
PERSPECTIVE
published: 29 November 2019
doi: 10.3389/frobt.2019.00132

Frontiers in Robotics and AI | www.frontiersin.org 1 November 2019 | Volume 6 | Article 132

Edited by:

Cigdem Beyan,

Italian Institute of Technology (IIT), Italy

Reviewed by:

Lori-Ann Rosalind Sacrey,

University of Alberta, Canada

Concetto Spampinato,

University of Catania, Italy

*Correspondence:

Alexandra Livia Georgescu

alexandra.georgescu@kcl.ac.uk

Jana Christina Koehler

jana.koehler@med.uni-muenchen.de

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Human-Robot Interaction,

a section of the journal

Frontiers in Robotics and AI

Received: 03 March 2019

Accepted: 13 November 2019

Published: 29 November 2019

Citation:

Georgescu AL, Koehler JC, Weiske J,

Vogeley K, Koutsouleris N and

Falter-Wagner C (2019) Machine

Learning to Study Social Interaction

Difficulties in ASD.

Front. Robot. AI 6:132.

doi: 10.3389/frobt.2019.00132

Machine Learning to Study Social
Interaction Difficulties in ASD
Alexandra Livia Georgescu 1,2*†, Jana Christina Koehler 3*†, Johanna Weiske 3,

Kai Vogeley 2,4, Nikolaos Koutsouleris 3 and Christine Falter-Wagner 3,5

1Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London,

United Kingdom, 2Department of Psychiatry and Psychotherapy, University Hospital of Cologne, Cologne, Germany,
3Department of Psychiatry and Psychotherapy, Medical Faculty, LMU Munich, Munich, Germany, 4 Institute of Neuroscience

and Medicine, Cognitive Neuroscience (INM-3), Research Center Juelich, Jülich, Germany, 5 Institute of Medical Psychology,

Medical Faculty, LMU Munich, Munich, Germany

Autism Spectrum Disorder (ASD) is a spectrum of neurodevelopmental conditions

characterized by difficulties in social communication and social interaction as well as

repetitive behaviors and restricted interests. Prevalence rates have been rising, and

existing diagnostic methods are both extremely time and labor consuming. There is

an urgent need for more economic and objective automatized diagnostic tools that

are independent of language and experience of the diagnostician and that can help

deal with the complexity of the autistic phenotype. Technological advancements in

machine learning are offering a potential solution, and several studies have employed

computational approaches to classify ASD based on phenomenological, behavioral

or neuroimaging data. Despite of being at the core of ASD diagnosis and having

the potential to be used as a behavioral marker for machine learning algorithms,

only recently have movement parameters been used as features in machine learning

classification approaches. In a proof-of-principle analysis of data from a social

interaction study we trained a classification algorithm on intrapersonal synchrony as

an automatically and objectively measured phenotypic feature from 29 autistic and 29

typically developed individuals to differentiate those individuals with ASD from those

without ASD. Parameters included nonverbal motion energy values from 116 videos of

social interactions. As opposed to previous studies to date, our classification approach

has been applied to non-verbal behavior objectively captured during naturalistic and

complex interactions with a real human interaction partner assuring high external

validity. A machine learning approach lends itself particularly for capturing heterogeneous

and complex behavior in real social interactions and will be essential in developing

automatized and objective classification methods in ASD.

Keywords: autism spectrum disorder, machine learning, nonverbal synchrony, support vector machine, motion

energy analysis, classification, intrapersonal synchrony, nested cross-validation
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INTRODUCTION

Autism spectrum disorder (ASD) is an umbrella term for
neurodevelopmental conditions characterized by severe
difficulties in social interaction and communication, as well
as by repetitive behaviors and restricted interests (American
Psychiatric Association, 2013). The prevalence rates of ASD
are on the rise (Elsabbagh et al., 2012) and diagnostic services
are experiencing an increased demand, in particular in adults
seeking diagnostic advice (Murphy et al., 2011). Diagnostics
according to medical guidelines are time-consuming, the clinical
assessment is complicated by the phenotypic heterogeneity and
the language-dependency of assessment with verbal skills being
affected by the ASD.

Recently, computational methods of classification have
been employed to increase diagnostic reliability and efficiency
(Thabtah, 2018). In particular, machine learning (ML) employs
algorithms to uncover patterns in complex datasets, which are
utilized to improve decision making. ASD diagnostics come
down to a decision-making problem that can be supported by
automated models (classifiers) using ML to decide whether a
newly assessed patient has ASD or not. This works by splitting
available data into a training set, on which an algorithm is trained,
which is then applied to a test set, resulting in a measure of
accuracy of the resulting model. Without making assumptions
ML finds classification solutions in a data-driven, bottom-up
approach that can be applied to individual prediction making
(Dwyer et al., 2018). The primary purposes of using ML are
(1) to reduce assessment time to reach a diagnostic decision
in order to provide quicker access to health care services, (2)
to improve diagnostic reliability, and (3) diagnostic validity by
reducing dimensionality of input data so as to identify those
features that have the most diagnostic value in ASD (Thabtah,
2018). However, first applications of ML in studies on autism
diagnostics have been inconsistent in terms of methodology and
outcome, with inconsistent classification accuracy and specificity.

The aim of the present paper is twofold: First, we aim to give
an overview of previous research that has attempted to apply ML
methods to the classification of ASD, while suggesting guidelines
for future research in terms of setup and algorithm design.
Second, in a proof-of-principle analysis of data from a social
interaction study we aim to establish the potential of using full-
body non-verbal behavior data extracted from video recordings
of naturalistic social interactions to classify autistic adults.

MACHINE LEARNING APPLICATIONS IN
THE CLASSIFICATION OF ASD

First ML attempts in ASD have been used with the aim of
shortening ADOS [Autism Diagnostic Observation Schedule,
(Lord et al., 2000)] and ADI-R [Autism Diagnostic Interview,
(Lord et al., 1994)] administration time by item-reduction
yielding a classification accuracy of autism vs. typically-
developing (TD) individuals of up to 99.9% (Wall et al., 2012a,b;
Bone et al., 2016). In a similar attempt to predict case status words
and expressions contained in 8 year old children’s developmental

evaluations across a network of multiple clinical sites were used
for algorithm development (Maenner et al., 2016) with 86.5%
prediction accuracy and high concordance with the respective
clinician. Home videos of children have been rated by naïve
and/or expert raters in terms of ASD-typical behavior and
ratings fed into a predictive model along with other features of
the diagnostic process (Glover et al., 2018; Tariq et al., 2018).
However, while all these first studies using ML in ASD yield
fairly high accuracies, the features utilized for classification are
still highly subjective and not independent of the respective
clinician who bases the diagnostic decision on just those features
(circularity). Importantly, when using subjectively influenced
data, resulting classification algorithms must be validated in an
independent sample in order to prevent circularity.

An increasing number of studies are also using ML to
separate individuals with ASD from TD individuals based on
neuroimaging data. For example, Ecker et al. (2010) used regional
gray and white matter volume measures from whole-brain
structural MRI scans of individuals with ASD to investigate their
diagnostic value. They used a common variant ofML, the support
vector machine (SVM). This is an algorithm aiming at finding
a boundary (the so-called “hyperplane”) that can be used to
optimally classify groups while being able to generalize to new
cases (Dwyer et al., 2018). In their sample, the SVM correctly
classified individuals with ASD and controls on the basis of
their neuroanatomy with about 80% accuracy (Ecker et al.,
2010). These original observations are supported by findings
from several other neuroimaging studies with similar levels of
classification accuracy in younger age groups (Wee et al., 2014),
females with ASD (Calderoni et al., 2012) and with various
anatomical and functional measurements (Coutanche et al.,
2011). These results based on objective data are very promising,
although not widely applicable due to high costs.

WHOLE-BODY MOVEMENTS AS A
FEATURE IN ML ALGORITHMS IN ASD

Another source of objective data with high potential for
diagnostics can be found in the motor domain. Approximately
80% of children with ASD are suspected to exhibit pronounced
motor difficulties (Green et al., 2009). Difficulties with
balance, gait, movement speed and timed movements
have demonstrated to hold a high level of discrimination
between children with ASD and TD children (Jansiewicz
et al., 2006) and correlate strongly with measures of social
and communicative functioning (Parma and de Marchena,
2016). Hence, movement parameters of social interactions
in ASD should be investigated for their potential as a
diagnostic marker.

Particularly relevant for ASD motor symptomology are
gestures and non-verbal communicative behaviors (Georgescu
et al., 2014). Accordingly, atypical non-verbal behavior has been
included in the DSM-5 criteria for ASD. Yet, the assessment is
not straightforward or standardized so far and is hampered by the
fact that non-verbal behavior is not necessarily reduced in ASD,
but abnormal in the quality of its temporal coordination with
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own verbal output (de Marchena and Eigsti, 2010) and that of an
interaction partner. Literature provides evidence for aberrations
in temporal processing (Allman and Falter, 2015) and time
experience in ASD (Vogel et al., 2019), potentially affecting non-
verbal communication. In fact, findings have shown that ASD can
be characterized by increased temporal resolution associated with
the severity of (non-verbal) communication impairments in ASD
(Falter et al., 2012, 2013; Menassa et al., 2018; but see Isaksson
et al., 2018).

Recently, movement in ASD has taken up increasing interest
(for a review see Bo et al., 2016). In a proof-of-concept
study to explore whether low-functioning children with ASD
could be identified by means of a kinematic analysis of
a simple motor task, 15 children with ASD and 15 TD
children (2–4 years) were asked to pick up a ball and drop
it into a hole while their movements were recorded using
a motion tracker (Crippa et al., 2015). Seventeen kinematic
parameters were extracted from the upper-limb movement and
seven of these were found significant for discrimination. The
classifier distinguished ASD from non-ASD with a classification
accuracy of 96.7%, suggesting the validity of assuming a motor
signature of ASD. Reach and throw movements of 10 ASD
and 10 TD children were analyzed for “peculiar features”
using ML and fed into a classification algorithm yielding
an accuracy of 92.5% (Perego et al., 2009). Furthermore, Li
et al. (2017) extracted 40 kinematic parameters of imitative
movements and identified 9 of them that best describe variance
of participant groups, resulting in a classification accuracy
of 93%.

These studies demonstrate the potential of using kinematic
biomarkers in diagnostics of ASD. However, the movements
under investigation were staged, thus, highly unnatural. Yet, it
has been established that individuals with ASD have particular
difficulties with spontaneous “on-line” social interaction
requiring intuitive decisions and behavior (Redcay et al., 2013)
constituting an urgent need to move this type of research to
more external validity and investigate movement in a more
naturalistic context.

CLASSIFICATION USING
INTRAPERSONAL SYNCHRONY: A
PROOF-OF-CONCEPT STUDY

Whole-body movements in more naturalistic conversations were
tested for their classification potential in 29 high functioning
adults with ASD and 29 TD individuals. The data for this
investigation came from a study on interpersonal coordination
in dyadic interactions (Georgescu et al., under revision).
The autistic participants were diagnosed and recruited at the
Autism Outpatient Clinic of the Department of Psychiatry,
University Hospital Cologne, Germany. The sample included
only patients with the diagnoses high-functioning autism
(ICD-10: F84.0) or Asperger syndrome (ICD-10: F84.5). Two
medical specialists confirmed the diagnosis independently in
clinical interviews, according to the criteria of the International
Classification of Diseases (ICD-10) and supplemented by

extensive neuropsychological examination. The TD sample was
recruited online from the student and staff population at the
University of Cologne and the University Hospital of Cologne,
Germany. The study was conducted with the approval of the
local ethics committee of the Medical Faculty of the University
of Cologne. Participants were paired to conduct five 5min
social interaction tasks. Conversational dyads consisted of either
two TD individuals, two individuals with ASD or a TD
individual with an individual with ASD. An ice-breaker task,
two debating tasks, a meal-planning task and a roleplay were
included resulting in a total of 145 videos of social interactions
(for more information, see Georgescu et al., under revision).
All conversations were recorded in a room with standardized
artificial lighting and using a high-definition video camera
(Panasonic DV C Pro HD P2), mounted on a tripod 320 cm away
from the chairs which were 60 cm apart from each other. Since
one of the MIXED dyads did not understand instructions on
the ice-breaker task, for the purpose of this analysis the whole
task was abandoned, resulting in a total of 116 videos submitted
for final analysis. Intrapersonal Synchrony between the head
and upper body was quantified using Motion Energy Analysis,
a widely used semi-automated frame-differencing method that
continuously monitors the amount of movement occurring in
manually pre-defined regions of interest and the method of
lagged cross-correlations (Nagaoka and Komori, 2008; MEA;
Altmann, 2011; Ramseyer and Tschacher, 2011). MEA offers the
advantage of a constraint-free, objective analysis tool for non-
verbal behavior (e.g., Ramseyer and Tschacher, 2011; Schmidt
et al., 2012; Paxton and Dale, 2013). This method has been
used to capture body movement in different contexts (e.g.,
Grammer et al., 1999; Ramseyer and Tschacher, 2011, 2014;
Schmidt et al., 2012, 2014; Paxton and Dale, 2013). MEA
and other frame-differencing methods have been successfully
used in clinical research before (e.g., Kupper et al., 2015)
and in particular in autism (Noel et al., 2017; Romero et al.,
2017, 2018). We followed the MEA pipeline described in
Ramseyer and Tschacher (2014). We manually selected two
regions of interest (ROI) for each participant, covering (1)
the head and (2) the rest of the body including the legs.
Changes in grayscale values in these ROIs were detected and
separately recorded as two continuous time series measuring the
amount of movement in the head and the body region of each
person. Data were submitted for quantification of Intrapersonal
Synchrony (for more information on the MEA procedure in
general, please see Ramseyer and Tschacher, 2014 and on this
sample, Georgescu et al., under revision). Input time series
were smoothed and scaled to account for different-sized ROIs
using custom software in R (package rMEA, Kleinbub and
Ramseyer, 2019) and cross-correlated in windows of 60 s with
a time lag of ±5 s (step size 0.04 s). Windows were not allowed
to overlap. The resulting 1,004 lagged cross-correlations were
then z-standardized and aggregated over the four conditions for
every participant, yielding 4,016 features per participant which
were implemented in the open-source machine learning tool
NeuroMiner (https://www.pronia.eu/neurominer/). A support
vector machine with linear kernel was chosen as a classification
algorithm, a multivariate supervised learning technique widely
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TABLE 1 | Performance metrics of the ASD vs. TD SVM classifier.

True positives/true negatives 28/16

False positives/false negatives 13/1

Accuracy [%] 75.9

Sensitivity [%] 96.6

Specificity [%] 55.2

Area under the curve 0.71

For detailed explanation of performance metrics please refer to Dwyer et al. (2018).

FIGURE 1 | Decision scores of SVM classification performance. The algorithm

assigns a score to each participant indicating the probability of this participant

as belonging to Group 1 or 2 (in our case ASD vs. TD) where the decision

boundary between the two groups is zero. Notably, our algorithm misclassified

only one of the ASD participants.

used in psychiatric research (Bone et al., 2016; Duda et al.,
2016). Our repeated nested k-fold cross-validation (CV) structure
consisted of 10-folds and five permutations for the outer cross-
validation cycle (CV2) and repeated 5-by-5-fold inner cross-
validation cycle (CV1), with participants being shuffled prior
to each definition of folds. This way, the data available for
training was maximized while ensuring enough heterogeneity
within the inner test sample to avoid overfitting and create stable
models. Parameter optimization was performed in CV1, while
model performance was evaluated in CV2. Prior to analysis, data
was preprocessed using principal component analysis (PCA) for
dimensionality reduction, retaining the principal components
that cumulatively explained 80% of the variance in each CV1

fold, and subsequently, scaled feature-wise from 0 to 1. The slack
parameter C was estimated in the inner CV cycle using eight
parameters ranging from 0.015625 to 16. Overall classification
performance resulted in 75.9% accuracy (Table 1). Remarkably,
sensitivity was 96.6%, correctly classifying all but one individual
with ASD (Figure 1).

Thus, with a portable and inexpensive video-setup in a
naturalistic setting and a semi-automated analysis pipeline, we
reached a good diagnostic classification of ASD within four
5min interaction excerpts on the mere basis of objective motion
data. Feeding further clinical and interaction variables into the

BOX 1 | Minimum requirements for reliable clinical application of ML in

ASD research (adapted from Dwyer et al., 2018)

• Combination of objective variables and standard diagnostic measures as

input features to classify ASD.

• Use of nested CV as a standard procedure.

• Prevent unstable model outcomes through k-fold CV.

algorithm promises a high potential for classification (see Future
Perspectives section).

METHODOLOGICAL ISSUES IN MACHINE
LEARNING APPROACHES TO
CLASSIFYING ASD

Unlike e.g., Bone et al. (2016) or Li et al. (2017), most ML
studies in ASD research have relied on simple cross-validation
(CV) methods. This increases the likelihood of choosing an
overly optimistic model (Cawley and Talbot, 2010). We therefore
suggest the application of a second layer of CV to allow for
parameter selection and model performance evaluation to not be
performed on the same data and to prevent overfitting. The test
fold is completely held out until parameter optimization within
the inner CV cycle is achieved by splitting the training data once
more into an (inner) test and (inner) training set. The optimized
models can then be tested for generalizability on the outer
test fold. This so-called nested CV maximizes generalizability
and has now been established as a gold standard procedure in
psychiatric research (Dwyer et al., 2018). In order to account
for the small sample sizes in ASD research, often predictions are
made in a leave-one-out approach whereby only one individual’s
data is held out in the test set while parameters are optimized
on the others (Crippa et al., 2015; Li et al., 2017). Especially,
for ASD with its highly heterogeneous phenotype, leave-one-
out creates overly variable test sets, rendering model outcomes
unstable (Varoquaux et al., 2017). This can be prevented
through k-fold nested CV and simultaneous permutation of
individual data sets within the inner cross-validation cycle
(Dwyer et al., 2018). An overview of best-practice standards is
outlined below.

FUTURE PERSPECTIVES

Impairments of non-verbal communication are seen across the
entire spectrum of ASD warranting the use as a behavioral
biomarker. Yet, its intricacy requires multivariate analysis
methods to capture complex interdependencies across domains.
Machine learning offers the potential to incorporate high-
dimensional data for the detection of underlying mechanisms
and classification if certain minimum practice requirements are
fulfilled (see Box 1).

In our proof-of-principle study, we were able to classify
high-functioning adults with ASD from TD adults on the
mere basis of non-verbal intrapersonal motion synchrony in
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social interactions with an accuracy of 75.9%, which can be
regarded a conservative estimate on the basis of a state-of-
the art ML approach. Due to relatively small sample sizes
available with high phenomenological heterogeneity in ASD,
it is of utmost importance to choose adequate methods of
cross-validation in order to maximize generalizability. The
use of repeated nested cross-validation prevents overfitting
and should be incorporated as a standard procedure in ML
applications. However, given our rather limited sample size,
the next steps for future research will be to apply the
resulting algorithm to a completely new and larger data set
and to investigate its transdiagnostic specificity across different
psychiatric disturbances.

Future research should furthermore consider combining
multiple non-verbal communication parameters and clinical
data (e.g., questionnaires) in order to improve prediction and
classification accuracy further and to possibly detect potential
associations across domains. For instance, peculiarities in
eye-gaze (Merin et al., 2007; Georgescu et al., 2013) and
facial expression (McIntosh et al., 2006) in ASD demonstrate
feasible approaches.

One future avenue would be to explore methods to quantify
non-verbal behavior in a fully-automated fashion. In the present
proof-of-principle study, a dataset was used that was analyzed
using MEA, a classic frame-differencing approach. It has been
shown that MEA is able to capture movements and even
complex coordinative patterns to a similar extent as more
expensive motion capture equipment such as the Polhemus
(Romero et al., 2017). A main advantage for autism research
of this method of extracting whole-body motor movement
is that it does not involve any wearable technology. Given
the hypersensitivity exhibited by many individuals with ASD,
not having to add any attachable piece of equipment or
body suit to their bodies is helpful. However, while MEA
automatically detects pixel changes, corresponding regions of
interest are drawn in manually. Although resulting values are
standardized, there remains a subjective component. Computer
vision tools that can estimate the coordinates of limb positions
and even extract gaze location and body poses would offer
similar benefits while balancing out subjective biases in the
motion extraction process (Marín-Jiménez et al., 2014; Mehta
et al., 2017; Tome et al., 2017; Cao et al., 2018). In
addition, they offer even more flexibility, given it could be
possible to include less strict and standardized experimental
setups (no requirement for standardized camera or lighting
conditions). However, the validity for movement extraction
compared to other standard motion capture methods has
not been demonstrated yet. Moreover, such tools vary greatly
with respect to their susceptibility to tracking failures, or
the type of videos they can support (single vs. multiple
agent, indoor vs. outdoor etc.). Overall, with the current
methodology that is available for motion extraction, the
present semi-automated method offers a realistically applicable
diagnostic value. Nevertheless, incredible advances are being

made (Li et al., 2018; Tran et al., 2018) such that they are very
promising tools for future non-verbal behavior in autism research
and beyond.

Taken together, given the recent advances in predictive
psychiatry, adequately applied ML offers the potential to
fully capture the autistic phenotype in all its complexity
with sufficient specificity across psychiatric disorders with a
special focus on the spontaneous non-verbal behavior during
social encounters with others and irrespective of clinician
or site.
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