Diabetologia publishes reports of clinical and experimental work on all aspects of diabetes research and related subjects, provided they have scientific merit and present important facts or new data. Invited Reviews and Editorials are also published. Rapid communications of results with immediate interest may also be considered for expedited publication. Mere confirmation of known facts will be accepted only in exceptional cases; the same applies to reports of experiments and observations having no positive outcome. The Editor in Chief will be pleased to consider for publication papers read at meetings of the European Association for the Study of Diabetes, provided that they meet the above requirements. Letters to the Editor commenting on previously published work in Diabetologia, and Workshop reports are also welcome. It should be noted that there are no page charges with the exception of Workshop reports.

Manuscripts (5 copies) should be sent to:
Professor C. Hellerström
Editor-in-Chief
Diabetologia
Department of Medical Cell Biology
Biomedicum, Box 571
S-75123 Uppsala
Sweden

Copyright
Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract); that it is not under consideration for publication elsewhere; that its publication has been approved by all co-authors, if any, as well as by the responsible authorities at the institute where the work has been carried out; that, if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher and that the manuscript will not be published elsewhere in any language without the consent of the copyright holders.

All articles published in this journal are protected by copyright, which covers the exclusive rights to reproduce and distribute the article (e.g., as offprints), as well as all translation rights. No material published in this journal may be reproduced photographically or stored on microfilm, in electronic data bases, video disks, etc., without first obtaining written permission from the publisher.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.

While the advice and information in this journal is believed to be true and accurate at the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Special regulations for photocopies in the USA. Photocopies may be made for personal or institutional use beyond the limitations stipulated under Section 107 or 108 of U.S. Copyright Law, provided a fee is paid. This fee is US$ 0.20 per page per copy, plus a basic fee of US$ 2.00 per article. All fees should be paid to the Copyright Clearance Center, Inc., 21 Congress Street, Salem, MA 01970, USA, stating the ISSN 0012-186X, the volume, and the first and last page numbers of each article copied. The copyright owner's consent does not include copying for general distribution, promotion, new works, or resale. In these cases, specific written permission must first be obtained from the publisher. This journal is included in the ADONIS service, whereby copies of individual articles can be printed out from compact discs (CD-ROM) on demand. To help people requesting articles from participating ADONIS centres we have developed the ADONIS Identification System which provides every article, etc., with a separate unique number. This ADONIS number can then be used to order a document. The number appears at the top left-hand corner of the first page of each article. An explanatory leaflet giving further details of the scheme is available from the publishers on request.

Subscription information
North America: Recommended annual subscription rate: approx. US $ 383--; single issue price US $ 34--; including carriage charges. Subscriptions are entered with prepayment only. Orders should be addressed to: Springer-Verlag New York Inc., Service Center Secaucus, 44 Hartz Way, Secaucus, NJ 07094, USA, Tel. (201) 348-4033, Telex 025125994, FAX (201) 348-4505.
All other countries: Recommended annual subscription rate: DM 528--; plus carriage charges; (Federal Republic of Germany: DM 24.40 incl. value added tax; all other countries: DM 34.80 except for the following countries to which SAL delivery (Surface Airmail Lifted) is mandatory: Japan DM 99.60, India DM 70.80, Australia/New Zealand DM 115.20. Airmail delivery to all other countries is available upon request). Volume price: DM 528--; single issue price: DM 52.80 plus carriage charges. Orders can either be placed via a bookseller or sent directly to: Springer-Verlag, Heidelberger Platz 3, 1000 Berlin 33, FRG, Tel. (0) 30/ 8207-1, Telex 183319, FAX (0) 30/8214091. Members of the European Association for the Study of Diabetes, the American Diabetes Association and the International Diabetes Federation are entitled to reduced rates. Please inquire about them with the publisher.

Changes of address: Allow six weeks for all changes to become effective. All communications should include both old and new addresses with postal codes and should be accompanied by a mailing label from a recent issue.

Back volumes: Prices are available on request.

Microform: Microform editions are available from: University Microfilms International, 300 N. Zeeb Road, Ann Arbor, MI 48106, USA

Production
Springer-Verlag
Journal Production Department I
Postfach 105280
W-6900 Heidelberg 1
Federal Republic of Germany
Tel. 06221/487-431, Telex 04-61723
FAX (0) 6221/487624

Responsible for advertisements
Springer-Verlag GmbH & Co KG
Kerstin Schilling
Heidelberger Platz 3
1000 Berlin 33
Federal Republic of Germany
Tel. 030/8207-1-740, Telex 01-854119
FAX (0) 30/8207300

Printers
Druckhaus Beltz
W-6944 Hemsbach/Bergstraße
Federal Republic of Germany

© Springer-Verlag Berlin Heidelberg 1991
Springer-Verlag GmbH & Co KG
1000 Berlin 33, Federal Republic of Germany
Printed in Germany
Contents

Outcome of pancreatic transplantation

M. Olausson, G. Nyberg, G. Nordén, B. Frisk, L. Hedman
Outcome of pancreas transplantations in Göteborg, Sweden 1985–1990 S 1

A. Königsrainer, W. Steurer, C. Aichberger, R. Gassner, Th. Schmid, R. Margreiter
Pancreatic transplantation with delayed duct occlusion versus bladder drainage: long-term results S 4

X. Martin, N. Lefrancois, J.M. Marechal, A. Gelet, J.L. Viguier, J.M. Dubernard
Pancreas transplantation in Lyon: overall results S 8

Pancreas and kidney transplantation: the San Raffaele Hospital, (Milan, Italy) experience S 11

W.-D. Illner, D. Abendroth, J. Nusser, R. Landgraf, W. Land
Long-term results in pancreatic transplantation with special emphasis on the use of prolamine S 14

G. Hillebrand, W.-D. Illner, D. Abendroth, H. Schneebberger, I. Petry, S. Schleibner, R. Landgraf, W. Land
Outcome of renal grafts after simultaneous kidney/pancreas transplantation S 16

I.B. Brekke
Indications and results of pancreatic transplantation: the Oslo experience 1983–1990 S 18

G. Tydén, A. Tibell, J. Bolinder, J. Östman, C.-G. Groth
The Stockholm experience with pancreatic transplantation using enteric exocrine diversion S 21

U.T. Hopt, M. Busing, W.D. Schareck, H.D. Becker
The bladder drainage technique in pancreas transplantation: the Tübingen experience S 24

D.E.R. Sutherland
Report from the International Pancreas Transplant Registry S 28

Metabolic and hormonal control

E. Esmatjes, L. Fernández-Cruz, M.J. Ricart, R. Casamitjana, M.A. López-Boado, E. Astudillo
Metabolic characteristics in patients with long-term pancreas graft with systemic or portal venous drainage S 40

G. Nyberg, G. Fager, L. Mjörnstedt, M. Olausson
Metabolic risk factors for cardiovascular disease in pancreas and kidney transplant recipients S 44

Long-term follow-up of glycaemic control and parameters of lipid transport after pancreas transplantation S 47

Metabolic control after kidney and pancreas transplantation: whole series results and effects of segmental duct obstruction versus whole pancreas with bladder diversion technique S 51

A. Secchi, S. Martinenghi, R. Caldara, E. La Rocca, V. Di Carlo, G. Pozza
First peak insulin release after intravenous glucose and arginine is maintained for up to 3 years after segmental pancreas transplantation S 53

R.P. Robertson, P. Diem, D.E.R. Sutherland
Time-related, cross-sectional and prospective follow-up of pancreatic endocrine function after pancreas allograft transplantation in Type 1 (insulin-dependent) diabetic patients S 57

R. Landgraf, J. Nusser, R.L. Riepl, F. Fiedler, W.-D. Illner, D. Abendroth, W. Land
Metabolic and hormonal studies of Type 1 (insulin-dependent) diabetic patients after successful pancreas and kidney transplantation S 61

Long-term metabolic control in recipients of combined pancreas and kidney transplants S 68

F. Saudek, T. Pelíkanová, V. Bartoš, I. Reneltová, L. Kazdová, J. Kovr, L. Karasová
Insulin action and insulin binding following pancreas transplantation S 71

J. Bolinder, G. Tydén, A. Tibell, C.-G. Groth, J. Östmann
Long-term metabolic control after pancreatic transplantation with enteric exocrine diversion S 76

Consequences of systemic venous drainage and denervation of heterotopic pancreatic transplants for insulin/C-peptide profiles in the basal state and after oral glucose S 81

Retinopathy

A. Königsrainer, K. Miller, W. Steurer, G. Kieselbach, C. Aichberger, D. Öfner, R. Margreiter
Does pancreas transplantation influence the course of diabetic retinopathy? S 86

Ophthalmological follow-up of Type 1 (insulin-dependent) diabetic patients after kidney and pancreas transplantation S 89

F. Bandello, C. Vigano, A. Secchi, S. Martinenghi, R. Caldara, V. Di Carlo, G. Pozza, R. Brancato
Effect of pancreas transplantation on diabetic retinopathy: a 20-case report S 92

A. Scheider, E. Meyer-Schwickerath, J. Nusser, W. Land, R. Landgraf
Diabetic retinopathy and pancreas transplantation: a 3-year follow-up S 95

Neuropathy

C. Vial, X. Martin, N. Lefrancois, J.M. Dubernard, F. Chauvin, B. Bady
Sequential electrophysiological evaluation of diabetic neuropathy after combined pancreatic and renal transplantation S 100

Neurophysiological study of the effect of combined kidney and pancreas transplantation on diabetic neuropathy: a 2-year follow-up evaluation S 103

X. Navarro, W.R. Kennedy, D.E.R. Sutherland
Autonomic neuropathy and survival in diabetes mellitus: effects of pancreas transplantation S 108

W. Müller-Felber, R. Landgraf, St. Wagner, N. Mair, J. Nusser, M.M.C. Landgraf-Leurs, A. Abendroth, W.-D. Illner, W. Land
Follow-up of sensory-motor polyneuropathy in Type 1 (insulin-dependent) diabetic subjects after simultaneous pancreas and kidney transplantation and after graft rejection S 113

Effect of pancreatic and/or renal transplantation on diabetic autonomic neuropathy S 118

P. Bouček, V. Bartoš, I. Vaněk, Z. Hýža, J. Skibová
Diabetic autonomic neuropathy after pancreas and kidney transplantation

G. Solders, G. Tydén, A. Persson, C.-G. Groth
Improvement in diabetic neuropathy 4 years after successful pancreatic and renal transplantation

Macro- and microcirculation

G. Nyberg, O. Bech-Hanssen, M. Olausson, I. Wallentin
Echocardiographic findings in kidney transplanted Type 1 (insulin-dependent) diabetic patients with and without a pancreas transplant

D. Abendroth, J. Schmand, R. Landgraf, W.-D. Illner, W. Land
Diabetic microangiopathy in Type 1 (insulin-dependent) diabetic patients after successful pancreatic and kidney or solitary kidney transplantation

G. Jörneskog, G. Tydén, J. Bolinder, B. Fagrell
Skin microvascular reactivity in fingers of diabetic patients after combined kidney and pancreas transplantation

Quality of life

P.S. Zehr, F.K. Milde, L.K. Hart, R.J. Corry
Pancreas transplantation: assessing secondary complications and life quality

A. Secchi, V. Di Carlo, S. Martinenghi, E. La Rocca, R. Caldara, D. Spotti, G. Slaviero, C. Staudacher, G. Ferrari, G. Pozza
Effect of pancreas transplantation on life expectancy, kidney function and quality of life in uraemic Type 1 (insulin-dependent) diabetic patients

C.L. Zehrer, C.R. Gross
Quality of life of pancreas transplant recipients

Quality of life in Type 1 (insulin-dependent) diabetic patients prior to and after pancreas and kidney transplantation in relation to organ function

O.H. Bentdal, P. Fauchald, I.B. Brekke, H. Holdaas, A. Hartmann
Rehabilitation and quality of life in diabetic patients after successful pancreas-kidney transplantation
Effect of pancreatic and/or renal transplantation on diabetic autonomic neuropathy

J. Nusser¹, R. Scheuer¹, D. Abendroth², W.-D. Illner², W. Land² and R. Landgraf¹

¹ Department of Internal Medicine, Klinikum Innenstadt and ² Division of Transplant Surgery, Klinikum Grosshadern, University of Munich, FRG

Summary. Thirty-nine Type 1 (insulin-dependent) diabetic patients were studied prospectively after simultaneous pancreas and kidney (n=26) and kidney grafting alone (n=13) by measuring heart rate variation during various manoeuvres and answering a standardized questionnaire every 6 to 12 months post-transplant. While age, duration of diabetes, and serum creatinine (168.1±35.4 vs 132.7±17.7 µmol/l) were comparable, haemoglobin A¹ levels were significantly lower (6.6±0.2 vs 8.5±0.3%; p<0.01) and the mean observation time longer (35±2 vs 25±3 months; p<0.05) in the pancreas recipients when compared with kidney transplanted patients. Heart rate variation during deep breathing, lying/standing and Valsalva manoeuver were very similar in both groups initially and did not improve during follow-up. However, there was a significant reduction in heart rate in the pancreas recipient group. Autonomic symptoms of the gastrointestinal and thermoregulatory system improved more in the pancreas grafted subjects, while hypoglycaemia unawareness deteriorated in the kidney recipients. This study suggests that long-term normoglycaemia by successful pancreatic grafting is able to halt the progression of autonomic dysfunction.

Key words: Autonomic neuropathy – Diabetes mellitus Type 1 – Pancreas transplantation

Introduction

Polyneuropathy affecting the somatic and autonomic nervous system is a common complication of diabetes mellitus. Autonomic neuropathy can affect nearly all organs with a wide spectrum of symptoms and complaints. Once it has developed the patient has a poor prognosis (Ewing and Clarke 1986; Watkins 1990). Various forms of treatment such as continuous subcutaneous insulin infusion (Fedele et al. 1984) or aldose-reductase inhibitors (Jaspan et al. 1983) showed some improvement of autonomic neuropathy, but these interventions were short. With the increasing success of pancreas transplantation the fate of neuropathy can be studied prospectively for much longer. Studies performed until now focus mainly on cardiorespiratory reflex tests using one or two parameters of standardized reflex tests (Solders et al. 1987; Kennedy et al. 1990) without analyzing autonomic signs and symptoms. Therefore, the effect of functioning pancreatic grafts on autonomic neuropathy was studied prospectively.

Patients and methods

Patients. The study group consisted of 26 Type 1 (insulin-dependent) diabetic patients, 12 men and 14 women (mean age 32±1.6 years, duration of diabetes 23±1 years) who received combined pancreas-/kidney-transplantation. Thirteen Type 1 diabetic patients (4 men, 9 women, mean age 33±2 years, duration of diabetes 21±3 years) who underwent simultaneous pancreas- and kidney-transplantation but lost the pancreatic function within three months of transplantation (kidney-alone group) served as controls. For further details see Table 1. The first autonomic test in both groups was performed within eight weeks of transplantation. In the pancreas/kidney group 32 patients were restudied 1 year, 25 after 2 years, and 21 after 3 years. In the kidney-alone group nine patients had a follow-up after 1 year and six patients after 2 and 3 years. Mean observation period was 35±2 months in the pancreas/kidney and 25±3 months in the kidney-alone recipients (p<0.05). All patients were on the same triple drug immunosuppressive therapy consisting of ciclosporin, azathioprine and corticosteroids adapted to the individual requirements. All patients with a functioning pancreas graft required no insulin and had normal HbA¹ values throughout the study. At the last follow-up serum creatinine levels of both groups were comparable (168.1±35.4 vs 137.7±17.7 µmol/l), the HbA¹ levels were quite different (6.5±0.1 vs 8.3±0.3 %, p<0.01).

Methods. For the assessment of autonomic neuropathy the following standardized methods were used: cardiac autonomic neuropathy was tested by deep breathing (6 breaths/min) with calculation of mean R-R distances, E/I ratio and score (Wheeler and Watkins 1973). Furthermore lying-standing (Dyberg et al. 1981) and the Valsalva manoeuver (Levin 1966) were performed and the 30/15 (Dyberg et al. 1981) and the Valsalva ratio (Levin 1966) were calculated. In addition, a standardized graded questionnaire was used asking for typical signs and symptoms of autonomic neuropathy (Table 2). Changes were evaluated comparing each patient's first and last examination after transplantation.
Statistical analysis. For statistical analysis the Wilcoxon-signed-rank test was used. p-values of less than 0.01 were considered to indicate significant differences. Concerning symptoms evaluated by the graded questionnaire changes of two or more points (in a scale of five possible points) were considered significant. If not stated otherwise values are shown as mean ± SEM.

Table 1. Patient characteristics.

<table>
<thead>
<tr>
<th></th>
<th>Pancreas and kidney</th>
<th>kidney-alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>26</td>
<td>13</td>
</tr>
<tr>
<td>Male/Female</td>
<td>12/14</td>
<td>4/9</td>
</tr>
<tr>
<td>Age (years)</td>
<td>32±1.6</td>
<td>33±2</td>
</tr>
<tr>
<td>Duration of diabetes (years)</td>
<td>23±1</td>
<td>21±2</td>
</tr>
<tr>
<td>Serum creatinine (µmol/l)</td>
<td>168.1±35.4</td>
<td>132.7±17.7</td>
</tr>
<tr>
<td>HbA1 (normal 6-8%)</td>
<td>6.5±0.1</td>
<td>8.3±0.3</td>
</tr>
<tr>
<td>Immunosuppressive therapy</td>
<td>triple drug</td>
<td>triple drug</td>
</tr>
</tbody>
</table>

values = mean ± SEM, *p<0.01

Results

Tachycardia diminished clearly in the pancreas-kidney-group shown by a significant increase of mean R-R-distances 1 and 2 years after transplantation (p<0.01). R-R-distances slightly increased also in the kidney-alone group, the difference however was not significant (Fig. 1). An improvement of cardiac autonomic neuropathy was seen in the kidney recipients concerning the E/I ratio which showed an increase (p<0.05) 1 year after transplantation (Fig. 2). All other parameters of the various cardiorespiratory reflex tests showed no significant increase or decrease in both groups during the observation period.

Table 2. Clinical symptoms correlated with autonomic neuropathy. The number of patients which improved (+) or deteriorated (−) between the first and last examination after transplantation are shown.

<table>
<thead>
<tr>
<th></th>
<th>Pancreas and kidney</th>
<th>kidney-alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>n=26</td>
<td>n=11</td>
</tr>
<tr>
<td>Blood pressure response to standing</td>
<td>1 2</td>
<td>0 2</td>
</tr>
<tr>
<td>Orthostatic complaints</td>
<td>2 3</td>
<td>0 0</td>
</tr>
<tr>
<td>Symptoms of gastroparesis</td>
<td>0 4</td>
<td>1 0</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>2 1</td>
<td>1 2</td>
</tr>
<tr>
<td>Constipation</td>
<td>3 0</td>
<td>0 0</td>
</tr>
<tr>
<td>Sweating during night</td>
<td>8 1</td>
<td>0 0</td>
</tr>
<tr>
<td>Gustatory sweating</td>
<td>5 2</td>
<td>1 2</td>
</tr>
<tr>
<td>Reduced urinary stream</td>
<td>1 2</td>
<td>1 1</td>
</tr>
<tr>
<td>Sensation of incomplete bladder emptying</td>
<td>1 3</td>
<td>1 1</td>
</tr>
<tr>
<td>Penile erection</td>
<td>1 0</td>
<td>1 1</td>
</tr>
<tr>
<td>Retrograde ejaculation</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>Decreased hypoglycaemic symptoms</td>
<td>− −</td>
<td>0 4</td>
</tr>
<tr>
<td>Hypoglycaemic symptoms only at blood glucose levels <2.2 mmol/l</td>
<td>− −</td>
<td>0 3</td>
</tr>
</tbody>
</table>
Concerning symptoms of autonomic neuropathy related to the cardiocirculatory system there were improvements and deteriorations in both groups without clear differences. Symptoms of gastroparesis worsened clearly in four patients of the pancreas-kidney group and improved in one patient of the kidney-alone recipients. Constipation slightly improved in the pancreas-kidney group, thermoregulatory symptoms clearly improved in the combined transplanted patients and remained unchanged in the kidney-alone group. Reduction of urinary stream or sensation of incomplete bladder emptying occurred more often in the pancreas-kidney group. Penile erection or retrograde ejaculation problems showed no change. About one third of the kidney recipients complained of decreased hypoglycaemic symptoms and/or hypoglycaemic symptoms at blood glucose levels below 2.2 mmol/l within 3 years after transplantation.

Discussion

This study demonstrates that heart rate variation as a parameter of cardiac autonomic function is unchanged 2 to 3 years after successful pancreas and kidney transplantation and in diabetic patients after kidney grafting only. In a former study similar results were reported concerning cardiac autonomic parameters (Solders et al. 1987). However, recently Kennedy et al. (1990) were able to demonstrate a beneficial effect of pancreatic grafting on heart rate variability while cardiac autonomic dysfunction deteriorated in kidney recipients. These obvious discrepancies can be explained at least partially by differences in blood glucose control in the patient groups under study. Our kidney recipients had intensified insulin therapy achieving near normoglycaemia, while the same patient group in the study of Kennedy et al. (1990) showed a much poorer glucose control (HbA1C>10%). Although under debate (Wheeler and Watkins 1973) Fedele et al. (1984) reported improvements of autonomic neuropathy after intensified insulin therapy. It is therefore important in this kind of study that the study and control groups are comparable with respect not only to the degree of neuropathy but also to kidney function and metabolic control.

Strict glucose control can strengthen severity and prolongation of hypoglycaemia (Dyrberg et al. 1981). When analyzing the questionnaire in this study the most striking finding was that one third of the kidney recipients complained of deteriorating awareness of hypoglycaemia, which can be explained both by the intensified insulin therapy and a progression of autonomic neuropathy. Diaphoresis improved clearly, while symptoms of delayed gastric emptying were higher in the pancreas/kidney group. This can be interpreted also as an improvement of afferent autonomic dysfunction as far as these patients now are able to detect their delayed gastric emptying (Levin 1966). Since symptoms of autonomic neuropathy improved mainly in the pancreas/kidney recipients, it is suggested that long-term normalization of glucose metabolism can halt the progression of autonomic dysfunction. However, the improvements are only marginal within the observation period of 36 months indicating that severe lesions of the autonomic nervous system present in all our patients are rather "resistant" to amelioration despite long-term normoglycaemia. It is therefore concluded that much longer observation times or patients with earlier stages of diabetic neuropathy are needed to demonstrate marked improvements in diabetic neuropathy. However, even in diabetic subjects with advanced autonomic dysfunction, pancreatic grafting is beneficial since the risk of severe and life-threatening hypoglycaemic attacks due to unawareness of low blood glucose is eliminated.

References

Levin AB (1966) A simple test of cardiac function based upon the heart rate changes induced by the Valsalva maneuver. Am J Cardiol 18:91-97

Dr. J. Nusser
Klinikum Innenstadt
Medizinische Klinik
University of Munich
Ziemssenstrasse 1
8000 Munich 2
FRG
Author Index

Aanstoot, H.-J. 388, A98
Abdel-Halim, S.M. 302, A76
Abendroth, D. 195, A49
Abinader, J. 627, A157
Abu, E.A. 508, A128
Adams, J.E. 155, A39
Adelantado, J.M. 797, A200
Adezati, L. 262, A66
Adlerberth, A. 276, A70
Adojaan, B. 258, A65
Adoyan, B. 706, A177
Ämmälä, C. 250, A63
Ämmälä, C. 342, A86
Ämmälä, C. 346, A87
Ämmälä, C. 350, A88
Aerts, L. 369, A93
Agardh, C.-D. 746, A187
Agius, L. 125, A32
Ahmed, S. 468, A118
Ahonen, P.J. 234, A59
Ahrén, B. 17, A5
Ahrén, B. 94, A24
Ahrén, B. 357, A90
Ahrén, B. 358, A90
Ahren, B. 381, A96
Aimone, M. 592, A149
Aitchison, M. 622, A156
Aitman, J.J. 665, A167
Alvarsson, M. 427, A107
Alvighi, L. 222, A56
Alvighi, L. 246, A62
Alvighi, L. 524, A132
Amano, K. 206, A52
Amano, K. 209, A53
Amato, M.P. 796, A200
Amiel, S.A. 753, A189
Amin, V. 525, A132
 Amiraboff, B. 330, A83
Ammon, H.P.T. 97, A25
Ammon, H.P.T. 252, A64
Ammon, H.P.T. 353, A89
Amoretti, R. 112, A29
Amundina, X. 798, A200
Anastasi, E. 210, A53
Anastasi, E. 317, A80
Anastasiou, E. 422, A106
Andersson, A.S. 441, A111
Andersson, L. 725, A182
Andersson, P. 121, A31
Andersson, P. 548, A138
Andersson, P. 553, A139
Andersson, P. 568, A143
Andersson, H.P. 8, A2
Andersson, P.H. 472, A119
Andersson, P.H. 474, A119
Andersson, A. 299, A75
Andreati, D. 112, A29
Andreati, D. 210, A53
Andrasssen, S. 732, A184
Andrezjewska, S. 679, A170
Anfossi, G. 451, A113
Anfossi, G. 453, A114
Anfossi, G. 686, A172
Angel, I. 7, A2
Angelico, M.C. 796, A200
Angles-Canoe, E. 555, A139
Ania-Lahuerta, M.A. 198, A50
Anichini, R. 524, A132
Anichini, R. 537, A135
Anselmo, J. 514, A129
Appel, M.C. 309, A78
Aranyi, Z. 645, A162
Arar, N. 445, A112
Arden, S.D. 225, A57
Arden, S.D. 366, A92
Arend, J.A.C.J. den 637, A160
Ariza, A. 765, A192
Arkel, E.C. van 293, A74
Arkhammar, P. 351, A88
Armengol, P. 480, A121
Arnaud, O. 488, A123
Arner, P. 506, A127
Arner, P. 695, A174
Arnoux, D. 555, A139
Arnqvist, H.J. 53, A14
Arnqvist, H.J. 54, A14
Arrieta, F.J. 479, A120
Arrieta, F.J. 500, A126
Arrieta, F.J. 504, A127
Arrol, S. 27, A7
Arrol, S. 534, A134
Artigli, M. 74, A19
Artigli, M. 239, A60
Asai, J. 170, A43
Ashari, M. 367, A92
Ashcroft, F.M. 349, A88
Ashcroft, F.M. 352, A89
Ashcroft, S.J.H. 219, A55
Ashcroft, S.J.H. 249, A63
Ashcroft, S.J.H. 326, A82
Aslam, N. 458, A115
Assche, F.A. Van 369, A93
Assche, F.A. van 503, A126
Assimacopoulos-Jeannot, F. 323, A81
Astbury, N.J. 590, A148
Atkinson, A.B. 490, A123
Atlan, C. 716, A180
Atlan-Gepner, C. 311, A78
Attalah, M. 542, A136
Attali, J.R. 294, A74
Attali, J.R. 542, A136
Attali, J.R. 662, A166
Audi, L. 528, A133
Augestein, P. 319, A80
Auinger, M. 618, A155
Aussieker, S. 562, A141
Autino, R. 700, A176
Auzan, C. 103, A26
Avojar, A. 510, A128
Azerhad, R. 7, A2
Azevedo, M.S. 647, A162
Baba, S. 209, A53
Baba, T. 15, A4
Babić, D. 566, A142
Babić, D. 584, A147
Babić, D. 724, A182
Babicha, E.I. 81, A21
Bach, J.F. 208, A53
Bachsöw, S. 518, A130
Badenhoop, K. 410, A103
Badenoch, D.F. 613, A154
Bärmeier, H. 69, A18
Bärmeier, H. 390, A98
Bagazgotic, J. 583, A146
Bağtray, N. 714, A179
Bailbe, D. 336, A85
Bailey, C.J. 115, A29
Bailie, K.E. 26, A7
Bailyes, E.M. 214, A54
Bailyes, E.M. 225, A57
Bailyes, E.M. 368, A93
Bain, S.C. 413, A104
Baird, H.R. 37, A10
Baird, J.D. 676, A170
Baird, J.D. 677, A170
Bak, J.F. 8, A2
Bak., J.F. 39, A59
Bak, J.F. 474, A119
Balaban, S. 63, A16
Balducci, S. 436, A110
Ballagi-Pordany, G. 645, A162
Ballegroo, E. van 531, A133
Balogi, I. 645, A162
Balsano, F. 611, A153
Balsano, F. 635, A159
Balsells, M. 797, A200
Balsells, M. 798, A200
Band, A. 288, A73
Banford, D. 594, A149
Bang, P. 776, A194
Bangstäd, H.-J. 90, A23
Bangstäd, H.J. 172, A44
Banovic, D. 296, A75
Baranyi, E. 800, A201
Barcelo, J. 762, A191
Bardet, S. 716, A180
Barilli, A.L. 774, A194
Barkai, L. 628, A158
Barnett, A.H. 151, A38
Barnett, A.H. 256, A65
Barnett, A.H. 259, A65
Barnett, A.H. 401, A101
Barnett, A.H. 402, A101
Barnett, A.H. 403, A101
Barnett, A.H. 413, A104
Baroni, M.G. 282, A71
Barron, P. 505, A127
Bartels, E. 56, A14
Bartfai, T. 94, A24
Bartolomei, G.C. 246, A62
Bartolomei, G.C. 524, A132
Barzilai, D. 63, A16
Barzon, L. 73, A19
Barzon, L. 271, A68
Battezzati, A. 187, A47
Battezzati, A. 191, A48
Zachariadis, D. 240, A61
Zaidi, K.F. 247, A62
Zamaklar, M. 296, A75
Zamaklar, M. 673, A169
Zambelli, L. 567, A142
Zancanaro, C. 469, A118
Zandomeneghi, R. 774, A194
Zandomeneghi, R. 775, A194
Zandomeneghi, R. 776, A195
Zanette, G. 39, A10
Zangl, W. 577, A145
Zavaroni, I. 75, A19
Zecchi, A. 262, A66
Zekorn, T. 675, A169
Zellenrath, P. 598, A150
Zenere, M. 74, A19
Zenere, M. 239, A60
Zenobi, P.D. 771, A193
Zenobi, P.D. 772, A194
Zenti, M.G. 567, A142
Zerbini, G. 91, A23
Zerbini, G. 268, A68
Zerbini, G. 532, A134
Zerbini, G. 538, A135
Zhang, A. 360, A91
Zhang, F. 416, A105
Zhang, Z. 460, A116
Ziegler, A.G. 223, A56
Ziegler, A.G. 408, A103
Ziegler, A.G. 758, A190
Ziegler, B. 315, A79
Ziegler, B. 383, A96
Ziegler, D. 146, A37
Ziegler, D. 233, A59
Ziegler, M. 314, A79
Ziegler, M. 315, A79
Ziegler, M. 319, A80
Ziegler, M. 383, A96
Ziegler, O. 455, A114
Ziegler, R. 175, A44
Zierath, J.R. 43, A11
Zill, F. 634, A159
Zilli, L. 113, A29
Zimmermann, U. 675, A169
Zink, S. 139, A35
Ziora, D. 29, A8
Zolli, M. 510, A128
Zoppitelli, P. 210, A53
Zoppitelli, P. 317, A80
Zoppo, A. 91, A23
Zoppo, A. 551, A138
Zouali, H. 393, A99
Zühlke, H. 313, A79
Zumsteg, U. 377, A95
Zweers, E.J.K. 791, A198
Zwick, H. 618, A155