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Abstract .  The incongruity of human joints is a phe- 
nomenon which has long been recognized, and recent 
CT-osteoabsorptiometric findings suggest that this in- 
congruity influences the distribution of stress in joints 
during their normal physiological use. The finite element 
method (FEM) was therefore applied to five different 
geometric configurations consistent with the anatomy of 
articular surfaces, and a program with variable contact 
areas (Marc) was used to calculate the stress distribution 
for loads of 100 to 6 900 N. The assumption of congruity 
between head and socket results in a "bell-shaped" distri- 
bution of stress with a maximum value of 61.5 N/ram 2 in 
the depths of the socket, decreasing towards zero at its 
edges. In the model with a flatter socket the von Mises 
stresses are higher (max. 101.3 N/mm2); with a deeper 
socket, lower (max. 53.0 N/ram2). If the diameter of the 
head is greater, the stresses build up from the periphery of 
the socket and move towards its depths as the load in- 
creases. The combination of an oversized head and a 
deeper socket results in the most satisfactory stress distri- 
bution (max. 43.2 N/mm2). These results extend previous 
photoelastic findings with incongruous joint surfaces. 
The calculated mechanical conditions show a relation- 
ship to the location of osteoarthritic changes, and are 
reflected by the distribution pattern of subchondral bone 
density. A more satisfactory stress distribution is found 
with functionally advantageous, incongruous joint sur- 
faces (oversized head and deepened socket) than in the 
congruous joint, and a better nutritive situation for the 
articular cartilage seems likely. The geometry of the joint 
is therefore a physiologically important and quantifiable 
factor contributing to an optimized transmission of 
forces in joints. 
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Introduct ion 

X-ray densitometry and the more recent investigations 
carried out with CT-osteoabsorptiometry on some larger 
joints of the human body have established that the incon- 
gruous shape of their components plays an important 
physiological role during the day-to-day use. This ap- 
plies, for instance, to the hipjoint (Mfiller-Gerbl et al. 
1993), the anklejoint (Mfiller-Gerbl and Putz 1993) and 
the humero-ulnar joint (Tillmann 1971, 1978; Eckstein et 
al. 1993 a, b), in all of which at least during youth the 
joint socket is obviously deeper than would exactly fit the 
corresponding head. The reverse situation is found in the 
radiohumeral joint, where the subchondral mineraliza- 
tion pattern (Eckstein et al. 1993 a), the curvatures, and 
the contact areas (B/inck 1990) suggest a flatter socket in 
relation to the head. 

The idea of a physiological incongruity within human 
joints is not at all new. The phenomenon has been quali- 
tatively described for the hip by numerous investigators 
using several different methods of approach (Walmsley 
1928; Bullough et al. 1968, 1973; Greenwald and 
O'Connor 1971 ; Day et al. 1975; Goodfellow and Mitsou 
1977; Rushfeldt and Mann 1979; Afoke et al. 1980; 
Miyanaga et al. 1984; L6he et al. 1993). There is also 
clear evidence that the components of the anklejoint do 
not make a perfect fit (Riede et al. 1971; Wynarsky and 
Greenwald 1983). Bullough and Jagannath (1983) ob- 
served the greater depth of the trochlear notch as com- 
pared with the trochlea itself in a sagittal section through 
the humero-ulnar joint. We have been able to confirm 
this geometric configuration during an investigation into 
the contact areas (Eckstein et al. 1993 b) and were able to 
quantify it as a function of the load applied by a casting 
method (Eckstein et al. 1993 c). 

Investigations by Ingelmark and Ekholm (1948) have 
also given reason to believe that cartilage, at the begin- 
ning of its physiological activity, undergoes about 5 to 
10% swelling. Basing their arguments on this hypothesis, 
Oberlfinder et al. (1984) suggested that, in joints in which 
one component widely encompasses the other (the 
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h u m e r o - u l n a r  jo in t ,  for instance),  this  swell ing leads  to 
n a r r o w i n g  of the socket  inlet. The  head  of  the jo in t ,  which  
then becomes  secondar i ly  t oo  large,  is thus  ra ised up out  
of  the socket .  This  f inding has  no t  so far been  conf i rmed  
by  newer  r ad io log ic  techniques,  bu t  the poss ib i l i ty  re- 
ma ins  tha t  the head  of the jo in t ,  e i ther  because  of  this  
func t iona l  swell ing of  the car t i lage  or  because  of  its ini t ia l  
condi t ion ,  is wider  in d i ame te r  t han  its c o r r e s p o n d i n g  
socket .  

I t  is r ea sonab le  to suppose  tha t  the geomet r ica l  s t ruc-  
ture  of  the j o i n t  c o m p o n e n t s  d i rec t ly  affects the pos i t i on  
and  size of  the l o a d - b e a r i n g  areas,  a n d  therefore  the dis-  
t r i bu t ion  of  stress wi th in  the  j o i n t  (T i l lmann  1978; M o c k -  
e n h a u p t  1990; Sos lowsky  et al. 1992; Ecks te in  et al 1993 
b). Bul lough  (1981) and  G r e e n w a l d  (1991) have devel-  
oped  a theore t ica l  m o d e l  for this, and  have sugges ted  tha t  
stress is more  sa t i s fac tor i ly  t aken  up by  i n c o n g r u o u s  than  
by  cong ruous  jo in t s  when the sockets  are  deeper ,  bu t  tha t  
the reverse is t rue  when they  are flatter.  

Pho toe la s t i c  mode l s  of  the stress d i s t r i bu t ion  in incon-  
g ruous  jo in t s  have been r e p o r t e d  by  K e m p s o n  et al. (1971 
- h ip- joint )  and  T i l l m a n n  (1978 - h u m e r o - u l n a r  joint) .  
U n f o r t u n a t e l y  this technique  can only  p rov ide  a qua l i t a -  
t ive assessment  of  the  stress d i s t r i bu t ion  (Pauwels 1980; 
Or r  1992), and  it is difficult to a p p l y  it to  subt le  geomet r i c  
var ia t ions .  As aga ins t  this, quan t i t a t ive  values  for a lmos t  
any  chosen  s t ruc ture  can be ca lcu la ted  by  using the finite 
e lement  m e t h o d  ( F E M  Huiskes  and  C h a o  1983, 
Z ienkiewicz  and  Tay lo r  1989). However ,  up to now this 
m e t h o d  has  a lways  been used with  the a s s u m p t i o n  tha t  
the j o i n t  surfaces are  cong ruous  ( R a p p e r p o r t  et al. 1985; 
Ca r t e r  et al. 1987 a, Sch r6de r  and  Ga l l  1992). 

The  p u r p o s e  of  this inves t iga t ion  is therefore  to use 
the finite e lement  m e t h o d  ( F E M )  in o rde r  to ana lyse  the 
quan t i t a t ive  influence of the g e o m e t r y  of  the j o i n t  on its 
stress d i s t r ibu t ion .  Different  geomet r ica l  shapes  which 
inc lude  the descr ibed  a n a t o m i c a l  d a t a  will be used as a 
basis  for this. 

Materials and methods 

Five models were considered, the fundamental geometrical proper- 
ties of which are defined in Fig. 1. Model 1 (Fig. 2 a) is based on the 
congruity of hemispherical joint surfaces, with equal radii for both 
joint head and socket (x p = yP = x k = y k  = 10.0 mm). Model 2 
(Fig. 3 a) represents incongruity of the joint surfaces and reflects 
qualitatively the situation in the radiohumeral joint. The head is 
semicircular in vertical section, but the socket is semielliptical; the 
radius of the inlet is 2.5% greater than the radius of the head, 
whereas the depth of the socket is equal to the radius of the head 
(x p = 10.25 mm, y P  = X k = y k  = 10.0 mm). Model 3 (Fig. 4 a) cor- 
responds to an incongruous joint which qualitatively represents the 
characteristics of the hipjoint, anklejoint and humero-ulnar joint. In 
this case the entry into the elliptical socket has the same diameter as 
the head, although the depth of the socket is 2.5% greater than its 
radius (yP = 10.25 mm, (x v = x k ~  y k =  10.0mm). In model 4 
(Fig. 5 a) both head and socket are hemispherical, the head having 
a diameter 1% greater than that of the socket (x k = y k  = 10.1 ram, 
x p : y P  = 10.0 mm). These are the geometrical conditions found 
either with an initially larger head, or with functional swelling of the 
cartilage in a primarily congruous joint. The final model, model 5 
(Fig. 6 a) is a combination of the head from model 4 with the deeper 
socket of model 3 (x k = y k  = 10.1 mm, y P  = 10.25 ram, 

a  iiii i@N iNi| i .............................. 

i 

b 0 -  5 N / m m  2 

5 - 10 N / mm 2 

10 - 15 N / mm 2 

N 1 5 - 2 0 N / m m  2 

N 2 0 - 2 5 N / m m  2 

N 2 5 - 3 0 N / m m  2 

30 - 35 N / mm 2 

3 5 - 4 0 N / m m  2 

40 - 45 N / mm 2 

~ !  4 5 - 5 0 N / m m  2 

l > 50 N / mm 2 II 
Fig. 1. a Basic geometry of the five models, b"Grey value legends" of 
the equivalent stress (von Mises) 

x p = 10.0 mm). This represents the conditions obtained in a joint 
with a deeper socket either for an initially larger head, or in which 
functional swelling of the cartilage has occurred in the presence of 
primary incongruity. 

The calculations were carried out by the program Marc (Marc 
Research Corporation, Palo Alto, Calif., USA). The five geometrical 
patterns were built up as axisymmetrical models (Zienkiewicz and 
Taylor 1989) with variable contact areas. The head of the joint was 
considered to be a rigid body, not subject to deformation, which is 
by degrees pressed into the socket - the deformable component. 
The stress distribution was calculated for axial loads of 100, 600, 
3700 and 6900 N. This roughly corresponds to loading the joint 
with 1/6, 1, 6 and 11.5 times the weight of the body. The base of the 
socket was fixed along the x and y axes. Anisotropy and viscoelas- 
ticity of the material were not considered. In accordance with the 
results reported by Brown and Vrahas (1984) for subchondral bone, 
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Fig. 2. a Schematic drawing of the geometrical set-up of model 1 
(congruous head and socket of the joint), b-e Distribution of the 
von Mises stress in model 1 (340 elements, 385 nodes, 710 degrees 
of freedom) under various loads, b 100 N (max. equiv, stress 3.2 
N/ram2). e 600 N (max. equiv, stress 9.6 N/ram2). d 3 700 N (max. 
equiv, stress 39.2 N/mm2). e 6 900 N (max. equiv, stress 61.5 N/mm 2) 

Fig. 3. a Schematic (exaggerated) drawing of the geometrical set-up 
of model 2, (flatter socket), b-e Distribution of the von Mises stress 
in model 2 (340 elements, 385 nodes, 710 degrees of freedom) under 
various loads; b 100 N (max. equiv, stress 37.1 N/mm2). e 600 N 
(max. equiv, stress 43.4 N/ram2). d 3700 N (max. equiv, stress 73.2 
N/ram2). e 6 900 N (max. equiv, stress 101.3 N/mm 2) 
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Fig. 4. a Schematic (exaggerated) drawing of the geometrical set-up 
of model 3, (deeper socket), b--e Distribution of the von Mises stress 
in model 3 (310 elements, 352 nodes, 670 degrees of freedom) under 
various loads, b 100 N (max. equiv, stress 1.9 N/ram2). e 600 N (max. 
equiv, stress 9.3 N/mm2). d 3 700 N (max. equiv, stress 23.8 N/mm2). 
e 6 900 N (max. equiv, stress 53.0 N/mm 2) 

Fig. 5. a Schematic (exaggerated) drawing of the geometrical set-up 
of model 4, (oversized head), b--e Distribution of .the von Mises 
stress in model 4 (300 elements, 341 nodes, 635 degrees of freedom) 
under various loads• b 100 N (max. equiv, stress 21.6 N/mm2). e 600 
N (max. equiv, stress 17.4 N/mm2). d 3700 N (max. equiv, stress 21.8 
N/ram2). e 6 900 N (max. equiv, stress 45.9 N/ram 2) 
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Table 1. Maximum values of the equivalent stress (yon Mises) in 
relationship to the load applied (values in N/ram 2) 

Model 100N 600N 3700N 6900N 

No. 1 3.2 9.6 39.2 61.5 
No. 2 37.1 43.4 73.2 101.3 
No. 3 1.9 9.3 23.8 53.0 
No. 4 21.6 17.4 21.8 45.9 
No. 5 21.8 19.4 29.3 43.2 

the modulus of elasticity was taken to be 1 500 N/mm2. This value 
is also valid for the average density of cancellous bone (0.8 g/cm 3, 
Carter and Hayes 1977). Cortex and articular cartilage were not 
treated separately. The Poisson number was accepted as 0.33 
(Knauss 1980; Rohlmann et al. 1983), and the coefficient of friction 
between head and socket as 0 (Carter et al. 1987 a). The calculation 
was carried out with the large displacement model; that is to say, 
secondary effects due to deformation (developing or changing mo- 
ments) were taken into account. The results were expressed as "von 
Mises" stresses (Fig. 1 b), that is to say equivalent stresses (or stress 
intensity) calculated from the values for normal (tension and pres- 
sure) and shear stresses. The models consisted of 300 to 340 ele- 
ments, 341 to 385 nodes and 635 to 710 degrees of freedom. 

Results 

Under  forces of  600, 3 700 and 6 900 N, model  1 (Fig. 2 a) 
shows in each case an increasing equivalent stress f rom 
the per iphery to the centre of  the socket (Fig. 2 b). Periph- 
erally no von Mises stress is active, even with the higher 
loads. Under  a force of  100 N, a stress intensity of  3.2 
N / m m  2 is reached in the centre of the socket, and with a 
force of  6 900 N, 61.5 N / m m  2 (Table 1). 

In model  2 (Fig. 3 a), with a flatter socket, a signifi- 
cantly higher stress intensity is calculated for each load 
than in the congruous  model  (Table 1), and the maxima  
are always to be found in the depths of the socket (Fig. 3 
b). 

In model  3 (Fig. 4 a, deeper socket) significant equiva- 
lent stresses appear  under  less loading in a region about  
30 ~ from the inlet of the socket (Fig. 4 b). Only with 
higher values does the centre of the socket begin to share 
in the t ransmission of force, the highest values being 
reached there under  a load of 6 900 N. The m a x i m u m  von 
Mises stresses are found under  all loading condit ions to 
be lower than in the congruous  model  (Table 1). 

With  model  4 (Fig. 5 a, oversized head), the equivalent 
stresses are built up under  slight loading at the periphery 
(Fig. 5 b). They  move  towards  the centre of the socket as 
the load increases. Under  100 and 600 N the ma x imu m 
stress intensity lies above the values in models  1 and 3, 

Fig. 6. a Schematic (exaggerated) drawing of the geometrical set-up 
of model 5, (oversized head combined with deeper socket), b-e Dis- 
tribution of the von Mises stress in model 5 (310 elements, 352 
nodes, 670 degrees of freedom) under various loads, b 100 N (max. 
equiv, stress 21.8 N/mm2). e 600 N (max. equiv, stress 19.4 N/mm2). 
d 3700 N (max. equiv, stress 29.3 N/mm2). e 6 900 N (max. equiv. 
stress 43.2 N/mm 2) 
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but with loads of 3 700 and 6 900 N they are lower (Table 
1). 

With model 5 (Fig. 6 a, deeper socket combined with 
oversized head), the stress is also built up from the pe- 
riphery towards the centre (Fig. 6 b). With loads of mod- 
erate value, the highest stress intensity is found between 
the periphery and centre of the socket. Even under higher 
forces, the equivalent stress remains distributed relatively 
constantly over the inner 2/3 of the socket. In compari- 
son with the other geometrical patterns, 6 900 N pro- 
duced in this model the lowest maximum yon Mises 
stresses (Table 1). 

Discussion 

Method 

The intention of the present work was to examine the 
principal influence of geometric factors on the stress dis- 
tribution in joints. The distribution of the equivalent 
stress and the level of stress intensity under increasing 
loads were investigated. Since quantitative data on the 
exact geometry of the joints are not yet available, five 
comparative models were built up from the observed 
qualitative anatomical facts. For the time being, the pos- 
sible effects of anisotropy and viscoelasticity have been 
ignored. Furthermore, the models were based on the as- 
sumption that the material is homogeneously distributed, 
although the material properties of cortical bone and ar- 
ticular cartilage differ from those of cancellous or sub- 
chondral bone (for full bibliography see Schr6der and 
Gall 1992). In addition to this, the density values vary 
considerably within the spongiosa and in the subchon- 
dral region. This variation in subchondral bone density is 
found within as well as between individuals (Eckstein et 
al. 1992; Mfiller-Gerbl et al. 1992). Investigations with 
the finite element method by Hayes et al. (1982) and Merz 
(1993) have shown that inhomogeneous material proper- 
ties influence the stress distribution in the tissues. The 
models suggested here are, however, not intended to al- 
low realistic quantitative statements on stress intensity in 
the joint to be made. For this to be possible it would be 
necessary to take into account the exact distribution of 
the thickness of the cartilage (Mockenhaupt 1990), as well 
as the inhomogeneity of the elastic properties of bone. 
The models are supposed to isolate the influence of the 
geometrical parameters on the stress distribution, and for 
this the assumption of homogeneous physical properties 
in order to make comparative estimates would seem to 
be both sufficient and reasonable. 

Results 

The models have shown that very slight variations in the 
geometry of the articular surfaces can have a profound 
effect on the stress distribution in joints. As Kummer 
(1968), Kummer et al. (1987) and Mockenhaupt (1990) 
have remarked, a geometrically congruous joint does not 
permit equal distribution of the stress, since only those 

partial vectors running parallel to the resultant force can 
be transmitted through the joint surface. In the case of a 
ball-and-socket joint, or a hinge joint with a large 
amount of surrounding bone, this leads to a "bell- 
shaped" stress distribution with peak values in the depths 
of the socket, falling off to zero peripherally. 

The facts that less satisfactory relationships are ob- 
tained by modelling a flatter socket, and that the stress 
peaks arising in its depths significantly exceed the values 
in all other cases, agree well with the photoelastic find- 
ings reported by Kempson et al. (1971) and Tillmann 
(1978). These results are plausible, since the correspond- 
ing force is transmitted by smaller, centrally localized 
load-bearing areas. The distribution pattern of the sub- 
chondral mineralization in the radiohumeral joint (cen- 
tral density maximum Eckstein et al 1993 a), also con- 
firms this result, since the subchondral bone density has 
been shown to reflect the long-term stress acting during 
physiological use of a joint (Pauwels 1963, 1980). The less 
satisfactory mechanical situation in the radiohumeral 
joint may, among other things, contribute to the fact that 
osteoarthrotic changes more commonly attack this part 
of the elbowjoint than the humero-ulnar component 
(Goodfellow and Bullough 1967). 

On the other hand, the model with a deeper socket 
anticipates a better relationship for the stress distribution 
as postulated by Bullough (1981) and Greenwald (1991). 
As seen in vertical section through the joint, the force is 
transmitted by two centres. A corresponding geometrical 
pattern has been found in the case of the hipjoint (Walm- 
sley 1928; Bullough et al. 1968, 1973; Greenwald and 
O'Connor 1971; Goodfellow and Mitsou 1977; Rushfeldt 
and Mann 1979; Afoke et al. 1980; Miyanaga et al. 1984; 
L6he et al. 1993), the anklejoint (Riede et al. 1971; Wy- 
narsky and Greenwald 1983) and also the humero-ulnar 
joint (Bullough and Jagannath 1983; Eckstein at al. 1993 
c). Interestingly enough, the highest stress values in this 
model under average loading are found in those regions 
of the articular surface where the highest density values 
are measured by X-ray densitometry (Tillmann 1971, 
1978) and CT osteoabsorptiometry (Mfiller-Gerbl et al. 
1993; Miiller-Gerbl and Putz 1993; Eckstein et al 1993 a, 
b). It is hence entirely possible to trace back bicentric 
distribution patterns of the subchondral bone density to 
geometrical factors; that is to say, to incongruity due to 
a deeper socket. Bullough et al. (1968) were able to show 
that with increasing age the geometry of the hipjoint is 
subject to change, i.e. the articular surfaces become more 
congruous. This is also supported by a corresponding 
change from bicentric to monocentric in the mineraliza- 
tion pattern of the facies lunata (Mtiller-Gerbl et al. 
1993). The results obtained from our models also suggest 
that the development of osteoarthrosis in the roof of the 
hipjoint socket (Bullough et al. 1973; Tillmann 1973, 
1978) may, apart from other causes, be due to an age 
change in the geometrical pattern 'of the joint. 

The assumption of an initially enlarged head or func- 
tional swelling of cartilage (Oberlfinder et al. 1984) im- 
plies that in the model the force will be transmitted 
through the outermost periphery of the joint also. The 
development of stress at lower loads begins here, and this 
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physical activity of the subject, 

(cyclic l o a d ~  of the joint) 

5 '  
condition of each single loading cycle 

("current" distribution of stress) 

_vrimarv (load free) geometry 
of the articulating surfaces size and direction of the 
(dependine on joint positlon) resultant force 

secondary geometry of the articulatine surfaces 
(under deformation) 

size of location of pressure distri- 
bution within 

contact area(s) contact area(s) contact area(s) 

I I  

relative number of loading cycles 

bound up with corresponding condition 
. 1 .  

long-term distrVibution of stress 
or "loadin~ history" of the joint 

morphology of the subarticular tissues 
Fig. 7. Interplay of the factors that determine the '~ history" 
of a joint 

region continues to play a part in the transmission of 
force under higher loading. This finally leads to a very 
satisfactory distribution of the stress. If there is also a 
primary incongruity due to a deeper socket, the enlarge- 
ment of the head will again provide a more advantageous 
distribution of the stress. Even with higher loads, the 
stress is distributed more equally over a wide area of the 
socket, which is why the lowest peak values are found in 
this model. 

It is true that with cyclic loading of the joint, the pri- 
mary (that is to say, load-free) geometrical shape of the 
articulating components is a deciding factor for the actu- 
al and long-term distribution of stress in the joint (Fig. 7). 

As far as the subchondral bone is concerned, an inho- 
mogeneous distribution of the density (dependent upon 
the shape of each joint, e.g. bicentric or monocentric), can 
be predicted. This is because the "remodelling" (Carter 
1984; Carter et al. 1987, 1991) of the subchondral bone of 
a joint is determined by the long-term mechanical stress 
("loading history") acting on its component tissues (Eck- 
stein et al. 1992, 1993 a, b; M/iller-Gerbl et al. 1992, 1993). 

It may be assumed that the geometric pattern of the 
joint described will have a profound effect upon the nutri- 
tive situation of the articular cartilage as well. Models 1 

and 2 suggest that the cyclic action of force will produce 
no stress at all on the cartilage at the periphery of the 
socket, but a considerable degree of high, quasi "static" 
stress on the cartilage lying in its depths. As against this, 
the shifting of the load-bearing areas from the periphery 
inwards under cyclic loading suggested by model 3, and 
particularly by models 4 and 5, distributes a more "dy- 
namic" load over all regions of the cartilage. Such condi- 
tions, i.e. intermittent stimulation, have been experimen- 
tally proved to activate cartilage metabolism (Sah et al. 
1989). An advantageous effect on the articular cartilage 
has also been confirmed clinically (Salter at al. 1980; O' 
Driscoll et al. 1988). On the other hand, static stress is 
considered to have an adverse action on the synthetic 
activity of cartilage cells (Jones et al. 1982; Gray et al. 
1988; Sah et al. 1989), and after a time even to cause 
damage to the tissue (Salter and Field 1960; Trias 1961). 
Furthermore, shifting of the load-bearing areas within 
the joint is likely to promote circulation of the nutrient 
synovial fluid (Bullough 1981) and an increased exchange 
with the fluid bound in the cartilage (Putz and Fischer 
1993). Load-dependent deformation of the cartilage may 
also contribute to lubrication of the articular surfaces 
and a reduction of the coefficient of friction of the articu- 
lar cartilage (Lewis and McCutchen 1959). 

We conclude from these results that the incongruity 
described may be regarded as a functionally active and 
biologically advantageous principle, which allows a more 
equal distribution of the stress throughout  the joint and 
improves the nutritive situation of the cartilage. The term 
"incongruity" must therefore not be automatically equat- 
ed with "prearthrotic deformity" (Hackenbroch 1943), as 
it is sometimes done in routine clinical work. 

With future models on the force transmission in joints 
it will be necessary to calculate the stresses in terms of the 
geometry of the articular components, if realistic values 
are to be obtained. To make quantitatively accurate pro- 
nouncements on the stress distribution, it will be neces- 
sary to carry out further investigations, and to go into the 
exact morphology of the articular surfaces and the subar- 
ticular tissues. 
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