re-
viewed in Kemter et al., 2018).

A breakthrough was achieved when the CRISPR/Cas9 
technology was used to inactivate PERVs integrated in the 
pig genome. After proof  of  principle in immortalized PK-15 
pig cells (Yang et  al., 2015), all PERV copies (altogether 
25) were inactivated in primary pig cells and these were used 
for somatic cell nuclear transfer to produce live healthy pig-
lets (Niu et al., 2017). The technical feasibility of  reducing 
the risk of  PERV transmission to zero is exciting, but it is 

Figure 1. Protection of xenotransplanted porcine pancreatic islets against T-cell mediated rejection by local expression of LEA29Y. (A) Principle of 
co-stimulation blockade of T cells. Activation of T cells requires interaction between the T-cell receptor and a peptide-loaded MHC on an antigen-presenting 
cell (APC). In addition, a second signal such as the interaction between CD28 und CD80/CD86 is required. The interaction of CTLA4 and CD80/CD86 blocks 
T-cell activation. The latter can also be achieved by the soluble molecule CTLA4-Ig or its affinity-optimized version LEA29Y. (B) Immunohistochemical staining 
of LEA29Y in pancreas sections from INS-LEA29Y transgenic pigs. (C) Transplantation of neonatal islet-like cell clusters (NICCs) from wild-type (WT) or 
INS-LEA29Y transgenic pigs (LEA29Y) under the kidney capsule of immune deficient streptozotocin (STZ)-diabetic NSG mice results in an insulin-positive cell 
mass that is able to normalize their blood glucose level. If  the mice are subsequently reconstituted with human peripheral blood mononuclear cells (hPBMCs), 
the WT islets are rejected while the LEA29Y transgenic islets are protected (Klymiuk et al., 2012). (D) Histology of the transplantation site. In recipients of 
WT NICCs, very few insulin-positive cells were found, but a massive T-cell infiltration (shown by CD45 staining) was evident. In contrast, LEA29Y expressing 
NICCs survived and formed large clusters of insulin-positive cells. T-cell infiltration was observed in the periphery, but not within the insulin-positive cell clusters.
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not clear at this stage if  genome-wide PERV inactivation 
by CRISPR/Cas9 is actually required for entering clinical 
xenotransplantation trials.

Recent breakthrough in orthotopic pig-to-baboon 
cardiac xenotransplantation

Heart transplantation is the only cure for patients with 
terminal cardiac failure, but the supply of  human donor or-
gans does not meet the clinical need. Xenotransplantation 
of  genetically modified pig hearts is a potential alternative 
as demonstrated by long-term survival (up to 945 d) of 
genetically multimodified pig hearts (GGTA1 KO, hCD46/
hTBM transgenic) after heterotopic abdominal transplant-
ation in baboons (Mohiuddin et  al., 2016). Although this 
model demonstrated long-term acceptance of  discordant 
cardiac xenotransplants with safe immunosuppression, their 
life supporting function remained to be proven. Therefore, 
Längin et  al. (2018) used the same genetic background of 
donor pigs and adapted the immunosuppressive regimen de-
veloped by Mohiuddin et  al. (2016) to perform a series of 
orthotopic heart transplantation (= heart replacement) ex-
periments in baboons, finally resulting in consistent long-
term success with survival times up to 195 d (Figure 3). The 
most essential improvements were 1) specific perfusion pres-
ervation of  the xeno-hearts after explantation and during im-
plantation with 8  °C-oxygenated hyperoncotic cardioplegic 

solution containing nutrition, hormones, and erythrocytes; 
and 2) post-transplantation growth control of  the xeno-hearts 
by early weaning of  glucocorticoids, lowering the recipients’ 
blood pressure, and inhibition of  mTOR (mechanistic target 
of  rapamycin) activation to counteract cardiomyocyte hyper-
trophy. Consistent life-supporting function of  xeno-hearts 
for up to 195 d in the most relevant and stringent preclinical 
animal model is a milestone on the way to clinical cardiac 
xenotransplantation (Längin et al., 2018).

Conclusions and Perspectives

Recent studies of  life-supporting cardiac (Längin et  al., 
2018) and kidney xenotransplantation (survival > 400 
d; Kim et  al., 2019) in nonhuman primates have achieved 
survival times that the initiation of  clinical xenotransplant-
ation trials may be justified. This requires an internation-
ally accepted regulatory framework covering safety and 
quality standards of  donor pigs, requirements for preclin-
ical data, selection and information of  trial participants, 
post-transplant long-term patient follow-up, and storage of 
appropriate pre- and post-procedure specimens from donor 
pigs and patients. Pertinent recommendations from the Third 
WHO Global Consultation on Regulatory Requirements 
for Xenotransplantation Clinical Trials (Changsha, China, 
December 12–14, 2018)  will be published as The 2018 
Changsha Communiqué.

Figure 2. Expression of human thrombomodulin (hTBM) in genetically (multi-)modified pigs. (A) Expression vector with the porcine THBD gene promoter. 
(B) Immunofluorescence staining of hTBM in transgenic porcine endothelial cells. (C) Expression of hTBM in vascular endothelial cells of myocardium from 
transgenic pigs. (D) Beads covered with hTBM expressing endothelial cells from genetically (multi-)modified pigs delay clotting of human blood (Wuensch 
et al., 2014).
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Figure 3. Factors enabling consistent success in life-supporting pig-to-baboon cardiac xenotransplantation. In addition to genetically multimodified porcine donor 
hearts (lacking αGal epitopes and expressing human CD46 as well as human thrombomodulin) and appropriate immunosuppression, two steps were key to 
success: 1) nonischemic preservation of the donor hearts by perfusion with oxygenated hyperoncotic blood-based solution; and 2) prevention of detrimental 
xeno-heart overgrowth by early weaning of cortisone, lowering of blood pressure and treatment with the mTOR inhibiting prodrug temsirolimus (Längin et al., 
2018).
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