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Cancer stem cells (CSCs) have been demonstrated in a variety of tumors and are thought

to act as a clonogenic core for the genesis of new tumor growth. This small subpopulation

of cancer cells has been proposed to help drive tumorigenesis, metastasis, recurrence

and conventional therapy resistance. CSCs show self-renewal and flexible clonogenic

properties and help define specific tumor microenvironments (TME). The interaction

between CSCs and TME is thought to function as a dynamic support system that fosters

the generation and maintenance of CSCs. Investigation of the interaction between CSCs

and the TME is shedding light on the biologic mechanisms underlying the process of

tumor malignancy, metastasis, and therapy resistance. We summarize recent advances

in CSC biology and their environment, and discuss the challenges and future strategies

for targeting this biology as a new therapeutic approach.
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INTRODUCTION

Cancer remains one of the leading causes of death worldwide (1). Tumor malignancy is linked to
tumor heterogeneity, which has been proposed to be driven by a minor subpopulation of cancer
cells referred to as cancer stem cells (CSCs) (2, 3). This subpopulation of tumor cells have the
capacity to sustain tumorigenesis and drive tumor heterogeneity, processes that underlie tumor
progression, metastasis, and resistance to anti-cancer therapies (4). To date, CSCs identification has
been largely based on surface markers as well as their ability to self-renew and propagate. However,
CSC surfacemarkers alone are not a reliablemeans of identifying these populations which has led to
some confusion and controversy in the field. It is unlikely that these methods can afford a universal
specific marker for the identification of these cells. However, some functional markers including
the ATP-binding cassette (ABC) transporter and aldehyde dehydrogenase (ALDH) activity (5), the
activation of some key signaling pathways (6), live-cell RNA, and single-cell DNA detection (7)
have been found to improve CSCs identification in some instances.

The self-renewal potential and extensive clonogenic properties of CSCs are dependent on
the tumor microenvironment (TME) (8, 9). The interaction between CSCs and their tumor
niche is strongly linked to the characterization of CSCs (10). Through this interaction,
CSCs are able to preserve the tumor heterogeneity that underlies the important malignant
behaviors of invasion, metastasis, and therapy resistance (11). The influence of TME on
CSCs physiology has been shown to act through intrinsic and extrinsic actions. The intrinsic
mechanisms include DNA methylation or demethylation, and gene mutation, while the extrinsic
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actions involve the production of diverse growth factors and
cytokines by the TME leading to the activation of specific
signaling pathways (12). In addition, many studies have
shown that CSCs may be responsible for tumor resistance
to conventional cancer therapy (4, 13). The resistance that is
enhanced through the cross-talk between CSCs and the TME
include activation of the DNA repair system (8, 14), increased
resistance to hypoxic environments (15), and the phenomenon
of epithelial to mesenchymal transition (EMT) (16). These
features may help explain the therapeutic failures that are often
encountered in different tumor settings.

Despite the enormous challenges seen, a series of promising
new therapeutic approaches based on this biology are currently
under development. Notably, targeted therapeutic approaches
have emerged as important tools in treatment strategies. To
this end, both the CSCs and the TME represent important
therapeutic targets. Emerging research has shown that CSC-
targeted approaches have proven to be effective in prolonging
survival time (17). In this review, recent advances in CSC
biology are summarized, and the potential challenges and future
strategies for targeted therapy and combination therapy to
eliminate both cancer and CSC populations are discussed.

IDENTIFICATION OF CSC

CSCs are a small subpopulation of cells with characteristics that
include the capacity to cycle slowly, self-renew, and initiate a
novel tumor (18–20). Leukemic stem cells (LSCs) were first
described in acute myeloid leukemia (AML), where it was
demonstrated that CD34+CD38− AML include a subpopulation
of LSCs with a capacity to differentiate and self-renew (20).
The early study first demonstrated the existence of a unique
tumor subpopulation with the ability to drive tumor progression
and recurrence. CSC-like subpopulations have been subsequently
isolated from a variety of solid tumors (21). Because some
CSCs have been identified via specific surface markers, a door
has been opened for potential targeted therapy approaches
directed against these cells (22). However, because of the wide
diversity underlying this general biology across tumor types,
general markers for the global identification of these cells are
not available.

The functional relevance of surface markers for CSC
identification is still disputed (23, 24). It is suggested that
CSCs may arise from normal stem cells, progenitor cells, or
even more differentiated cells. In tumor patients, the expression
of CSC surface markers in normal organs implies potential
metastasis and poor prognosis (25). CD24, CD26, CD44, CD133,
CD166, and EpCAM (epithelial cell adhesion molecule, CD326)
are surface markers commonly used in CSC characterization
(26). CD133 is a special marker that has been widely used for
identifying CSCs in different tumor settings (27), especially in
solid tumors, such as prostate (28), pancreas (29), brain (30),
liver (31), colorectal (32), ovarian (33), osteosarcoma (34), and
lung cancer (35). In colorectal cancer, a subpopulation of cells
expressing CD133, which comprise 1% of the tumor cells, was
shown to efficiently induce xenografts in vivo (36). However,

CD133 expression appears to represent only one subset of CSCs
and the surface marker can also be found to be ubiquitously
expressed on many differentiated cells (37). EpCAM is expessed
by most adenocarcinomas and is thought to participatein tumor
progression (38). In liver and pancreatic cancer (29, 39), a high
expression of EpCAM is associated with the dedifferentiation
of tumor cells that have regained stem cell-like features. CD24
is highly expressed in embryonic stem cells (40) and has been
widely detected in different tumor settings. The combined
surface markers C44/CD24 have been used to identify CSCs in
breast tumors (41, 42). CD26 (dipeptidyl peptidase-4, DPP4)
is expressed on various cell types, which includes cells with
stem traits and is thought to influence progenitor cell migration
(43). CD26 is widely detected in leukemic and colorectal cancer
(44). Aldehyde dehydrogenase 1A1 (ALDH1A1) has also been
identified as a potential CSC marker. ALDH expression is
associated with the oxidation of aldehydes to carboxylic acid.
ALDH activity has proven useful for the prediction of poor
tumor outcome in prostate, breast and lung cancer (45, 46). The
ABC transporters are able to pump chemotherapy agents out
of the cells that express these proteins. These transporters are
widely expressed by CSCs and are thus thought to represent an
important component for the failure of cancer chemotherapy.
The expression of ABC transporters has been used to identify
or isolate CSCs from solid tumors (47). Importantly, CSCs have
also been functionally identified in what would represent CSC
negative populations based on surface markers (48). Thus, it is
generally important to make use of multiple markers to more
reliably identify CSCs. To this end, the activation of CSC-related
signaling pathways such as the canonical Wnt pathway, has been
shown to provide an addition level of information to better
identify CSCs from colon and ovarian cancer (49).

Some surface markers used to characterize CSCs are also
expressed by normal stem cells. CD29 (integrin β1) is widely
expressed on CSCs and also on some normal cells, and is regarded
as a marker for breast cancer CSCs. CD29 is important for breast
cancer cell adhesion to extracellular matrix, and is thought to
promote self-renewal and chemoresistance (50). CD9 (MRP-1)
is widely expressed in normal tissues. However, it can also
act as an effective marker to diagnose B-acute lymphoblastic
leukemia (B-ALL) and is linked to drug resistance. CD44s is
frequently used as a CSC marker (51). CD44 is composed of
different subtypes (CD44V1-V10) (52, 53) and is expressed by
both CSCs and normal cells. CD44 expression is associated
with cancer progression and metastasis (51). For example, the
CD44V9 is a predictive marker in solid tumors, including head
and neck squamous carcinoma and gastric cancer. CD44V3
and V6 have been shown to be linked to invasion, metastasis,
and resistance to apoptosis in colorectal cancer (54). The
CD44V3-7 varients are highly expressed in non-small cell lung
carcinoma (NSCLC) (55, 56). In addition, CD44V6 is associated
with lymph node metastasis (6). In examples of breast cancer,
high expression of CD44V3, V5, and V6 have been detected
and shown to be related to the invasive properties of the
tumor (57, 58). ABCB5 (ATP-binding cassette transporter) is a
member of the ATP-binding cassette transporter family. ABCB5
expressed by normal cells and contributes to cell proliferation
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and differentiation (59). However, the expression of ABCB5 has
also been demonstrated in several malignant stem cells, including
ocular surface squamous neoplasm (OSSN) (60) and melanoma
(61, 62). The ABCB5 subpopulation was shown to have an
unlimited self-renewal potential, and is thought to foster tumor
progression, metastasis, and therapy resistance (63, 64).

CSCs with unlimited self-renewal potential express potential
specific markers that can help dinstinguish them from other cells.
By making use of markers in CSCs, it may be possible selectively
eradicate CSCs in various tumors (22, 65). While there is a
growing list of markers that have been used for identification and
isolation of CSCs, very few reliable specific surface markers have
been found that clearly identify CSCs because CSCs, for the most
part, are heterogeneous. The identification of more universal
CSCmarkers across diverse cancer types would clearly redine the
field. Finally, what is emerging is that the application of multiple
markers used in combination represents the most reliable means
of characterizing these cells absence the functional criteria used
to define CSCs.

CSC MICROENVIRONMENT

Accumulating evidence suggests that cancer cells acquire
a “stemness” feature in part through environment input.
Because of this, even differentiated cancer cells can revert
to a more dedifferentiated state which has been linked to
the ability to form tumors (66). CSCs co-injected into mice
with stromal cells extracted from a tumor environment form
more aggressive tumors that do CSCs alone suggesting an
important role for the stromal matrix surrounding CSCs,
also known as the “CSC niche” (67, 68). Cancer cells in
a such a niche are capable of maintaining their stemness
state (12, 69). The niche can contain various cell types and
growth factors providing a tumor promoting microenvironment.
This can involve endothelial cells, immune cells, cancer
associated fibroblasts (CAFs), various growth factors, and
cytokines. In addition to these components, environment
changes, such as hypoxia, and pH have been proposed to
contribute to the CSC niche (70–72). The perivascular niche,
which is best studied in brain tumors, is recognized as
a hallmark of glioblastoma (GBM). The perivascular niche
enhances GBM stemness and ability for self-renewal and
invasion (73).

Low levels of oxygen, referred to as hypoxia, is an important
feature of TME. Hypoxia appears to help drive the maintenance
of stemness and thus malignancy of CSCs, which promotes
tumor survival and metastasis (74). The hypoxia-inducible
factors (HIFs) are transcription factors that are increased in
response to t hypoxia, and high expression of HIFs (HIF-
1α, HIF-2α) is correlated with tumor malignancy (75). The
octamer-binding transcription factor 4 (Oct4) is activated by
HIF-2α and is linked to control of CSCs self-renewal and an
increase in the malignant potential of embryonic stem cell-
derived tumors (76). Another transcription factor-Sox2 is also
linked to stemness through modulation of Oct4 levels in CSCs
(77). A reduction in miR-145 was shown to significantly reduce

expression Oct4 and Sox2, and thus lead to a decrease in
the CSCs population and chemosensitivity in colon cancer
(78). In pancreatic ductal adenocarcinoma (PDAC), YAP/HIF-
1α signaling is activated by HGF stimulation through its
receptor cMET (79). Dysregulation of YAP is related to tumor
proliferation, epithelial mesenchymal transition (EMT) and
therapy resistance. In the context of a low oxygen environment,
CSCs can obtain energy by both OXPHOS and glycolysis activity.
During hypoxia, glycolytic enzymes and glucose transporters
become induced by HIF-1. Pyruvate dehydrogenase kinase
1(PKD1) plays a role in converting pyruvate to acetyl-coenzyme
A (80). As an essential glycolytic enzyme, PDK1 is associated
with tumor proliferation, metastasis and poor prognosis (81). In
breast cancer, PDK1 stimulates glycolytic activity to stimulate
cancer cells to take on stemness traits (82). The use of
PDK1 inhibitors can help block glycolysis activity and also
limit maintenance of breast cancer stem cells (82). In many
instances, CSCs have been shown to be primarily glycolytic, or to
preferentially shift from OXPHOS to glycolysis in a tumor type-
dependent manner. In lung cancer (83), glioblastoma (84), and
PDCA (85), CSCs were also shown to utilize OXPHOS as the
preferred energy production process, however, the mechanism
is still unclear. To target this metabolic biology it is thought
that a combined therapy targeting both aerobic glycolysis and
OXPHOS dependent cells may be the most effective therapy to
block CSCs.

CAFs, as a part of TME, are believed to drive tumor
progression and dedifferentiation by their secretion of key
growth factors and their interplay with other stromal cells.
HGF secreted by CAFs was found to activate the canonical
Wnt pathway and promote cancer cells to dedifferentiate
to the CSCs state (26). Cytokines secreted by CAFs, such
as CCL2, IGF-1, and TGF-β affect the expansion and self-
renewal of CSCs in breast, lung and gastric cancer (86,
87). In a hypoxic environment, CD44 is highly expressed by
CAFs that in turns helps mediate cancer cell migration and
stemness sustainability (88). The high-mobility group box 1
(HMGB1) released from CAFs was demonstrated to stimulate
CSCs through the TLR4 receptor in breast cancer (89). CAFs
induced expression of Notch3 is responsible for the activation
of lysine demethylase 1 (LSD1) in CSCs, driving self-renewal
in HCC (90, 91). In addition, CAFs facilitate tumor cells
migration and metastasis indirectly through EMT. In prostate
cancer, CAFs secret CXCL12 and promote EMT by inducing
the expression of CXCR4 (one of the EMT phenotypes),
which enhances metastasis (92). Recent reports also show
that CSCs can differentiate into CAF-like cells through TGF-
β secretion that promotes self-renewal and proliferation (93).
CSCs also secret the Hedgehog ligand SHH that is known
to increase the proliferation of CAF in the mammary tumor,
and the CAFs secret factors to improve the ability of CSCs
malignancy (94).

The biological cross-talk between CSCs and TME is
quite complicated, and changes between different tumors and
environments. By better understanding these processes, we can
develop novel strategies to better target CSCs. Figures 1, 2 gives
insight into illustration of hypoxia and CAF interactions on CSC.
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FIGURE 1 | Schematic illustration of the potential effects of hypoxia interaction

on cancer stem cells (CSCs).

FIGURE 2 | Schematic illustration of the potential effects of CAF interaction on

cancer stem cells (CSCs).

THERAPEUTIC RESISTANCE DRIVEN BY
CSC AND THEIR MICROENVIRONMENT

Tumors recurrence often means poor prognosis and increased
resistance to therapy (95, 96). Increasing evidence suggests that
the interplay between CSCs and their TME is important in
tumor development. The tumor is a complex tissue composed
of different subpopulations of tumor cells and tumor-associated
stromal cells. Through interaction with the microenvironment,
CSCs can avoid target exposure and this may be a key to therapy
resistance (97–99).

The general therapeutic resistance of CSCs allows them
to escape from elimination and re-establish tumor. When
the treatment cycle comes to an end, CSCs are revived from
their quiescence and promote tumorgenesis (100, 101). The
mechanisms by which CSCs achieve therapeutic resistance
involves heightened DNA damage repair capacity, high
expression of multiple drug resistance (MDR) transporters and
high expression of anti-apoptosis proteins (102–105).

The DNA damaging repair (DDR) system is important in
tumor progression. When under chemotherapy or radiotherapy,
damaged DNA triggers the DDR, which enables CSCs to survive
and thereby remain resistent to treatment. Several pathways
can be activated in cancer cells includiong the double-strand
breaks (DSBs) repair (homologous and non-homologous end
joining), base excision repair (BER), transcription coupled
nucleotide excision repair (NER), and mismatch repair (MMR)
systems (106). Previous study have showen that the high
expression of apurinic/apirimidinic endonuclease/redox effector

factor (Ape1/Ref-1), corresponding to an activation of the BER
pathway, has been implicated in the development of CSCs (107).
Overexpressed Ape1/Ref-1 was also shown to maintain a low
level of reactive oxygen radicals (ROS) that prevented DNA
damage and cell death in CSCs (108–110). The Mre11-Rad50-
Nbs1 (MRN) complex has the capacity to repair DNA and
modulate cells apoptosis, and gene stability and is an important
part in the DSBs pathway (111, 112). In nasopharyngeal and
gastric cancer, MRN-ATM meditated DNA repair induced
resistance to common chemotherapy agents, such as cisplatin
and 5-FU (113, 114). The MRN complex also acts as one of the
DSB pathway key elements to produce radio-resistance in various
cancer types (115). Transcription factors such as forkhead box
protein m1 (FOXM1), P53, glioma-associated oncogene (GLI1),
and c-MYC, were also shown to be important for the DNA repair
response (116, 117). Treating colon cancer with doxorubicin (a
chemotherapy agent) was shown to lead to the activation of
SMAD, which binds to P53 to produce chemoresistance (118).

The expression of multi-drug resistance (MDR) transporters
in CSCs results in drug efflux and decreased intracellular drug
concentration (119, 120). The ATP-binding cassette (ABC)
transporters encompass 49 members in humans and are
organized into seven subfamilies (ABCA-G) (121, 122). Three
well-studied members of the family are ABCB1, ABCG2, and
ABCC1 (123, 124). Overexpression of ABCG2 is associated
with resistance to a large number of chemotherapy agents,
such as mitoxantrone, camptothecins and flavopiridol (125).
The human breast cancer resistance protein (BCRP/ABCG2),
which was derived from the breast cancer cell line Mcf-7,
was shown to induce resistance to mitoxantrone (126, 127).
However, this resistance could be reverted by the MiR-487a
target for the expression of BRCP (126). In ovarian cancer, c-
MET/PI3K/AKT pathway activation was shown to induce the
expression of BRCP/ABCG2, which is important in doxorubicin
resistance (125, 128). ABCB1 is also called P-glycoprotein (P-
gp) or multidrug resistance gene 1 (MDR1). In AML, P-gp acts
as an adverse prognostic factor for drug resistance (129). It was
also found that the absence of miR-298 is related to an over
expression of P-gp. The upregulation of miR-298 could reduce
the expression P-gp, leading to increased concentration and
cytotoxicity of doxorubicin in doxorubicin-resistant breast cells
(130). In addition, oncogene kinases such as MEK1/2, ERK1/2, c-
Raf, EGF, and FGF, can increase the expression of P-gp and effect
drug resistance and therefore may also represent potential targets
(131). The ACBC1 transporter is encoded by the MRP1gene.
This subfamily plays a role in affecting MDR in lung, bladder,
and breast cancer (124). In neuroblastoma, the high expression
of MRP1 is associated with a poor outcome and sensitivity to
chemotherapy should be regained by targeting MRP1 (132).

Hypoxia influences cancer progression, and therapy
resistance, and it leads to poor outcomes. The ROS level is
affected by oxygen density. In tumors, hypoxia leads to a low
ROS level that in turn can be protective for CSCs and lead to
therapy failure (133). HIFs are considered as negative factors for
effective tumor therapy. It has been suggested that HIFs influence
the pathways that contribute to the quiescence of CSCs, such as
cell cycle control via cyclin dependent kinase, metabolic control
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via pyruvate dependent kinase, anti-apoptosis via BCL-XL, and
self-renewal via OCT-4 (134–136). In some reports, HIFs are
believed to be related to MDR, such as ABCG2, and to affect
drug efficacy. VEGF has also been proven to be induced by
hypoxia, leading to chemo/radiotherapy resistance (137, 138).
In colon cancer, dual specificity phosphatase-2 (DUSP-2) was
suppressed by hypoxic culture, which led to the upregulation of
COX-2 expression. DUSP-2 has a negative function in cancer
malignancy and COX-2 is closely related to cancer stemness,
tumor growth and drug resistance (139).

Anti-apoptosis protein expression in CSCs is another
component of therapy resistance. BCL2 and BCL-XL are highly
expressed in breast and AML CSCs (136, 140). P53 is a tumor
suppressor that is frequently mutated in most human cancers.
Due to programs such as inactivation of caspase-9 and protease
activating factor1 (Apaf-1), and the activation of gain-of-
function, the mutant P53 shows acquisition of dedifferentiation
and stemness that leads to drug resistance (141, 142). An altered
apoptosis pathway has also been demonstrated to be involved in
the formation of drug resistance. The high expression of Bcl-2
due to Notch andHh signaling pathways translates into docetaxel
resistance in prostate CSCs (143). Additionally, Hh signaling
pathway activation in AML, especially in CD34+ leukemic cell
lymphoma, induces the function of anti-apoptosis that lead to
chemotherapy (144).

EMT activities in the CSC environment include wound
healing, tissue fibrosis, and carcinoma progression. Non-small
lung cancer (NSCLC) treated with Erlotinib targeting EGFR
mutation shows more drug resistance due to mesenchymal-like
expression. With the reversion of EMT, an elevated epigenetic
like the expression of E-cadherin, is associated with sensitivity
to the EGFR kinase inhibitor (145). It is generally accepted that
the Notch pathway is associated with gemcitabine resistance
in PDAC and is regulated by EMT (146). The expression of
mesenchymal-like regulators such as Zeb2/SIP1 can protect
cells from DNA damage-induced apoptosis in bladder cancer,
leading to poor prognosis (147). In non-small lung cancer
(NSCLC), EMT is thought to act in the process of quiescence.
Overexpressed CSC surface markers, such as ALDH1 and
CD133 in NSCLC stem cells are proposed to develop resistance
to conventional therapy agents 5-FU (148). CSC-mediated
therapeutic resistance relies on different mechanisms. Figure 3
gives insight into illustration of therapeutic resistance driven by
CSC and microenvironment.

THERAPEUTIC STRATEGIES TARGETING
CSC AND THEIR MICROENVIREMENTS

CSC Targeting Strategies
The selective targeting CSCs is a promising therapeutic strategy
to eliminate the development of human cancer and reduce the
risk of recurrence (149). Therapeutic strategies discussed include
disrupting the central regulating signaling pathways important
for the cell type, targeting specific markers, inhibition of the ABC
transporters, manipulating miRNA expression, or inducing the
differentiation and apoptosis of CSCs.

Signaling pathways that underlie CSC biology and have
been identified as potential targets. Key pathways identified

include Sonic hedgehog (Shh)/Patched (Ptch)/Smoothened
(Smo), Notch/Delta-like ligand (DLL), CXC chemokine
receptor 1-2/CXCL8/FAK, and Wnt pathways. Downstream
transcription factors such as β-catenin, STAT3, and Nanog
have also been identified as potential clinical targets (150).
However, the fact that CSCs and normal stem cells share
the expression of many genes and signaling pathways,
as well as the redundancy of the regulatory pathways,
may effectively limit the efficacy and clinical impact of the
therapeutic approaches.

Drugs targeting CSC markers may play an adjunctive
role together with surgery, chemotherapy, and radiotherapy
(151). CD44, the transmembrane protein that is the receptor
for matrix components such as hyaluronic acid selectin,
collagen, and osteopontin, has been proven to help treat acute
myeloid leukemia (AML) by inhibiting tumor proliferation, and
increasing apoptosis (152, 153). CD133, the glycoprotein also
known as prominin-1, is another well-known marker on the
CSCs surface and it has been reported to be a useful target
in cancers with a large CD133 subpopulation (154, 155). In
addition, other drugs approved by FDA are also used for targeting
CSC markers such as rituximab (anti-CD20) (156), cetuximab
(anti-EGFR) (157–159).

The aberrant expression of ABC transporters, which are
drug efflux pumps, is a major mechanism of chemoresistance
in CSCs cells (160). Three generations of inhibitor drugs have
been developed and the fourth generation is underway (49,
160), which should be more selective and less toxic. New
technology has been applied to improve therapy efficacy, such
as the application of miRNAs targeting specific RNAs or the
use of nanomedicines for bypassing efflux pumps. However,
currently no inhibitors have been approved for clinical practice.
Accumulating studies have reported that different tyrosine
kinase inhibitors (TKIs) including erlotinib, lapatinib, imatinib,
and nilotinib can reverse drug resistance mediated by ABC
transporters (161). The ability to inhibit the multiple regulatory
targets of ABC transporters synergisticly, combined with other
therapy strategies to overcome chemoresistance in CSCs may
represent a promising approach.

CSCs have non-coding RNA profiles that are different
from those seen in other cancer cells. Non-coding RNAs act
as regulators in maintaining and modifying CSCs properties
and functions (162). As such, they represent not only
potential drugs but also therapeutic targets for the treatment
of CSCs. Accumulating evidence suggests that non-coding
RNAs, including microRNA (miRNA) and long non-coding
RNA (LncRNA), regulate the stemness of CSCs by acting as
suppressors or promoters of pathways that modulate the CSC
carcinogenesis, differentiation, and EMT. In breast CSC and
CD133 positive pancreatic cancer cells, miR-30 was found to be
decreased and inhibited anoikis resistance (163). Three novel
LncRNAs including Lnc TCF7, Lnc-b-Catm, and Lnc BRM
were reported to sustain the self-renewal of CSCs by regulating
the classic signaling pathways related to development and
progression of liver CSC (164). Non-coding RNAs are regarded
as very useful targets for potential therapeutic strategies due to
their limited and selective expression in tumor tissues. MiRNA-
based therapeutics are also emerging as tumor treatment options
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and are currently entering clinical trials (165). For example, a
phase 1 clinical trial that targomiRs, minicells loaded with miR-
16-basedmimicmiRNA and targeted to EGFR, is being evaluated
in patients with malignant pleural mesothelioma and non-small
cell lung cancer (166).

The impairment of apoptosis contributes to cancer
development and progression, and the reactivation of apoptosis
programs might be useful in the treatment of cancer. It
has been reported that targeting TRAIL could cause caspase-8
reactivation, ultimately initiatingmitochondrial outer membrane
permeabilization and triggering the apoptosis (167). In PACA,
JNK inhibition attenuated resistance of TRAIL-induced
apoptosis and reduced the self-renewal capacity of CSCs (168).
Finally, inhibition of NF-κB by the molecule MG-132, has also
been reported to induce cell death (169). Another approach that
has been evaluated focused on various means to induce CSCs
differentiation. Promising agents are under research currently
include the use of retinoic acid and its analogs (ATRA) for the
treatment of promyelocytic leukemia (170–172). These may also
show utilityto induce differentiation of glioma and breast CSCs.
Other molecules such as histone deacetylase inhibitors (HDACI),
tyrosine kinase have also been proposed in many CSCs studies
(151). Most recent antibody targets in CSC were summarized in
Table 1.

Targeting the CSC Environment
The tumor environment is comprised of various components
including CAFs, immune cells, multipotent stromal cells
(MSCs), endothelial and perivascular cells, and their secreted
factors including growth factors and cytokines. In addition,
this environment is made up of extracellular matrix (ECM)
components, and extracellular vesicles, within a prevailing
hypoxic region (12). The tumor stroma is thought ot help foster
the generation and maintenance of CSCs, protect the tumor

from the immune system (173), and contribute to the induction
of EMT, leading to enhanced tumor progression, invasion, and
recolonization as secondary tumors. Furthermore, CSCs can
acquire drug resistance by interacting with niche components
in TME. Thus, targeting the TME may represent an effective
indirect therapeutic strategy for the treatment of CSCs and for
the prevention of drug resistance.

Stromal Cells in the CSC Niche
It is recognized that tumor stromal cells can not only provide
physical shelter for CSC by limiting drug access, but also

TABLE 1 | The antibody target in CSC through different mechanisms in different

tumors.

Antigen Targeting

mechanism

Inhibitor Cancer tested References

CD44 marker H90 AML (142, 143)

CD133 marker Oxyteracycline

FIBPi

Liver

Colon

(144, 145)

CD20 Marker Rituximab Lymphoma (146)

EGFR Marker Ectuximab Head and neck

Squamous cell

Breast

Esophagus

(147–149)

ABC

transporters

Erlotinib

Lapatinib

Imatibib

Nilotinib

Under test (151)

targomiRs EGFR Clincal

phase 1

Malignant pleural

mesothelioma

Lung

(156)

TRAIL Apoptosis JNKi pancreas (158)

NF-κB Apoptosis MG132 leukemic (159)

FIGURE 3 | Schematic representation of cancer stem cells (CSCs) and its role in therapeutic resistance. (A) Most of the cancer cells are eliminated by therapeutic

resistance. CSC could escape from chemotherapy and re-establish tumor. (B) CSC possess several mechanisms to achieve therapeutic resistance involves Hypoxia

environment, high expression of anti-apoptosis proteins, epithelial mesenchymal transition (EMT), DNA damaging repair system (DDR), multiple drug resistance

transporters (MDR).
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promote CSC growth, migration, and metastasis by producing
important growth factors, cytokines and chemokines (174). Since
the cross-talk between CSCs and stromal cells can stimulate
tumor aggressiveness, directly targeting the stromal cells may
serve as an alternative therapeutic strategy to treat CSCs (175).

Vascular endothelial cells (ECs), a type of stromal cell in
CSC niche, which are required for angiogenesis, can also secrete
growth factors and cytokines that enhance the proliferation of
cancer cells, and promote the maintenance of CSCs properties in
head and neck squamous cell carcinoma (176, 177). Interfering
with tumor EC growth and survival could in theory inhibit
not only angiogenesis but also the self-replication of CSCs
(178). VEGF is a strong proangiogenic factor secreted by
cancer cells, that is a well-recognized therapeutic target. Various
angiogenic inhibitors have been developed that can also inhibit
the self-renewal of CSCs leading to reduced tumor growth. In
GBM, the VEGF tyrosine kinase inhibitor—bevacizumab has
proven successful in expanding survival time by targeting the
perivascular niche (179). Also in GBM, the VEGF-VEGF2-
NRP1 axis is seen as an attractive target in order to decrease
CD133+GBM CSCs (180). Bevacizumab combined with anti-
hepatoma-derived growth factor (HDGF) antibody has been
shown to suppress CSC populations in NSCLC (181). However,
in breast cancer, inhibition of VEGFR may increase CSCs
population by inducing hypoxia (182). To address this it may be
that use of a VEGFR inhibitor in combination witt HIF inhibition
in combination therapy may provide a more effective treatment
strategy (183).

CAFs represent the major component of tumor stroma
andalso play an important role in cancer therapeutic resistance
and radiotherapy resistance. Thus, the direct targeting of
CAFs may enhance clinical outcomes. Surface markers of
CAFs such as FAP, S1004A, and TEM8 have been directly
targeted through administration of sibrotuzumab, 5C3, and
ADC, respectively, in various tumor types (184–186). In breast
cancer, CAF activation was blocked by inhibition of Hedgehog
(Hh) signaling, which also increased the sensitivity of resident
CSCs to chemotherapy agents (187). CAFs secret TGF-β, and the
inhibition of TGF-β signaling by using LY364947 administered
via nanoparticle therapy showed a potent therapeutic effect
by disrupting CSC biology (188). PTK7 as a special marker
of HNSCC stem cells and is demonstrated to have a close
relationship with tumor persistence, metastasis, and recurrence.
The use of a PTK7 inhibitor was found to increase the
sensitivity of HNSCC to erlotinib (189). In addition to a
direct activity on CSCs, the inhibition of important signaling
pathways may represent a prospective strategy in tumor
treatment. Notch signaling is over-activated in HCC, and is
thought to help maintain stemness in liver CSCs by regulating
LSD1 deacetylation in CAFs (190). CD10+GPR77+ CAFs were
demonstrated to promote cancer stemness and chemoresistance.
An antibody against GPR77 was demonstrated to reverse
chemoresistance by targeting the CD10+GPR77+ CAF subset in
solid tumors, such as in breast, lung cancer (191).

Tumor-associated macrophages (TAMs), feature M2-like
characteristics and are important components of TME. TAMs
have been demonstrated to promote CSC immunosuppressive

traits leading to immune escape (192). It has been suggested
that TAMs may represent potential targets for immunotherapy.
In inflammatory breast cancer (IBC), tumor cells interact
with immune suppressing M2-TAM leading to the production
of high levels of IL-8 and CCL18 chemokines that in turn
activate STAT3, which induces a CSCs-like phenotype in IBC
cells and drives EMT during IBC progression (193). Targeting
CXCL8/GRP/STAT3 may represent a therapeutic choice in the
treatment of IBC (194). In lung cancer, the Src kinase is
associated with metastasis and stemness (195). For example, it
has been demonstrated that overexpressing Src in M2-TAMs
induces cisplatin resistance in lung cancer. Inhibition of Src using
the small molecular agent dasatinib, was found to re-sensitize
lung cancer cells to cisplatin (196). CAF derived CXCL12 can
help attract monocytes, which display M2 TAM characteristics.
Blocking the CXCL12/CXCR4 axis significantly reduced the
effect of M2 TME leading to reduced cell proliferation, migration
and resistance to vineristine in OSCC chemotherapy (197). A
member of the immunoglobulin family, CD47 is found to be
overexpressed on the surface of many cancer types. It binds to
the signal regulatory protein alpha (SIRPα) to prevent cancer
cells from undergoing phagocytosis in the tumor environment
(198, 199). Targeting CD47, or interfering with the CD47-SIRPα

axis leads to enhanced tumor phagocytosis by macrophages and
represents a promising therapeutic strategy to treat CSCs (200–
202). It has been shown inHCC that themiRNA 125 delivered via
TAM exosomes may significantly suppress the CSC phenotype
and limit drug resistance (203). The same function of miRNA125
or TAM exosomes have also been seen in cervical cancer (204),
nasopharyngeal cancer (205), and AML (206).

Immunotherapy
Immunotherapy is an emerging field and the exact mechanism
by which these therapies may abrogate the ability of CSCs to
reinitiate tumors is still under investigation. Over the past decade,
therapeutic approaches have utilized the cytotoxic T-lymphocyte-
associated antigen 4 (CTLA-4) (207) or programmed death
1 (PD-1)/programmed death receptor ligand-1 (PD-L1) (208)
blocking antibodies, which have yielded notable response rates
and have shown a remarkable clinical response in patients with
advanced cancer. Despite the recent successes, the utilization of
single antibodies is often limited and leads to poor treatment
outcome. To achieve improved immune responses, the use
of combination strategies for checkpoint inhibitors with other
therapeutics may offer a stronger response against cancer as
well as higher recovery rates (209, 210). PD-1 blockade was
shown to enhance a specific antitumor efficacy of streptavidin-
granulocyte-macrophage-CSF surface-modified bladder cancer
stem cells vaccine (211). A recent study showed that targeting
CSCs using the CSC-dendritic cell vaccine with CTLA-4 and
PD-L1 blockades simultaneously enhanced the eradication of
melanoma stem cells in the mouse model (212). In addition,
CAR-T cells have produced remarkable antitumor activities in
different types of tumors (213, 214). In prostate cancer and
NSCLC tumor models, CAR T-cells targeted against EpCAM and
EGFR antigens could successfully eradicate CSCs and cancer cells
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TABLE 2 | Target factors and chemokines in different tumors.

Antigen Derived Inhibitor Cancer

tested

References

VEGF EC Bevacizumab GBM

Lung

(169, 170)

(171)

FAP CAF Sibrotuzumab Colon (174)

S1004A CAF/marcophage 5C3 Breast (175)

TEM8 CAF ADC Pancreas

Colon

Breast

(176)

TGF-β CAF LY364947 Under

test

(178)

PTK7 CAF HNSCC (179)

GPR77 CAF Anti-GPR77 Lung

Breast

(181)

IL8/GRP/

STAT3

TAM anti IL8/GRP/

STAT3 axle

IBC (183, 184)

Src TAM Anti Src/dasatinib Lung (186)

CXCL12/

CXCR4

TAM anti CXCL12/

CXCR4

OSCC (187)

CD47/

CD47-SIRPα

TAM Hu5f9-G4 NHL

AML

ALL

(190–192)

Immune-

therapy

PD-1

PD-L1

Balder

Melanoma

(201)

(202)

(215, 216). Most recent target factors and chemokines in CSC
were summarized in Table 2.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Based on the central impact of CSCs on tumor progression with
accompanying poor patient outcome, CSCs-targeted therapy
approaches have emerged as an important new strategy for
future tumor treatments. However, the identification of CSCs
remains a challenge. Markers expressed on CSCs may also be
displayed by normal stem cells, which may limit the accuracy of
CSCs identification and compromise the targeted treatment. In
addition, CSCs appear to represent by heterogeneous populations
within tumor settings. Therefore, CSC surface markers alone
are not broadly reliable for their identification. The best results,
absence functional criteria, results from the use of multiple
markers which provide a better means of identifying CSC in
specific tumor types and may provide information regarding
potential drug responsiveness and tumor recurrence.

CSCs have been demonstrated to influence tumor metastasis,
immune escape, and drug resistance. Targeting CSCs via their
unique signaling pathways, by metabolism reprogramming,
hitting the ABC transporters, and even the use of non-
coding RNA, represent promising strategies to control tumor
progression through CSC-based targeting. However, due to the
inherent heterogeneity of CSCs the targeting a single molecule or

pathway may not be an effective strategy. Combination therapy
may represent themost efficientmeans for the treatment of CSCs.

In cross-talk with CSCs, the tissue environment plays an
important role in the development of tumor metastasis and
recurrence. In the TME, CSCs are thought to reside in a special
“CSC niche,” which helps maintain their self–renewal and
stemness. Immunotherapy represents an important emerging
field in tumor therapy. Recent impressive results have been seen
in immune targeting of CSCs through the use of PD-1/PDL-1
inhibitors. However, some studies have reported that CSCs
are less immunogenic than non-CSCs, and thereby limiting
antitumor response to CSCs. CAR-T cells also hold promise in
overcoming cancer resistance in different types of tumors. Thus,
targeting both CSCs and TME may represent the best option in
the anti-cancer approach. Although the interconnected networks
between CSCs and TME are complex, and most mechanisms are
still obscure, various CSC targeting agents have been developed
and successfully tested in several tumor types. In contrast
with the single focus of CSCs-targeted therapy, because TME
components include different types of stroma cells, cytokines,
and growth factors, many of them have proved to be targeted
in the eradication of CSCs. However, although there is growing
literature in this promising area, the therapeutics of targeting
CSCs and their environment are still in its infancy. Research
on CSCs and their related environments will provide new
targets for the development of anti-tumor strategies. In addition,
clarifying the interconnectiveness of CSCs and TME will be
important for the design of effective therapeutic approaches.
The focus of future trials may include combination therapies
that target multiple mechanisms in the tumor. However, this
field is still undeveloped, and considerable research will be
required to produce viable products. Many important challenges
remain, including how to achieve drug selectivity and efficacy,
reduce toxicity to normal cells, reduce adverse side effects,
and explore new approaches to deliver and keep an effective
drug concentration in place. In conclusion, the combined
regimen of CSC-targeted therapy together with conventional
treatment methods shows great potential and deserves
further research.
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