The titles published in this series are listed at the end of this volume.
ORGAN
TRANSPLANTATION
1990

edited by
G. M. ABOUNA
M. S. A. KUMAR (Associate Editor)

and
A. G. WHITE (Associate Editor)

Department of Organ Transplantation
Kuwait University
Kuwait City, Kuwait

and

The Division of Transplantation
Department of Surgery
Hahnemann University
Philadelphia, PA. U.S.A.
Contents

Foreword by Anthony P. Monaco xv
Preface by George M. Abouna xvii
List of contributors xix

Part One: Historical Reflections

1. Reflections on the development of organ transplantation
 H.M. Lee 1

Part Two: Immunology of Organ Transplantation

2. Cellular and molecular mechanisms of allograft rejection
 Pekka Häyry 5
3. What does the alloreactive T cell see?
 J.R. Batchelor, G. Lombardi and R.I. Lechler 11
4. HLA matching and organ transplantation
 David W. Gjertson and Paul I. Terasaki 17
5. An effective strategy for transplantation of highly sensitized patients
6. Rapid lymphocyte crossmatching for renal transplantation
 A.G. White, K.T. Raju, M.S.A. Kumar, E.M. Philips and G.M. Abouna 39

Part Three: Organ Allograft Rejection

7. Fifteen-year experience with fine needle aspiration biopsies at the University of Helsinki
 Pekka Häyry, Eeva von Willebrand and Irmeli Lautenschlager 43
8. Study of antibody specificity in highly sensitized patients using human monoclonal antibody technology
Ibrahim A. Al-Muzairai, Barbra K. Weber and David A. Power 51

9. Idiotypic-Antidiotypic antibody interaction and renal transplant survival
I.A. Al-Muzairai, A.A. MacLeod, M. MacMillan, K.N. Stewart and G.R.D. Catto 59

Part Four: Immunosuppression

10. Transplantation and blood transfusion in 1990
Robert J. Corry 65

11. Quadruple-drug immunosuppressive induction treatments for immunological high-risk patients in cadaveric renal transplantation using poly- and monoclonal antibodies
H. Schneeberger, S. Schleibner, L. Friedl, M. Schilling, W.D. Illner, D. Abendroth and W. Land 71

12. Sequential combination immunotherapy for cadaveric renal transplantation: OKT3 versus rabbit ATG induction

13. Multi-organ transplant experience with OKT3 and strategies for use at the University of Cincinnati Medical Center
Timothy J. Schroeder, M. Roy First and Israel Penn 91

14. Cyclosporine withdrawal in renal transplant recipients maintained on azathioprine, prednisone and cyclosporine
M. Kalawi, N.A. Al-Sabawi, M. Samhan, D. Panjwani, M.S.A. Kumar, E.M. Philips and G.M. Abouna 101

15. Early experience with FK 506 in liver transplantation
Robert D. Gordon, Satoru Todo, John J. Fung, Andreas C. Tzakis, Noriko Murase, Ashok Jain, Mario Alessiani and Thomas E. Starzl 109

17. Preliminary results with FK 506 in pancreas grafting in a non-human primate model

18. The effect of DST on graft outcome — the Turkish experience
S. Sert, H. Gulay, M. Koç and M. Haberal 135
19. Induction of specific unresponsiveness (tolerance) to experimental and clinical allografts using polyclonal antilymphocyte serum and donor-specific bone marrow

Anthony P. Monaco 141

20. Comparison of cyclosporine assays using radioimmunoassay, fluorescent polarization immunoassay and high-performance liquid chromatography

A.G. White, D. Panjwani, M. Angelo Khattar, A.S. El-Deen, M.S.A. Kumar, E.M. Philips and G.M. Abouna 159

Part Five: Renal Transplantation

21. Long-term outcome in renal transplantation

H. Brynger 163

22. Ten-year experience with 500 renal transplants

23. Long-term results in recipients of cadaveric renal allografts under cyclosporine therapy

S. Schleibner, H. Schneeberger and W. Land 189

24. Transplantation of single and double kidneys from pediatric donors

25. ABO-incompatible living related donor transplantation

M. Haberal, H. Gulay, S. Sert, G. Arslan, M. Koç and N. Bilgin 203

26. The use of single pediatric cadaver kidneys for transplantation into adult recipients

27. Living unrelated donor renal transplantation

S. Sert, H. Gulay, M. Koç and M. Haberal 217

28. Renal transplantation in Tunisia — a three-year experience

29. Renal transplantation in children

30. Kidney donors — long-term follow up
 233

31. Current techniques for permanent vascular access surgery — experience with 930 procedures
 S. Al-Dadah, M. Kalawi, M. Samhan, P. John, M.S.A. Kumar and G.M. Abouna
 237

32. Results of 319 consecutive renal transplants from living related and living unrelated donors in Iran
 A.J. Ghods, I. Fazel, B. Nikbin, K. Rahbar, E. Abdi, H.N. Ghashti and F. Prooshani
 247

Part Six: Liver Transplantation

33. Liver transplantation: current status
 Robert D. Gordon
 253

34. An overview of liver transplantation therapy for children
 263

35. Current anesthetic management in clinical liver transplantation
 Yoogoo Kang
 279

36. Risk factors in adult liver transplant recipients
 289

37. The concept of reduced-size liver transplantation, including split-liver and living related liver transplantation
 X.M. Rogiers, J.C. Emond, P.F. Whittington, T.G. Heffron, K.L. King, M.D. Yang and C.E. Broelsch
 295

38. Immunological factors contributing to outcome in liver transplantation
 Robert D. Gordon
 301

39. Transplantation for hepatobiliary malignancies
 307

40. The diagnosis and management of massive blood loss during liver transplantation
 Yoogoo Kang
 313

41. Early clinical experience with cluster resection and transplantation for right upper quadrant abdominal malignancy
 Robert D. Gordon, Satoru Todo, Andreas G. Tzakis and Thomas E. Starzl
 323
Part Seven: *Heart/Heart-Lung Transplants*

42. Lung transplantation: current techniques and outcomes
R. Morton Bolman III 329

43. Heart-lung transplantation at the University of Minnesota
R. Morton Bolman III 337

44. Specificity and sensitivity of the cytoimmunological monitoring (CIM): differentiation between cardiac rejection, viral, bacterial, or fungal infection
C. Hammer, D. Klanke, P. Dirscheld, B. M. Kemkes, B. Reichart, M. Gokel and F. Krombach 345

Part Eight: *Pancreas Transplantation*

45. International Pancreas Transplantation Registry report
David E.R. Sutherland, Kristin Gillingham and Kay C. Moudry-Munns 353

46. Techniques and experience of pancreatic transplantation with bladder drainage
Robert J. Corry and John L. Smith 359

47. Pancreas transplantation in non-uremic diabetic recipients
David E.R. Sutherland, David L. Dunn, Kay C. Moudry-Munns, Kristin Gillingham and John S. Najarian 365

48. Early observation with pancreas transplantation using the bladder drainage procedure

49. Results of pancreas transplantation with irradiated spleen and segment of duodenum

50. Experience with pancreas transplants from living related donors
David E.R. Sutherland, Frederick C. Goetz, David M. Kendall, R. Paul Robertson, Kristin Gillingham, Kay C. Moudry-Munns and John S. Najarian 383

Part Nine: *Islet Cell Transplantation*

51. Islet transplantation — the World Transplant Registry
R.G. Bretzel, B.J. Hering and K.F. Federlin 389
52. Prevention of rejection of islet allografts and xenografts without continuous immunosuppression of the recipients
 Paul E. Lacy and David W. Scharp

53. Effect of islet transplantation on diabetic secondary complications
 R.G. Bretzel

54. Does pretreatment of islets of Langerhans with deoxyguanosine improve allograft survival without immunosuppression?
 I.H. Al-Abdullah, M.S.A. Kumar, M.S. Al-Adnani and G.M. Abouna

Part Ten: Bone Marrow Transplantation

55. Current status of allogeneic bone marrow transplantation
 Rainer Storb

56. New approach to bone marrow transplantation in thalassemia

57. Autologous bone marrow transplantation as treatment for bad-risk first remission acute lymphoblastic leukaemia
 R.L. Powles, C.L. Smith and S. Milan

58. Conditioning regimens in bone marrow transplantation

59. The antileukaemic action of melphalan and total body irradiation in bone marrow transplantation
 R.L. Powles, C.L. Smith, C. Tiley, M. Findley and M. O'Brien

60. Antifungal prophylaxis with fluconazole in bone marrow transplantation
 R.L. Powles, C.L. Smith and S. Milliken

Part Eleven: Xeno-Transplantation

61. Mass islet isolation from the pancreas of higher mammals: a potential source for islet transplantation in diabetic patients
 R.G. Bretzel, B.J. Hering and K.F. Federlin

62. The relationship of eicosanoids and complement components to hyperacute xenogeneic rejection and its modification by the PAF-antagonist WEB 2086BS
Part Twelve: *Complications in Organ Transplantation*

64. Occurrence of malignancies in immunosuppressed organ transplant recipients
 Israel Penn
 475

65. Transmission of cancer with donor organs
 Israel Penn
 485

66. Long-term experience with surgical repair for transplant renal artery stenosis
 491

67. Lymphoproliferative disorders after liver transplantation (OLT): a recent experience
 T.G. Heffron, J.C. Emond, J.R. Thistlethwaite, X.M. Rogiers, M.D. Yang, K.L. King and C.E. Broelsch
 497

68. Experience with Kaposi's sarcoma in recipients of renal transplants in Tunisia
 501

69. Urological complications in 510 consecutive renal transplants
 505

Part Thirteen: *Organ Procurement and Preservation*

70. Preservation of the kidney and other organs into the nineties
 G. Kootstra, R. Wijnen and J.G. Maessen
 511

71. Clinical experience with liver preservation
 Robert D. Gordon and Satoru Todo
 519

72. Management of the organ donor
 Yoogoo Kang
 525

73. The role of the National Kidney Foundation in cadaveric transplantation in Saudi Arabia
 S. Aswad, S. Taha, M. Babiker and A. Qayum
 531
Part Fourteen: Ethical, Legal and Religious Aspects

74. The position of the Transplantation Society on commercialization in organ transplantation
 J.R. Batchelor 537

75. Ethics and transplantation: an analysis of ‘rewarded gifting’
 John B. Dossetor 539

76. Moral, ethical and medical values sacrificed by commercialization in human organs
 G.M. Abouna 545

77. Commerce and trade in human organs
 B.N. Colabawalla 555

78. Some ethical concerns in organ transplantation
 C.J. Vas 559

79. Islamic view on organ transplantation
 Mohammed Ali Albar 573

Index of subjects 579
Early observation in pancreas transplantation using the bladder drainage procedure

Improved results in pancreas transplantation using the whole organ and a duodenal segment for diversion of exocrine secretion (1, 2) led to the introduction of this technique at the Munich Transplant Centre, too. This technique permits monitoring of the pancreatic exocrine secretion in the urine. There is accumulating suggestion that reduction in urine amylase activity might be an early marker of pancreatic allograft rejection. As an extension to our experience with the duct-occlusion technique we started a controlled study comparing both surgical techniques.

Patients and methods

So far 91 combined pancreas and kidney transplantation and 7 isolated pancreas transplantations have been performed using prolamine for duct occlusion. The bladder drainage technique was used in 16 diabetics, 11 simultaneously and 5 pancreas alone. Clinical results of our experience with the duct-occlusion technique have been published elsewhere (3).

Donor and recipient operation

The whole pancreas with spleen and a short duodenal segment is removed from the donor after complete in situ flushing using UW solution. In 4/16 organ procurements we harvested the whole pancreas together with the liver for grafting. Priority of vascular supply was given to the liver, consisting of the celiac axis plus an aortic patch and the portal vein. The whole pancreas graft includes the splenic artery, divided just distal to its origin on the celiac axis, superior mesenteric artery with an aortic patch and the remaining portal vein plus the superior mesenteric vein. After the Kocher maneuver a short duodenal segment is provided using a GIA stapler. The combined removal of liver and whole pancreas requires an arterial and venous reconstruction for the pancreatoco-duodenal graft with the donor iliac vessels (4). The pancreatico-
duodenal graft is placed intraperitoneally along the ascending colon with a transrectal incision. Arterial and venous anastomoses were carried out between the reconstruction pancreatic vessels and the recipient's external iliac vessels. For the bladder-duodenal anastomosis we use the two layer side-to-side technique (inner layer: running: 3/0 Vicryl and outer layer: interrupted 3/0 Vicryl).

Immunosuppressive protocol

Since 1984 a quadruple drug induction therapy is routinely used in pancreatic transplantation. It consists of CsA, Aza 'high' dose of steroids and ATG/ALG for a short period of time. Maintenance treatment consists of steroids, CsA and Aza for a period of 6 months, followed by double drug maintenance treatment with CsA and Aza.

More recently we have used a quadruple drug induction therapy with CsA, Aza, 'high' dose of steroids and ATG or OKT3 in a controlled study. The preliminary results were presented in Barcelona (5).

Problems and complications according to different surgical techniques

Using the duct-occlusion technique we are confronted with two major problems. Firstly, the occurrence of a primary irreversible venous thrombosis. Secondly, the development of a pancreatic fistula with the high risk of a secondary infection. The rate of this complication is shown in Table 1. The need of an anticoagulation therapy is required.

Despite of duct-occlusion with prolamine the residual exocrine secretion remains unsolved at the present time.

According to the new technique our clinical results show a high incidence of intraparanchymal graft abscesses with subsequent loss of the pancreatic graft.

<table>
<thead>
<tr>
<th>Surgical technique</th>
<th>Venous thrombosis</th>
<th>Local infection</th>
<th>Pancreatic fistula</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Intragraft</td>
<td>Perigraft</td>
</tr>
<tr>
<td>Dust occlusion (n = 9)</td>
<td>15% (n = 9)</td>
<td>0</td>
<td>20% (n = 12)</td>
</tr>
<tr>
<td>Bladder drainage (n = 4)</td>
<td>0 (n = 4)</td>
<td>36% (n = 12)</td>
<td>18% (n = 2)</td>
</tr>
</tbody>
</table>

Table 1. Early complications after simultaneous pancreas and kidney transplantation.
(Table 1). This complication is very common in association with an urinary tract infection.

Results

Patients and graft survival probability rates for 1 year are comparable in both groups (Figures 1 and 2). Long-term results are demonstrable for the duct occlusion technique only (Figure 3).

Summary

Mortality and morbidity rates after pancreas transplantation are low and comparable in both groups talking into account that the number of patients transplanted using the bladder technique is still low and the observation period limited. The 1-year pancreas graft function rate is 60% in both groups. The early phase post-transplant using the duct obliteration in a segmental allograft bears the risk of an irreversible venous thrombosis and the development of a pancreatic fistula with subsequent graft loss. As a consequence of prolamine,

Simultaneous Pancreas and Kidney Transplantation

using the Duct-Occlusion Technique (n=53) Group II

![Graph](image)

Fig. 1. Patients and graft survival probability in simultaneous pancreas and kidney transplantation using the duct-occlusion techniques (n = 53) (Cutler/Ederer formula).
Simultaneous Pancreas and Kidney Transplantation
using the Bladder-Drainage Technique (n=11)

![Graph showing survival probability](image)

- **Patient**
- **Kidney**
- **Pancreas**

Fig. 2. Patient and graft survival probability in combined pancreas and renal transplantation using the bladder-drainage technique (n = 11) (Cutler/Ederer formula).

Survival in Simultaneous Pancreas and Kidney Transplantation

![Graph showing survival rate](image)

- **pancreas**
- **kidney**
- **patient**

Fig. 3. Long-term results in simultaneous pancreas and kidney transplantation in duct-occluded segmental allografts (n = 100) (Cutler/Ederer formula).
the result in the long-run is a vascularized islet cell graft without any exocrine activity and with no risk for the recipient. The induced destruction of exocrine tissue by prolamine is not associated with a deterioration of the endocrine function. Our early clinical observations with the bladder drainage show a remarkably high rate of local infection-complication following urinary tract infection also with subsequent graft loss. Patients with a history of bladder dysfunction as a side effect of long-term diabetic disease might therefore be better candidates for the duct-occlusion technique.

The surgical complication rate is acceptable. Still unsolved is the problem of a transplanted gland with an aggressive enzymatic secretion at the bladder mucosa, as well as for the recipient himself. With this technique postoperative complications may not only develop on the side of the pancreas but also from the duodenal segment. Further experience and long-term results must be gained to find out the best surgical technique.

References