ACKNOWLEDGMENTS

The Local Organizing Committee acknowledges with gratitude the contributions of the following institutions:

Sandoz AG
Sandoz BV
Stichting Algemene Loterij Nederland
Stichting Fondsenverwervingsacties Volksgezondheid
Stöpler
Ahold
Amro Bank
Behring Institut
Biotest Pharma
Copex Air
Diacarc
Eli Lilly Nederland
Fresenius
Gambro
Greiner
Hoechst Pharma
Hospal
IBM Nederland
IRE
KLM
Martinair Partyservice
Panchem
Pharmacia Nederland
Philips
Rhone-Poulenc Nederland
Shell Nederland
Stichting Fondsenverwervening Militaire Oorlogs- en Dienstslachtoffers
Stichting 1940–1945
Travenol
Universitaire Boekhandel Nederland
Wellcome

The Minister of Housing, Physical Planning and Environment and the Director and Staff of the Government Building Agency are gratefully acknowledged for their kind permission and personal help in organizing the symposium in the Ridderzaal Complex, as are the Burgomaster and Aldermen of The Hague for their hospitality.

Special indebtedness goes to Professor G. J. Tammeling and Dr. J. F. Ph. Hers for their advice and actual support in preparing the symposium, and to Ed Luinstra (Stöpler) and Carel Zorg Studio B. V. for their much appreciated and professional assistance.

The enthusiastic cooperation of Jacquiline Algera, Alimieke Bol, Renée Cortel, Verena Diepenveen, Marianne Franzen, Cathy Fung-Kim, Margaret Groenewegen, Els Hoekstra, Astrid Pomès, Hella van Welij, and the students working within the Eurotransplant Foundation has been the basis for the success of the symposium, and is gratefully acknowledged.
CONTENTS

GENERAL INTRODUCTION

Comprehensive Care Essential to Success in Diabetic Nephropathy E. A. Friedman 569

Biological Basis for Organ Transplantation in Diabetics...................... J. S. Najarian and D. E. R. Sutherland 573

The Contribution of Pancreatic Transplantation to Current Concepts in Diabetes K. F. Federlin and R. G. Bretzel 583

What to Expect From Pancreas Transplantation................................. P. McMaster 587

Pancreas and Islet Transplant Registry Statistics............................... D. E. R. Sutherland 593

Clinical Results of Renal Transplantation in Diabetic Patients J. Jervell, B. O. Dahl, P. Fauchald, T. Moen, G. Sødal, and A. Flatmark 599

Selection and Assessment of Diabetic Patients for Dialysis and Transplant Programs J. Michael, D. Adu, P. McMaster, J. H. Turney, and O. M. Gibby 611

(Continued)
Influence of Selection and Pretransplant Monitoring on Outcome of Renal Grafting in Diabetics

Improving Results in Primary Diabetic Renal Transplantation

Cadaveric Renal Transplantation in Insulin-Dependent Diabetes Mellitus: Experience in the Canadian Multicentre Trial

The Canadian Multicentre Transplant Study Group

Improved Results of Renal Transplantation in Diabetic Nephropathy

H. Wilczek, R. Gunnarsson, G. Lundgren, and L. Öst

DR-Matching for Cadaveric Renal Transplants in Insulin-Dependent Diabetic Patients

B. A. Vanderwerf and L. J. Koep

Results of Renal Transplantation in Diabetics at the University of Minnesota Since 1979, Including a Comparison of Outcome in Diabetic and Nondiabetic Recipients Randomized to Cyclosporine Versus Azathioprine for Immunosuppression

D. E. R. Sutherland, D. S. Fryd, M. Strand, N. Ascher, R. L. Simmons, and J. S. Najarian

Diabetic Renal Allograft Recipient Pretreatment With Donor-Specific Blood Products and Concomitant Azathioprine Immunosuppression

Cadaveric Kidney Transplantation in Diabetics After Total Lymphoid Irradiation (TLI)

Y. Vanrenterghem, M. Waer, K. Ang, E. van der Schueren, J. Gruwez, R. Bouillon, and P. Michielsen

Conversion From Conventional Immunosuppression to Cyclosporine A Therapy in Diabetic Recipients of Cadaveric Kidney Transplants

G. Thiel, R. Loertscher, F. P. Brunner, U. Keller, J. Landmann, M. Mihatsch, and F. Harder

The Use of Intravenous Insulin in the Treatment of Diabetes During Rejection Episodes

Left Ventricular Function Before and After Renal Transplantation in Diabetics

O. Larsson, J. Wikstrand, P.-O. Attman, and I. Wallentin

Recurrence of Diabetic Nephropathy in Human Renal Allografts: Preliminary Report of a Biopsy Study

S. O. Bohman, H. Wilczek, G. Jaremko, and G. Lundgren

Living Related Donors in Kidney Transplantation of Diabetics: A Five- to 12-Year Follow-Up Study

P. P. Frohner, C. F. Anderson, D. E. Engen, H. Zincke, and J. P. Vogel

The Elderly Living Related Donor in Diabetic Renal Transplantation

P.-O. Attman, I. Blohmé, H. Gäbel, H. Herlitz, O. Larsson, and H. Brynger

(Continued)
CONTENTS
(continued)

PANCREAS TRANSPLANTATION IN THE TREATMENT OF DIABETES

Selected Issues of Importance in Clinical Pancreas Transplantation

D. E. R. Sutherland 661

The Importance of Myocardial Imaging as a Selection Criterion of Patients Prior to Pancreas Transplantation ...L. H. Toledo-Pereyra 671

Procurement and Preservation of Human Pancreatic GraftsG. Lundgren, H. Wilczek, G. Klintmalm, G. Tydén, and C. G. Groth 681

Follow-Up of Simultaneous Kidney and Pancreas Transplantation in Type I Diabetes

Minnesota Experience With 81 Pancreas Transplants Since 1978

D. E. R. Sutherland, P. L. Chinn, F. C. Goetz, B. A. Elick, and J. S. Najarian 695

Deterioration in Glucose Metabolism in Pancreatic Transplant Recipients After Conversion From Azathioprine to Cyclosporine......................... R. Gunnarsson, G. Klintmalm, G. Lundgren, G. Tydén, H. Wilczek, J. Östman, and C. G. Groth 709

Laboratory Findings During Rejection of Segmental Pancreatic Allografts

G. Tydén, G. Lundgren, R. Gunnarsson, J. Östman, and C. G. Groth 715

(Continued)
Clinical Aspects of Pancreatic Rejection in Pancreatic and Pancreaticorenal Allotransplants

Indium-111 Labeled Platelets in Monitoring Pancreatic Transplants in Humans

Segmental Pancreatic Transplantation With Duct Ligature or Enteric Diversion: Technical Aspects
C. G. Groth, G. Lundgren, H. Wilczek, G. Klintmalm, G. Tydén, R. Gunnarsson, and J. Östman

Experience With 13 Segmental Pancreas Transplants in Cyclosporine-Treated Diabetic Patients Using Ethibloc for Duct Obliteration (Surgical Aspects)
W. Land, W.-D. Ilner, D. Abendroth, and R. Landgraf

Pathologic Evidence of Chronic Pancreatitis in Polymer Duct-Occluded Segmental Pancreas Allografts
L. H. Toledo-Pereyra

Intraductal Injection of Neoprene to Suppress Native Pancreatic Exocrine Secretion in Humans: Clinical and Metabolic Evaluation
V. Di Carlo, R. Chiesa, A. E. Pontiroli, G. Pozza, M. Carlucci, C. Staudacher, A. Secchi, and M. Cristallo

Pancreatic Endocrine Function After Duct Occlusion in Humans
I. B. Brekke, A. Bergan, L. Heen, and A. Flatmark

Insulin, C-Peptide, Glucagon, and Somatostatin Secretion in Segmental Pancreatic Autotransplantation

EXPERIMENTAL PANCREAS TRANSPLANTATION

Advantage of Exocrine Drainage on Long-Term Endocrine Function in the Transplanted Rat Pancreas
N. P. Ingram, M. S. Nolan, N. J. Lindsey, P. F. Boyle, A. Herold, S. Beck, D. N. Slater, and M. Fox

Clinical and Experimental Experience With Pancreaticocystostomy for Exocrine Pancreatic Drainage in Pancreas Transplantation
H. W. Sollinger, K. Cook, D. Kamps, N. R. Glass, and F. O. Betzer

Effects of Intraductal Irradiation on the Canine Pancreas

Different Techniques of Duct Occlusion for Experimental Pancreas Transplantation in Dogs
H. Lippert, H. Wolff, D. Lorenz, O. Abri, and F. Kühn

Duct Management of Segmental Pancreatic Allografts in Pigs
R. T. Schweizer, B. A. Sutphin, P. F. Pfau, R. D. Calaluce, and M. M. Berman
CONTENTS
(continued)

Prognosis of Experimental Pancreatic Transplantation in Relation to Vascular Reconstructive Procedure I. Vaněk, V. Bartoš, and V. Kočandřle 764

Long-Term Endocrine Function of In Situ and Autografted, Duct-Obliterated Canine Left Pancreatic SegmentsH. G. Gooszen, R. van Schilfgaarde, M. Frölich, G. F. Cramer-Knijnenburg, and M. P. M. van der Burg 766

Effect of Venous Drainage to the Vena Cava and Denervation on Endocrine Function of Pancreatic Segments in Dogs
D. Baumgartner, R. Illig, and D. E. R. Sutherland 769

Comparison of Endocrine Function Between Right and Left Pancreas Autografts in Dogs...Y. Motoki, M. Gotoh, M. Monden, O. Sakane, K. Shima, and J. Okamura 773

An Analysis of Long-Term Histologic Changes Leading to Decreased Endocrine Function After Duct Obliteration of the Canine Pancreas
H. G. Gooszen, F. T. Bosman, and R. van Schilfgaarde 776

Evidence for a Differential Importance of MHC and Non-MHC Alloantigens in Pancreas and Heart Transplantation in the Rat
J. Klempnauer, L. Hoins, B. Steiniger, E. Günter, K. Wonigett, and R. Pichlmayr 778

Early Detection of Rejection in the Allografted Pancreas
M. Gotoh, M. Monden, Y. Motoki, O. Sakane, K. Shima, and J. Okamura 781

Histology of Rejection in Rat Pancreas Allografts With Suppressed or Preserved Exocrine FunctionB. Steiniger, J. Klempnauer, U. Brüsch, and K. Wonigeit 783

Fine Needle Biopsy of Canine Pancreas Graft: An Attempt at Cytologic Diagnosis in Graft Rejection

The Effect of Cyclosporine on the Survival of Pancreatic Allografts in Pancreatectomized Baboons

The Course of Pancreatic Allografts With Physiologic Secretion Drainage in Rats Temporarily Treated With Cyclosporine A
W. Timmermann, T. Schang, and W. Thiede 794

(Continued)
CONTENTS
(continued)

Infection as a Complication of Roux-En-Y-Loop Jejunal Draining Rat Pancreas Grafts, Including the Effect of Cyclosporine A
N. J. Lindsey, N. P. Ingram, M. S. Nolan, P. F. Boyle, A. Herold, S. Beck,
A. Clark, D. N. Slater, and M. Fox 797

Effect of Theophylline in Experimental Pancreas Allotransplantation in Rats
A. Marni, M. E. Ferrero, and C. Rugarli 799

The Effect of Prednisone and Azathioprine on the Endocrine Function of Canine Segmental Pancreatic Autografts
R. van Schilfgaarde, H. G. Gooszen, M. Frölich, G. F. Cramer-Knijnenburg, and M. P. M. van der Burg 802

Segmental Pancreatic Allograft Survival in Pancreatectomized Baboons Treated With Total Body or Lymphoid Irradiation and Peroperative Blood Transfusions

Hypothermic Preservation of the Rat Pancreas With A View to Maintaining Endocrine Function Using Either Cold Storage or Pulsatile Perfusion
M. S. Nolan, N. J. Lindsey, N. P. Ingram, A. Herold, D. N. Slater, and M. Fox 807

Effect of 24-Hour Cold Storage on the Histology and Long-Term Endocrine Function of Autografted Canine Left Pancreatic Segments

TRANSPLANTATION OF PANCREATIC ISLET CELLS

Current Status of Experimental Islet Transplantation
K. J. Lafferty, S. J. Prowse, C. J. Simeonovic, O. Hegre, and H. P. Chase 813

Clinical Feasibility of Islet Transplantation................................. D. W. Scharp 820

Potential Cases of Normal Islet Autotransplantation in Humans
J. J. Altman, D. Houlberg, F. Bruzzo, N. Desplanque, J. Boillot, and F. E. Dazza 826

Islet Cell Autotransplantation: Risks, Complications, and Long-Term Follow-Up
L. H. Toledo-Pereyra 829

The Metabolic Effects of Islet Transplantation in the Diabetic Dog
D. Alderson and J. R. Farndon 831

Intrasplenic Isografts of Canine Pancreatic Islets: Metabolic Study
R. V. Rajotte, G. L. Warnock, A. W. Procyshyn, and K. Wieczorek 834

Effect of Streptozotocin on Composite Graft Survival
H. Reece-Smith, B. J. Fairbrother, P. McShane, and P. J. Morris 838

(Continued)
CONTENTS

Islet Transplantation in Rats: Secondary Complications and Pancreatic Insulin Content W. Arendarczyk, C. Wojcikowski, and B. Pankowska 840

Cryopreservation and Transplantation of Organ-Cultured Fetal Islets
T. E. Mandel and W. M. Carter 842

Islet Transplantation in Autoimmune Diabetes Mellitus
C. Weber, W. Ting, K. Rosenkranz, S. Rivera, B. Pernis, and K. Reemtsma 845

Xenotransplantation of Human Fetal Islets in Nude Mice
T. E. Mandel and H. M. Georgiou 849

Evidence that Major Histocompatibility Complex Restriction is Involved in the Survival of Cultured Endocrine Allografts in Mice
S. T. Bartlett, A. Naji, W. K. Silvers, and C. F. Barker 851

T-Cell Reactions Versus Kidney Cells, Islets of Langerhans, and Non-T Lymphocytes
D. Roth, T. Russell, L. Fuller, G. K. Kyriakides, D. Mintz, and J. Miller 854

Reactivity of Pancreas Islet Cells With Antisera of Known Specificity
K. Ulrichs, T. Schang, R. Keller, and W. Müller-Ruchholtz 857

Effect of Pretreatment of Isolated Adult Islets With Monoclonal Antibody
H. Reece-Smith, P. McShane, and P. J. Morris 861

Islet Allografts in Rats Made Tolerant of Renal Allografts by Whole Blood Transfusion Compared to Islet Allografts After Blood Transfusion Alone
D. W. R. Gray, A. D. Hibberd, P. McShane, and P. J. Morris 863

Prolongation of Rat Islet Allografts With the Use of Ultraviolet Irradiation, Without Immunosuppression M. A. Hardy, H. Lau, and K. Reemtsma 865

The Survival of Isolated Pancreatic Islets in Rats Rendered Immunologically Unresponsive to Renal Allografts
D. W. R. Gray, H. Reece-Smith, B. Fairbrother, P. McShane, and P. J. Morris 870

Combined Liver and Pancreatic Islet Allotransplantation
H. Reece-Smith, G. Muller, P. McShane, and P. J. Morris 872

THIRD INTERNATIONAL SYMPOSIUM ON HEART SUBSTITUTION

Perspectives On Heart Substitution ... R. Cortesini 877

Future of Cardiac Transplantation ... D. A. Cooley 880

Clinical Trials of Two-Staged Cardiac Transplantation Using an Orthotopic Mechanical Heart .. D. A. Cooley 882

Heterotopic Versus Orthotopic Heart Transplantation
C. N. Barnard and D. K. C. Cooper 886

(Continued)
CONTENTS

(continued)

Approaches to the Artificial Heart

G. Jacobs, H. Harasaki, R. Kiraly, L. Golding, and Y. Nose 893

Artificial Heart Substitution: The Total or Auxiliary Artificial Heart*J. Kolff* 898

Current Status of Research and Development of Artificial Hearts in Japan .. *K. Atsumi* 908

Past, Present, and Future of Mechanical Circulatory Support*J. T. Watson* 918
Experience With 13 Segmental Pancreas Transplants in Cyclosporine-Treated Diabetic Patients Using Ethibloc for Duct Obliteration (Surgical Aspects)

W. Land, W.-D. Illner, D. Abendroth, and R. Landgraf

Since August 1979, 18 segmental pancreas transplantations in 17 diabetic recipients with end-stage renal failure have been performed at our institution (17 combined pancreatic and renal allotransplantations, one pancreatic retransplantation). The course and outcome of simultaneous pancreatic and renal transplantations in the first three patients receiving conventional immunosuppressive therapy have been published elsewhere. This article presents our experience with 13 segmental pancreatic allotransplantations in 12 patients treated with the new immunosuppressive agent cyclosporine (Sandimmune, Sandoz Ltd., Basel, Switzerland). As details of patient selection, postoperative management, and long-term follow-up are presented by our group elsewhere in this issue, we will mainly concentrate on surgical aspects in this report.

MATERIALS AND METHODS

Twelve type I diabetic patients in end-stage renal failure (aged 25 to 49 years) have been accepted for treatment. Combined pancreatic and renal allotransplantation was performed in all 12 patients, pancreatic retransplantation alone in one patient.

Donor Pancreatectomy

The technique of pancreas harvesting has been described previously. Recently, we modified our technique slightly: (1) Hypothermic in situ perfusion of the pancreas with Euro-Collins' solution was provided by an intraaortically situated catheter via the celiac axis. (2) The celiac axis, including an aortal patch and the portal vein, respectively, were used for anastomosis exclusively. Harvesting of the pancreas was combined with the removal of the kidneys (all cases), the removal of the heart (three cases), and the removal of heart/lung (one case). Organ harvesting was performed either at our own clinic or at external hospitals. Transportation of the organs was provided by helicopters or emergency cars. Cold ischemia time never exceeded five and one half hours.

Special Donor Criteria

Special donor criteria for pancreas harvesting were used at our institution: age, 15 to 40 years; stable circulation; blood sugar and serum amylase, normal/subnormal; no obesity; negative crossmatch; and blood group compatibility.

Duct Obliteration

The duct obliteration procedure was started immediately before transplantation; under hypothermic in vitro conditions, the duct was cannulated (Abbocath cannula). Between 3.5 and 6 mL of Ethibloc (prolamine, alcoholic amino acid solution) were injected throughout the ductal system under x-ray control. Duct obliteration was considered to be efficient when first signs of overinjection appeared as revealed by x-ray. After occlusion, the ductal orifice, as well as the parenchyma near the cut surface, were ligated.

Recipient Operation

Our technique of pancreatic transplantation has been slightly modified recently. The segmental pancreas graft was situated (in an upside-down position) extraperitoneally in the right iliac fossa by positioning the distal 2/3 intraperitoneally. Circulation was established by end-to-side anastomosis of the portal vein to the right external iliac vein and the celiac axis (plus patch) to the right external iliac artery. The wound was drained for two to four days either by a silicon rubber drain or Penrose drain (Fig. 1). Following closure of this wound, a renal graft from the same donor was placed in the left iliac fossa using the standard technique.

Immunosuppressive Protocol

Basic immunosuppression consisted of intravenous (IV) cyclosporine 3.5 to 5 mg/kg/d over the first ten days posttransplant. Cyclosporine was administered orally (15 mg/kg) until the end of one month, when it was decreased.
Fig. 1. Technique recently used in segmental pancreatic transplantation: partially extra/interperitoneal position of the graft. For anastomosis, the portal vein as well as the celiac axis (plus an aortal patch) are used. The operation is done at the right iliac fossa.

by 2 mg/kg monthly to a maintenance level of 6 to 8 mg/kg monthly to a maintenance level of 6 to 8 mg/kg body wt.

Steroids (methylprednisolone) were begun at 500 mg IV intraoperatively by decreasing the daily dose to 30 mg during the first two weeks posttransplant. During the next two months, methylprednisolone was slowly decreased to a daily dose of 8 mg and maintained at that level.

Antirejection treatment. Antirejection treatment consisted of three IV bolus injections of 500 mg methylprednisolone during the first rejection episode. The second and third rejection episodes were treated by administration of antithymocyte globulin (ATG, Fresenius, Frankfurt, FRG) in a dose of 4 to 7.5 mg/kg daily over a period of seven days in combination with methylprednisolone in a dose of 120 mg IV daily until reversal.

RESULTS

The overall results of 12 combined pancreatic and renal transplantations (and one pancreatic retransplantation) are shown in Table 1. One patient died of acute liver failure (acute yellow liver necrosis) posttransplant. The other patients are currently alive. Eight of 13 pancreatic grafts, as well as ten of 12 renal grafts, are currently functioning (August 1983); pancreatic grafts after 26, 16, 6, 5, 2, 1½, and 1 month; renal grafts 27, 26, 16, 6, 6, 5, 2, 2, 1½, and 1 month. Four of 13

Table 1. Results of Simultaneous Pancreatic and Renal Transplantation Under Cyclosporine Therapy

<table>
<thead>
<tr>
<th>Patients in the Consecutive Series (age)</th>
<th>Survival Time (mo)</th>
<th>Patient</th>
<th>Pancreas</th>
<th>Kidney</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. H. S.* (36 yr) (Venous thrombosis)</td>
<td>27</td>
<td>None</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>5. P. K. (41 yr)</td>
<td>26</td>
<td>Venous thrombosis (twice)</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>6. A. B. (33 yr)</td>
<td>16</td>
<td>Transient fistula</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>7. G. L. (26 yr)</td>
<td>6</td>
<td>Peripancreatic fluid collection</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>8. K. F. (49 yr)</td>
<td>1</td>
<td>Transient fistula</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9. R. J. (25 yr)</td>
<td>2</td>
<td>Peripancreatic fluid collection</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(Rejection)</td>
<td>None</td>
<td>(Rejection)</td>
<td></td>
</tr>
<tr>
<td>10. H. K. (42 yr)</td>
<td>6</td>
<td>Wound hematoma (led to evacuation)</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>11. F. S. (40 yr)</td>
<td>5</td>
<td>None</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>12. U. S. (33 yr)</td>
<td>2</td>
<td>None</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>13. S. K. (27 yr)</td>
<td>(No function)</td>
<td>Transient fistula</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>14. M. S. (36 yr)</td>
<td>1.5</td>
<td>No function: infection</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>15. G. S. (33 yr)</td>
<td>1</td>
<td>Fistula</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patient</th>
<th>Pancreas</th>
<th>Kidney</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. H. S.</td>
<td>Venous thrombosis (twice)</td>
<td>None</td>
</tr>
<tr>
<td>5. P. K.</td>
<td>Transient fistula</td>
<td>Rupture after biopsy (led to operative repair)</td>
</tr>
<tr>
<td>6. A. B.</td>
<td>Peripancreatic fluid collection</td>
<td>Wound hematoma (led to evacuation)</td>
</tr>
<tr>
<td>7. G. L.</td>
<td>Transient fistula</td>
<td>Wound hematoma (led to evacuation)</td>
</tr>
<tr>
<td>8. K. F.</td>
<td>None</td>
<td>Rejection</td>
</tr>
<tr>
<td>9. R. J.</td>
<td>Fistula; infection (rejection)</td>
<td>None</td>
</tr>
<tr>
<td>10. H. K.</td>
<td>Peripancreatic fluid collection</td>
<td>None</td>
</tr>
<tr>
<td>11. F. S.</td>
<td>Peripancreatic fluid collection</td>
<td>Wound hematoma (led to evacuation)</td>
</tr>
<tr>
<td>12. U. S.</td>
<td>Transient fistula</td>
<td>None</td>
</tr>
<tr>
<td>13. S. K.</td>
<td>No function: infection (led to operative repair)</td>
<td>Distal ureter necrosis</td>
</tr>
<tr>
<td>14. M. S.</td>
<td>Fistula</td>
<td>None</td>
</tr>
<tr>
<td>15. G. S.</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

*Retransplantation: second occurrence of venous thrombosis.
†See Table 2, same patient.
pancreatic grafts failed because of acute irreversible vascular rejection, chronic posttransplant venous thrombosis, and no primary function. Concerning the last case, an abnormal blood supply of the body and tail of the donor pancreas has to be discussed (only a few nutritive branches arising from the splenic artery without any parenchymal presentation were shown by angiography). We observed a relatively high incidence of early postoperative local complications on both sites of the grafts as shown in Table 2. At the site of the pancreatic graft, peripancreatic fluid collection requiring repeated needle aspiration and transient pancreatic fistula, respectively, were encountered most frequently; at the site of the renal graft, deep wound hematomas requiring surgical evacuation was observed.

Rejection episodes of both organs proved to be almost mild under cyclosporine treatment. There was only one acute vascular-type rejection not responding to antirejection treatment. Normally, all rejection episodes could be reversed either by methylprednisolone (IV bolus) alone or by combined administration of methylprednisolone and ATG.

DISCUSSION

Our current technique of combined segmental pancreatic and renal grafting using cyclosporine as posttransplant immunosuppressant has been associated with (1) low mortality, (2) an acceptable morbidity, (3) rare immunologic graft loss, (4) a relatively high incidence of early local complications, and (5) a reasonable rate of functioning pancreatic grafts (at the present time, August 1983: 61.5%).

We assume and discuss that this high rate of functioning pancreatic grafts is primarily a result of the strong immunosuppressive potency of the new agent cyclosporine, which reduces the events of irreversible allograft rejection. This observation is in accordance with our results obtained in cadaveric renal transplantation using cyclosporine as basic immunosuppressive therapy; the one-year graft survival rate of renal allografts has improved by 20% (to 80%) compared with our historic controls using conventional immunosuppressive therapy.

The clinical use of cyclosporine may also have led to the low rate of mortality in our recent series, although other contributing factors, such as better selection and improved management of the patients, and the gaining of experience within the transplant group may play some role.

The morbidity observed in our patients after combined transplantation certainly is higher than in kidney-transplanted patients but it seems acceptable. This morbidity mainly concerns the incidence of early local complications such as peripancreatic fluid collection and transient pancreatic fistula at the site of the pancreatic graft, as well as severe wound hematomas at the site of the renal graft.

Indeed, the incidence of complications from residual function of the exocrine system of the duct-occluded pancreatic graft worries us. We believe that these local complications probably arise from a too-early reabsorption of the occlusion substance Ethibloc (Ethicon, Raritan, NJ) before the acini are completely atrophied (a decisive difference between Ethibloc and neoprene used by the Lyon group and others). It is worthwhile to mention that the administration of somatostatin did not prevent these local complications from arising from residual exocrine secretion. On the other hand, this property of early reabsorption may be the reason for the good long-term function of the pancreatic grafts as discussed by us elsewhere in this issue. If it is suggested that a remaining foreign body causes increased fibrosis in the graft over a longer period of time, then the early reabsorption of ethibloc would imply a beneficial effect (as far as long-term function is concerned) because of a milder fibrosis-inducing effect. A completely intraperitoneal position of Ethibloc-occluded pancreatic grafts might reduce this kind of local complication.

The incidence of wound hematoma at the site of the renal graft is obviously a result of
our aggressive regimen of early postoperative anticoagulation (heparinization). This protocol was applied to prevent venous thrombosis of the splenic vein of the pancreatic graft. In fact, this complication can be prevented completely by aggressive anticoagulation therapy according to our experience. Nevertheless, a new therapeutic concept of posttransplant anticoagulation is being worked out at the present time.

ACKNOWLEDGMENT
We thank Mrs B. König for preparing the manuscript.

REFERENCES
5. Lenhard FP, Unertl K, Jenssen V, et al: (This issue)