THE FIRST INTERNATIONAL CONGRESS
ON CYCLOSPORINE

President and Guest Editor

B.D. KAHAN, Ph.D., M.D.

Houston, Texas, USA

Honorary President

J.F. BOREL, Ph.D.

Basel, Switzerland

International Advisory Committee

R.E. Billingham, Ph.D.
Dallas, Texas, U.S.A.

A.G. Ross Sheil, M.D.
Sydney, New South Wales, Australia

I. Hashimoto, M.D., Ph.D.
Kyoto, Japan

B. Speck, M.D.
Kantonsspital, Basel, SZ.

A.P. Monaco, M.D.
Boston, Massachusetts, U.S.A.

T.E. Starzl, M.D.
Pittsburgh, Pennsylvania, U.S.A.

P. J. Morris, M.D.
Headington, Oxford, U.K.

C.R. Stoller, M.D.
London, Ontario, Canada

J. Najarian, M.D.
Minneapolis, Minnesota, U.S.A.

R. Storb, M.D.
Seattle, Washington, U.S.A.

P. Oyer, M.D.
Palo Alto, California, U.S.A.

J. Träeger, M.D.
Lyon, France

R. Powles, M.D.
Surrey, U.K.

D.W. Van Bekkum, M.D.
Rotterdam, The Netherlands

George W. Santos, M.D.
Baltimore, Maryland, U.S.A.

D.J.G. White, Ph.D.
Cambridge, U.K.

May 16–19, 1983
Houston, Texas
ACKNOWLEDGMENT

The Congress organizers acknowledge with gratitude the support of

SANDOZ PRODUCTS LTD.

for a very substantial contribution to the organization of the Congress, the publication costs of the Proceedings, and for a number of other services rendered to the Congress.
Contents

Foreword ... F. G. Moody 2207

Preface

Cosmas and Damian Revisited .. B. D. Kahan 2211

Mechanisms of Action

Cyclosporine: Historical Perspectives ... J. F. Borel 2219

Synthesis of Cyclosporine and Analogues: Structure, Activity, Relationships of New
Cyclosporine Derivatives .. R. Wenger 2230

Cyclosporine-A (CsA): Models for the Mechanism of Action.............................. K. J. Lafferty,
J. F. Borel, and P. Hodgkin 2242

Effect of Cyclosporine on the Induction of Cytotoxic T Lymphocytes: Role of
Interleukin-1 and Interleukin-2 A. D. Hess, P. J. Tutschka, and G. W. Santos 2248

Lack of Evidence for a Cyclosporine Receptor on Human Lymphocyte Membranes
S. J. LeGrue, A. W. Friedman, and B. D. Kahan 2259

Cyclosporine Binding Component in BW5147 Lymphoblasts and Normal Lymphoid
Tissue M. Merker, J. Rice, B. Schweitzer, and R. E. Handschumacher 2265

Effects of Cyclosporine on Experimental Infections G. A. Cole, S. P. Nickell,
F. Mokhtarian, and L. W. Scheibel 2271

Potential for Tolerance Induction With Cyclosporine ... D. J. G. White, H. ff. S. Davies,
N. Kamada, and T. Nagao 2278

(Continued)
CONTENTS

IMMUNOSUPPRESSIVE PROPERTIES

CELL-MEDIATED IMMUNITY

The Effect of Cyclosporine A on Lymphocytes in Animal Models of Tissue
Transplantation....................... P. J. Morris, D. W. Mason, and I. V. Hutchinson 2287

Cyclosporine Effects on Immunoregulatory Cells in Man..................... C. T. Van Buren,
R. Kerman, S. Flechner, and B. D. Kahan 2293

Analysis of Lymphocytes Concerned in Spontaneous Blastogenesis During Acute
Rejection......................... T. Oka, N. Yoshimura, Y. Ohmori, I. Aikawa, T. Matsumura,
T. Usui, K. Arakawa, and I. Hashimoto 2298

Immunologic Monitoring of Renal Allograft Recipients Treated with Cyclosporine

Cyclosporine Effects on Mitogen-Induced T- and B-Cell Proliferation
H. G. A. Bouwer and D. J. Hinrichs 2306

Cyclosporine Selectively Inhibits Certain Mitotic Responses to Thymocytes
I. Gery, W. R. Benjamin, S. Jones, and R. B. Nussenblatt 2311

Cyclosporine Modulates the Human In Vitro T-Dependent Antigen-Induced Synthesis
of Specific Antibody... J. B. Harley and A. S. Fauci 2315

Dissociation of T Helper-Cell Function and Helper-Cell Priming by Cyclosporine
G. G. B. Klaus and A. Kunkl 2321

Differential Effect of Cyclosporine on the Generation of Allogeneic Versus Syngeneic
Cytotoxic T Lymphocytes.............................. Z. K. Ballas and W. E. Schulte 2323

Differential In Vitro Action of Cyclosporine on Non-T-Cell and T-Cell Responses to
Non-HLA Alloantigens: Significance for MHC-Independent Graft-Versus-Host
Disease.. L. Delmonte 2328

Induction of Suppressor T Lymphocytes in Mice Treated with Cyclosporine
N. Yoshimura, T. Oka, Y. Ohmori, I. Aikawa, M. Fukuda, Y. Kondoh,
and I. Hashimoto 2334

Suppressor Cells in Cyclosporine-Induced Long-Term Graft Acceptance in the Rat
K. Sakamoto, T. Ochiai, N. Shinohara, T. Asano, and H. Sato 2340

Suppressor-Cell Amplification Circuitry in Cyclosporine-Treated MLR Cultures
A. D. Hess, A. D. Donnenberg, P. Engel, P. J. Tutschka, and G. W. Santos 2343

The Immunosuppressive Action of Cyclosporine in Man...................... R. M. Ferguson
and R. Fidelus-Gort 2350

Population of Cyclophosphamide-Sensitive T Suppressor Cells Maintain
Cyclosporine-Induced Allograft Survival J. W. Kupiec-Weglinski, P. A. Lear,
T. B. Strom, and N. L. Tilney 2357

Effects of Cyclosporine on the Efferent Limb of the Immune Response
M. Mochizuki, R. B. Nussenblatt, T. Kuwabara, and I. Gery 2364

(Continued)
CONTENTS

Pulmonary Macrophage and Polymorphonuclear Leukocyte Function in Response to Immunosuppressive Therapy ... D. B. Drath and B. D. Kahan 2367

Effect of Cyclosporine Alone or Combined with Prednisolone or Azathioprine on Macrophage Phagocytosis A. Rios, L. H. Toledo-Pereyra, and S. Buscetta 2373

Inhibitory Effect of Cyclosporine on Adherent Cells in Oxidation-Induced Lymphocyte Proliferation K. Uyemura, J. F. P. Dixon, and J. W. Parker 2376

HUMORAL MEDIATORS

Effect of Cyclosporine on Human Leukocyte Interferon Production: Selective Inhibition of IFN-Gamma Synthesis .. J. Abb and H. Abb 2380

Effects of Cyclosporine on the Production of Various Interferons V. K. Kalman and G. R. Klimpel 2383

Cyclosporine Inhibits Interleukin-2 and Interferon Gamma Synthesis by Human Thymocytes .. G. H. Reem, L. A. Cook, and M. A. Palladino 2387

Cyclosporine and Lymphokines Affecting Macrophage Behavior A. W. Thomson, D. K. Moon, C. L. Geczy, and D. S. Nelson 2390

Relationship Between IL-2 Receptors and Cyclosporine-Induced Suppression of T Leukemia and T Helper Cells C. C.-Y. Shih, R. L. Truitt, P. Abramoff, and M. M. Bortin 2394

PHARMACOKINETICS

Methods to Measure Cyclosporine Levels—High Pressure Liquid Chromatography, Radioimmunoassay, and Correlation W. T. Robinson, H. F. Schran, and E. P. Barry 2403

Cyclosporine Pharmacokinetics in Man J. Newburger and B. D. Kahan 2413

Pharmacokinetics and Toxicity of Cyclosporine in Marrow Transplant Patients M. S. Kennedy, G. C. Yee, H. J. Deeg, R. Storb, and E. D. Thomas 2416

Distribution and Binding of Cyclosporine in Blood and Tissues W. Niederberger, M. Lemaire, G. Maurer, K. Nussbaumer, and O. Wagner 2419

In Vitro Stability and Storage of Cyclosporine in Human Serum and Plasma J. Smith, J. Hows, and E. C. Gordon-Smith 2422

(Continued)
CONTENTS

Blood and Tissue Distribution of Cyclosporine in Humans and Mice K. Atkinson, J. Boland, K. Britton, and J. Biggs 2430

Cyclosporine Levels in Human Tissues of Patients Treated for One Week to One Year

Pharmacologic Monitoring in the Clinical Use of Cyclosporine
F. Lokiec, A. Devergie, O. Poirier, and E. Gluckman 2442

CLINICAL TRANSPLANTATION

KIDNEY TRANSPLANTATION

The Colorado-Pittsburgh Cadaveric Renal Transplantation Study with Cyclosporine

The Canadian Trial of Cyclosporine: Cyclosporine Therapy Compared to Standard Immunosuppression in Renal Transplants: An Exploration of Nephrotoxicity C. Stiller, London, Canada, for The Canadian Transplant Study Group 2479

Australian Trial of Cyclosporine (Csa) in Cadaveric Donor Renal Transplantation A. G. R. Sheil, B. M. Hall, D. J. Tiller, M. S. Stephen, J. P. Harris, G. G. Duggin, J. S. Horvath, J. R. Johnson, J. R. Rogers, and J. Boulas 2485

The Requirements for Maintenance Steroids in Cyclosporine-Treated Renal Transplant Recipients C. Stiller, London, Canada, for The Canadian Transplant Study Group 2490

A Prospective Randomized Substitutive Trial of Cyclosporine as a Prophylactic Agent in Human Renal Transplant Rejection R. A. Sells 2495

(Continued)
CONTENTS

Living Related Kidney Transplants Treated with Cyclosporine...... T. Oka, Y. Ohmori,

Improved Outcome in Renal Transplant Recipients Above 55 Years of Age Treated
with Cyclosporine and Low Doses of SteroidsO. Ringdén, L. Öst,
G. Klintmalm, A. Tillegård, I. Fehrman, H. Wilczek, and C. G. Groth 2507

Randomized Comparison Between Cyclosporine and Conventional Therapy Plus
Minnesota Antilymphocyte Globulin in Cadaveric Renal Transplantation
P. Halloran, D. Ludwin, M. Aprile, J. Lien, N. White, and the Canadian Transplant Study Group 2513

Cadaveric Renal Transplantation with Cyclosporine: Experiences in 148 Patients at a
C. Hillebrand, W. -D. Illner, N. Schmeller, B. Schneider, W. Siebert, R. A. Zink,
and H. Zöttlein 2517

Cyclosporine in Cadaveric Renal Transplantation: A Prospective Randomized Trial
S. Stock, J. Buckels, P. Mackintosh, and M. Ezzibdeh 2523

Renal Transplantation Using Cyclosporine in Pediatric Patients 3 to 17 Years Old

Cyclosporine and Steroids: Effects on the Clinical Course After Renal
Allotransplantation H. Bunzendahl, K. Wonigeit, J. Klempnauer,
C. Brölsch, and R. Pichlmayr 2531

Cyclosporine for Steroid-Resistant Rejection in Azathioprine-Treated Renal Graft
Recipients A. S. MacDonald, P. Belitsky, A. Cohen, J. Crocker, R. Gupta,
S. G. Lannon, and J. White 2535

A Critical Look at Renal Allografts That Failed in Patients Receiving Cyclosporine
T. Kovithavongs, W. H. Lakey, R. Boake, K. B. Bettcher, P. McCormick,
and J. B. Dossetor 2538

HEART AND LUNG TRANSPLANTATION

Cyclosporine in Cardiac Transplantation: A 2½ Year Follow-UpP. E. Oyer,
E. B. Stinson, S. W. Jamieson, S. A. Hunt, M. Perlooth, M. Billingham,
and N. E. Shumway 2546

Experience with Cyclosporine in Cardiac Transplantation R. L. Hardesty,
B. P. Griffith, R. F. Debski, and H. T. Bahnson 2553

Cyclosporine for Cardiac Transplantation: U. K. Trial J. Wallwork,
R. Cory-Pearce, and T. A. H. English 2559

Cardiac and Cardiopulmonary Transplantation Using Cyclosporine For
Immunosuppression: Recent Texas Heart Institute Experience

(Continued)
CONTENTS
(continued)

New Onset of Hypertension Following Cardiac Transplantation: A Preliminary Report and Analysis M. E. Thompson, A. P. Shapiro, A. M. Johnsen, R. Reeves, J. Itzkoff, E. Ginchereau, R. L. Hardey, B. L. Griffith, H. T. Bahmson, and R. McDonald, Jr. 2573

LIVER AND PANCREAS TRANSPLANTATION

Special Aspects of Immunosuppression with Cyclosporine in Liver Transplantation K. Wonigeit, C. Brölsch, P. Neuhaus, M. Burdelski, E. Schmidt, W. Lang, and R. Pichlmayr 2586

Hepatic Homograft Survival in Pediatric Orthotopic Liver Transplantation with Cyclosporine and Steroids............. B. J. Zitelli, J. C. Gartner, Jr., J. J. Malatack, B. W. Shaw, Jr., S. Iwatsuki, and T. E. Starzl 2592

Pancreas Transplantation: Overview and Current Status of Cases Reported to the Registry Through 1982 .. D. E. R. Sutherland 2597

Experience with Cyclosporine Versus Azathioprine for Pancreas Transplantation D. E. R. Sutherland, P. L. Chinn, F. C. Goetz, B. A. Elick, and J. S. Najarian 2606

BONE MARROW TRANSPLANTATION

Allogeneic Bone Marrow Transplantation: The Basel Trial with Cyclosporine B. Speck, A. Gratwohl, B. Osterwalder, E. Signer, C. Nissen, M. Corneo, and M. Jeannet 2617

(Continued)
CONTENTS (continued)

Cyclosporine for the Prevention of Graft-vs.-Host Disease in 72 Patients with Acute Myeloblastic Leukemia in First Remission Receiving Matched Sibling Bone Marrow Transplants

R. L. Powles, B. Evans, C. Poole, A. Pedrazzini, M. Crofts, C. Pollard, and G. Hughes 2624

Use of Cyclosporine as Prophylaxis of Graft-vs.-Host Disease After Human Allogeneic Bone Marrow Transplantation: Report of 38 Patients

E. Gluckman, A. Devergie, O. Poirier, and F. Lokiec 2628

Postgraft Immunosuppression with Cyclosporine in Allogeneic Bone Marrow Transplantation for Severe Aplastic Anemia

J. M. Hows, J. L. Yin, P. M. Chipping, S. M. Fairhead, S. Palmer, and E. C. Gordon-Smith 2634

CLINICAL CASE PRESENTATIONS

The Management of Kidney Transplant Recipients Treated With Cyclosporine

B. D. Kahan 2641

The Management of Heart Transplant Recipients Treated With Cyclosporine

B. D. Kahan 2649

WORKSHOPS ON PATIENT MANAGEMENT

Practical Aspects on Renal Transplant Management.................................B. D. Kahan 2665

Pancreas Transplantation...J. M. Dubernard and E. Bosi 2676

Practical Aspects of Cardiac Transplant Patient ManagementC. T. Van Buren 2678

CYCLOSPORINE TOXICITY

The Nephrotoxicity of Cyclosporine in Renal Transplant Recipients

S. M. Flechner, C. Van Buren, R. H. Korman, and B. D. Kahan 2689

Renal Effects of Cyclosporine: Clinical and Experimental Observations

R. Devineni, N. McKenzie, J. Duplan, P. Keown, C. Stiller, and A. C. Wallace 2695

Cyclosporine in Patients With Oligoanuria After Cadaveric Kidney Transplantation

Nephrotoxicity of Cyclosporine in Combination With Aminoglycoside and Cephalosporin Antibiotics.......P. H. Whiting, J. G. Simpson, and A. W. Thomson 2702

Renal Failure in Heart Transplant Patients Receiving Cyclosporine

J. Egel, A. Greenberg, M. E. Thompson, R. L. Hardesty, B. P. Griffith, H. T. Bahnson, R. L. Bernstein, and J. B. Puschett 2706

(Continued)
CONTENTS
(continued)

Nephrotoxicity in Marrow Graft Recipients Treated With Cyclosporine
 J. M. Hows, J. M. Smith, A. Baughan, and E. C. Gordon-Smith 2708

Increasing the Hepatic Metabolism of Cyclosporine Abolishes Nephrotoxicity
 C. Cunningham, P. H. Whiting, M. D. Burke, D. N. Wheatley, and J. G. Simpson 2712

Demonstration of Cyclosporine in Renal Transplants by Fine Needle Aspiration
 Biopsy ... E. von Willebrand and P. Häyry 2716

Cyclosporine, the Renin-Angiotensin-Aldosterone System, and Renal Adverse
 Reactions
 H. Siegl, B. Ryffel, R. Petric, P. Shoemaker, A. Muller, P. Donatsch, and M. Mihatsch 2719

Cyclosporine-Associated Hyperkalemia
 R. J. Foley, C. T. Van Buren, R. Hamner, and E. J. Weinmann 2726

Cyclosporine and Sodium and Potassium Excretion in the Rat
 A. S. Tonnesen, R. W. Hamner, and E. J. Weinmann 2730

Nephrotoxicity of Cyclosporine-An Animal Model: Study of the Nephrotoxic Effect of
 Cyclosporine on Overall Renal and Tubular Function in Conscious Rats
 H. Dieperink, H. Starklint, and P. P. Leyssac 2736

Rat Composite Tissue Allograft Recipients Demonstrate a Dose-Related Increase in
 Renal Toxicity With Therapeutic Doses of Cyclosporine
 C. W. Hewitt, K. S. Black, L. A. Fraser, E. B. Howard, A. Ingerman,
 B. Philosophe, B. M. Achauer, D. C. Martin, and D. W. Furnas 2742

Complications of Cyclosporine Therapy-A Comparison to Azathioprine
 A. Laupacis, London, Canada, for the Canadian Transplant Study Group 2748

Cyclosporine and Liver Function in Renal Allograft Recipients

Cholestatics in Heart Transplant Recipients Treated With Cyclosporine
 R. R. Schade, A. Guglielmi, D. H. Van Thiel, M. E. Thompson, V. Warty,
 B. Griffith, A. Sanghvi, H. Bahnson, and R. Hardesty 2757

Cyclosporine-Associated Hepatotoxicity After Allogeneic Marrow Transplantation in
 Man: Differentiation From Other Causes of Posttransplant Liver Disease
 K. Atkinson, J. Biggs, A. Dodds, and A. Concannon 2761

Infections in Kidney, Heart, and Liver Transplant Recipients on Cyclosporine
 M. Ho, C. P. Wajszczuk, A. Hardy, J. S. Dummer, T. E. Starzl, T. R. Hakala,
 and H. T. Bahnson 2768

Infection in Renal Transplant Recipients on Cyclosporine: Pneumocystis Pneumonia
 A. M. Hardy, C. P. Wajszczuk, T. R. Hakala, J. T. Rosenthal,
 T. E. Starzl, and M. Ho 2773

Cellular Immune Response and Cytomegalovirus Infection in Renal Transplant
 Recipients Receiving Cyclosporine
 C. R. Rinaldo, Jr., W. H. Hamoudi, R. L. DeBiasio, B. Rabin,
 T. R. Hakala, and M. Liebert 2775

(Continued)
CONTENTS

(continued)

Infections in Patients on Cyclosporine and Prednisone Following Cardiac Transplantation J. S. Dummer, H. T. Bahnson, B. P. Griffith, R. L. Hardesty, M. E. Thompson, and M. Ho 2779

Glomerular Thrombi and Infarction in Rabbits with Serum Sickness Following Cyclosporine Therapy G. H. Neild, K. Ivory, and D. G. Williams 2782

Occurrence of Hemolytic Uremic Syndrome Under Cyclosporine Treatment: Accident or Possible Side Effect Mediated by a Lack of Prostacyclin-Stimulating Plasma Factor?
C. Leithner, H. Sinzinger, E. Pohanka, M. Schwarz, G. Kretschmer, and G. Syrè 2787

Lymphomas Complicating Organ Transplantation ... I. Penn 2790

Immunoglobulin Abnormalities and Infectious Lymphoproliferative Syndrome (ILPS) in Cyclosporine-Treated Transplant Patients

Histiocytic Lymphoma in Renal Transplant Patients Receiving Cyclosporine

Malignant Lymphoma in Nontransplanted Cynomolgus Monkeys Receiving Cyclosporine

PROBLEMS IN DIFFERENTIAL DIAGNOSIS—TOXICITY VERSUS ALLOGRAFT REJECTION

Clinical and Laboratory Signs in Nephrotoxicity and Rejection in Cyclosporine-Treated Renal Allograft Recipients
G. Klintmalm, O. Ringdén, and C. G. Groth 2815

Morphological Findings in Kidney Transplants After Treatment with Cyclosporine

Morphology of Cyclosporine Nephrotoxicity and of Acute Rejection in Cyclosporine-Prednisone—Immunosuppressed Renal Allograft Recipients

Effects of Cyclosporine on Human Renal Allograft Rejection: An Ad Interim Report

(Continued)
CONTENTS
(continued)

Tubular Changes in Renal Transplant Recipients on Cyclosporine S. Thiru,

Pathology in Renal Transplant Patients Treated with Cyclosporine
A. Farnsworth, B. M. Hall, P. Kirwan, G. A. Bishop, G. C. Duggin, B. Goodman,
J. Horvath, J. Johnson, A. Ng, A. G. R. Sheil, and D. J. Tiller 2852

CYCLOSPORINE CONVERSION AND USE AS ADJUNCTIVE THERAPY

Conversion Rejection Consequences by Changing the Immunosuppressive Therapy
From Cyclosporine to Azathioprine After Kidney Transplantation

The Consequences of Conversion From Cyclosporine to Azathioprine and Prednisolone
in Renal Allograft Recipients R. F. M. Wood, J. F. Thompson,
N. H. Allen, A. Ting, and P. J. Morris 2862

The Effect of Conversion From Cyclosporine to Azathioprine Immunosuppression for
Intractable Nephrotoxicity S. M. Flechner, C. T. Van Buren,
R. Kerman, and B. D. Kahan 2869

Cyclosporine Nephrotoxicity in Renal Allograft Recipients: Conversion to
Azathioprine to Improve Renal Function D. M. Canafax, D. E. R. Sutherland,
N. L. Ascher, R. L. Simmons, and J. S. Najarian 2874

Conversion Problem—Azathioprine to Cyclosporine K. Rolles,
R. Merion, and R. Y. Calne 2878

Total Lymphoid Irradiation and Cyclosporine.. D. E. R. Sutherland,
R. M. Ferguson, M. I. Aeder, W. I. Lewis, F. R. Bentley, N. L. Ascher,
R. L. Simmons, and J. S. Najarian 2881

Use of Cyclosporine and Monoclonal Antibodies in Clinical Renal Transplantation
N. L. Tilney, R. L. Kirkman, J. L. Araujo, C. B. Carpenter, E. L. Milford,
E. L. Reinherz, S. F. Schlossman, and T. B. Strom 2889

EFFECTS IN AUTOIMMUNITY, VIRAL AND FUNGAL INFECTIONS

Effect of Cyclosporine on Antigen Presentation: Relationship to Lupus
M. Fischbach and N. Talal 2899

Response of Murine Autoimmune Disease to Cyclosporine and Thiols
M. G. Jones, G. Harris, and G. Cowing 2904

The Effect of Cyclosporine on Lymphocyte Subsets in Experimental Allergic
Encephalomyelitis: Functional Loss of Disease-Suppressing Cells In Vivo
L. M. Fredane, G. A. Hashim, and R. E. McCabe 2909
(Continued)
CONTENTS
(continued)

The Effects of Cyclosporine on Viruses X. E. Gui, R. W. Atchison, and M. Ho 2917

In Vitro Effects of Cyclosporine on Lymphocyte Responses to Cytomegalovirus P. J. Converse, A. D. Hess, P. J. Tutschka, and G. W. Santos 2923

In Vitro and In Vivo Antifungal Activity of Cyclosporine M. S. Osato, T. J. Roussel, K. R. Wilhelmus, and D. B. Jones 2927

EXPERIMENTAL TRANSPLANTATION

KIDNEY

Combination Immunotherapy With Low-Dose Cyclosporine and Azathioprine in Splenectomized Canine Recipients of Renal Allografts M. I. Aeder, D. E. R. Sutherland, W. I. Lewis, and J. S. Najarian 2933

Immunosuppression of Renal Allograft Rejection by Perioperative Administration of the Combination of Histocompatibility Antigen in the Form of 3M KCl Extract or Blood Transfusion and Cyclosporine T. Yasumura and B. D. Kahan 2942

Reversal of Kidney and Prevention of Pancreas Transplant Rejection With Cyclosporine in Beagles G. K. Kyriakides, L. Olson, C. Flaa, and J. Miller 2950

Inhibition of Chronic Kidney Allograft Rejection by Cyclosporine R. L. Marquet, W. Weimar, E. Heineman, and J. Jeekel 2953

HEART AND LUNG

Synergistic Effect of a Nucleotide-Free Diet and Cyclosporine on Allograft Survival C. T. Van Buren, A. Kulkarni, and F. Rudolph 2967

Prolonged Heart Allograft Survival in Cyclosporine-Treated Presensitized Rats J. A. Schulak, J. Shelby, E. Wakely, and R. J. Corry 2969

Effect of Cyclosporine on Lymphocyte Migration in Rat Cardiac Transplantation N. Kuromoto, C. Iga, R. Fawwaz, R. Nowygrod, K. Reemtsma, and M. A. Hardy 2973

(Continued)
CONTENTS

(continued)

Studies With T Cells From Long-Term Surviving Canine Lung Allograft Recipients: Reduced Lymphocyte-Mediated Cytotoxicity But Not Reduced Mixed Lymphocyte Reactivity ...

LIVER, PANCREAS, INTESTINE

Histologic Evidence of Modification of Liver Allograft Rejection in Inbred Miniature Swine by Cyclosporine ... M. W. Flye 2983

Induction of Liver Graft Tolerance in a Primarily Nontolerant Rat Strain Combination With Temporary Treatment of Cyclosporine
R. Engemann, K. Ulrichs, A. Thiede, W. Müller-Ruchholtz, and H. Hamelmann 2986

The Effect of Cyclosporine Alone and in Combination With Steroids on Experimental Segmental Pancreatic Allografts in the Baboon

Segmental Pancreatic Allotransplantation With High-Dose Cyclosporine and Low-Dose Prednisone

Pancreas and Kidney Allograft Rejection Responds Differently to Cyclosporine Immunosuppression
J. Klempnauer, E. Wagner, B. Steiniger, K. Wonigeit, and R. Pichlmayr 3001

Effect of Cyclosporine on Allotransplanted Pancreatic Islets in DLA-MLC-Compatible Dogs M. D. Williams, R. Walshaw, R. W. Bull, W. D. Schall, G. A. Padgett, V. V. Gossain, and R. F. Nachreiner 3004

The Effect of Cyclosporine on Simultaneous Skin and Pancreatic Islet Allografts in the Rabbit W. B. Jolley, K. Knierim, J. Ham, and J. K. Longerbeam 3011

Pharmacokinetics of Cyclosporine in a Canine Intestinal Transplantation Model

Successful Small Bowel Allografts in Piglets Using Cyclosporine

Prevention of Graft-Versus-Host Reaction Following Small Bowel Transplantation by Temporary Cyclosporine Treatment

Uptake of 14C-Glucose by the Transplanted Small Intestine

(Continued)
CONTENTS
(continued)

BONE MARROW

Studies on the Immunobiology of Syngeneic and Autologous Graft-Versus-Host Disease in Cyclosporine-Treated Rats...A. Glazier, P. J. Tutschka, and E. Farmer 3035

The Effect of Cyclosporine on Host-Versus-Graft Disease in Canine Bone Marrow Transplantation...A. M. Miller, E. P. Walma, W. Klapwijk, and D. W. Van Bekkum 3046

EFFECTS ON WOUND HEALING, COMPOSITE GRAFTS, SKIN, CORNEA, AND VEIN ALLOGRAFTS

Effects of Cyclosporine on the Healing of Vascularized and Nonvascularized Bone Allografts in RodentsP. F. Halloran, M. Bushuk, and J. A. Stewart 3053

Cyclosporine and Long-Term Survival of Composite Tissue Allografts (Limb Transplants) in Rats (With Historical Notes on the Role of Plastic Surgeons in Allotransplantation)...D. W. Furnas, K. S. Black, C. W. Hewitt, L. A. Fraser, and B. M. Achauer 3063

Diagnosis of Rejection and Functional Analysis of Composite Tissue (CT) and Skin Allografts Prolonged with Cyclosporine K. S. Black, C. W. Hewitt, E. B. Howard, L. A. Fraser, B. J. Mah, J. C. Koumas, and B. M. Achauer 3069

Cyclosporine Prolongs Skin Allografts in a Rat Burn Model B. M. Achauer, C. W. Hewitt, K. S. Black, B. Philosophe, R. L. Linfesty, and D. W. Furnas 3073

Concomitant Transfusion and Cyclosporine-Induced Enhancement of Rabbit Skin Allografts: Histocompatibility Requirements G. J. A. Clunie, L. J. Dumble, H. P. King, L. G. Bowes, P. Masendycz, and A. Mirisklavos 3077

Cyclosporine and Experimental Corneal Transplantation T. J. Roussel, M. S. Osato, and K. R. Wilhelms 3081

(Continued)
CONTENTS
(continued)

SUMMATION

Basic Science Summation... J. F. Borel and K. J. Lafferty 3097
Clinical Aspects of Cyclosporine Therapy: A Summation........ T. E. Starz 3103

SUPPLEMENT 2

CYCLOSPORINE: NURSING AND PARAPROFESSIONAL ASPECTS

Administration of Cyclosporine.. B. Ota 3111
Clinical Results of the Use of Cyclosporine in Renal Transplantation..... L. Schoenberg 3124
Clinical Results in Orthotopic Liver Transplantation With Cyclosporine and Steroids
S. Maletic-Staschak 3130
Clinical Results: Cardiac Transplantation P. Gamberg 3135
Use of Cyclosporine in Bone Marrow Transplant Patients—A Nursing Perspective
R. Ford 3142
Side Effects of Cyclosporine in 100 Renal Allograft Recipients.. B. Ota and M. Bradley 3150
The Nephrotoxicity of Cyclosporine: A Nursing Perspective............. J. E. Kobrenski 3157
Infectious Complications and Lymphomas in Cyclosporine Patients
B. Dhein, L. Bartell, and R. M. Ferguson 3162
Pharmacokinetic Monitoring of Cyclosporine................................ C. A. Wideman 3168
Long-Term Follow-Up of 100 Cyclosporine-Treated Renal Allograft Recipients
D. L. Golden 3176
SPECIAL EDITORIAL ANNOUNCEMENT
Cadaveric Renal Transplantation with Cyclosporine: Experiences in 148 Patients at a Single Institution

Since November 1980, 195 renal transplantations have been performed at our center using cyclosporine as a new immunosuppressive agent. Twenty-five patients were treated with cyclosporine as the sole immunosuppressive agent in the European Multicentre Trial.1 Outside a control study, cyclosporine, in combination with small doses of methylprednisolone, was used in 157 cadaveric renal transplantations as well as in 5 living related donor transplantations. Cyclosporine, in combination with steroids, was used in 8 combined renal and pancreatic transplantations. This article reports our experiences with 148 cadaveric renal transplantations performed by March 1983, using cyclosporine in combination with steroids as basic immunosuppressive therapy.

MATERIALS AND METHODS

Patient Population

This study includes 140 consecutive transplants of cadaveric renal allografts performed between March 1982 and March 1983 on recipients aged 9–61 years. No patients were excluded from cyclosporine treatment, neither patients with known liver disease nor patients with primarily nonfunctioning kidneys without immediate diuresis. Of the 140 patients, 115 got a primary renal allograft and 25 received a secondary or tertiary allograft. All recipients had received at least 3 random type-specific blood transfusions prior to transplant. Eight patients (aged 25–49 years) suffering from Type I diabetes mellitus and end-stage renal disease received combined renal and pancreatic allografts.

Immunosuppressive Protocol

Basic immunosuppression. Cyclosporine was administered intravenously before the operation and on day 1 postoperatively in a dose of 4 mg/kg of body weight and continued by oral administration in a dose of 15 mg/kg for 1 month after transplantation, when it was decreased by 2 mg/kg monthly to a maintenance level of 6–7 mg/kg. Methylprednisolone was begun at 8 mg daily immediately after the operation and maintained at that level.

Antirejection treatments. Antirejection treatment consisted of 3 i.v. bolus injections of 500 mg methylprednisolone during the first rejection episode. The second and third rejection episodes were treated by administration of ALG/ATG over a period of 7 days, in combination with methylprednisolone in a dose of 125 mg i.v. daily until reversal.

“Triple” immunosuppressive therapy. In recipients of a secondary or tertiary renal allograft and in patients with preformed antibodies higher than 50%, cyclosporine, azathioprine, and methylprednisolone were administered during the first week posttransplant as follows: cyclosporine was given as described above; azathioprine in a dose of 2 mg/kg initially, then decreased to 1 mg/kg; methylprednisolone (i.v.) in a dose of 500 mg daily, tapering to 30 mg daily.

From the second week after transplantation, the original basic immunosuppressive treatment was continued. Antirejection treatment was applied as described above.

Combined Renal and Pancreatic Transplantation

Pancreas transplantation was performed using the technique of segmental pancreatic allografting by occluding the duct system with Ethibloc. Postoperative management consisted of cyclosporine administration in combination with steroids; in addition, administration of heparine, antibiotics, and Somatostatine.

Incidence of Infections Under Cyclosporine Therapy

The incidence of infections described in this report concerns only the manifestation of severe infections requiring hospitalization of the transplant patient. In addition to careful clinical assessment and appropriate

From the Transplantation Center, Klinikum Grosshadern (Departments of Surgery, Internal Medicine I and Urology), University of Munich, Munich, Germany.

Supported in part by the Kuratorium für Heimdialyse e. V. Neu-Isenburg, Arbeitsgemeinschaft der Bayerischen Krankenkassenverbände, Germany, and Sandoz Ltd., Basel, Switzerland.

Reprint requests should be addressed to Prof. Dr. W. Land, Dept. of Surgery, Klinikum Grosshadern, Marchioninistr. 15, D-8000 München 70, Germany.

© 1983 by Grune & Stratton, Inc.

0041-1345/83/1505-0059$01.00/0
microbiologic tests for evidence of infectious diseases, detailed laboratory investigations were carried out whenever an overt virus disease was suspected.

Fine-Needle Aspiration Cytology

The methodology used has been described elsewhere. In brief, fine-needle aspiration has to be done under sterile conditions by placing a spinal needle into the cortex of the graft. The aspirated material was dispersed into a centrifuge vial by means of 5 ml RPMI medium held in the suction syringe.

The mouse monoclonal antibodies used were directed against pan-T lymphocytes (OKT3), helper-inducer T lymphocytes (OKT4), and cytotoxic/suppressor T lymphocytes (OKT8).

RESULTS

Cadaveric Renal Transplantation

The overall graft survival rate (graft survival probability as calculated by the Cutler-Ederer test) after primary cadaveric renal transplantsations in 115 consecutively treated patients under cyclosporine-methylprednisolone therapy is depicted in Fig. 1; the result in the historical control group (steroids + azathioprine; N = 150) is shown for comparison. At 1 year, the graft survival probability is 70% in the cyclosporine group compared to 50% in the control group. The difference of 20% is statistically significant. The overall graft survival rate after secondary or tertiary cadaveric renal transplantation in 25 patients under cyclosporine-methylprednisolone therapy is depicted in Fig. 2. The 1-year graft survival probability of 70% is identical to that obtained in the primary renal allograft group, although during the first 6 months after transplantation there was a slightly higher incidence of graft losses. Of these 25 patients, 18 were treated during the first week following transplantation by using the “triple” immunosuppressive protocol (see below).

Of the original 115 patients treated with cyclosporine after primary renal transplantation, 111 are currently alive. Of the 4 patients who died, 2 did so with functioning grafts, 1 from spontaneous intracerebral hemorrhage at 1 month and the other from acute cardiac failure at 6 months. One patient with a primary nonfunctioning kidney (ATN) died from acute cardiac failure at 1 week, another patient from sepsis at 6 months. There was an immunologic cause of graft loss only in 14 patients, and a nonimmunologic cause of graft loss in 3. All the original 25 patients treated with cyclosporine after retransplantation are alive. There was an immunologic cause of graft loss in 6 patients and a nonimmunologic cause of graft loss in 1.

“Triple” Immunosuppression in Immunologically High-Risk Patients

As described in Materials and Methods, 26 immunologically high-risk patients (18 retransplantations and 8 recipients with preformed antibodies > 50%) were treated with cyclosporine, azathioprine, and steroids during the first week after transplantation. The result of this pilot study is depicted in Fig. 3. We observed a 1-year graft survival probability of 70%. Remarkably, all irreversible graft rejections occurred during the first 3 months after transplantation. In none of these 26 patients treated initially with the “triple” immunosuppressive regimen has either severe infection or malignancy been seen so far.

Combined Renal and Segmental Pancreatic Transplantation

The results obtained with this kind of surgical treatment in Type 1 diabetics with end-stage renal disease are listed in Table 1. Although our experience with cyclosporine therapy in combined renal and pancreatic transplantation is limited to 8 cases, the
results obtained with this new immunosuppressive agent are encouraging and promising.

Incidence of Infectious Diseases Under Cyclosporine Treatment

The incidence of clinically manifested severe infections that required hospitalization is listed in Table 2. Of the original 140 patients treated with cyclosporine after cadaveric renal transplantation, only 13 (9%) were hospitalized with a bacterial infection (1 death due to sepsis), 9 (6%) with a viral infection, and 2 (1.3%) with a fungal infection.

Immunologic Monitoring: Fine-Needle Aspiration Cytology

Due to the difficulty in detecting acute rejections in patients treated with cyclosporine, recourse was made to fine-needle aspiration cytology. The method allows not only estimation of onset, severity, and course of rejection but also measurement of the impact of treatment and differentiation between cyclosporine side effects, acute tubular necrosis, and acute cellular rejection. Differentiation of the inflammatory cell populations by monoclonal antibodies has proved that with increasing severity of rejection, high numbers of lymphocytes of the cytotoxic/suppressor cell compartment invade the graft. Helper cells therefore decrease relatively in terms of percent (Fig. 4).

This observation of a high influx of cytotoxic cells into the graft during rejection was not changed after introduction of cyclosporine as the immunosuppressant. Despite its powerful effect on graft rejection, no change in lymphocyte numbers in the peripheral blood could be seen. During rejection under cyclo-

Table 1. Results of Combined Pancreatic and Renal Transplantation in 8 Patients Treated with Cyclosporine and Steroids

Patients alive	7
Function of both grafts	5†
Function of the renal graft (2 years)	1
Rejection of both grafts (1 month)	1
Death (acute liver failure)	1

*At the Transplantation Center, Munich, 1979–1983; N = 12/11.
†2 years, 1 year, 5 months, 4 months, and 3 months, respectively.
<table>
<thead>
<tr>
<th>No. of Patients</th>
<th>Bacterial Infections</th>
<th>Associated with ART*</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N = 13/140)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>UTI, prostatitis, pyelonephritis</td>
<td>No Recovery</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Graft infection at biopsy</td>
<td>Yes Transplantectomy</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Otitis media</td>
<td>No Recovery</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Endocarditis</td>
<td>No Recovery</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Pneumonia, sepsis</td>
<td>No Death</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Patients</th>
<th>Viral Infections</th>
<th>Pathogen</th>
<th>ART</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N = 9/140)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Interstitial pneumonia: cerebral signs, general symptoms</td>
<td>CMV</td>
<td>Yes (3)</td>
<td>Recovery</td>
</tr>
<tr>
<td>2</td>
<td>Herpes genitalis, Herpes simplex (generalized)</td>
<td>Herpes virus</td>
<td>Yes (1)</td>
<td>Recovery</td>
</tr>
<tr>
<td>2</td>
<td>Fever, pneumonia</td>
<td>Unknown</td>
<td>No (1)</td>
<td>Recovery</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Patients</th>
<th>Fungal Infections</th>
<th>Pathogen</th>
<th>ART</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N = 2/140)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Tracheitis</td>
<td>Candida albicans</td>
<td>No</td>
<td>Recovery</td>
</tr>
<tr>
<td>1</td>
<td>Sepsis, UTI</td>
<td>Candida albicans</td>
<td>Yes</td>
<td>Recovery with graft loss</td>
</tr>
</tbody>
</table>

*ART: Antirejection therapy.

Table 2. Incidence of Infectious Diseases in 140 Cyclosporine-Methylprednisolone-Treated Patients

Table 3. Behavior of Peripheral Granular Lymphocytes and T4/T8+ Cells in Rejection Episodes vs. Viral Infections

<table>
<thead>
<tr>
<th>Viral Infections</th>
<th>Rejection Episode 0</th>
<th>Rejection Episode 2</th>
<th>Virus Infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphocytes in fine-needle biopsy</td>
<td>8.5</td>
<td>23.9</td>
<td>31.7</td>
</tr>
<tr>
<td>Lymphocytes in peripheral blood</td>
<td>7.7</td>
<td>6.3</td>
<td>18.3</td>
</tr>
<tr>
<td>OKT3</td>
<td>9.8</td>
<td>18.3</td>
<td>29.2</td>
</tr>
<tr>
<td>OKT4</td>
<td>4.8</td>
<td>8.2</td>
<td>4.5</td>
</tr>
<tr>
<td>OKT8</td>
<td>4.9</td>
<td>13.3</td>
<td>25.6</td>
</tr>
<tr>
<td>OKT4/OKT8 ratio</td>
<td>1.2</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>In peripheral blood</td>
<td>2.6</td>
<td>2.4</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Fig. 4. OKT8+ cells increase in the graft with increasing severity of the rejection reaction.

sporine therapy, lymphocyte numbers increased in the graft, but less than with conventional therapy. Surprisingly enough, no impact on helper cells was seen under cyclosporine therapy. A new aspect was analyzed (Table 3) when conversion of numbers of helper and cytotoxic suppressor cells was measured in the peripheral blood and in the graft. High numbers of lymphocytes in the periphery and the graft, preferably belonging to the
T8 compartment, heralded in virus infection. The ratio of T4 to T8+ cells was below 0.5 in aspirate and peripheral blood.

A further sign distinguishing virus infection from acute rejection seems to be the number of large granular lymphocytes—supposedly responsible for the natural killer activity. During acute rejection, peripheral blood lacks large granular lymphocytes. In the graft, large granular lymphocytes reach up to 12% of the inflammatory cell compartment. During virus infection, however, large granular lymphocytes increase in the peripheral blood and the graft to values up to 25%, with the mean of 14, i.e., 10%.

DISCUSSION

The results reported confirm the potential usefulness of cyclosporine in combination with low doses of steroids to improve the graft survival in cadaveric renal transplantation with an extremely low incidence of morbidity and mortality. Compared with the historical controls treated with conventional therapy at our center, a 20% difference in the results obtained with the use of cyclosporine was observed. Interestingly enough, the 70% 1-year graft survival probability under cyclosporine-methylprednisolone therapy was observed in primary renal transplantation as well as in retransplantation. By using a short-term “triple” immunosuppressive regimen (cyclosporine, azathioprine, methylprednisolone) immediately after surgery, a 70% 1-year graft survival rate of cadaveric renal allografts could also be achieved in immunologically high-risk patients. Although these results are similar to those reported by others,3-6 one has to be careful in interpreting the current improved graft survival rates as definite long-term results. Thus, within ½ year the 6-month graft survival rate of 90% came down to the 12-month graft survival rate of 70% at our own institution. Nevertheless, when evaluating the results at our institution, one has to take into account that no exclusion criteria for the use of cyclosporine were applied, as had been done in the European Multicentre Trial. This circumstance represents one of several difficulties in comparing the efficacy of the combined cyclosporine treatment with that of cyclosporine monotherapy.

As far as the results in immunologically high-risk patients are concerned, a valid conclusion cannot be drawn from the data obtained at the present time. Nonetheless, two aspects seem worthwhile to discuss: (1) Our first clinical impression of a strong immunosuppressive potency of the “triple” regimen used is confirmed by experimental studies showing a synergistic immunosuppressive effect of cyclosporine and azathioprine in three different animal allograft models.7 (2) According to our observations (no incidence of severe infection or malignancy), such a combined immunosuppressive therapy seems to be safe for the patient, provided all three drugs are administered only for a short period of time.

Apart from the improved results in graft survival rates, the decreased morbidity, particularly in terms of decreased infectious diseases, is one of the remarkable advantages of cyclosporine treatment. Infections remain an important and typical complication of renal transplantation, which often has led to graft loss or patient death. Therefore, the decreased incidence of severe infectious diseases (of bacterial, viral, or fungal origin) as observed by us and others3,8 is tremendously encouraging. In this context, it remains to be studied in the future why particularly the incidence of viral infections is lower than expected in light of the mode of action of cyclosporine. Despite all the advantages, there is, however, one serious disadvantage in the use of cyclosporine: It makes the early detection of rejection episodes a difficult procedure, especially in patients with primarily nonfunctioning kidneys. A lot of “classical” rejection symptoms have completely (or partially) disappeared and are no longer seen by clinicians. This obvious difficulty with cyclosporine use has given rise to a search for new and better methods for immunologic monitoring. One of us (C. H.) tried to use P. Häyry’s fine-needle aspiration cytology
as a method helpful for the accurate detection of rejection episodes. Although this method is not fully convincing from the practical point of view at the present time, some conclusions can be drawn: Fine-needle biopsy, in combination with highly specific monoclonal antibodies, provides some important new information about the background of high-lymphocytic inflammation. Clinical statements like onset, severity, and progress of an acute rejection given by the aspiration cytology can be confirmed and precised with this method in certain circumstances. A possible new prominent example is to differentiate between acute rejection and virus infection with the help of monoclonal antibodies and by differentiating large granular lymphocytes from other cell populations. With this information, unnecessary and dangerous immunosuppressive therapy in cases of nondiagnosed viral infections might be avoided.

Parallel to the improvement of the results in cadaveric renal transplantation under cyclosporine therapy, the results of combined renal and pancreatic transplantation have improved, although the number of patients treated with this surgical method at our institution is too small to draw any valid conclusion. Nevertheless, in view of the current uncertain state of the art relating to the technique of pancreatic grafting, the introduction of cyclosporine in the clinical pancreatic allografting program seems to improve the results in this field of organ transplantation slightly but steadily.

REFERENCES

AUTHOR INDEX

Abb, H., 2380
Abb, J., 2380
Abramoff, P., 2394
Achauer, B. M., 2742, 3063, 3069, 3073
Adu, D., 2523, 2754
Aeder, M. I., 2881, 2933
Ahonen, J., 2842, 3092
Aikawa, I., 2298, 2334, 2501
Allen, N. H., 2862
Ambinder, R. F., 2808
Appelbaum, F. R., 2620, 3042
Aprile, M., 2513
Araujo, J. L., 2889
Arnaud-Battandier, F., 3019
Asano, T., 2340, 2939
Ascher, N. L., 2463, 2874, 2881
Atchison, R. W., 2917
Atkinson, K., 2430, 2446, 2761
Bahnson, H. T., 2553, 2573, 2706, 2757, 2768, 2779
Bailey, L., 2956
Ballas, Z. K., 2323
Bandlien, K. O., 3084
Barnhart, M. I., 3084
Barry, E. P., 2403
Bartell, L., 3162
Baughan, A., 2708
Belitsky, P., 2535
Belzer, F. O., 2997
Benjamin, W. R., 2311
Bentley, F. R., 2881
Bernstein, R. L., 2706
Beschorner, W. E., 2613
Bettcher, K. B., 2538
Beveridge, T., 2409
Biggs, J., 2430, 2446, 2761
Billingham, M., 2546
Bishop, G. A., 2846
Black, K. S., 2742, 3063, 3069, 3073
Blanc, N., 2798
Boake, R., 2538
Boileau, M., 2469
Boland, J., 2430
Bourhis, J., 2219, 2242, 3097
Borgmästars, H., 2842
Bortin, M. M., 2394
Boise, E., 2602, 2676, 2798
Boula, J., 2485
Bouwer, H. G. A., 2306
Bowes, L. G., 3077
Bradley, M., 3150
Bremer, R., 2821
Brewer, E. D., 2528
Britton, K., 2430, 2446
Brölsch, C., 2531, 2586
Brookmeyer, R., 2613
Brown, Z., 2398
Brunner, F. P., 2821
Buckels, J., 2523
Buckner, C. D., 2620
Bunzendahl, H., 2531
Buscetta, S., 2373
Bushuk, M., 3053
Calne, R. Y., 2846, 2878
Canadian Transplant Study Group, 2479, 2490, 2513, 2748
Canafax, D. M., 2874
Cannarella, S. N., 2578
Carr, P. B., 2889
Carruthers, G., 2438
Castro, L. A., 2517, 2699, 2857
Cavallini, M., 2960
Chen, C. C., 2914
Chevalier, M., 2798
Chinn, P. L., 2606
Choudhury, S. P., 3084
Clift, R. A., 2620
Clunie, G. J. A., 3077
Cohen, A., 2535
Cohen, Z., 3013, 3032
Cole, G. A., 2271
Concannon, A., 2446, 2761
Conley, S. B., 2528
Converse, P. J., 2923
Cook, R., 2997
Cook, L. A., 2387
Cooley, D. A., 2567
Corneo, M., 2617
Cortez, J. A., 3084
Corry, R. J., 2969
Cory-Pearce, R., 2559
Cowling, G., 2904
Creyssel, R., 2798
Crocker, J., 2535
Crofts, M., 2624
Cunningham, C., 2712
Davies, H. ff. S., 2278
DeBiasio, R. L., 2775
Debski, R. F., 2553
Deeg, H. J., 2416, 2620, 3042
Delmonte, L., 2328
Deltz, E., 3027
Dereg, H. J., 3042
Deyvergie, A., 2442, 2628
Devineni, R., 2695
Dhein, B., 3162
Diaz-Velez, A., 3084
Dieperink, H., 2736
Dixon, J. F. P., 2376
Dodds, A., 2446, 2761
Donatsch, P., 2719
Doney, K., 2620
Donnenberg, A. D., 2343
Dosselin, J. B., 2538
Drath, D. B., 2367
Du Toit, D. F., 2992
Dubernard, J. M., 2602, 2676, 2798
Duggin, G. G., 2485, 2852
Dumble, L. J., 3077
Dummer, J. S., 2768, 2779
Duplain, J., 2695

Egel, J., 2706
Eklund, B., 2842
El Yafi, S., 2602, 2798
Elick, B. A., 2606
Eloranta, M., 2842
Els, D., 2992
Emeson, E. E., 2578, 2799
Engel, P., 2343
Engermann, R., 2986, 3027
English, T. A. H., 2559
Enomoto, K., 2939
Evans, B., 2624
Evans, D. B., 2846
Ezzibdeh, M., 2523

Fairhead, S. M., 2634
Farmer, E. R., 2613, 3035
Farnsworth, A., 2852
Farrell, C., 2446
Fauci, A. S., 2315
Fawwaz, R., 2973
Fehrman, I., 2507
Ferguson, R. M., 2350, 2463, 2836, 2881, 3162
Fidels-Gort, R., 2350
Field, M. Y., 2960
Finkelstein, D., 3032
Fischbach, M., 2899
Flaa, C., 2950
Flechner, S. M., 2293, 2302, 2434, 2469, 2528, 2689, 2869
Flourny, N., 2620

3184

Transplantation Proceedings, Vol. XV, No. 4, Suppl. 1 (December), 1983
Flye, M. W., 2983
Foley, R. J., 2726
Fontaine, J. L., 3019
Ford, R., 3142
Forström, J., 2842, 3063, 3069
Fräser, L. A., 2742, 3063, 3069, 3073
Frazier, O. H., 2567
Fredane, L. M., 2909
Friedman, A. W., 2726
Friedrichs, B., 3027
Fryd, D. S., 2463
Fukuda, M., 2334
Fumagalli, F., 2398
Furnas, D. W., 2742, 3063, 3069, 3073
Gallix, P., 3019
Gamberg, P., 3135
Garnett, N. U., 2808
Gartner, J. C., Jr., 2582, 2592
Geczy, C. L., 2390
Gelet, A., 2602
Gery, I., 2311, 2364, 2914
Ghnassia, D., 3019
Gibbons, S., 2434
Ginchereau, E., 2573
Glass, N. R., 2997
Glazier, A., 3035
Gliedman, M. L., 2578
Gluckman, G. R., 3032
Gordon-Smith, E. C., 2422, 2634, 2708
Gossain, V. V., 3004
Graf, A., 2426
Granlund, H., 2842
Gratwohl, A., 2617
Greenberg, A., 2706
Greenberg, G. R., 3032
Griffith, B. P., 2553, 2573, 2706, 2757, 2779
Groth, C. G., 2907
Gudat, F., 2821
Guglielmi, A., 2757
Gui, X. E., 2917
Gunji, M., 2939
Günther, K., 2517, 2699, 2857
Gupta, R., 2535
Gurland, H. J., 2699
Haines, I., 2754
Hakala, T. R., 2459, 2582, 2768, 2773, 2775, 2805
Hall, B. M., 2485, 2852
Hallberg, F., 2960
Halloran, P. F., 2513, 3053
Ham, J., 3011
Hamelmann, H., 2986
Hamilton, D. V., 2846
Hammer, C., 2517
Hammer, R. W., 2726, 2730
Hamoudi, W. H., 2775
Handschumacher, R. E., 2265
Harder, F., 2821
Hardesty, R. L., 2553, 2573, 2706, 2757, 2779
Hardy, A. M., 2768, 2773
Hardy, M. A., 2973
Harley, J. B., 2315
Harris, G., 2904
Harris, J. P., 2485
Hashim, G. A., 2909
Hashimoto, I., 2298, 2334, 2501
Haynes, I. G., 2523
Häyry, P., 2716, 2842, 3092
Heberling, R. L., 2808
Heineman, E., 2953
Helanterä, A., 2842
Henttula, U. M., 2842
Hess, A. D., 2248, 2343, 2613, 2923
Hewitt, C. W., 2742, 3063, 3069, 3073
Heydenrych, J. J., 2992
Hillebrand, C., 2517
Hillebrand, G., 2699, 2857
Ho, M., 2768, 2773, 2779, 2917
Höckerstedt, K., 2842
Hodgkin, P., 2242
Hoffman, G. J., 2808
Hovath, J. S., 2485, 2852
Howard, E. B., 2742, 3069
How, M. J., 2422, 2634, 2708
Hows, K., 2485
Huber, A. C., 2808
Huff, D. B., 2485
Hunt, S. A., 2546
Hutchinson, I. V., 2287
Huttunen, K., 2842
Iga, C., 2973
Illum, W. D., 2426, 2517
Imberti, L., 2398
Ingerman, A., 2742
Ioka, J., 2501
Iltzoff, J., 2573
Ivory, K., 2782
Iwatsuki, S., 2459, 2582, 2592, 2805
Jamieson, S. W., 2546
Jeannet, M., 2617
Jeeckel, J., 2953
Johnsen, A. M., 2573
Johnson, J. R., 2485, 2852
Jolley, W. B., 2956, 3011
Jones, D. B., 2927
Jones, M. G., 2904
Jones, S., 2311
Jos, J., 3019
Kääriäinen, M., 2842
Kadotani, Y., 2501
Kahan, B. D., 2211, 2259, 2293, 2302, 2367, 2413, 2434, 2469, 2528, 2567, 2641, 2649, 2665, 2689, 2869, 2942
Kaleya, R., 2450, 2578
Kaiman, V. K., 2383
Kamada, N., 2278
Kamholz, S. L., 2450, 2578, 2799
Kamps, D., 2997
Kaste, A., 2842
Kennedy, M. S., 2416, 2620
Keown, P. A., 2438, 2695
Kerman, R. H., 2293, 2302, 2469, 2689, 2869
Killeen, D., 2956
King, H. P., 3077
Kirkman, R. L., 2889
Kirwan, P., 2852
Klapwijk, W., 3046
Klaus, G. B. B., 2321
Klemmnauer, J., 2531, 3001
Klippel, G. R., 2383
Klintmalm, G., 2507, 2815
Knieirin, K., 3011
Kobrenski, J. E., 3157
Koegler, J., 2438
Kondoh, Y., 2334
Koumas, J. C., 3069
Kovithavongs, T., 2538
Kretschmer, G., 2787
Kuhlbäck, B., 2842
Kulkarni, A., 2967
Kunelius, P., 2842
Kunkl, A., 2321
Kupiec-Weglinski, J. W., 2357
Kurosawa, S., 2973
Kuwabara, T., 2364
Kwok, D., 2434
Kyriakides, G. K., 2950
Lacour-Gayet, F., 2956
Lafferty, K. J., 2242, 3097
Laker, L., 2992
Lakey, W. H., 2538
Lalla, M., 2842, 3092
AUTHOR INDEX

Sato, H., 2340, 2939
Schack, T., 3027
Schade, R. R., 2582, 2757
Schall, W. D., 3004
Scheibel, L. W., 2271
Scher, I., 2914
Schlossman, S. F., 2889
Schmeller, N., 2517
Schmidt, C., 2956
Schmidt, E., 2586
Schneider, B., 2517, 2699
Schran, H.F., 2403
Schulak, J. A., 2969
Schulte, W. E., 2323
Schwarz, M., 2787
Schweitzer, B., 2265
Secchi, A., 2602
Sells, R. A., 2495
Severns, E., 3042
Shapiro, A. P., 2573
Shaw, B. W., Jr., 2459, 2582, 2592
Sheil, A. G. R., 2485, 2852
Shelby, J., 2969
Shih, C. C.-Y., 2394
Shinohara, N., 2340
Shoemaker, P., 2719
Shields, A. G. R., 2485, 2852
Shelby, J., 2969
Shinohara, N., 2340
Shoemaker, P., 2719
Shieh, A. G. R., 2485, 2852
Shumway, N. E., 2546
Sibley, R. K., 2836, 2960, 3057
Siebert, W., 2426, 2517
Siegl, H., 2719
Signer, E., 2617
Simmons, R. L., 2463, 2836, 2874, 2881
Simpson, J. G., 2702, 2712
Sinclair, N. R., 2438
Sinzinger, H., 2787
Smith, J. M., 2422, 2708
Sollinger, H. W., 2997
Speck, B., 2617
Spickthun, H. P., 2821
Starklint, H., 2736
Starzl, T. E., 2459, 2582, 2592, 2768, 2773, 2805, 3103
Stawek, M., 2438
Steinberger, B., 3001
Stephen, M. S., 2485
Stewart, J. A., 3053
Stewart, P., 2620
Stiller, C. R., 2438, 2479, 2490, 2695, 3013
Stinson, E. B., 2546
Stock, S., 2523
Stöcklin, E., 2821
Storb, R., 2416, 2620, 3042
Strand, M., 2463
Strom, T. B., 2357, 2889
Sullivan, K. M., 2620
Sutherland, D. E. R., 2463, 2597, 2606, 2836, 2874, 2881, 2933, 2960
Suzuki, S., 2501
Suzuki, T., 2939
Syrié, G., 2787
Talal, N., 2899
Tao, L., 2960
Tarssanen, L., 2842
Taskinen, E., 2842
Taylor, H. R., 2808
Taylor, R. J., 2805
Thiede, A., 2986, 3027
Thiel, G., 2821
Thiru, S., 2846
Thomas, E. D., 2416, 2620, 3042
Thompson, J. F., 2862
Thompson, M. E., 2573, 2706, 2757, 2779
Thomson, A. W., 2390, 2702
Tillegård, A., 2507
Tiller, D. J., 2485, 2852
Tilney, N. L., 2357, 2889
Ting, A., 2862
Toledo-Pereyra, L. H., 2373, 3084
Tonnenes, A. S., 2730
Torhorst, J., 2821
Touraine, J. L., 2602, 2798
Traeger, J., 2602, 2798
Truitt, R. L., 2394
Turney, J. H., 2523, 2754
Tutschka, P. J., 2248, 2343, 2613, 2923, 3035
Ulrichs, K., 2986, 3027
Usui, T., 2298
Uyemura, K., 2376
Vaiman, M., 3019
Valentine, B. A., 2808
Van Bekkum, D. W., 3046
Van Buren, C. T., 2293, 2302, 2434, 2469, 2528, 2678, 2689, 2726, 2869, 2967
Van Thiel, D. H., 2582, 2757
Vänttinen, T., 2842
Vartia, A., 2842
Veith, F. J., 2450, 2578, 2979
Virausta, M., 2842
Vlassis, T., 2523
von Willebrand, E., 2716, 2842, 3092
Wagner, E., 3001
Wagner, O., 2419
Wajszczuk, C. P., 2768, 2773
Wakely, E., 2969
Wall, W., 2438
Wallace, A. C., 2695
Wallwork, J., 2559
Walma, E. P., 3046
Walshaw, R., 3004
Warner, T., 2997
Warty, V., 2757
Weimar, W., 2953
Weinmann, E. J., 2726, 2730
Wenger, R., 2230
Weyne, P., 3019
Wheatley, D. N., 2712
White, D. J. G., 2278
White, J., 2535
White, N., 2513
Whiting, P. H., 2702, 2712
Wideman, C. A., 3168
Wiktowicz, K., 3092
Wilczek, H., 2507
Wilhelmsen, K. R., 2927, 3081
Williams, D. G., 2398, 2782
Williams, M. D., 3004
Witherspoon, R. P., 2620
Wongeikit, K., 2531, 2586, 3001
Wood, A. J., 2409
Wood, R. F. M., 2862
Woolfe-Coote, S., 2992
Yamada, N., 2939
Yasumura, T., 2942
Yee, G. C., 2416
Yin, J. L., 2634
Yoshimura, N., 2298, 2334
Zink, R. A., 2426, 2517
Zitelli, B. J., 2582, 2592
Zollinger, H. U., 2821
Zöttlein, H., 2426, 2517
Zuurmond, T., 2992