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AbSTrACT
Introduction Mechanical thrombectomy (MT) has 
transformed the treatment of ischemic stroke. however, 
patient access to MT may be limited due to a shortage 
of doctors specifically trained to perform MT. The studies 
reported here were done to (1) develop, operationally 
define, and seek consensus from procedure experts 
on the metrics which best characterize a reference 
procedure for the performance of an MT for ischemic 
stroke and (2) evaluate their construct validity when 
implemented in a virtual reality (Vr) simulation.
Methods in study 1, the metrics for a reference 
approach to an MT procedure for ischemic stroke of 
10 phases, 46 steps, and 56 errors and critical errors, 
were presented to an international Delphi panel of 21 
consultant level interventional neuroradiologists (inrs). 
in study 2, the metrics were used to assess 8 expert and 
10 novice inrs performing a Vr simulated routine MT 
procedure.
results in study 1, the Delphi panel reached consensus 
on the appropriateness of the procedure metrics for 
a reference approach to MT in ischemic stroke. group 
differences in median scores in study 2 demonstrated 
that experienced inrs performed the case 19% faster 
(P=0.029), completed 40% more procedure phases 
(P=0.009), 20% more steps (P=0.012), and made 42% 
fewer errors (P=0.016) than the novice group.
Conclusions The international Delphi panel agreed 
metrics implemented in a Vr simulation of MT 
distinguished between the computer scored procedure 
performance of inr experts and novices. The studies 
reported here support the demonstration of face, 
content, and construct validity of the MT metrics. 

InTroduCTIon
Mechanical thrombectomy (MT) has transformed 
the treatment for large vessel occlusive stroke. 
Functional independence outcomes are now 
achieved in up to 70% compared with 10–20% of 
patients treated with MT versus traditional medical 
therapy.1 Multiple randomized controlled trials have 
demonstrated considerable treatment effects, with 
numbers needed to treat as little as 2.8. To place 
this figure into perspective, the numbers needed to 
treat for cardiac coronary interventions and long 
term mortality is 25.2 The HERMES collaborative 
meta-analysis provides an excellent summary of 
these MT data as a comprehensive description of 
the benefits is outside the scope of this article.3 

Despite the proven effectiveness of MT, access 
is limited in regions and countries, primarily due 
to the shortage of interventional neuroradiologists 
(INR) specifically trained to perform MT. Tradi-
tionally, doctors acquire their skills to perform 
new procedures on patients. However, image 
guided procedures impose unique human factor 
challenges, which expose patients to potential risk 
during the doctor’s advancement along the learning 
curve.4 This traditional approach to training can be 
protracted for doctors to develop skills to achieve 
proficiency in performance. Currently, there is no 
objective, transparent, and reliable way to verify 
proficiency of performance.

Concerns about training in medicine and health-
care have forced a radical rethink of how to opti-
mally train doctors.5 6 Simulation is proposed as a 
potential significant contributing element to this 
training dilemma.7 8 Clinical trial data indicate 
that simulation based training produces a superior 
skill set.9 Furthermore, simulation should augment 
the training process and not be just an educational 
experience,10 rather simulation should be a tool to 
achieve a quality assured performance benchmark 
by the completion of training.11

Optimal simulation training platforms and 
training programs are derived from a compre-
hensive procedure characterization, and the iden-
tification and definition of procedure steps and 
deviations from optimal performance (or errors)12 
which once validated are used to give trainees 
formative feedback on their performance.

These metrics are then used to build a curric-
ulum, a (simulation) training platform with the 
metrics integrated and the quantitate definition 
of performance benchmarks, which trainees must 
demonstrate before progression to in vivo clinical 
practice.12–14

The ultimate procedural goal in MT is the safe 
and fast recanalization of the occluded target artery 
to restore blood supply to ischemic brain tissue. 
This must be performed without damaging the 
navigated proximal arteries or the introduction of 
air or thrombotic emboli into new territories which 
were previously unaffected (embolization into new 
territory).

The studies reported here undertook a process to 
characterize in detail a safe reference approach to 
MT for a neurovascular trainee who has demon-
strated independent competency in diagnostic 
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Table 1 Phases of the mechanical thrombectomy procedure, with the beginning and end of each phase clearly defined

Procedure 
phase Title

Phase
begins and ends

I Femoral access to descending aorta Begins Femoral arterial access (as per institutional protocol)—wire enters the groin

Ends Wire at mid thoracic aorta T5–8, above celiac trunk below origin of left subclavian

IIa Manipulation in the aortic arch using a multipurpose 
catheter (MPA, MPB, MPC, VER, BER,…)

Begins Wire advances beyond mid thoracic aorta

Ends Tip of the select catheter is immediately proximal to brachiocephalic trunk

IIb Manipulation in the aortic arch using a Simmons catheter 
(SIM1, SIM2, SIM3, VTK,…)

Begins Wire advances beyond mid thoracic aorta

Ends Tip of the selected catheter is immediately proximal to brachiocephalic trunk

III Access from aortic arch to common carotid artery Begins Removal of guidewire and acquisition of roadmap image

Ends Re-evaluation by contrast injection through select catheter positioned in the ICA

IV Advancement and stable positioning of sheath/BGC Begins Advancement of BGC into ICA over select catheter.

Ends Acquisition of iso-centered biplane angiogram of intracranial vessels

V Tri-axial access to and crossing of thrombus Begins Shaping distal microwire tip to facilitate atraumatic navigation

Ends Retrieving microwire from correctly positioned microcatheter

VI Deployment of stentriever Begins Stentriever introduced to microcatheter hub

Ends Stentriever fully unsheathed

VII Retrieval of thrombus Begins Reducing tension on DAC until tip starts to retract

Ends Deflation of BGC

VIII Angiographic control of success of retrieval Begins Retraction of DAC to proximal ICA (below petrous segment, above CCA bifurcation)

Ends Recanalization confirmed on DSA

IX Full head control angiogram Begins Remove DAC

Ends Control angio of cervical carotid through BGC in proximal CCA

X Safe removal of devices (as unit), access vessel closure Begins Retraction and removal of devices

Ends Arterial access closure (according to institutional protocol)

Ber, Berenstein catheter; BGC, balloon guide catheter; CCA, common carotid artery; DAC, distal access/aspiration catheter; ICA, internal carotid artery; MPA, multipurpose A; 
MPB, multipurpose B; MPC, multipurpose C.

cerebral angiography. We sought to characterize the endovas-
cular procedure per se and not cover the issues of diagnostic 
imaging, patient selection, or anesthesia. It was hypothesized that 
we could identify procedure, phases, steps, and procedure errors 
(deviations from optimal performance). It was also hypothesized 
that experienced INRs could reach consensus on these metrics, 
and when integrated into a physics based virtual reality simu-
lation that they could distinguish between the performance of 
experienced and novice INRs performing the procedure on the 
simulator.

MeThodS
Procedure characterization
This study received expedited institutional review board approval 
from the Cork University Hospital ethics committee (ECM 4 (d) 
04/07/17; June 22, 2017). The research was supported by a grant 
from the Swedish government agency for innovation (Vinnova) 
to Mentice AB (Gothenburg, Sweden). Three INRs (MH/TL and 
RC), a behavioral scientist (AGG), an interventional radiologist 
(LL), and a senior project engineer (JL) formed the procedure 
characterization group. The INRs had >8 years of practice 
experience and mastered the full range of intracranial and spinal 
neurovascular interventions.

The project focused on the anterior circulation, while noting 
there is definite overlap with performance of thrombectomy 
in the posterior circulation. Procedure characterization was 
performed over a 7 month period in five face to face meetings. 
Additional time was spent at the simulator development facility 
to optimize technical features regarding the fidelity of the simu-
lation platform. The procedure was deconstructed into 10 phases 
(table 1), consisting of 46 steps; 57 possible errors were defined. 
Error severity was defined as either critical or non-critical.

Phases I and X are generic skills in endovascular therapies. 
Safe retrograde femoral access and closure were defined as being 
in accordance with institutional protocols.

There are certain tenets in angiography that are constant, 
irrespective of which organ is being studied. In general, a cath-
eter should only be advanced over a suitable guidewire. If resis-
tance to catheter or wire advancement is felt, pressure should be 
released in order to ensure that the tip of the wire or catheter has 
not damaged the vessel lining. When a catheter is being manipu-
lated in the absence of a wire movement it should be backwards 
rather than pushing forwards to avoid ‘vessel scraping’. Devia-
tion from these basic principles were deemed to constitute an 
error.

Phase II was divided into subsections a and b. Selection of 
the innominate and right internal carotid arteries in a type I 
arch is generally straightforward and can be performed by a 
forward curve catheter. These catheters can be used directly 
once the leading guidewire has selected the target cervical vessel. 
Selection of the left common and internal carotid arteries can 
be more challenging. These often require the use of a reverse 
curve Simmonds (SIM 1, 2, 3 etc) catheter. This catheter requires 
manipulation in situ to form the working shape. This is techni-
cally demanding and requires additional steps. There are several 
recognized ways to form the working shape of the SIM catheters, 
in the ascending aorta over the aortic valve, in the left subcla-
vian artery over the abdominal aortic bifurcation. The group all 
form the catheter in the left subclavian artery by preference. This 
was felt to be the safest and most reproducible technique by the 
group (unanimously agreed by the subsequent Delphi panel).

Phases II and IV relate to the attainment of a stable balloon 
guide catheter position in the internal carotid artery. In the 
original simulated run, steps within phases III and IV had to 
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Table 2 Summary of the changes agreed and voted on by the Delphi panel to the procedure steps and procedure errors of the reference approach 
to mechanical thrombectomy

Procedure phase

Steps errors Voting

before delphi After delphi before delphi After delphi Yes no Abstained % Majority

I 2 2 11 12 20 1 0 95

IIa 1 1 10 10 21 0 0 100

IIb 6 6 9 9

III 6 6 12 12 21 0 0 100

IV 5 3 9 9 20 1 0 95

V 7 7 14 13 18 0 3 85

VI 2 2 12 9 18 0 2 90

VII 11 11 12 11 19 0 1 95

VIII 3 3 3 3 20 0 0 100

IX 4 4 1 1 19 0 1 95

X 2 2 1 1 20 0 0 100

be performed sequentially such that if a step in phase IV was 
performed prior to the completion of any of the phase III steps 
an error was recorded. Experiences within the group using the 
simulator and Delphi discussions demonstrated that these two 
phases formed a continuum and that there are many occasions 
where performing a step from phase IV before the end of phase 
III would be reasonable, safe, and would not constitute an error. 
Variation in the order of steps in these phases was not penalized. 
Attempts to perform any steps from phase V prior to the comple-
tion of phase IV was judged to represent unacceptable deviation 
from the protocol.

Phase III, step 13, was further subdivided depending on the 
capabilities of the angiographic equipment. The majority of 
intracranial procedures are performed on biplane equipment but 
the use of single plane systems in MT is not uncommon.

Phase III, step 13a, pertained to units with biplane equipment. 
The frontal tube is centered on the aortic arch and the lateral 
tube is centered more cranially to visualize the common carotid 
artery bifurcation. The roadmap imaged acquired here allows 
the operator to assess the movements of the proximal catheter 
construct in the arch while visualizing the carotid bifurcation 
and distal wire position.

Step 13b would be employed if the procedure was being used 
on single plane equipment. The degree of x-ray field magnifica-
tion was described in non-specific terms as large/small field of 
view (FOV). This was in response to the fact that different manu-
facturers of angiography equipment provide different FOVs. 
In addition, different operators have different preferences for 
different FOVs. As long as the choice of FOV did not compro-
mise a safe technique, for instance selecting a FOV that precluded 
visualization of the distal wire tip position, no comment was 
made on FOV.

Study 1: delphi consensus meeting
Participants
A panel of 21 experienced INRs (mean age 48 (SD 7) years; 
18 men; all consultant level, including 10 professors), who 
performed a mean of 45 (SD 10) MT stroke cases per annum, 
from seven European and Scandinavian countries (Belgium 
(n=1), Denmark (n=4), Germany (n=12), Norway (n=1), 
Netherlands (n=1), Sweden (n=1) and UK (n=1)) convened in 
Aachen, Germany in May 2017.

Results study 1
At the start of the Delphi meeting, the project and concepts of 
‘proficiency based progression’ were outlined and the procedure 
metrics for a reference approach to MT presented.

Each phase and step were discussed, and the proposed metrics 
were edited in real time such that a vote was taken on an agreed 
consensus statement. The most significant alteration to the 
proposed metrics was that the use of balloon occlusion guide 
catheters (BGCs) was mandated. Additional changes and edits 
were made in real time, and mainly concentrated on the preci-
sion of the language and operational definitions of procedure 
steps and errors. A summary of the changes that were made to 
the procedure steps and errors are reported in table 2.

At the end of each phase discussion a vote was taken to ensure 
majority consensus (table 2). All phases were passed with large 
majorities. The smallest consensus vote was for phase V, with 
85% in favor of the characterization. There were zero votes 
against the characterization in phase V but there were three 
abstentions. No votes (ie, against the phases characterized) were 
only recorded for phases I and IV, and these were by a single 
individual.

Study 2: Construct validity
Participants
Eight consultant/professor level and 10 trainee INRs partici-
pated in this study. Mean age of the consultant/professor level 
INRs was 48 years (range 40–60 years) and for trainees, 36 years 
(range 32–40 years). Consultants were from Germany (n=5), 
the UK (n=2), and Denmark (n=1). Trainees were from the UK 
and Ireland (n=5), Germany (n=4), and The Netherlands (n=1). 
The consultant/professor level INRs completed on average 42 
thrombectomy procedures per year (range 40–50). The trainees 
had on average been practicing for 15.8 (0–60) months, super-
vised cerebral angiograms 70 (0–200), independent cerebral 
angiograms 123 (0–300), assisted interventions 95 (5–300), 
first operator interventions 19 (0–80), assisted in thrombectomy 
cases 12 (0–40), and first operator thrombectomy 3 (0–10).

Apparatus
The vascular interventional simulation trainer (VIST, figure 1), 
described elsewhere, was used for the study.15 16 The VIST 
virtual reality simulator utilizes a physics based high fidelity 
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Figure 1 The vascular interventional simulation trainer (VIST) virtual 
reality simulator.

endovascular simulator which enables hands on procedural 
training for clinicians using real patient cases. This technology 
allows the use of the medical devices for simulated endovas-
cular procedures. In replicated real world scenarios, it provides 
step by step guidance and metric based feedback throughout 
the procedure.15 16 The haptic feedback to the users' actions are 
calculated in real time and depend on the interaction between 
the virtual devices and the virtual anatomy (vessel geometry and 
vessel properties), and give realistic tactile feedback to the oper-
ator during the training procedure.15 16

The metric based performance characterization and opera-
tional definitions of MT, as described in study 1, were used to 
establish the simulation and assessments.

Procedure
Neuroradiology trainees received a didactic explanation of acute 
stroke interventions. They then observed a simulated throm-
bectomy being performed by a faculty expert INR. The demon-
stration was performed with full audiovisual support, and the 
phases and steps of the procedure were verbally described in real 
time. Trainees then performed a reference thrombectomy case 
on the VIST physics based virtual reality simulation platform 
and enabled performance metrics agreed at the Delphi meeting 
(US Provisional Patent Application No 62667500). The case was 
performed in the presence of one of the INR faculty members. 
The faculty members assisted the delegates with the use of the 
simulator and preparation of the modified procedure appa-
ratus required. No guidance regarding the performance of the 
thrombectomy procedure (order of steps, phases/catheter or wire 
manipulation/x-ray screening/table positioning, etc) was offered 
by the supervising faculty.

Statistical analysis
Performance differences were compared for statistical signifi-
cance with Mann–Whitney U tests using SPSS statistical package 
(V.24).17 Statistical power calculations were extrapolations based 
on previous research using the VIST simulator and performance 
metrics for carotid angiography.16 The mean number of errors 
for the attending clinicians in the control arm of the study was 
15.17 (SD 3.1). We estimated a 26–42% difference between the 
experienced and novice INR groups based on previous studies.18 
The statistical power of a 26% difference between the groups (ie, 

consultants INRs=15.17 vs novice MT INRs=19.11 was calcu-
lated for n=8 in the consultant group and n=10 in the novice 
group with an α of 5% and a β of 20%) was found to be 0.815 
for a two tailed test. A difference of 42% between the groups (ie, 
consultants INRs=15.17 vs novice INRs=21.54) and using the 
same statistical power calculation methodology gave a statistical 
power of 0.996 for the same sample sizes.

reSulTS
The main performance parameters assessed and compared 
were (1) duration of the procedure in minutes, (2) number of 
procedure phases completed, (3) number of procedure steps 
completed, (4) number of handling errors made, (5) amount of 
contrast agent used during the procedure (in milliliters), and (6) 
amount of fluoroscopy (in minutes) used in performance of the 
procedure.

Figure 2A shows the median, 25th and 75th percentile ranks 
(PR) of the number of minutes it took each group to perform 
the procedure. Based on the median scores, the consultant INRs 
performed the procedure 19% faster than the trainees, and 
their performance times were also more homogeneous, as indi-
cated by the smaller range of scores (consultant range=9.45 and 
trainee range=34.03). This difference was statistically signif-
icant (median=24 (25th PR=23 and 75th PR=28) vs trainee 
median=31 (25th PR=24 and 75th PR=50), Mann–Whitney 
U=17.0, Z=−2.04, P=0.043). A similar performance pattern 
was observed for procedure phases completed (figure 2B). The 
consultant INRs completed 40% more procedure phases and 
this difference was statistically significant (consultant median=7 
(25th PR=6 and 75th PR=8) vs trainee mean=5 (25th PR=5 and 
75th PR=6), Mann–Whitney U=11.5, Z=−2.61, P=0.009). 
Figure 2C shows that the consultant INRs also completed 20% 
more procedure steps and the difference was statistically signif-
icant (consultant median=34 (25th PR=32 and 75th PR=35) 
vs trainee median=28 (25th PR=25 and 75th PR=32), Mann–
Whitney U=12.0, Z=−2.5, P=0.012). The largest difference 
between the two groups was observed for handling errors 
(figure 2D). The trainees made 42% more handling errors than 
the consultant INRs and this difference was statistically signif-
icant (consultant median=26 (25th PR=12 and 75th PR=29) 
vs trainee median=44 (25th PR=27 and 75th PR=60) Mann–
Whitney U=13.5, Z=−2.36, P=0.016).

Although the trainees used 11% more contrast agent (consul-
tant median=36 (25th PR=29 and 75th PR=39) vs trainee 
median=40 (25th PR=29 and 75th PR=77) this difference 
was not statistically significant (P=0.46). The consultant group 
also used 24% less fluoroscopy than the trainees but this differ-
ence was not statistically  significant (consultant median=11 
(25th PR=10 and 75th PR=12) vs trainee mean=15 
(25th PR=11 and 75th PR=22).

Using the IQR scores of the consultant INR group, we calcu-
lated the variability range for each dependent variable score. 
Trainee time to complete the procedure demonstrated 3.6 times 
greater variability than the consultant INR group. A similar 
pattern was observed for phases completed (two times greater), 
procedure steps completed (1.7 times greater), handling errors 
made (2.235 times greater), contrast agent used during the proce-
dure (seven times greater) and fluoroscopy time used during the 
procedure (3.7 times greater).

dISCuSSIon
In the two studies reported here we developed the performance 
metrics for MT as proposed previously.12–14 19 The metrics and 
their operational definitions were presented to the Delphi panel 
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Figure 2 Median, 25th, and 75th rank scores of (A) performance time (in min), (B) procedure phases completed, (C) procedure steps completed, and 
(D) procedure handling errors made by trainees and consultant interventional neuroradiologists (INRs).

for their informed consideration on how well they characterized 
a safe and effective way of performing an MT by a trainee at 
the start of their learning curve. The only fundamental change 
to the method made at the Delphi meeting was the mandated 
use of proximal BGCs. Conversations centered on the fact that 
at the time of discussion, two of the main papers included in 
the HERMES collaboration3 and the Solitaire With the Inten-
tion For Thrombectomy as Primary Endovascular Treatment 
(SWIFT PRIME)20 and Extending the Time for Thrombolysis in 
Emergency Neurological Deficits-Intra-Arterial (EXTEND-IA)21 
mandated the use of BGCs (recommendation 11AHA guidelines 
2015, class IIa; level of evidence C).22

In study 2, we sought to establish the construct validity23 
of the metrics agreed at the Delphi panel meeting and imple-
mented in the VIST virtual reality simulation. In this study, we 
compared the computer based assessment of procedure experts 
and novices performing a straightforward MT procedure. The 
results showed that the performance metrics coupled to the VR 
simulation distinguished between the objectively scored perfor-
mance of experienced practitioners and procedure novices. The 
experienced group completed significantly more phases and 
steps of the procedure in a shorter time frame. More importantly, 
they also made fewer objectively assessed procedure errors. 
The experienced group also used less contrast agent and fluo-
roscopy, but these differences were not statistically significant. 
This is almost certainly due to the large variability of scores in 
the novice group. Although these measures were not statistically 
significantly different, the measures were detecting performance 
differences in the two groups. Indeed, performance variability 
is a very good indicator of ‘skill’. Individuals who are skilled at 
what they do perform better than less skilled individuals, but 
they also perform very homogeneously.24

Acute ischemic stroke is a leading cause of death and long term 
disability. MT is now the recommended treatment of choice for 

ischemic stroke due to large vessel occlusion in the anterior cere-
bral circulation. It has led to an improvement in outcomes in 
comparison with other treatments3 with a reduction in long term 
disability.25 Worldwide, there is a shortage of clinicians trained 
and skilled enough to perform the procedure, which is a signif-
icant impediment to the benefits that this treatment can confer 
on patients and healthcare systems.

In prospective randomized studies, virtual reality simulation 
in the surgical arena has been well validated as improving intra-
operative performance of trainees.9 12 Furthermore, it has been 
demonstrated that the benefits conferred with surgical simula-
tion are optimized with metric based training to proficiency.26 
The metrics, derived from experienced and proficient practi-
tioners, once validated are used to construct a curriculum, which 
uses metric based performance feedback to trainees. The metrics 
are also used to establish performance benchmarks (ie, profi-
ciency levels), which trainees must unambiguously demonstrate 
before training progression. Additionally, trainees (no matter 
how senior) do not progress to performing the procedure on 
real patients until they have demonstrated that they ‘know’ how 
to do the procedure and can ‘do it’ to a quantitatively defined 
performance level. Furthermore, the performance level is not 
estimated, rather it is based on the average of the objectively 
assessed performance of INRs experienced in MT on the exact 
same virtual reality simulated procedure which trainees must 
perform. Prospective, randomized, and blinded clinical studies 
have demonstrated that metric based training to proficiency (ie, 
proficiency based progression or PBP) improves intraoperative 
performance of image guided surgical procedures26–30 and an 
endovascular procedure by very experienced clinicians learning 
to perform a procedure that is novel to them.16 Furthermore, 
there is also evidence that a PBP impacts on clinical outcomes. In 
a prospective, randomized, and blinded study of epidural anal-
gesia for labor, the PBP trained anesthetists had a 54% lower 

M
uenchen. P

rotected by copyright.
 on O

ctober 6, 2022 at U
niversitaetsbibliothek der LM

U
http://jnis.bm

j.com
/

J N
euroIntervent S

urg: first published as 10.1136/neurintsurg-2018-014510 on 17 January 2019. D
ow

nloaded from
 

http://jnis.bmj.com/


6 of 7 crossley r, et al. J NeuroIntervent Surg 2019;11:775–780. doi:10.1136/neurintsurg-2018-014510

Ischemic Stroke

epidural failure rate (13.3 vs 28.7) compared with the standard 
simulation based trained group.31

Virtual reality simulators for endovascular procedures are 
orders of magnitude superior to simulators that are used in 
image guided surgery.12 They are however not much better 
than expensive video26 games without procedure performance 
metrics. Angelo et al26 demonstrated that simulation based 
training without metric based feedback and a requirement to 
demonstrate proficiency benchmarks conferred little benefit 
over traditional training.

Study limitations
The original simulation platform utilized air filled contrast 
syringes. All in the characterization group recognized that this 
detracts from the fidelity of the scenario. In tandem with this 
project, a closed pressure monitored fluid injection system has 
been developed which will be incorporated into any future 
work. This technical development will considerably improve the 
fidelity of the physics based VR MT simulation.

In this study, we only characterized a straightforward and 
reference approach to an MT procedure. We believed that if a 
trainee could not perform a straightforward procedure it was 
unlikely they would be competent to perform a more complex 
procedure. Furthermore, learning to perform MT using a ‘stan-
dardized’ or reference approach facilitates learning by giving 
trainees a safe and effective approach (which they can learn to 
perform to a quality assured performance level) from which they 
can hone the approach to the procedure that best suits them. 
There are other approaches to the performance of MT which 
were not characterized in this study. The methodology employed 
here can however be used to characterize and validate the metrics 
for these approaches in the same detail as reported here.

ConCluSIonS
Study 1 characterized a referenced approach to MT and 
consensus was reached on the essential phases, steps, and proce-
dure errors to be avoided. The metrics were then incorporated 
into a physics based VR endovascular simulation. The results in 
study 2 showed that the experienced INRs completed more of 
the case, faster, and with fewer errors. The results from these 
studies offer support for the face, content, and construct validity 
of the MT metrics. The next step in the validation of these 
VR enabled metrics is to use them as part of a systematic MT 
training program.
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