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These are exciting times for research on adult hippocampal neurogenesis (AHN). Debate
and controversy regarding the existence of generation of new neurons in the adult, and
even diseased human brain flourishes as articles against and in favor accumulate. Adult
neurogenesis in the human brain is a phenomenon that does not share the qualities
of quantum mechanics. The scientific community should agree that human AHN exists
or does not, but not both at the same time. In this commentary, we discuss the latest
research articles about hAHN and what their findings imply for the neurogenesis field.
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“The best-laid schemes o’ mice an’ men gang aft agley” (The best laid schemes of mice and men go often
askew)

Robert Burns (1785)

It is common that new concepts are doubted and re-doubted. We already overcame the once
disbelieve in the existence of adult neurogenesis in the mammalian brain. However, a new
controversy arose recently about the existence of human AHN (hAHN), the process of generating
adult-born neurons from neural stem cells (NSCs). While it is not the first time that the existence of
adult neurogenesis has been discredited (Rakic, 1985), the findings that adult neurogenesis may not
exist in adult human hippocampus (Cipriani et al., 2018; Sorrells et al., 2018) come at a time when
research on adult neurogenesis constitutes a major field in neurosciences due to the importance to
the functions (memory, learning and mood control) associated with this phenomenon in animal
models (Eisch and Petrik, 2012). The findings by Cipriani et al. (2018) and Sorrells et al. (2018)
(Figure 1) are in direct conflict with another three major recent studies demonstrating hAHN
(Boldrini et al., 2018; Moreno-Jiménez et al., 2019; Tobin et al., 2019) following the path of previous
reports (Fahrner et al., 2007; Knoth et al., 2010). This most recent controversy does not only stir up
the research community but also examines its conceptual and structural complexion.

hAHN has been proposed to exist using a plethora of techniques ranging from
immunohistochemistry for native or synthetic markers of proliferation (Eriksson et al., 1998),
cell markers of neuroblasts and immature neurons (Knoth et al., 2010), to unique radioactive
carbon-based cell-birth dating (Spalding et al., 2013) and non-invasive imaging approaches
(Manganas et al., 2007). All of these, however, focused on the hippocampus, whereas human
neurogenesis in the walls of lateral ventricles has remained far less studied. Thus, when a second
wave of controversy on adult neurogenesis in humans had appeared, driven by the findings of
Alvarez-Buylla lab (Sanai et al., 2011), most of the adult neurogenesis researchers were (and
still are) disconcerted, largely because ventricular neurogenesis lies outside of the predominant
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FIGURE 1 | Schematic summary of recent research articles on human adult hippocampal neurogenesis. (A) In mice, a population of well-characterized neural stem
cells (NSCs) generates neuronal-fate committed precursors that amplify their numbers through cell divisions and then differentiate into neuroblasts that maturate into
neurons. (B) In healthy humans, cell-division dependent neurogenesis has been reported using radioactive carbon-based cell-birth dating (Spalding et al., 2013) and
BrdU incorporation (Eriksson et al., 1998). (C) The abundant presence of both neural precursor like-cells and immature neurons (Tobin et al., 2019) or immature
neurons (Moreno-Jiménez et al., 2019) has been shown, coexisting with cell division markers. (D) Total absence of cell proliferation, neural precursor like-cells and
immature neurons has been demonstrated in the adult hippocampus (Sorrells et al., 2018). (E) Present, but reduced number of neural progenitor-like cells and
immature neurons has been reported (Cipriani et al., 2018; Boldrini et al., 2018). In Alzheimer’s disease, neural precursor like-cells and immature neurons are greatly
reduced (Cipriani et al., 2018; Moreno-Jiménez et al., 2019) (F) or still exist in more prominent cell populations (Tobin et al., 2019) (G). Orange nuclei indicate cell
division while nuclei indicate not proliferative state. (Human shape Designed Freepik-Vilmosvarga).
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hippocampus-focused interest. The findings of Sanai et al. (2011)
that adult humans do not show neurogenesis derived from the
subventricular zone of the lateral ventricles contradict articles
claiming its presence (Curtis et al., 2007; Ernst et al., 2014).
This report that the subventricular NSCs quickly disappear from
human brain during infancy should have been perceived with
a greater urgency that similar studies will be published about
hAHN. The lack of reaction in the research field says a lot about
its structure and the way it sees its own subject of study. Such
hippocampus-heavy tendency can be further appreciated in the
fields’ disinterest in so called non-canonical adult neurogenesis
in the hypothalamus, where unique adult NSCs generate diet-
responsive adult born neurons (Yoo and Blackshaw, 2018).
Interestingly, hypothalamic neurogenesis regulates ventricular
neurogenesis (Paul et al., 2017) and therefore now more
than ever it is important to investigate if the hypothalamic
neurogenesis also exists in adult humans and to what degree
(Pellegrino et al., 2018).

Adult neurogenesis has been confirmed in the majority of
species of terrestrial mammals, but it seems to be absent in
cetaceans, reviewed in detail in Amrein (2015), Patzke et al.
(2015), Lipp and Bonfanti (2016). Markers for cell proliferation,
stem cells and immature neurons were identified in adult
hippocampus of mammals with small, lissencephalic brains
such as rodents, but also in large, gyrencephalic brains of
phylogenetically distant species such as the cows (Rodriguez-
Perez et al., 2003), the African elephants (Patzke et al.,
2014), or the dogs (Hwang et al., 2007). Furthermore, adult
neurogenesis has been found in hippocampus of various different
primate species including marmosets (Bunk et al., 2011), lemurs
(Fasemore et al., 2018), macaques (Gould et al., 2001; Jabes et al.,
2010) and baboons, where adult neurogenesis is required for
the antidepressant action (Perera et al., 2011; Wu et al., 2014).
The prevalence of adult neurogenesis in primates suggests that
it should be found also in humans. However, phylogenetics may
not be the most reliable predictor of adult neurogenesis existence
even in related taxonomic ranks. For example, some species of
bats do have active neurogenesis, while others do not (Amrein,
2015). This could be caused by natural differences in closely
related taxons or it could stem from technical reasons, which may
not be the case for well prepared specimens of bat brain (Amrein
et al., 2007) but could apply to more complicated autopsies of
human tissue. Indeed, some native cell markers for neurogenesis
are sensitive to fast degradation and specific tissue fixation, which
can be the most likely factor to explain the disagreement in the
results regarding the human data (Lucassen et al., 2019).

The immunohistochemical detection of individual cell
markers may not support the existence of adult neurogenesis,
however, their combination could (as summarized elsewhere
(Kempermann et al., 2018). For example, Moreno-Jiménez
et al. (2019) reported PSA-NCAM or doublecortin (DCX+)
positive cells in human hippocampus as an evidence of adult
neurogenesis, because these markers label neuroblasts or
immature adult-born neurons in mice (Kempermann et al.,
2004) and other mammals. On the other hand, Sorrells et al.
(2018) reported a lack of DCX+ and PSA-NCAM+ neurons as
well as the sharp decline of proliferating cells labeled by Ki67, the

endogenous marker of cell cycle. Because Moreno-Jiménez et al.
(2019) did not stained for proliferation markers, an argument
could be made that the observed DCX+ neurons are not a
direct product of adult neurogenesis but rather a unique subset
of neurons expressing markers associated with neurogenesis.
However, both immature neurons and proliferating Ki67+

or PCNA+ cells or proliferating Ki67+ Nestin+ putative
progenitor cells have been demonstrated in the other most recent
studies (Boldrini et al., 2018; Tobin et al., 2019) or in previous
studies on adult hippocampus neurogenesis in humans that
used either endogenous (Liu et al., 2008; Knoth et al., 2010;
Dennis et al., 2016; Mathews et al., 2017) or synthetic markers of
proliferation (Eriksson et al., 1998; Ernst et al., 2014).

In our opinion two major questions arise from these recent
data. First, how do we actually define adult neurogenesis?
Based on the literature consensus, adult neurogenesis is the
generation, through cell division of neural progenitors, of new
neuronal fate-committed precursors that undergo a process of
neuronal differentiation and maturation (Figure 1A). Second,
what is needed in terms of biomarker expression to accept
this definition of adult neurogenesis? Expression of DCX and
or PSA-NCAM may not be sufficient. The existence of very
slowly maturing neurons which maintain the expression of
these immature markers but were actually generated during
development has been demonstrated in the brain of rodents and
sheep (Piumatti et al., 2018; La Rosa et al., 2019). This process that
represents another fascinating form of brain plasticity supports
the argument that exploring cell divisions should be a requisite
for confirmation of adult neurogenesis in humans. On the other
hand, presence of cell division together with the presence of
neuroblasts or immature neurons may not be sufficient criteria
for claiming neurogenesis. Even in the neurogenic niches, there
are other actively dividing cell types such as astrocytes, microglia,
pericytes, endothelial cells and oligodendrocyte progenitors
(OPCs). Some of these cell types share specific cell markers
with neural precursors. For example, nestin is present in OPCs
and perycites (Encinas et al., 2011) and Sox2 is expressed in all
astrocytes in the hippocampus (Komitova and Eriksson, 2004).
This shared expression of certain cell markers is of special
relevance in aging. One of the hallmarks of astrocytes in the
aged brain is the gradual acquisition of a reactive-like and even
proliferative phenotype (Clarke et al., 2018), which is further
characterized by the expression of nestin. Thus, expression of
nestin and Sox2 may not constitute a valid marker combination
to exclusively identify neural progenitors. Instead, the stem cells
and progenitors should be described by more recent specific
biomarkers such as Lunatic fringe (Lfng) (Semerci et al., 2017)
or the lysophosphatidic acid receptor 1 (LPAR1) (Walker et al.,
2016) and by exclusion of expression of S100ß, a marker of
mature astrocytes. Finally, another strategy could be utilized to
strengthen the conclusions about hAHN – a correlation between
levels of cell division in progenitors and levels of DCX or PSA-
NCAM in immature neurons. Even though correlation does not
imply causation, a positive correlation would point toward the
existence of a neurogenic cascade, adding up to the earlier works
by Spalding et al. (2013) and Eriksson et al. (1998). These works
suggest the existence of neurogenesis in the adult human brain
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(Figure 1B) by detecting in neurons markers that would have
been incorporated, arguably (see Duque and Spector, 2019. for
critical technical analysis), of those cells only through mitosis.

This newest controversy on the existence of adult neurogenesis
in human hippocampus highlights other aspects than just
definition of cellular stages by specific markers. First, there
is the issue of time (reviewed in detail in Snyder, 2019).
Mice live about 50 times shorter than humans, yet their adult
neurogenesis declines more rapidly with age, whereas human
neurogenesis could persist for up to 80 decades (Knoth et al.,
2010; Moreno-Jiménez et al., 2019). If hAHN exists, what are
the mechanisms that allow humans to maintain active putative
neural progenitors for so much longer? What could be the key
molecular determinants for such long-term cellular “stemness”?
Importantly, when we look at studies using human samples,
opposite results on the existence of neural progenitors emerge.
Neural progenitors are harder to be determined in human
samples due to limited technical toolbox as explained above
and when addressed, opposite results have been found. While
Sorrells et al. (2018) report a drastic reduction of neural stem
and progenitor-like cells that would thus explain the absence
of adult neurogenesis, Boldrini et al. (2018) and Tobin et al.
(2019) report their abundant existence. Half way, Cipriani et al.
(2018) showed persistence of neural stem and progenitor-like
cells in the adult brain, but absence of actual neurogenesis.
In any case, the properties of these neural progenitors are
yet poorly studied and could be different from those of the
mouse. For instance, according to the published data, in human
samples putative NSCs would have to have a more stellate
morphology than a radial one (Boldrini et al., 2018; Cipriani
et al., 2018; Tobin et al., 2019) (Figures 1C–E). Second, the
most recent studies by Moreno-Jiménez et al. (2019) and Tobin
et al. (2019) again confirm abundant adult neurogenesis, or at
least the abundant presence of immature neurons, in healthy
human hippocampus but limited or absent neurogenesis in
patients with Alzheimer’s Disease (AD) (Figure 1F). This finding
that AD alters adult neurogenesis does not only underscore
the necessity of proper triage of diseased tissue specimens
in human studies but is in line with conclusions from AD
mouse models (Hamilton et al., 2015). However, as with many
compounded topics such as modeling of the AD in rodents,
it is apparent that the small, lissencephalic brains of mice
may not be the best proxy for the large and complex human
brains (Jankowsky and Zheng, 2017). To put it bluntly: mice

are not small humans. And yet, sort of automatic assumptions
are drawn from rodent models to functional implications in
humans. As commented before, it could be that the neuronal
maturation process is much slower in humans and that the
ratio between cell proliferation and maturing neurons is much
weaker than in mice. Very slowly maturing neurons would read
out as an apparent higher-than-real amount of neurogenesis
(which implies birth of neurons). On the other hand, if humans
lack adult neurogenesis, how would all the adult neurogenesis-
dependent brain functions described in rodents operate in
humans without adult neurogenesis? And what are the reasons
why humans have diverged in evolution from other primates that
contain AHN?

We should use the current debate to re-evaluate the status
quo of the neurogenesis field with respect to the laboratory
models, quality controls and theoretical concepts to move the
topic and the field forward. In other words, humans are not
large mice; disease, metabolism and life style can negatively affect
the tissue and lead us to inaccurate conclusion; and molecular
mechanisms driving NSCs in hippocampus (Petrik et al., 2015)
may not be the same in the other neurogenic niches (Ninkovic
et al., 2013). Furthermore, this recent surge in interest in human
adult neurogenesis should be employed to re-evaluate if adult
neurogenesis is prevalent in parts of human brain other than
the hippocampus. How well established is the fact that adult
neurogenesis is actually absent in the ventricular system of
the adult human brain? It is possible that the evolutionary
pressures for greater complexity in human brain did not strip
it from the subventricular neurogenesis (Sanai et al., 2011),
but rather made neurogenesis more prevalent in regions of the
central nervous system where we have not yet looked in both
physiological and pathophysiological conditions? In conclusion,
first we have to stipulate what technical criteria are essential to
identify adult neurogenesis. And then we should not only ask
whether adult neurogenesis does exist in the human brain or not,
but we should also ask whether it occurs as a process similar to
rodent neurogenesis, or whether it is more wide-spread than we
originally thought.
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