Diabetologia
Clinical and Experimental Diabetes and Metabolism
Organ of the European Association for the Study of Diabetes (EASD)

Editor-in-Chief
C. Hellerström, Uppsala

Editorial Assistant
S. A. Hills, Uppsala

Deputy Editors-in-Chief
G. B. Bolli, Perugia
E. R. Trimble, Belfast

Assistant Editors
A. Andersson, Uppsala
C. Berne, Uppsala
T. Tuvemo, Uppsala
B. Vessby, Uppsala

Associate Editors
J. Fagius, Uppsala
E. Ferrannini, Pisa
J. Fuller, London
Å. Lernmark, Seattle
D. Pipeleers, Brussels
U. Smith, Göteborg
M. Sugden, London
G. Tamás, Budapest
M. R. Taskinen, Helsinki
Ph. Vague, Marseille
G. C. Viberti, London

Advisory Board
M. Berger, Düsseldorf
G. F. Bottazzo, London
T. Deckert, Gentofte
G. Grodsky, San Francisco
Y. Kanazawa, Tokyo
R. G. Larkins, Melbourne
H. Mehnert, Munich
B. Metzger, Chicago
R. S. Sherwin, New Haven
R. B. Tattersall, Nottingham
C. B. Wollheim, Geneva

Springer International
Diabetologia publishes reports of clinical and experimental work on all aspects of diabetes research and related subjects, provided they have scientific merit and present important facts or new data. Invited Reviews and Editorials are also published. Rapid communications of results with immediate interest may also be considered for expedited publication. Mere confirmation of known facts will be accepted only in exceptional cases; the same applies to reports of experiments and observations having no positive outcome. The Editor in Chief will be pleased to consider for publication papers read at meetings of the European Association for the Study of Diabetes, provided that they meet the above requirements. Letters to the Editor commenting on previously published work in Diabetologia, and Workshop reports are also welcome. It should be noted that there are no page charges with the exception of Workshop reports.

Manuscripts (5 copies) should be sent to:
Professor C. Hellerström
Editor-in-Chief
Diabetologia
Department of Medical Cell Biology
Biomedicum, Box 571
S-75123 Uppsala
Sweden

Copyright
Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract); that it is not under consideration for publication elsewhere; that its publication has been approved by all co-authors, if any, as well as by the responsible authorities at the institute where the work has been carried out; that, if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher and that the manuscript will not be published elsewhere in any language without the consent of the copyright holders.

All articles published in this journal are protected by copyright, which covers the exclusive rights to reproduce and distribute the article (e.g., as offprints), as well as all translation rights. No material published in this journal may be reproduced photographically or stored on microfilm, in electronic data bases, video disks, etc., without first obtaining written permission from the publisher. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.

While the advice and information in this journal is believed to be true and accurate at the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Special regulations for photocopies in the USA. Photocopies may be made for personal or in-house use beyond the limitations stipulated under Section 107 or 108 of U.S. Copyright Law, provided a fee is paid. This fee is US$ 0.20 per page per copy, plus a basic fee of US$2.00 per article. All fees should be paid to the Copyright Clearance Center, Inc., 21 Congress Street, Salem, MA 01970, USA, stating the ISSN 0012-186X, the volume, and the first and last page numbers of each article copied. The copyright owner’s consent does not include copying for general distribution, promotion, new works, or resale. In these cases, specific written permission must first be obtained from the publisher.

This journal is included in the ADONIS service, whereby copies of individual articles can be printed out from compact discs (CD-ROM) on demand. To help people requesting articles from participating ADONIS centres we have developed the ADONIS identification System which provides every article, etc., with a separate unique number. This ADONIS number can then be used to order a document. The number appears at the top left-hand corner of the first page of each article. An explanatory leaflet giving further details of the scheme is available from the publishers on request.

Subscription information
North America: Recommended annual subscription rate: approx. US $383.–, single issue price US $34.– including carriage charges. Subscriptions are entered with prepayment only. Orders should be addressed to: Springer-Verlag New York Inc., Service Center Secaucus, 44 Hartz Way, Secaucus, NJ 07094, USA, Tel. (201) 348-4033, Telex 023125994, FAX (201) 348-4505.
All other countries: Recommended annual subscription rate: DM 528.– plus carriage charges; [Federal Republic of Germany] DM 24.40 incl. value added tax; all other countries: DM 34.80 except for the following countries to which SAL delivery (Surface Airmail Lifted) is mandatory: Japan DM 99.60, India DM 70.80, Australia/New Zealand DM 115.20. Airmail delivery to all other countries is available upon request. Volume price: DM 528.–, single issue price: DM 52.80 plus carriage charges. Orders can either be placed via a bookdealer or sent directly to: Springer-Verlag, Heidelberger Platz 3, 1000 Berlin 33, FRG, Tel. (0) 30/8207-1, Telex 183319, FAX (0) 30/8214091. Members of the European Association for the Study of Diabetes, the American Diabetes Association and the International Diabetes Federation are entitled to reduced rates. Please inquire about them with the publisher.

Changes of address: Allow six weeks for all changes to become effective. All communications should include both old and new addresses with postal codes and should be accompanied by a mailing label from a recent issue.

Back volumes: Prices are available on request.

Microform: Microform editions are available from: University Microfilms International, 300 N. Zeeb Road, Ann Arbor, MI 48106, USA

Production
Springer-Verlag
Journal Production Department I
Postfach 105280
W-6900 Heidelberg 1
Federal Republic of Germany
Tel. 06221/487-431, Telex 04-61723
FAX (0) 6221/487624

Responsible for advertisements
Springer-Verlag GmbH & Co KG
Kerstin Schilling
Heidelberger Platz 3
1000 Berlin 33
Federal Republic of Germany
Tel. 030/8207-1-740, Telex 01-85411
FAX (0) 30/8207300

Printers
Druckhaus Beltz
W-6944 Hemsbach/Bergstraße
Federal Republic of Germany
© Springer-Verlag Berlin Heidelberg 1991
Springer-Verlag GmbH & Co KG
1000 Berlin 33, Federal Republic of Germany
Printed in Germany
Contents

Outcome of pancreatic transplantation

M. Olausson, G. Nyberg, G. Nordén, B. Frisk, L. Hedman
Outcome of pancreas transplantsations in Göteborg, Sweden 1985–1990 S 1

A. Königsrainer, W. Steurer, C. Aichberger, R. Gassner, Th. Schmid, R. Margreiter
Pancreatic transplantation with delayed duct occlusion versus bladder drainage: long-term results S 4

X. Martin, N. Lefrancois, J.M. Marechal, A. Gelet, J.L. Viguier, J.M. Dubernard
Pancreas transplantation in Lyon: overall results S 8

Pancreas and kidney transplantation: the San Raffaele Hospital, (Milan, Italy) experience S 11

W.-D. Illner, D. Abendroth, J. Nusser, R. Landgraf, W. Land
Long-term results in pancreatic transplantation with special emphasis on the use of prolamine S 14

G. Hillebrand, W.-D. Illner, D. Abendroth, H. Schneeberger, I. Petry, S. Schleibner, R. Landgraf, W. Land
Outcome of renal grafts after simultaneous kidney/pancreas transplantation S 16

I.B. Brekke
Indications and results of pancreatic transplantation: the Oslo experience 1983–1990 S 18

G. Tydén, A. Tibell, J. Bolinder, J. Östman, C.-G. Groth
The Stockholm experience with pancreatic transplantation using enteric exocrine diversion S 21

U.T. Hopt, M. Büsing, W.D. Schareck, H.D. Becker
The bladder drainage technique in pancreas transplantation: the Tübingen experience S 24

D.E. R. Sutherland
Report from the International Pancreas Transplant Registry S 28

Metabolic and hormonal control

E. Esmatjes, L. Fernández-Cruz, M.J. Ricart, R. Casamitjana, M.A. López-Boado, E. Astudillo
Metabolic characteristics in patients with long-term pancreas graft with systemic or portal venous drainage S 40

G. Nyberg, G. Fager, L. Mörnstedt, M. Olausson
Metabolic risk factors for cardiovascular disease in pancreas and kidney transplant recipients S 44

Long-term follow-up of glycaemic control and parameters of lipid transport after pancreas transplantation S 47

Metabolic control after kidney and pancreas transplantation: whole series results and effects of segmental duct obstruction versus whole pancreas with bladder diversion technique S 51

A. Secchi, S. Martinenghi, R. Caldara, E. La Rocca, V. Di Carlo, G. Pozza
First peak insulin release after intravenous glucose and arginine is maintained for up to 3 years after segmental pancreas transplantation S 53

R.P. Robertson, P. Diem, D.E. R. Sutherland
Time-related, cross-sectional and prospective follow-up of pancreatic endocrine function after pancreas allograft transplantation in Type 1 (insulin-dependent) diabetic patients S 57

R. Landgraf, J. Nusser, R.L. Riepl, F. Fiedler, W.-D. Illner, D. Abendroth, W. Land
Metabolic and hormonal studies of Type 1 (insulin-dependent) diabetic patients after successful pancreas and kidney transplantation S 61

Long-term metabolic control in recipients of combined pancreas and kidney transplants S 68

F. Saudek, T. Pelikánová, V. Bartoš, I. Reneltová, L. Kazdová, J. Kovár, L. Karasová
Insulin action and insulin binding following pancreas transplantation S 71

J. Bolinder, G. Tydén, A. Tibell, C.-G. Groth, J. Östmann
Long-term metabolic control after pancreatic transplantation with enteric exocrine diversion S 76

Consequences of systemic venous drainage and denervation of heterotopic pancreatic transplants for insulin/C-peptide profiles in the basal state and after oral glucose S 81

Retinopathy

A. Königsrainer, K. Miller, W. Steurer, G. Kieselbach, C. Aichberger, D. Öfner, R. Margreiter
Does pancreas transplantation influence the course of diabetic retinopathy? S 86

Ophthalmological follow-up of Type I (insulin-dependent) diabetic patients after kidney and pancreas transplantation S 89

F. Bandello, C. Vigano, A. Secchi, S. Martinenghi, R. Caldara, V. Di Carlo, G. Pozza, R. Brancato
Effect of pancreas transplantation on diabetic retinopathy: a 20-case report S 92

A. Scheider, E. Meyer-Schwickerath, J. Nusser, W. Land, R. Landgraf
Diabetic retinopathy and pancreas transplantation: a 3-year follow-up S 95

Neuropathy

C. Vial, X. Martin, N. Lefrancois, J.M. Dubernard, F. Chauvin, B. Bady
Sequential electrodiagnostic evaluation of diabetic neuropathy after combined pancreatic and renal transplantation S 100

Neuropathological study of the effect of combined kidney and pancreas transplantation on diabetic neuropathy: a 2-year follow-up evaluation S 103

X. Navarro, W.R. Kennedy, D.E.R. Sutherland
Autonomic neuropathy and survival in diabetes mellitus: effects of pancreas transplantation S 108

W. Müller-Felber, R. Landgraf, St. Wagner, N. Mair, J. Nusser, M.M.C. Landgraf-Leurs, A. Abendroth, W.-D. Illner, W. Land
Follow-up of sensory-motor polyneuropathy in Type I (insulin-dependent) diabetic subjects after simultaneous pancreas and kidney transplantation and after graft rejection S 113

Effect of pancreatic and/or renal transplantation on diabetic autonomic neuropathy S 118

P. Bouček, V. Bartoš, I. Vanček, Z. Hýža, J. Skibová
Diabetic autonomic neuropathy after pancreas and kidney transplantation

G. Solders, G. Tydén, A. Persson, C.-G. Groth
Improvement in diabetic neuropathy 4 years after successful pancreatic and renal transplantation

Macro- and microcirculation

G. Nyberg, O. Bech-Hanssen, M. Olausson, I. Wallentin
Echocardiographic findings in kidney transplanted Type I (insulin-dependent) diabetic patients with and without a pancreas transplant

D. Abendroth, J. Schmand, R. Landgraf, W.-D. Illner, W. Land
Diabetic microangiopathy in Type I (insulin-dependent) diabetic patients after successful pancreatic and kidney or solitary kidney transplantation

G. Jörneskog, G. Tydén, J. Bolinder, B. Fagrell
Skin microvascular reactivity in fingers of diabetic patients after combined kidney and pancreas transplantation

Quality of life

P.S. Zehr, F.K. Milde, L.K. Hart, R.J. Corry
Pancreas transplantation: assessing secondary complications and life quality

A. Secchi, V. Di Carlo, S. Martinenghi, E. La Rocca, R. Caldara, D. Spotti, G. Slaviero, C. Staudacher, G. Ferrari, G. Pozza
Effect of pancreas transplantation on life expectancy, kidney function and quality of life in uraemic Type 1 (insulin-dependent) diabetic patients

C.L. Zehrer, C.R. Gross
Quality of life of pancreas transplant recipients

Quality of life in Type I (insulin-dependent) diabetic patients prior to and after pancreas and kidney transplantation in relation to organ function

Ø.H. Bentdal, P. Fauchald, I.B. Brekke, H. Holdaas, A. Hartmann
Rehabilitation and quality of life in diabetic patients after successful pancreas-kidney transplantation
Diabetic microangiopathy in Type 1 (insulin-dependent) diabetic patients after successful pancreatic and kidney or solitary kidney transplantation

D. Abendroth, J. Schmand, R. Landgraf, W.-D. Illner and W. Land

1 Division of Transplant Surgery, Klinikum Grosshadern and 2 Medical Clinic “Innenstadt”, University of Munich, FRG

Summary. To evaluate the beneficial effect of pancreatic grafting on peripheral microcirculation and long-term clinical outcome, we compared data of 28 Type 1 (insulin-dependent) diabetic patients either given a pancreatic and kidney graft simultaneously or given a solitary kidney graft (n = 17). Peripheral microcirculation was estimated by transcutaneous oxygen pressure measurement (including reoxygenation potential after blood flow occlusion) and erythrocyte flow/velocity by a non-contact laser speckle method. All the measured parameters showed significant differences between diabetic and control subjects in the mean follow-up time of 49 (simultaneous pancreas and kidney transplantation) and 43 (solitary kidney transplantation) months. The data from patients after simultaneous pancreas and kidney transplantation revealed an improvement of transcutaneous oxygen pressure measurement (rise from 46 ± 2 mm Hg to 63 ± 3 mmHg), reoxygenation time (fall from 224 ± 125 to 114 ± 65s) and laser speckle measurement (rise from 4.2 ± 1.7 to 5.6 ± 1.8 relative units). The control group with solitary kidney transplantation did not show a positive evaluation.

Introduction

So far, successful pancreatic transplantation is the only effective way to correct dysfunctioning carbohydrate metabolism in Type 1 (insulin-dependent) diabetic patients. The main purposes of pancreas transplantation are to prevent, halt or reverse secondary complications. Evidence suggesting a relationship between achieved normoglycaemia and a potential beneficial influence on these complications must still be proven (Sutherland 1990). Peripheral vascular insufficiency is the most frequent complication in patients with Type 1 diabetes.

In this study we investigated the effect of pancreatic transplantation on peripheral microcirculation and long-term clinical outcome. We compared data from Type 1 diabetic patients either given a pancreatic and kidney graft simultaneously (SPKT) or given a solitary kidney (SKT).

Subjects and Methods

Patients: Twenty-eight Type 1 diabetic patients (group I) were investigated prior to and up to 60 months after successful SPKT. Group II (control) comprised 17 Type 1 diabetic patients with SKT. Further demographic data are shown in Table 1.

Both groups suffered from late secondary complications and received treatment with different immunosuppressive protocols as recently published (Land 1987; Landgraf 1989).

Thirty-one healthy subjects served as a control group for the laser speckle-method and 86 for transcutaneous oxygen pressure measurement and reoxygenation-time measurements.

The peripheral microcirculation was measured using two non-invasive methods: transcutaneous oxygen pressure measurement (Kontron, Eching b.München/FRG) and erythrocyte flow by laser speckle method (Gerätebau Odenwald, Grasellenbach/FRG) similar to the doppler flow technique (Abendroth 1987).
Transcutaneous oxygen pressure measurement (tcpO2): The tcpO2 registered by the skin surface electrode is a measure of hyperaemic flow through nutritional intradermal skin capillaries and reoxygenation potential after total blood flow occlusion. The skin is locally heated up to 44°C so that maximum intra- and subdermal vessel dilatation is achieved (Sunder-Plassmann 1986).

Statistical analysis. The results are given as mean ± 1 SD. For estimating statistically significant differences between both groups the Wilcoxon test of paired samples was used. A p-level of < 0.05 was considered significant.

Table 1. Clinical data of the patients prior to pancreas transplantation

<table>
<thead>
<tr>
<th></th>
<th>Group 1 (n = 28)</th>
<th>Group 2 (n = 17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>34 ± 1</td>
<td>38 ± 1</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>female</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>male</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>Duration of diabetes (years)</td>
<td>20 ± 1</td>
<td>26 ± 1</td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>yes</td>
<td>24</td>
<td>15</td>
</tr>
<tr>
<td>no</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Retinopathy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade II</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Grade III</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>Blind</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Neuropathy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mild</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>moderate</td>
<td>21</td>
<td>12</td>
</tr>
<tr>
<td>severe</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Dialysis (months)</td>
<td>20±14</td>
<td>39±1</td>
</tr>
</tbody>
</table>

Basal values of tcpO2 were evaluated after establishing steady-state conditions, which were usually achieved 10-15 min after attaching the sensor to the skin. Steady-state conditions were defined as tcpO2-variation less than ± 2 mm Hg for at least 5 min.

Reactive hyperaemia response (reoxygenation-time). The cuff-occlusion test is a dynamic evaluation to diagnose vascular diseases related primarily to the cutaneous circulation. A standardized arm-cuff placed around the ankle was inflated to a supra-systolic value and suddenly released after 3 min of occlusion. In the presence of microangiopathy the delay in re-establishment of the control pO2 is characteristic and any therapeutic effect can be registered as a decrease in delay (Franzecck 1982).

Laser-speckle: non-contact detection of skin-microcirculation. A Helium-Neon-laser beam penetrates the skin to a mean depth of 0.5 mm. Thus, the capillaries are within the range of the laser light, skin blood flow / blood velocity can be measured on a level above the thermoregulatory arterio-venous shunts. This is carried out by utilizing the dynamic laser-speckle-effect (Dainty 1975). In order to separate several possible disturbances - e.g. unconscious body movements, the scattered light is regarded as a superposition of two dynamic speckle patterns (Ruth 1987). The method is easy to use, side-effect free and as a non-invasive-method it does not disturb the microcirculation. So we can define a "relative blood flow parameter", however a quantitative analysis of our data is not possible with this method.

Examinations. The skin microcirculation was studied in the fore-foot area (os cuboid II). The subjects were in a comfortable supine position and all measurements were done on the dorsum of the foot. All examinations were performed in a temperature-controlled room at 24°C ± 1°C under standard conditions.

Results

The mean follow-up period was 49 months (range 12 to 63 months) in group I and 43 months (range 11 to 61 months) in group II.

The 3-year survival rate in group I (group II) for patients is 100% (60%!) for pancreas 77% and for the kidney 74% (24%).

Group I-patient tcpO2 values increased significantly from 46 ± 2 mmHg to 63 ± 3 mmHg in the third year post-transplant (Figure 1). The normal values of 86 healthy volunteers for tcpO2 are 67 ± 7 mmHg.

At the same time post-occlusive reactive hyperaemia response (reoxygenation-time) decreased from 224 ± 12 s to 114 ± 6 s (Fig. 2). Normal values are 79 ± 1.5 s.

The corresponding values for diabetic patients with solitary kidney transplantation (tcpO2 44 ± 3 to 41 ± 2 mmHg; 219 ± 7 s to 244 ± 10 s) did not show any improvement.

Laser speckle signal showed also a better "relative blood flow" in patients after SPKT (36 months) as compared with those directly prior to transplantation (Fig. 3). Normal values for the "relative blood flow" of 31 healthy volunteers are 6.1 ± 1.9 relative units.

Using both methods we found in all three parameters significant differences between diabetic patients after SPKT and solitary KT as well as normal control subjects. On descriminant analysis performed for reoxygenation time as a "dynamic test", we found that this is a more reliable parameter to discriminate between diabetic and control subjects than baseline values.

Examinations. The skin microcirculation was studied in the fore-foot area (os cuboid II). The subjects were in a comfortable supine position and all measurements were done on the dorsum of the foot. All examinations were performed in a temperature-controlled room at 24°C ± 1°C under standard conditions.

In the clinical course amputation was more frequent in group II than in group I (1 x thigh, 3 x lower leg, 5 x toes in group II; 1 x lower leg, 4 x toes in group I).
Discussion

These results demonstrate a diminished transcutaneous oxygen pressure and an impaired regulatory response of skin microcirculation associated with Type 1 diabetes mellitus. The reoxygenation-time during post-occlusive reactive hyperaemia was found to be prolonged in both groups, and the relative blood flow parameter was decreased. Findings in patients with long-standing Type 1 diabetes with severe late complications showed a significant impairment of all microvascular parameters pre-transplantation. After successful SPKT most values compared to the healthy control subjects were still impaired but significantly better with tendency to (near) normal values.

Tcp02-values vary with the site of the body where the measurement is being performed. Thus, an exact standardization of the site of the measurement is very important for a reproducible measurement of tcp02. We have chosen the fore-foot region and not the fore-arm or fingers because the latter are usually less affected even in patients with severe peripheral arterial occlusive disease. The study was carried out at an electrode temperature of 44°C for several reasons: firstly to suppress any periodic microcirculatory changes by maximal hyperaemia and secondly neurocirculatory phenomena affecting the periodic changes of peripheral blood flow at lower temperatures can be excluded (Sunder-Plassmann 1986).

According to Franzeck (1982) the post-occlusive reactive hyperaemia response (reoxygenation time) monitored by tcp02, during recovery from peripheral arterial occlusion was evaluated. This functional parameter appeared to be more sensitive in discriminating between diabetic patients and control subjects as well as between patients after SPKT or SKT. The reactive hyperaemia response after an arterial occlusion is supposed to be influenced by vasodilating metabolites produced by the ischaemia during occlusion (> 1 min). The prolonged reoxygenation time found in patients prior topancreatic transplantation may be explained by structural changes and/or high vascular tone in the precapillary arterioles, hindering relaxation of the smooth muscle cells in the vascular wall. Normalization indicates an improved ability to relax smooth muscle in these patients. These findings are supported by Beggs et al. (Beggs 1990) describing signs of nerve regeneration and repair following pancreas transplantation. The still partially impaired values might be due to hypertension still existing in these patients or to beta-blocking drugs.

The lower tcp02-values observed in Type 1 diabetic patients were influenced by the presence of microvascular late complications of the disease. These results may indicate the occurrence of an early functional abnormality concerning tcp02 by microcirculatory disorders.

Metabolic factors, however, are important in determining shunt flow: poor diabetes control is associated with increased blood flow and recent microcirculatory studies indicate that this is essentially due to a rise in shunt flow, which effectively bypasses capillary nutrient circulation (Tooke 1985).

Tcp02, although decreased, was still sufficient for appropriate oxygenation of the cutaneous layers not leading to manifest lesions. It is unknown whether the changes of tcp02 and other parameters are merely due to microcirculatory disorders precipitated by metabolic alterations - e.g. hyperglycaemia, or hyperosmolarity resulting in increased blood viscosity and decreased erythrocyte deformability.

It has been shown by studies evaluating maximal cutaneous flow by laser Doppler techniques, that there is a significantly lower flow velocity in diabetic patients (12).
The most likely explanation for flow abnormalities is the peripheral autonomic neuropathy which leads to a widely dilated vascular bed.

In conclusion patients after solitary kidney transplantation showed a marked impairment of skin microcirculation compared to patients after simultaneous pancreas and kidney transplantation. This may indicate that normoglycemia and not the kidney function is responsible for the improvement of microvascular reactivity.

Moreover most of our patients have probably passed the stage, in which microangiopathy can be completely reversed by normalization of glucose metabolism. Pancreas grafting probably has to be performed much earlier in the course of diabetes.

References

Author Index
<table>
<thead>
<tr>
<th>Name</th>
<th>Page 1</th>
<th>Page 2</th>
<th>Page 3</th>
<th>Page 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zachariadis, D.</td>
<td>240</td>
<td>A61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zaidi, K.F.</td>
<td>247</td>
<td>A62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zamaklar, M.</td>
<td>296</td>
<td>A75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zamaklar, M.</td>
<td>673</td>
<td>A169</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zambelli, L.</td>
<td>567</td>
<td>A142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zancanaro, C.</td>
<td>469</td>
<td>A118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zandomeneghi, R.</td>
<td>774</td>
<td>A194</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zandomeneghi, R.</td>
<td>775</td>
<td>A194</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zandomeneghi, R.</td>
<td>776</td>
<td>A195</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zanette, G.</td>
<td>39</td>
<td>A10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zangl, W.</td>
<td>577</td>
<td>A145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zavaroni, I.</td>
<td>75</td>
<td>A19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zecchi, A.</td>
<td>262</td>
<td>A66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zekorn, T.</td>
<td>675</td>
<td>A169</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zellenrath, P.</td>
<td>598</td>
<td>A150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zenere, M.</td>
<td>74</td>
<td>A19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zenere, M.</td>
<td>239</td>
<td>A60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zenobi, P.D.</td>
<td>771</td>
<td>A193</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zenobi, P.D.</td>
<td>772</td>
<td>A194</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zent, M.G.</td>
<td>567</td>
<td>A142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zerbi, G.</td>
<td>91</td>
<td>A23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zerbi, G.</td>
<td>268</td>
<td>A68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zerbi, G.</td>
<td>532</td>
<td>A134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zerbi, G.</td>
<td>538</td>
<td>A135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhang, A.</td>
<td>360</td>
<td>A91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhang, F.</td>
<td>416</td>
<td>A105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhang, Z.</td>
<td>460</td>
<td>A116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ziegler, A.G.</td>
<td>223</td>
<td>A56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ziegler, A.G.</td>
<td>408</td>
<td>A103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ziegler, A.G.</td>
<td>758</td>
<td>A190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ziegler, B.</td>
<td>315</td>
<td>A79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ziegler, B.</td>
<td>383</td>
<td>A96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ziegler, D.</td>
<td>146</td>
<td>A37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ziegler, D.</td>
<td>233</td>
<td>A59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ziegler, M.</td>
<td>314</td>
<td>A79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ziegler, M.</td>
<td>315</td>
<td>A79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ziegler, M.</td>
<td>319</td>
<td>A80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ziegler, M.</td>
<td>383</td>
<td>A96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ziegler, O.</td>
<td>455</td>
<td>A114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ziegler, R.</td>
<td>175</td>
<td>A44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zierath, J.R.</td>
<td>43</td>
<td>A11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zilli, F.</td>
<td>634</td>
<td>A159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zilli, L.</td>
<td>113</td>
<td>A29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zimmermann, U.</td>
<td>675</td>
<td>A169</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zink, S.</td>
<td>139</td>
<td>A35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ziora, D.</td>
<td>29</td>
<td>A8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zolli, M.</td>
<td>510</td>
<td>A128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zoppitelli, P.</td>
<td>210</td>
<td>A53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zoppitelli, P.</td>
<td>317</td>
<td>A80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zoppo, A.</td>
<td>91</td>
<td>A23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zoppo, A.</td>
<td>551</td>
<td>A138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zouali, H.</td>
<td>393</td>
<td>A99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zühlke, H.</td>
<td>313</td>
<td>A79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zumsteg, U.</td>
<td>377</td>
<td>A95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zweers, E.J.K.</td>
<td>791</td>
<td>A198</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zwick, H.</td>
<td>618</td>
<td>A155</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>