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Tertiary lymphoid organs (TLOs) frequently develop locally in adults in response

to non-resolving inflammation. Chronic inflammation leads to the differentiation of

stromal fibroblast cells toward lymphoid tissue organizer-like cells, which interact

with lymphotoxin α1β
+

2 immune cells. The interaction initiates lymphoid neogenesis

by recruiting immune cells to the site of inflammation and ultimately leads to the

formation of TLOs. Mature TLOs harbor a segregated T-cell zone, B-cell follicles with

an activated germinal center, follicular dendritic cells, and high endothelial venules,

which architecturally resemble those in secondary lymphoid organs. Since CXCL13 and

LTα1β2 play key roles in TLO neogenesis, they might constitute potential biomarkers of

TLO activity. The well-developed TLOs actively regulate local immune responses and

influence disease progression, and they are thereby regarded as the powerhouses of

local immunity. In this review, we recapitulated the determinants for TLOs development,

with great emphasis on the fundamental role of chronic inflammation and tissue-resident

stromal cells for TLO neogenesis, hence offering guidance for therapeutic interventions

in TLO-associated diseases.
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INTRODUCTION

Inflammation is a process of physiological responses to pathological stimuli that involves immune
cells and tissue-resident cells. The immune cells aremobilized tomigrate to the infected or damaged
tissues through the vasculature, and they release inflammatory mediators, such as cytokines
and prostaglandins. These cells and inflammatory mediators are important players within the
inflammatory microenvironment, although they differ at different phases of inflammation. At the
early stage, the acute inflammatory response takes place within the first few hours due mainly to
the infiltration of innate immune cells, including neutrophils, and is typically characterized by the
appearance of redness, swollenness, and pain symptoms (1). At the later stage, the chronic cellular
response involves the recruitment of not only innate immune cells but also adaptive immune
cells. When antigens cannot be removed, the inflammation persists as chronic non-resolving
inflammation in a site-specific manner. Such chronic inflammation serves as a common basis for
immune cell-tissue resident stromal cell interactions and the accumulation of immune cells at sites
of inflammation in a plethora of clinical diseases. The aggregates form segregated T-cell areas and
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B-cell follicles with follicular dendritic cells (FDCs) as well
as neovascularization with newly formed blood vessels, lymph
vessels, and high endothelial venules (HEVs) (2, 3). These
structures have been described as tertiary lymphoid organs
(TLOs), tertiary lymphoid structures, ectopic lymphoid organs,
and lymphoid tissue neogenesis (4–6).

TLOs develop as ectopic lymphocyte clusters in connective
tissues or parenchyma of diseased organs in various non-
resolving chronic inflammatory diseases, including autoimmune
diseases (7, 8), cancers (9), chronic infectious diseases (10),
transplant rejections (11), and chronic inflammatory diseases
like atherosclerosis (6, 12) and inflammatory bowel disease (13),
indicating that chronic inflammation is the common promoter of
TLO neogenesis. TLOs share remarkable cellular and structural
similarities with secondary lymphoid organs (SLOs); for example,
both contain various innate and adaptive immune cell types,
T-cell areas, B-cell follicles, and HEVs (14). Both TLOs and
SLOs require similar cellular and molecular developmental
signals, albeit of their different source of origins. TLOs may
play significant roles in local primary immune responses by
mimicking SLO functions and, to some extent, can serve as
protective or detrimental to organisms, though they are not
encapsulated and can occur in any diseased tissues, unlike SLOs.

Cumulative evidence indicates that the ectopic expression of
homeostatic lymphoid chemokines (i.e., CXCL13, CCL19, and
CCL21) plays a vital role for TLO formation and contributes to
leukocyte recruitment and their persistence in the tissues, while
deficiency in any of these molecules can abrogate TLO formation.
The resident stromal cells, including fibroblasts, endothelial
cells, pericytes, and vascular smooth muscle cells (VSMCs), are
the original producers of the chemokines that can functionally
influence the ectopic infiltration of immune cells at the site of
chronic inflammation (15, 16). Since TLOs harbor a number
of immune cells, they may initiate local immune responses and
ultimately influence the progression of diseases. In this review,
we have summarized the current knowledge of TLOs—their
definition, location, molecular determinants, and the potential
roles they have in diseases—and discuss the functions of chronic
inflammation and stromal cells in TLO formation.

TLO DEVELOPMENT

The Definition of a TLO
TLOs are immune cell aggregates within or adjacent to the
local tissues associated with chronic inflammation. TLOs share
a structural homology with SLOs, including T-cell zones, B-cell
follicles, stromal cells, HEV, blood, and lymphoid vessels. TLOs
develop postnatally at undefined locations and are significantly
associated with overwhelming antigen stimuli. SLO and primary
lymphoid organ development, meanwhile, always occur in
highly coordinated processes at predetermined locations during
embryogenesis (17). The anatomy of TLOs is quite plastic,
and the cellular composition varies from one model to the
other. However, T/B cell segregation, vascular specialization, and
certain lymphorganogenic chemokine expressions are the basic
characteristics of TLOs; the well-developed TLOs with a germinal
center (GC) and HEV formation are highly dependent on the
disease stage and on the efficiency and duration of antigen-driven

responses at the local site. Though TLOs have been extensively
studied in the last 10 years, the standard definition of TLOs has
not yet been set. Recently, Neyt et al. (18) proposed six criteria
for determining TLOs: the presence of organized infiltrated T
and B cells; the appearance of T-cell areas containing fibroblast
reticular cell (FRC) networks; the presence of HEV; B cell class
switching, GC reaction; activation-induced cytidine deaminase
(AID) enzyme; and FDC presentation. However, it is not feasible
to apply all of these criteria to each disease model nor is it
possible to meet all criteria in different developing stages of the
same disease. Based on the studies performed on artery TLO
(ATLO) (13, 19, 20), we have suggested a definition of an ATLO
based on three developmental stages: stage I has mixed T- and
B-cell infiltrates; stage II contains segregated T- and B-cell areas
with lymph vessels, HEVs, and conduits; and stage III has well-
structured TLOs with segregated T- and B-cell follicles, activated
GCs, and FDCs (Figure 1). However, these “criteria” are based on
specific disease models andmay be not applicable to other disease
models as murine TLOs might differ from those in humans.
Therefore, great effort is needed to set up the common criteria
for defining TLOs for all disease models.

The Spontaneous- and Induced- TLOs
TLOs can spontaneously develop in tissues with non-resolving
chronic inflammation caused by persistent inflammatory stimuli
or self-antigen during the disease progression. Their locations
therefore vary depending on the disease models; tumor-
associated TLOs, for example, are located peritumorally (21–
23), intratumorally (24), or mixed (25). However, ATLOs are
usually found in the adventitia of aged chow-fed Apoe−/− mice
(20) (Figure 2), which start to develop at around 55 weeks
old post-birth and are fully formed at around 78 weeks old.
Moreover, ATLO size correlates with the severity of intima
atherosclerosis, and TLO-like structures were absent in the
non-atherosclerotic arterial wall, thus indicating the importance
of the local inflammation in the initiation and progression
of ATLOs. Also, TLOs could develop in the central nervous
system in autoimmune diseases, such as in the brain in multiple
sclerosis (26). In the genetic non-obese diabetic (NOD) mouse
model, TLOs arose in the pancreas with increased size and
highly organized structure during disease progression (27). The
locations of TLOs are shown in Table 1. In addition, TLOs
can also be induced experimentally in some murine models.
Administrating pathogens or inflammatory substances and the
overexpression of lymphocyte-recruiting chemokines can result
in the organoid assembly of lymphocytes (59). For example,
significant lymphocytic infiltrates were detected in the thyroid
gland of mice with CCL21 overexpression (60), and the inducible
bronchus-associated lymphoid tissue (iBALT) developed in the
lung ofmice injected with a lipopolysaccharide (LPS) or influenza
infection (51–53). The major difference between spontaneous
and induced TLOs is that strong external stimuli are needed
for the later for the induction of TLO formation, suggesting
that there are difference in the intensities of immune responses.
The immune activity in induced TLOs is variable, depending on
the intensity of the stimuli applied to trigger them compared
to spontaneous TLOs where immune activity might be low due
to the prolonged chronic stimulation. However, the distinction
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FIGURE 1 | TLO stage classification. Stage 0, normal tissue without TLO formation; Stage I, early TLOs with mixed T/B-cell aggregates; Stage II, pre-TLOs with

segregated T/B-cell area with lymph vessels and conduits; Stage III, well organized TLOs containing segregated T-cell area and B-cell follicles with germinal centers

and follicle DC network.

between spontaneous and induced TLOs according to their
immune activity and persistence is ambiguous since there is no
standard to grade immune activity.

Chronic Inflammation Favors Lymphoid
Neogenesis
Inflammation is a self-limiting process, andmultiple mechanisms
ensure resolution in the normal condition. It is also a basic
mediator of many diseases. TLOs are more frequently formed in
chronic inflammatory diseases, although they are not present in

all chronic inflammation. In contrast to SLO development, the
inflammatory microenvironment provides the initial signal for
TLO neogenesis, and chronic inflammation is sufficient to induce

TLO formation even without the presence of lymphoid tissue

inducer (LTi) cells (61), indicating that chronic inflammation is a

fundamental player that favors lymphoid neogenesis.

Under chronic inflammatory conditions, resident stromal
mesenchymal cells (62), such as fibroblasts, endothelial cells,
VSMCs, and pericytes, are activated by proinflammatory
molecules, including TNFα, LTα1β2, IL-17, IL-23, and
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FIGURE 2 | ATLO location in atherosclerotic aorta. Oil red O/Hematoxylin

staining showing ATLO position in the abdominal aorta adventitia relative to

media (dashed lines) and intimal plaque in aged Apoe−/− mice.

chemokines, including CCL2, CCL3, CXCL9, CXCL10,
and CXCL11 (1, 6, 63, 64). After activation, these cells are
transformed into lymphoid tissue organizer (TLo)-like cells to
release lymphorganogenic chemokines, such as CXCL13 and
CCL21, to initiate the formation of TLOs (43, 62). For example,
TNFα and LTα1β2, by interacting with TNFR1 and LTβR,
respectively, activate medial VSMCs to acquire the phenotype of
LTo cells. Most importantly, these activated VSMCs themselves
produce high levels of CXCL13 and CCL21, thus promoting TLO
formation in adventitia in atherosclerosis (14, 65). Moreover,
the upregulated integrins on LTo or LTo-like cells, such as
vascular cell adhesion molecule-1 and intercellular cell adhesion
molecule-1, also facilitate the recruitment of immune cells to
the local chronic inflammatory site, thus contributing to TLO
formation (14, 15).

Locally or systemically, chronic inflammation persistently
activates immune cells, upregulates LTα1β2 expression on their
cell surfaces and releases cytokines, chemokines, or tissue factors,
which act as indirect regulators of lymphoid organogenesis
(66). Overexpression of TNFα by myeloid cells could induce
intestinal TLOs in the absence of LTi cells (61). Similarly, IL-
17A produced by Th17 cells alone overcomes the absence of
LTi cells and mediates the formation of iBALT. The increased
LTα-independent expression of CXCL13 was important for
follicle formation during iBALT neogenesis (4). Both Th17
and LTi cells produce IL-22. Interestingly, IL-22−/− mice
showed a significant defect in early TLO formation and
chemokine secretion because IL-22 is necessary for CXCL13
expression in fibroblast cells (5). In conclusion, regardless of
the sources of the environmental mediators, the persistence of

an inflammatory microenvironment is a clear factor that favors
TLO formation.

Roles of Innate and Adaptive Immune Cells
in TLOs
Circulating monocyte-derived macrophages are known to
migrate to certain tissues upon chronic inflammation, such as the
salivary gland in Sjogren’s syndrome (SS), and become a source
of chemokines, such as CXCL13 and CXCL12, to promote TLO
development (67). Unlike classical macrophages, tissue-resident
macrophages are believed to be maintained by local proliferation
and high expression of IL-7Rα (68), which is similar to LTi cells.
It was reported that IL-7, together with CXCR5, promoted IL-7R
upregulation in lymphoid organs (69). Moreover, overexpression
of IL-7 resulted in TLO formation peripherally in a lymphotoxin
(LT)α-dependent manner (70). It is possible that tissue-resident
macrophages act as LTi cells and interact with IL-7-expressing
stromal fibroblasts to initiate TLO formation. Moreover, TNF-
expressing myeloid cells, such as macrophage and inflammatory
monocytes, were required for fat-associated lymphoid clusters
following in inflammatory challenge (71), and CD11c+ DCs
were necessary for the maintenance of TLOs in the LPS-induced
iBALT mouse model (72).

B cells are the predominant cell population during TLO
neogenesis. In the later stage, advanced TLOs display features of
B cell follicles comprising active GCs, indicating the proliferation
and differentiation of reactive B cells. They could not only
generate antibodies for immune responses, but also support
local immune cell activation within the inflammatory tissues
(6), and they play a critical role in both the initiation and
organization of TLOs. B cells are important candidates for LT
production, indicating that they might have a potential role in
TLO neogenesis (73). Gene expression studies showed that B
cells are recruited into TLOs by the interaction of chemokines
CXCL13 and CXCL10 with their receptors CXCR5 and CXCR3,
respectively (74, 75). Depletion of B cells from synovial tissue
led to a reduction in T-cell derived IFNγ and IL-10 production,
suggesting that synovial B cells control T-cell responses. In
a chronic inflammatory mouse model, ATLOs harbor a high
frequency of B cells which secrete large amounts of IgM and
IgG antibodies. Although less numerous than B2 B cells, IL-
10-expressing B1b cells present in ATLOs might exert key
regulatory functions (76). Whether B1 B cells contribute to
TLO maturation is not clear so far. The secreted antibodies by
TLO B cells may have different effects on disease progression.
These antibodies may serve as a double-edged sword, which
could either have a positive role in infectious diseases or
exacerbate autoimmune diseases. Since TLO B cells were also
found in the synovium of inflamed joints, Rituximab (an
anti-CD20 B-cell depleting antibody) might be an alternative
therapy for treating rheumatoid arthritis, besides of TNF-α
and IL-1 antagonist in clinic. It should know that Rituximab
is an antibody for B-cell therapy in general, but not TLO
specific. The role of B cells in the formation of TLOs in
other autoimmune diseases, transplantation, and tumorigenesis
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TABLE 1 | Molecular determinant of TLOs in chronic diseases and experimental models.

Diseases Targeted organs Species Molecules/Signaling pathway/Cells References

AUTOIMMUNE AND AUTOIMMUNE-RELATED DISEASES

Rheumatoid arthritis Synovial tissue Mouse AID, LT, CCL21, IL-22, CCL19, CXCL12, CXCL13 (28, 29)

Human LT, IL-23, CCL21, CCL19, CXCL12, CXCL13 (29, 30)

Multiple sclerosis Central nerve Mouse CXCL13, Podoplanin (26)

system Human CXCL12, CXCL13, AID (31, 32)

Diabetes Pancreatic islet Mouse CXCL13, CCL19, LT, TNFSF14-LTβR (27, 33)

Sjogren’s syndrome Salivary glands Mouse IL-22, CXCL12, CXCL13 (5, 34)

Human CXCL13, CXCR5, CCR5 (35)

Myasthenia gravis Thymus Mouse CXCL13 (36)

SLE kidney Human CXCL13, CXCR5, BAFF, IL-21 (9, 12, 37)

Crohn’s disease Mesentery Mouse CCL19, CCL20, CCL21, CXCL13, CXCL16 (3)

Ulcerative colitis Colon Human CCL21 (38)

CHRONIC INFLAMMATION

Atherosclerosis Aorta Mouse CXCL13, CCL21, CCL19, CCL20, LT, LTβR, ICAM1, VCAM1, MADCAM1, VEGFc (14, 20)

Human CXCL13, CXCL16, CCL19, CCL20, CCL21, Tfh (2, 39),

COPD Lung Mouse CCL19, CXCL13, CXCL12, IL-17A (40–42)

IBD Gut Mouse CCL21, CCL19, CCR7 (8, 13)

Human CCL21, adipocyte (3, 38)

CANCERS

Breast cancer Breast Human Tfh, CXCL13, (25, 43)

Lung cancer Lung Human B cells, DCs, (44, 45)

Colorectal cancer Colorectum Human AID (46, 47)

Melanoma cancer Skin Human CCL21, CCR7, AID (48, 49)

CHRONIC INFECTIOUS DISEASES

HCV Liver Human CXCL13 (50)

Influenza virus Lung Mouse CXCL12, CCL19, CXCL13 (51–53)

Helicobacter Gastric mucosa Mouse CXCL13, CCR5, CCL21 (54)

Mycobacteriumtuberculosis Lung Mouse CCL19, CXCL13, CCR7 (55)

TRANSPLANTATION

Kidney failure Kidney Human CXCL13, CCL19, CCL21 (56)

Cardiac failure Heart Mouse CXCL13 (57, 58)

SLE, Systemic lupus erythematosus; AID, activation-induced cytidine deaminase; LT, lymphotoxin; COPD, chronic obstructive pulmonary disease; SSA/Ro, Sjogren’s syndrome antigen

A (ribonucleoprotein autoantigen); SSB/La, Sjogren’s syndrome antigen B (autoantigen La); IBD, inflammatory bowel disease; HCV, hepatitis C virus; ICAM1, intercellular adhesion

molecule1; VCAM1, vascular cell adhesion molecule 1; MADCAM, mucosal addressin cell adhesion molecule 1; VEGF-C, vascular endothelial growth factor C.

events has been extensively reported (77). Therefore, the
B cell aggregates could be regarded as the “marker” for
TLO formation.

Regulatory T cells (Tregs) are believed to regulate the

suppressive function in TLOs (6). In aged Apoe−/− mice, both

natural Tregs and induced Tregs were activated in ATLO during

non-resolving chronic inflammation (20). Tregs in ATLOs may

suppress the immune responses in plaque in a certain way

because disruption of ATLOs by depletion of LTβR globally or
specifically in VSMCs can abolish TLO formation and enhance
atherosclerosis, suggesting that ATLOs have a protective role in
disease progression (20). However, Clement M. et al. reported
that regulatory CD8+ T cells controlled the development of TLOs
and atherosclerosis, suggesting a pro-atherosclerotic role of TLOs
in atherosclerosis (39). These conflicting conclusions from two
individual studies might be due to some exterior factors, such as
age, stage of disease, and environmental factors. Further studies

are therefore warranted to investigate the precise role of TLOs
in atherosclerosis.

The Molecular Determinants of TLOs
The development of SLOs is a complex process that involves
the interaction of LTα1β2-expressing hematopoietic LTi cells
with LTβR-expressing non-hematopoietic stromal LTo cells. This
interaction leads to the release of the cascade of adhesion
molecules (e.g., intercellular adhesion molecule 1 and vascular
cell adhesion molecule 1), cytokines (e.g., IFNγ, IL-17, IL-22, and
IL-23) chemokines (e.g., CCL19, CCL21, CXCL12, and CXCL13),
and the LTβR signaling pathway (18, 62). These secreted
molecules and angiogenic growth factors regulate cellular and
structural development of SLOs, while lymphangiogenic growth
factors, like vascular endothelial growth factor C, induce
lymphatic vessel development (78). Furthermore, LTo cells
transdifferentiate into HEVs, FRCs, or FDCs, forming a network
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and facilitating T- and B-cell migration. The studies of TLOs
in last 20 years have largely expanded our understanding of
the molecular mechanisms involved in TLO formation. Though
TLOs greatly resemble SLOs in cellularity and structure, the
molecular determinants might be different in a certain way. Here,
we discussed the vital role of TNFSF members, cytokines and
chemokines that contribute TLO development.

LT, LIGHT, and LTβR
The interaction of TNF superfamily members, i.e., LTα,
LTβ, LIGHT (homologous to LT, also known as TNFSF14),
and their receptor LTβR plays a critical role for lymphoid
organ development. Over-expression of LTα alone or LTα

and LTβ co-expression under rat insulin promoter II induced
the development of LN-like structures with organized T-
and B-cell areas and HEV in murine models (79), while
LTα deficiency disorganized lymphocyte aggregation and HEV
differentiation (51). In the NOD mouse model, LIGHT and
LTβR expression were increased in the pancreatic TLOs (33),
and the overexpression of LIGHT aggravated the disease (27). In
addition, the overexpression of LTα or LIGHT induced by tumor
cells resulted in intra-tumoral TLO development, indicating
that the LTβR signaling pathway is crucial for the development
of TLOs. Activation of LTβR in VSMCs was implicated in
ATLO formation, whereas the interruption of the LTβR signaling
pathway disturbed TLO formation with significantly reduced
lymphocytic chemokine expression and HEVs development
(20). Collectively, these data demonstrated that the LT-LTβR
signaling pathway is crucial for the development, maintenance,
and organization of TLOs.

Cytokines
It is becoming increasingly clear that IL-17 is an important
mediator for TLO development. The administration of LPS,
viruses, orM. tuberculosis infection induced iBALT formation in
an IL-17-dependent manner (80). IL-17 promotes inflammatory
and homeostatic chemokine production, which is critical for
iBALT initiation, while LT signaling is required for the
differentiation of FRCs, FDC, and HEV formation in the later
step of iBALT development. Moreover, IL-17+ CD4T cells
trigger TLO neogenesis in the central nervous system in the
experimental autoimmune encephalitis model (26). TCRγδ T
cells-derived IL-17 trigger stromal cells to release CXCL12 and
thereby induce follicle formation in iBALT even in absence of
FDCs (81). These data demonstrate that IL-17 is crucial for
TLO formation.

Overexpression of IL-5 in the respiratory epithelium induced
the formation of organized iBALT with epithelial hypertrophy,
goblet cell hyperplasia, and accumulation of eosinophils in the
airway lumen (82). IL-7, together with CXCR5, promotes TLO
formation, and the overexpression of IL-7 thus resulted in TLO
formation in non-lymphoid tissues (70). Furthermore, IL-27
inhibits TLO development and was proposed to be a novel
therapeutic target in clinical treatment (83).

TNFα is known to promote the receptor expression of
some inflammatory cytokines and is also proposed to engage
with TLO development. It is likely that TNFα and induced

proinflammatory cytokines convert resident stromal fibroblasts
into functional LTo cells and initiate lymphoid neogenesis (84)
because the ectopic expression of TNFα induces TLO formation
in the periphery (63). It was further reported that IL-21, IL-22,
and IL-17, produced by Th17, LTi, and γδT cells or neutrophils,
are also important players in TLO formation. Increased IL-21
expression has been observed in TLOs in several disease models,
such as RA and renal grafts (30, 83, 85). IL-22 promotes TLO
development in salivary glands in response to local adenovirus
infection (5), and TLO formation in human rheumatoid synovitis
is strongly associated with the upregulation of IL-23, IL-21, IL-22,
and IL-17F (30).

Chemokines
Chemokines are known to influence leukocyte recruitment
and TLO development. CXCL13 is predominantly expressed
by fibroblastic stromal cells and regulates B-cell recruitment,
differentiation, and maturation. Overexpression of CXCL13 by
rat insulin promoter induced TLO formation characterized by
T/B-cell zones and HEV (79). In advanced atherosclerosis,
activated LTo-like VSMCs highly expressed CXCL13 and CCL21
to induce ATLO neogenesis. CXCL13, CCL21, and CXCL12,
were also found in chronic inflammatory diseases, including SS,
rheumatoid arthritis, and other disease models (Table 1). As a
receptor for CXCL13, CXCR5 is of equal importance for TLO
development since TLO has been shown to fail to develop in the
absence of CXCR5 (86), indicating that individual chemokines
or receptors have a significant impact on TLO development.
Accumulating data demonstrated that CXCL13 and LTα1β2
might be the “bio-marker” predicting the formation of TLOs in
some diseases, such as RA, SS, and atherosclerosis (87, 88).

CXCL12 is expressed by bone marrow stromal cells, SMCs,
and HEVs in lymphoid organs. Transgenic mice with CXCL12
overexpression by RIP showed enriched infiltration of T and B
cells, DCs, and plasma cells (89). Increased CXCL12 expression
was detected in TLOs in the salivary glands of patients with
SS (67). CCL19 and CCL21 are expressed by stromal cells
and endothelial cells and interact with CCR7 to regulate T-
cell homing during TLO neogenesis. Significant upregulation
of CCL19 and CCL21 is observed in ectopic infiltrates of RA
and SS (90), whereas CCL21 is more effective than CCL19 in
forming TLOs (89). However, it was shown that CXCL12 alone
could not promote TLO formation due to its inability to induce
LTα1β2 expression (89), indicating that certain chemokines are
not sufficient to drive the complete process of TLO formation
alone. It might be that different chemokines have a differential
capacity to recruit and maintain LTi cells and promote LTα1β2
expression, and they thus showed different abilities to promote
TLO development (91).

Taken together, though many cytokines, chemokines, LTs,
and receptors have been demonstrated for their roles in TLO
development, it is inaccurate to claim that all of them could
be used as the biomarkers for TLO formation because most of
them perform the TLO-initiating function only in some specific
models and local microenvironments. Nevertheless, CXCL13 and
LTα1β2 could be candidate molecules that can be considered as
potential biomarkers for TLO development.
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The Role of LTi Cells in TLO Development
LTi cells, one of two subgroups of type 3 innate lymphoid cells,
are hematopoietic cells that were identified in fetal lymphoid
tissues. They are critical for the induction of fetal lymphoid
tissues, including LNs and Peyer’s patches (92). LTi cells can
be identified as CD45+CD3−CD4+ cells with a high expression
of LTα1β2, RORγt, and IL-7Rα. One of the earliest events in
secondary lymphoid organogenesis is the interaction between LTi
cells and stromal LTo cells in the LN anlagen through LTβR
signaling. Although LTi cells are known to be involved in the
development of SLOs, the evidence for the requirement of LTi for
TLO induction is still controversial as both LTi-dependent and
independent TLO neogenesis have been reported.

Some evidence favors the contribution of LTi cells in the
development of TLOs. Meier and colleagues reported that
transgenic mice with IL-7 overexpression showed significantly
increased amounts of LTi cells in the spleen and organized
TLOs in the pancreas and salivary gland, suggesting that IL-7
stimulated LTi cells are essential for TLO development (70). In
the CXCL13 transgenic model, the absence of LTi cells results
in smaller and less organized cell aggregation, indicating the
role of LTi cells in the development of TLOs (87). In human
non-small cell lung cancer, tumor NCR+ ILC3 might contribute
to tumor-associated TLOs by interacting with both tumor cells
and tumor fibroblasts (93). Enhanced lymphocyte infiltrations
in rheumatoid arthritis synovial fluid and murine intestine are
believed to correlate with increased expression of TNF-related
activation-induced cytokine by LTi-like cells (94, 95). Bone
marrow derived M1 macrophages has been reported to act as
LTi cells and crosstalk with VSMCs, and then initiated TLO
formation in a LTβR-independent manner (96).

By contrast, some reports shed negative light on the role of
LTi in TLO formation. Deletion of transcription factors, such as
inhibitors of DNA-binding 2 (Id2) and ROR-γt, that are known to
be critical for LTi-cell differentiation from lymphoid progenitors,
lead to complete loss of LTi cells, LNs, and Peyer’s patches but
did not affect the spleen (97–99). However, when infected with
influenza virus, the Id2−/− or Rorc−/− mice developed iBALT
in the lung (10). Moreover, mice with overexpression of CCL21
in the thyroid developed ectopic lymphoid tissues, but, when
they were crossed with Id2−/− mice lacking LTi cells, the TLO
formation was not interrupted (100). Importantly, Schropp et al.
revealed that Th17 cells can act as substitutes for LTi cells and
contribute to B-cell aggregate formation in the cerebellum in
an experimental autoimmune encephalitis mouse model (101).
These data indicated that LTi cells might be involved in but might
not be essential for the formation of TLO. It is now gradually
accepted that, during the chronic inflammatory condition, the
TLO-inducing signals can be provided by cell types other than
LTi cells (102) because lymphocytes, like B and T cells, are an
alternative source of LT when appropriately stimulated (69).

The Role of Stromal Fibroblast Cells in TLO
Development
The adult stromal cells are derived from embryonicmesenchymal
LTos and are considered to be structural components of an

organ. They include fibroblasts, VSMCs, pericytes, epithelial cells,
and blood and lymphatic endothelial cells (1). As traditionally
considered, stromal cells not only make the architecture of the
organ but also regulate the tissue function. Stromal fibroblasts
are likely to act as scaffolds for the tissue due to their capacity to
synthesize and remodel the extracellular matrix, and these cells
in TLOs can be detected using specific marker combinations,
such as gp38/CCL21 for FRCs and CD35/CXCL13 for FDCs.
FRCs and FDCs in TLOs are predominantly associated with T-
and B-cell recruitment, respectively. Therefore, fibroblasts closely
interact with other cells to participate in tissue development,
differentiation, and repair in the local microenvironment.

A key step in TLO formation is the “switching” of activated
stromal cells toward an LTo-like phenotype. An increasing
amount of evidence indicates that stromal cells are involved
in orchestrating local immune responses and affecting disease
progression (1, 63). During TLO neogenesis, tissue-resident
stromal cells that gain the function of TLo-like fibroblasts
represent a hallmark feature of TLOs due to the expression
of lymph organogenic chemokines, such as CXCL13, CCL21,
CXCL1, CXCL8, and CCL5 (1, 63). Adipose tissue-derived
PDGFRβ+ stromal vascular cells have the capacity to differentiate
into FDCs (103), while resident fibroblasts have been shown
to massively proliferate and give rise to lymphoid stromal
cells during inflammation and ontogeny (78). We previously
proved that aortic VSMCs acted as LTo cells and highly
expressed CXCL13, CCL21, and LTβR during long-term chronic
inflammation in aged Apoe−/− mice (16, 20). In humans, a
gp38+ fibroblast showed phenotypical characteristics that were
similar to FRC in SS patients, and CXCL13+ stromal cells were
detected in synovial tissues of RA patients (38, 87). In addition,
FAPα+ fibroblasts promoted inflammation and bone erosions
in an arthritis mouse model (104), and Pdpn+ fibroblast were
pivotal drivers of TLO formation independent of LT and RORγt
(105). Guedj et al. found that mesenteric adipocytes orchestrated
the development of functional TLOs in Crohn’s disease-affected
mesentery (3), suggesting that adipocytes may function as LTo-
like cells and promote TLO formation. These data demonstrated
that stromal fibroblast cells underwent a complex phenotypical
change and acquired LTo-like characteristics for organizing local
immune responses.

Emerging evidence indicates that stromal fibroblast cell
differentiation is dependent on TNF family members, such as
LTα and TNFα. LTα plays a significant role in lymphatic vessel
function and in inflammation-associated lymphangiogenesis
(106). LTα−/− mice lacking LTα3 and LTα1β2 showed the
absence of all LNs and PPs and the disrupted spleen architecture
(107). LTβ−/− mice, meanwhile, showed defects in LN
development and spleen structure that were less pronounced
than that in LTα−/− mice (108). Furtado et al. showed that
TNFα signaling pathways were sufficient to induce TLOs in the
intestine independently of LTi cells, indicating that interactions
between TNFα-expressing myeloid cells and stromal cells were
enough to induce TLOs formation (61). IL-17A induced iBALT
formation in the lung by directly stimulating the differentiation of
CXCL13- and CCL21-expressing stromal cells (51). Furthermore,
IL-23 and IL-22 are known to activate fibroblasts from the lung
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and salivary gland, respectively, to express CXCL13 for TLO
formation (5, 80). These data indicated that TNF, LT, and some
leukocytes, including myeloid cells and granulocytes that release
pro-inflammatory cytokine, are capable of activating resident
fibroblasts for their transdifferentiation (5).

TLOS IN DISEASES

The potential impacts of TLOs on disease progression are
increasingly gaining recognition. Autoimmune diseases are
abnormal conditions with both B- and T-cell responses against
self-tissue antigens. TLOs have been witnessed in various
autoimmune diseases, especially in the affected areas, like joints
of rheumatoid arthritis (28), meninges in multiple sclerosis (109,
110), salivary glands in SS (111), pancreas in diabetes (112),
and the thyroid in Hashimoto’s thyroiditis (113) (Table 1). The
formation of TLOs in autoimmune diseases may contribute to
disease manifestation.

TLOs with activated GCs also expressed the enzyme
AID, which mediates B-cell clonal expansion and somatic
hypermutation of the V(H) gene within TLOs. Plasma cells then
release high-affinity antibodies, such as auto-antibodies targeting
ribonucleo proteins Ro and La (Sjogren’s syndrome antigen
A and Sjogren’s syndrome antigen B, respectively) in SS (76).
During this process, generated autoreactive B cells in TLO GCs
could escape negative selection and apoptosis. For instance, GC
B cells from TLOs of SS demonstrate increased anti-apoptotic
BCL-2 expression and decreased rate of apoptosis (114). These
data demonstrate that TLO GCs provide the microenvironment
for antigen-specific antibody production. However, the GCs
and accumulated disease-specific autoantibodies could induce
adaptive immune responses in local tissues, which perpetuate
autoimmune diseases. Therefore, targeting surface antigens on
B cells has emerged as a promising therapeutic approach.
For example, proteasome inhibitors and antibodies against
CD138, B-cell maturation antigen (BCMA), and the Signaling
Lymphocyte Activation Molecule family (SLAMF) were used in
clinical trials (16, 17, 115). Though limited efficiency in clinical
practice is seen, a combination of different therapies could bring
about improvement in practical terms. In addition, rituximab (a
CD20-depleting antibody that targets B cells before the stage of
plasma blast cells) may also be a better alternative for treating
rheumatoid arthritis.

TLOs also harbor T follicular helper (Tfh) cells that are critical
in T-cell dependent B-cell responses and therefore regulate
active GC responses in the lymphoid organ. The interaction
of ICOS, CD40, and IL-21 on Tfh cells with ICOSL, CD40L,
and IL-21R expressed on GC B cells induces the activation,
affinity maturation of B cells, and further differentiation of
plasma cells in TLOs (77). It was also reported that Tfh-GC
B-cell axis was proatherogenic in an Apoe−/− mouse model
(39). Therefore, blocking B-Tfh cell interaction through targeting
ICOS-ICOSL, CD40-CD40L, or IL-21-IL-21R could significantly
affect downstream TLO B-cell activation.

Besides autoimmune diseases, TLOs also develop in some
infectious diseases and various cancers (Table 1), and they are

generally believed to perform a protective role by skewing the
local immune responses toward anti-infection and anti-tumor
outcomes. However, the efficiency of the immune responses
may change according to the local concentration of viral and
tumor antigens. In a long-lasting inflammation, the synthesis of
cytokines, chemokines, and tissue factors is constantly enhanced.
Ectopically developed TLOs will mount the local immune
responses and deteriorate the disease progression. Therefore, the
roles of TLOs in diseases are largely dependent on the local
conditions, either protective or harmful.

CLINICAL IMPLICATIONS

TLO formation may affect the disease process because ectopic
GCs in TLOs could potentiate local immune responses. As
discussed above, TLOs might be protective in certain diseases,
such as infectious diseases, cancers, and atherosclerosis, because
they can mount an efficient response against antigenic stimuli
in tumors or chronic inflammation. However, in other diseases,
including autoimmune diseases and transplantation, TLOs
might further aggravate disease progression (62, 66). Therefore,
promoting or inhibiting TLO development with tailored immune
therapy should be decided based on the disease phenotype.

Given the prominent role of LT in TLO development,
targeting the LTα1β2-LTβR signaling pathway has already been
used extensively to modulate TLO formation. The decoy
receptor–LTβR-Ig fusion protein is used widely to interfere with
the signaling pathway in the animal model and preclinical trials
(116). It should be noted that LTβR-Ig treatment disturbed spleen
microarchitecture, including loss of integrity of marginal zones,
FDCs, and cell proliferation (14), and this is suggestive of its side
effect on SLOs. The administration of LTβR-Ig prevents insulitis
at the early stage, reverses insulitis, and disrupts pancreatic
lymphoid aggregates at the late stage of the disease in NOD
mice (117). In a mouse model of autoimmune sialoadenitis,
LTβR-Ig treatment resulted in decreased immune cell infiltration
and a significant improvement in the salivary gland function
(118). Notably, vascular smooth muscle cell-specific deletion
of LTβR in atherosclerotic mice disrupted adventitial TLO
formation and aggravated the atherosclerotic plaque size (20).
Thus, the detailed mechanism of disease progression still require
further investigation.

Importantly, pateclizumab (a monoclonal antibody against
LTα) and baminercept (LTβR-IgG1, an inhibitor of both the
LTα1β2 and LIGHT pathways) are currently undergoing Phase
I and II trials for the treatment of autoimmune diseases (119).
Pateclizumab, a humanized monoclonal antibody against LTα,
is already verified to be generally safe and well tolerated
in clinical trials (119, 120). Unexpectedly, 6 months of
baminercept treatment failed to improve glandular dysfunction
in patients with primary SS. Although not achieving expected
treatment efficacy, the studies revealed, to some extent, the
therapeutic effect of baminercept in LT/LIGHT-dependent
pathways, suggesting that blocking LTβR signaling might be
of therapeutic benefit at earlier stages (121). Both treatments
resulted in decreased serum CXCL13 levels in patients with
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RA, but baminercept treatment was unable to diminish the
serum levels of BAFF, LIGHT, or IP-10 compared to the placebo
group (119, 120).

The blockade of a TLO-associated chemokine or its receptor
is another therapeutic strategy that has been tested in animal
models. Chemokine CXCL13, CCL19, and CCL21 and the
receptors CXCR5 and CCR7 play central roles in lymphocyte
migration during TLO formation. Targeting these molecules
might therefore be pivotal for the therapeutic inhibition of
TLOs. It has been reported that the blockade of CXCL13 in
mouse models reduces glandular inflammation in SS (122)
and decreases the severity of collagen-induced arthritis and
GC formation in synovial tissues (123). Despite this, TLO-
associated chemokine/receptor-based treatments have not yet
entered clinical trials.

Furthermore, other therapeutic strategies targeting TLO-
associated molecules or pathways have been launched recently,
including Tfh-related molecules, i.e., IL-21 and the receptor IL-
21R, co-stimulatory molecules ICOS and its ligand ICOSL, and
the IL-17 pathway (66). The pharmacological blockade of these
targets has been shown to have a potential function in the
experimental disease models, some of which have already entered
clinical trials (124).

CONCLUDING REMARKS

Chronic inflammation promotes neogenesis of TLOs to
control local immunity in a feedback manner. The potential
impact of TLOs on disease progression, either protective or
damaging, is increasingly attracting peoples’ attention. Although

considerable progress has been made in the understanding of
ectopically developed lymphoid organs, many basic questions
remain unsolved. Since TLOs are different from simple
leukocyte infiltrates in affected tissues of chronic diseases,
a globalized standard for defining and identifying TLOs
could be fundamental for all future studies. In the meantime,
TLOs can serve as a potential therapeutic target in clinical
practices where early diagnosis of TLOs and corresponding
appropriate therapies are promising. Nevertheless, specific
diagnostic approaches, or biomarkers, to predict TLO
development at the early stage of disease are still lacking.
Extensive studies on cellular and molecular mechanisms of
TLO development are also still required. With regards to
therapies, all these aspects should be considered before applying
systemic drugs to modulate TLO formation as they could
have serious side effects on other lymphoid and non-lymphoid
tissue compartments.
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