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Abstract  36 

Despite the identification of several dozens of common genetic variants associated with 37 

Alzheimer’s disease (AD) and Parkinson’s disease (PD), most of the genetic risk remains 38 

uncharacterized. It is therefore important to understand the role of regulatory elements such 39 

as microRNAs (miRNAs). Dysregulated miRNAs are implicated in AD and PD, with 40 

potential value in dissecting the shared pathophysiology between the two disorders. MiRNAs 41 

relevant in both neurodegenerative diseases are related to axonal guidance, apoptosis and 42 

inflammation, therefore, AD and PD likely arise from similar underlying biological pathway 43 

defects. Furthermore, pathways regulated by APP, L1CAM and genes of the caspase family 44 

may represent promising therapeutic miRNA targets in AD and PD since they are targeted by 45 

dysregulated miRNAs in both disorders. 46 

 47 
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Alzheimer’s and Parkinson’s Disease: Two Disorders Along the Same Continuum?  50 

Despite significant advances in our understanding of key pathomechanisms of 51 

neurodegenerative conditions including Alzheimer’s disease (AD; see Glossary), 52 

Parkinson’s disease (PD) and dementia with Lewy-bodies (DLB), successful translation of 53 

this knowledge to benefits for the affected population has been limited [2]. These disorders 54 

show clinical and neuropathologic overlap, which limits diagnostic accuracy and challenges 55 

the traditional concept of distinct entities [3-5].  56 

 The hypothesis that AD and PD are the extremes of a spectrum, with DLB somewhere 57 

between, receives growing support [6]. Cases characterized by pure PD (i.e. α-synuclein 58 

aggregation) or pure AD pathology (i.e. amyloid-β [Aβ] and tau aggregation) are not 59 

representative of the majority of patients who mostly have mixed pathologies [7]. In PD, 60 

spreading of α-synuclein pathology to the limbic system and neocortex is closely associated 61 

with emerging dementia. Moreover, sufficient numbers of Aβ plaques to justify diagnosis of 62 

AD are found in half of the patients diagnosed with PD dementia; however, it is unknown if 63 

and how α-synuclein and Aβ pathologies act synergistically to confer prognosis [8]. 64 

Furthermore, an AD-variant of DLB was described, suggesting that Lewy body pathology 65 

may be present in individuals who do not show the typical clinical features distinguishing 66 

DLB from AD [9]. 67 

 Increasing evidence supports a causal link between certain microRNAs (miRNAs), 68 

short non-coding RNA molecules which modify gene expression post-transcriptionally (see 69 

Box 1. MiRNA biogenesis and function), and different neurodegenerative disorders. In AD, 70 

miRNAs targeting central elements of the amyloid cascade, such as amyloid precursor 71 

protein (APP) [10] and β-site of APP cleaving enzyme (BACE1), have been identified [11, 72 

12]. It has also been suggested that α-synuclein expression, regulated through miRNAs, is 73 
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neuron-type specific, possibly explaining the phenotypic heterogeneity of the different α-74 

synucleinopathies [13] (Clinician’s Corner). 75 

 76 

MicroRNAs in Neurodegeneration 77 

MiRNA expression is controlled by regulatory mechanisms that involve recruitment of 78 

specific transcription factors and the miRNA biogenesis machinery [21]. Neurodegeneration 79 

affects many of these mechanisms, including miRNA expression (i.e. dysregulation) [22]. 80 

Systematic reviews of the published literature for individual neurodegenerative conditions, 81 

followed by meta-analyses of miRNA measurements in brain tissue (but also in blood and 82 

cerebrospinal fluid [CSF]), indicate robust evidence for dysregulated miRNAs [23, 24] (see 83 

Box 3. MicroRNA-based biomarkers). MiRNAs play a major role in neuronal function. 84 

Selective experimental depletion of Dicer [see Box 1.] in midbrain dopaminergic neurons is 85 

associated with neurodegeneration and motor symptoms mimicking PD in mice [25]. 86 

Furthermore, emerging evidence shows that miRNAs are involved in key pathomechanisms 87 

shared by different neurodegenerative disorders, such as neuroinflammation and cell death. 88 

Important pro-inflammatory, anti-inflammatory and mixed immunomodulatory miRNAs are 89 

involved in regulating neuroinflammation in various central nervous system (CNS) 90 

pathologies, including AD [26]. Major deficits in human AD brain [27, 28] and murine 91 

models of AD and related neurodegenerative diseases [29] are the loss of synaptic contacts 92 

and synaptic disorganization. Pathomechanisms related to synaptic dysfunction may link 93 

different neurodegenerative diseases [30], as also suggested by the dysregulation of miRNAs 94 

enriched in synapses of brain regions affected in early AD, such as the hippocampus [31, 32]. 95 

Overall, the emerging knowledge on shared miRNA expression changes in AD and PD can 96 

be used to derive information on central biological pathways involved in the pathogenesis of 97 

both disorders. 98 
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 Understanding the complex relationship between the distinct pathologies in the aging 99 

brain and their clinical phenotypes is crucial for the development of effective treatments. An 100 

approach which considers shared functional networks and pathways seems more promising 101 

than strategies only considering certain select biological markers. Here, we focus on miRNAs 102 

known to be dysregulated in AD and PD brains, and present evidence to support the thesis of 103 

shared biological pathways. We also discuss how therapeutic and diagnostic research could 104 

benefit from this knowledge. 105 

 106 

Dysregulated MicroRNA Networks Cluster in Shared Biological Pathways 107 

Molecular biology techniques and bioinformatic approaches allow researchers to link 108 

differentially expressed miRNAs to specific genes and biological pathways [34]. This 109 

provides valuable insights into the molecular alterations driving disease and unveils altered 110 

biological pathways common across diseases. Interestingly, some genes involved in the 111 

pathogenesis of neurodegenerative diseases are targeted by miRNAs differentially expressed 112 

in AD or PD brains, and the APP gene provides a striking example. The central role for APP 113 

in AD pathogenesis is well established [35], and APP gene variants are associated with early 114 

onset AD [36]. Although evidence for the role of APP in PD is less abundant, one GWAS 115 

showed that rare variants in APP may drive a dementia phenotype in PD patients 116 

[37]Moreover, the mutant form of a key player in PD pathology, the leucine-rich repeat 117 

kinase 2 (LRRK2) gene, was shown to phosphorylate APP and induce the production of its 118 

intracellular domain, resulting in dopaminergic neuron loss in mice [38]. Notably, western 119 

blot analysis in rat neuronal cells and reverse transcription quantitative (RT-q)PCR in human 120 

embryonic kidney cells overexpressing the APP Swedish mutation, reveal that APP is 121 

targeted by miR-195-5p and miR-497-5p [39-41]; these miRNAs are upregulated in AD [24] 122 

and PD brains [23], respectively.  123 
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The example of APP is one of several found in the literature suggesting 124 

pathophysiological connections between AD and PD, mediated by miRNAs. In the following 125 

paragraphs, we synthesize evidence from multiple, unrelated studies and provide insights into 126 

the possible connections of miRNAs dysregulated in AD and PD, and key CNS biological 127 

pathways. 128 

 129 

Caspase Signaling Cascade in Neurodegeneration 130 

Neurodegeneration is closely linked to erroneous activation of apoptotic processes in 131 

neuronal cells [42, 43]. Increased mRNA levels of caspase-3 and caspase-8 in AD and PD 132 

postmortem brain samples demonstrate the importance of caspase genes in controlling 133 

apoptosis in these diseases [44, 45]. Dysregulated miRNAs in AD and PD brains, and 134 

molecules in the caspase cascade, are linked by evidence from several in vivo and in vitro 135 

studies. For instance, transgenic AD mice overexpressing miR-132-3p [53, 54], a miRNA 136 

downregulated in PD brains [23] and knockdown of miR-34a [53, 54], a miRNA upregulated 137 

in AD brains [24], reduce caspase-3 activation. Additional evidence can be found in studies 138 

conducted in other cell types and conditions. In glioma stem cells, inhibition of miR-138-5p, 139 

a miRNA downregulated in AD brains [24], was associated with increased caspase-3 and 140 

caspase-7 activity and apoptosis [46]. In hippocampal tissue of a rat model of hypothermic 141 

circulatory arrest, inhibition of miR-29c, another miRNA downregulated in AD brains [24] 142 

resulted in decreased caspase-3 expression [52]. MiR-363 and miR-34-5p, two miRNAs 143 

upregulated in AD brains [24], inhibit caspase-3 and caspase-9 activity in glioblastoma stem 144 

cells and upregulate the expression of CASP3, CASP6, CASP7, CASP8 and CASP9 in 145 

hepatocellular carcinoma [47, 50]. Conversely, miR-146a-5p, which is upregulated in AD 146 

brains [24], downregulates caspase-7 in a human neuroblastoma cell line mimicking acute 147 
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ischemic injury [51]. These results suggest a common role for caspases in neurodegeneration; 148 

it remains to be seen whether they can be extended to AD and PD models. 149 

Caspase signaling involves a complex interplay of molecular mediators. For instance, 150 

binding of Fas-ligand to FAS, a transmembrane protein, leads to the oligomerization of 151 

caspase-8 and subsequently activates a series of downstream caspases resulting in cell death 152 

[60]. MiRNAs reportedly dysregulated in AD and PD brains regulate mediators of the 153 

caspase cascade. In human neural stem cells, FAS is downregulated by miR-146a [24, 55], a 154 

miRNA upregulated in AD brains. Similarly, miR-133b, which is downregulated in PD 155 

brains [23], reduces the expression of FAS in rat cardiomyocytes [56], possibly due to 156 

decrease of FAIM (FAS Apoptotic Inhibitory Molecule) mRNA by miR-133b as reported in 157 

HeLa cells [57]. These results hold promise for exploring the effect of miR-133b in PD 158 

models or neuronal cells. Interestingly, reduced FAIM expression was noted in AD post-159 

mortem hippocampal specimens [58]. MiR-133b might also participate in AD pathogenesis, 160 

given that miR-133b upregulation was reported in AD patients’ frontal cortex [61]. 161 

 Another member of the caspase family attracting attention is CASP7; it has a missense 162 

variant associated with familial late-onset AD, supporting earlier findings for a role in APP 163 

cleavage [59]. Caspase-7 mediates apoptosis by regulating caspase-1 activity, according to a 164 

study in neuroblastoma cells and PD mouse model [62]. Interestingly, overexpression of 165 

miR-132-3p, a miRNA reduced in PD brains [23], decrease CASP7 expression in pancreatic 166 

cancer cells [49]. Further studies into the link between miR-132-3p, caspase-7 and apoptosis 167 

are needed in PD models to confirm these findings. 168 

 In summary, there is a broad base of experimental evidence from neuronal and non-169 

neuronal cells that particular miRNAs target mediators of the caspase activation cascade. 170 

Notably, several of the miRNAs identified are significantly dysregulated in AD and PD 171 

brains. This observation is relevant to the debate about the role of caspases as therapeutic 172 
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targets in neurodegenerative diseases [63]. However, given the complex nature of the caspase 173 

signaling cascade regulatory mechanisms, the effect of individual miRNAs on particular 174 

mediators remains to be determined. Replication of these observations in neuronal cells and 175 

disease-specific animal models is an essential objective to be met. 176 

 177 

Neuroinflammation and Dysregulated MicroRNAs 178 

The role of inflammation in neurodegeneration has been investigated intensively [64]. While 179 

several pathways contribute to inflammation-driven neurodegeneration, p38/MAPK1 is key to 180 

the vicious cycle of inflammation and neurodegeneration [65, 66]. Aβ, α-synuclein and 181 

inflammatory cytokines released by microglia can activate p38/MAPK1 in neuronal and glial 182 

cells [67], which in turn elicits multiple signaling cascades, including the NF-κB pathway 183 

regulating cytokine and chemokine production. This fuels microglial activation, aberrant 184 

protein accumulation and mitochondrial dysfunction and leads to neurodegeneration [71]. 185 

The role of p38/MAPK1 has been studied extensively in patients and disease mouse models. 186 

Increased levels of phosphorylated p38/MAPK were reported in lymphocytes of AD and PD 187 

patients compared to healthy controls [72]. Moreover, administration of a selective 188 

p38/MAPK1 inhibitor reduced pro-inflammatory cytokine production, tau accumulation and 189 

synaptic dysfunction in an AD mouse model [68, 69]]. Similarly, in a PD mouse model, 190 

activation of p38/MAPK was associated with increased production of pro-inflammatory 191 

cytokines and dopaminergic neuron degeneration [70]. Notably, several studies with non-192 

neuronal cells show that p38/MAPK1 mRNA is targeted by miRNAs downregulated in AD 193 

and PD brains (i.e. miR-132-3p, miR-129-5p, miR-769-5p), and upregulated in AD brains 194 

(i.e. miR-152-3p, miR-195-5p and miR-454-3p) [23, 24, 41, 48, 73-79]. A rat model of 195 

chronic brain hypoperfusion (CBH) which exemplifies vascular disease, a known risk factor 196 

for AD [81], had increased microglial activation and Aβ accumulation [82, 83]. In addition, 197 
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regulation of APP and BACE1 expression via the NF-κB pathway was partially-dependent on 198 

miR-195 expression [24, 80], a miRNA upregulated in AD [24, 80]; therefore, this animal 199 

model provides evidence linking these miRNAs with p38/MAPK1. In PD, a mouse model 200 

study showed that Nurr1, a transcription factor regulated by p38/MAPK1, inhibits the activity 201 

of NF-κB [84]. 202 

Taken together, these findings offer useful insights into p38/MAPK1 as a common 203 

mediator of AD and PD pathogenesis; the role of miR-132-3p, miR-129-5p, miR-769-5p, 204 

miR-152-3p, miR-195-5p and miR-454-3p on p38/MAPK1 will benefit from new 205 

investigations, e.g. in disease animal models. These miRNAs likely target other genes 206 

involved in AD and PD pathogenesis and possibly also the p38/MAPK1 signaling pathway 207 

(influencing its role in neuroinflammation or other biological pathways) and need to be 208 

explored further. Despite the observations that dysregulated miRNAs in AD and PD target 209 

common mediators involved in neuroinflammation, the precise role of inflammation in 210 

neurodegeneration – as a friend or foe – remains ambiguous, and to be further clarified by 211 

additional experiments [85]. 212 

 213 

Dysregulated microRNAs Affect Axonal Growth and Guidance 214 

Axonal development plays a critical role in maintaining and restoring disrupted neuronal 215 

networks [88]. The mRNA of several genes involved in axonal guidance, such as CDK5R1 216 

and p38/MAPK1, are targeted by miRNAs dysregulated in AD and PD, corroborating the 217 

theory of impaired guidance in neurodegenerative diseases. MiR-195, an upregulated miRNA 218 

in AD [24], led to dendrite degeneration and neuronal loss in CBH rat hippocampi, via 219 

activation of the MAPK/DR6 pathway Similarly, in a rat model of neurodegeneration, 220 

overexpression of miR-132, a miRNA downregulated in PD brain [23], was associated with 221 

decreased dopaminergic neuron development and differentiation via decreased levels of 222 
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Nurr1 [90, 91]. In this study Nurr1 downregulated BDNF, a growth factor inducing axonal 223 

growth in AD and PD models [92]. 224 

 The central role of p38/MAPK1 in regulating axonal guidance is also evidenced by its 225 

involvement in signaling pathways mediated by L1CAM and NCAM, two transmembrane 226 

proteins involved in cell adhesion, neurogenesis and synaptic plasticity [93]. L1CAM and 227 

NCAM downregulation may affect cell adhesion and axonal guidance in AD and PD. 228 

Moreover, proteolytic cleavage fragments of L1CAM and NCAM may inhibit axonal 229 

development by competing with other trophic substances, as indicated by increased levels of 230 

L1CAM and NCAM proteolytic fragments in AD patients. Interestingly, L1CAM is cleaved 231 

by ADAM10 and BACE1, similar to APP, indicating a possible intersection between APP 232 

processing and cell adhesion molecules, potentially opening new therapeutic avenues [96].. 233 

 Finally, the mRNA of CDK5R1, another gene involved in axonal growth, is targeted 234 

by the top miRNAs for dysregulated expression in brain; miR-133b downregulated in PD and 235 

miR-363-3p upregulated in AD [23, 24, 41, 75]. CDK5R1 is involved in the Semaphorin 3 236 

(Sema3) signaling pathway; Sema3 may be implicated in AD and PD synaptic dysfunction 237 

[104]. However, it is important to stress that transcripts differ across cell types, with 238 

particular genes expressed in one cell type but not another. The ability of one miRNA to 239 

target a specific mRNA depends on the affinity of the miRNA for that particular target, on 240 

the availability of that target in the cell and on the pool of other possible targets that will 241 

compete with that particular target. Therefore, the above described mechanisms need to be 242 

confirmed in brain-related cell types.  243 

 In conclusion, the current knowledge linking miRNAs dysregulated in AD and PD to 244 

inflammation, apoptosis and axonal guidance, supports the hypothesis that AD and PD may 245 

result from a similar interplay of altered pathways. Magnitude of change, direction of 246 

dysregulation and cell-type affected, are key determinants of the clinicopathological outcome, 247 



Sadlon, Takousis et al.: Shared miRNA in AD and PD 

11 
 

along the AD - PD continuum (Figure 1, Key Figure). So far, most studies have been 248 

conducted in animal models, or cell-cultures from tissues not directly affected by disease 249 

pathology. Thorough characterization of these miRNA-gene interactions in disease-relevant 250 

human tissues and cells would strengthen the current findings of overlapping pathologies and 251 

set the path for developing new biomarkers and therapeutic targets (Box 3). 252 

 253 

MicroRNA-based Treatment of Neurodegenerative Disorders 254 

Dysregulated miRNAs in AD and PD reveal alterations in shared biological processes such as 255 

inflammation, apoptosis and axonal growth hence nourishing hopes for the development of 256 

miRNA-based therapies common to both diseases. Acting as targets or therapeutic agents, 257 

miRNAs could modulate the expression of genes involved in pathways driving both diseases. 258 

For a mouse model of stroke, delivery of a caspase 9 specific-inhibitor, XBir3, to the 259 

cytoplasm of neuronal cells, led to apoptosis reduction [63]. Using a different target, the 260 

administration of the L1CAM mimetic trimebutine, in mice with spinal cord injury, lead to 261 

increased concentrations of phosphorylated MAPK, resulting in increased regrowth of axons 262 

[109]. 263 

 Targeting pathways known to be altered in unrelated pathologies is not a new 264 

approach. In oncology, chemotherapies based on tyrosine kinase receptors are approved for 265 

different types of malignancies. Building on this experience, a liposomal mimic of miR-34a, 266 

known to downregulate more than 30 oncogenes involved in pathways common to several 267 

malignancies, has been developed recently [111]. Lessons learned from drug development in 268 

oncology can stimulate the development of miRNA-based neurodegeneration treatments. 269 

However, it is striking that no clinical trials to investigate miRNA-based treatments in AD or 270 

PD have been launched so far, in contrast to a number of clinical trials in diseases such as 271 
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hepatitis C or type-II diabetes. This is possibly explained by the challenges associated with 272 

the development of miRNA-based treatments for brain disorders. 273 

 MiRNA-based therapeutics rely on two general approaches, either antagonising a 274 

miRNA using an anti-miR or restoring a downregulated miRNA via miRNA mimics. The 275 

miRNA target should be able to modulate the harmful activity of some cells while enhancing 276 

the protective role of others. This represents a first challenge as a given cell type may have 277 

different functions during acute and chronic stages of AD and PD; for instance, while 278 

microglia may play a protective role in early stages of AD by removing Aβ aggregates, they 279 

may increase Aβ plaque formation and neurodegeneration at later disease stages. Once the 280 

optimal cell target and timing of drug administration have been identified, ways to deliver the 281 

drug to the brain need to be defined. MiRNA-based drugs should be protected from serum 282 

endonuclease activity. Also, the hurdle of the blood brain barrier (BBB) needs to be 283 

overcome, and so far, no optimal non-invasive solution has been found. As AD and PD 284 

progress, changes in cell population and composition of the microenvironment surrounding 285 

neurodegeneration may further alter the diffusion of the drug to the target [117, 118]. Besides 286 

these CNS specific hurdles, the development of miRNA therapeutics is also challenged by 287 

overactivation of the immune system following miRNA-based drug administration. 288 

 In summary, miRNAs represent a promising opportunity for the yet unmet need of 289 

disease-modifying treatments in AD and PD. However, questions regarding optimal choice of 290 

target and delivery method to the targeted site need first to be answered. 291 

 292 

Concluding Remarks 293 

Here, we reviewed the current knowledge of exemplary miRNA targets based on cumulative 294 

data that demonstrate commonly dysregulated miRNA in AD and PD physiology. Although 295 

these disorders may arise from similar pathway defects, the clinicopathological outcome is 296 
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most likely determined by key factors, such as the extent of miRNA dysregulation. In the 297 

absence of specific evidence, further experimental validation in appropriate systems would 298 

help to confirm whether the dysregulation of selected miRNAs indeed impacts these 299 

pathways in the diseased brain. 300 

 However, questions remain (see “Outstanding Questions”) and while new miRNA-301 

based diagnostic and therapeutic options may be on the horizon, experimental validation of 302 

hypothesis and thorough evaluation will be required. Deciphering the role and relevance of 303 

dysregulated miRNAs in different brain tissue may yield further answers and offer potential 304 

treatment strategies. 305 
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Box 1. MiRNA Biogenesis and Function 633 

MiRNAs are short non-coding RNA molecules which modify gene expression post-634 

transcriptionally via recognition of binding sites located in the 3´-untranslated region of their 635 

target messenger RNAs (mRNAs) [16]. Upregulated miRNA expression may therefore lead 636 

to translational repression and reduced protein levels. Most of the miRNA families follow a 637 

canonical biogenesis leading to the stepwise conversion of a primary miRNA into a mature 638 

miRNA of approximatively 18-22 nucleotides length (Figure I). Briefly, the process begins in 639 

the cell nucleus, where RNA polymerase II or less frequently RNA polymerase III transcribes 640 

a primary miRNA transcript (pri-miRNA) from miRNA genes. Once transcribed, a 5’ cap 641 

and a 3’ poly-A tail are added to the pri-miRNA. Following this, a complex composed of 642 

Drosha, an enzyme and DGCR8, a RNA binding protein, anchors to the pri-miRNA and 643 

cleaves it into a stem-loop precursor miRNA (pre-miRNA). The pre-miRNA is then exported 644 

into the cytoplasm via Exportin 5, a nuclease export protein. In the cytoplasm, the miRNA 645 

precursor binds to an endonuclease called Dicer. The RNA binding protein TRBP within the 646 

Dicer protein complex cleaves the stem-loop of the precursor and releases a double stranded 647 

RNA molecule. Only one strand, either the 5’ end or the 3’ end strand (referred to as “-5p” 648 

and “-3p” strand), is loaded on a RNA induced silencing complex (RISC). The other strand 649 

may be cleaved by Argonaute proteins located on the RISC. On the RISC, the guide strand 650 

miRNA interacts with different mRNAs depending on the complementarity between the two 651 

structures. In most cases, the 3’ untranslated region of the mRNA interacts with a seed region 652 

located at the 5’ end of the miRNA. This region consists of 6-8 nucleotides and is thought to 653 

be the most important factor regulating the miRNA-mRNA interaction. Enzymes with 654 

endonuclease activity like Argonaute protein 2 and GW182 then cleave the mRNA. Finally, 655 

complexes such as CCR4-NOT and PAN2-PAN3 induce the de-adenylation of the mRNA 656 

leading to its degradation. In recent years, alternative (noncanonical) pathways – though rare 657 
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– in the biogenesis of miRNA have been described. For example, miRNA targeted mRNA 658 

can be sequestered into P-bodies where they can either undergo degradation or be stored for 659 

later use [121]. Also, repression of mRNA can occur independently of RISC [122]. Finally, 660 

while most of the miRNA genes are dispersed in intergenic regions of the genome, recent 661 

evidence suggests that some miRNA genes are within introns of protein coding genes.  662 
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Box 2. Clinicians’ Corner 663 

• Cases of “pure” Alzheimer’s disease and Parkinson’s disease without concomitant 664 

other neuropathologic changes are relatively rare and many cases show diverse 665 

pathologies, including deposition of different pathologic proteins and damage related 666 

to vascular disease. 667 

• Alzheimer’s disease and Parkinson’s disease are increasingly considered as spectrum 668 

disorders. These two neurodegenerative conditions are seen to be positioned at the 669 

two extremes of the spectrum, with Parkinson’s disease dementia and dementia with 670 

Lewy bodies positioned somewhere in the middle. 671 

• MicroRNAs are small, non-coding molecules, which critically affect gene expression 672 

by binding to their target messenger RNAs, thereby reducing the levels of the 673 

associated proteins. Several microRNAs have been repeatedly associated with 674 

Alzheimer’s disease and Parkinson’s disease pathogenesis by targeting key 675 

pathological pathways such as amyloid-β and α-synuclein accumulation. 676 

• MicroRNAs significantly associated with Alzheimer’s disease and Parkinson’s 677 

disease cluster in key biological pathways and there is a functional overlap in 678 

inflammation, axonal guidance and apoptosis.  679 

• In the future, it may be possible to use microRNAs in peripheral body fluids such as 680 

blood and cerebrospinal fluid as pathophysiological biomarkers to aid diagnosis and 681 

prognosis of different late-onset neurodegenerative disorders. Efforts in other areas of 682 

medicine, such as cancer, show that a better understanding of microRNA 683 

dysregulation can also lead to more effective targeted, personalised therapies. 684 

  685 
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Box 3. MicroRNA-based Biomarkers 686 

Different platforms are used to determine relative microRNA (miRNA) abundance in 687 

biological samples. Among these, there are technologies and techniques with narrow assay 688 

focus and high sample throughput (e.g. quantitative polymerase chain reaction, qPCR) on the 689 

one end, and broad assay focus and low sample throughput on the other end (e.g. microarrays 690 

and sequencing).  691 

 The potential of circulating miRNAs as biomarkers for early disease detection was 692 

demonstrated in studies of cancer patients (e.g. colorectal cancer). Notably, circulating 693 

miRNAs were also shown to predict lung cancer incidence several years before the onset of 694 

disease [125]. Elsewhere, when miRNAs in blood samples from patients with one of 14 695 

different diseases were analysed, including autoimmune conditions and cancers, the disease 696 

was correctly identified in about seven out of ten patients [126]. 697 

 In the context of the Alzheimer’s disease (AD)-Parkinson’s disease (PD) continuum, 698 

miRNA-based biomarkers incorporated in the diagnostic process would be useful in different 699 

ways: 1) they could be sensitive and specific to distinguish disorders with overlapping 700 

symptoms and pathology, especially at early disease stages, to enable targeted treatment, and 701 

2) they could be indicative of biological pathways affected, which may be shared between 702 

different disorders, availing healthcare professionals of the opportunity for pathway-specific 703 

treatment options for their patients. On the one hand, miRNAs that are differentially 704 

expressed in PD but not in AD (e.g. miR-221-3p, down; miR-214-3p, down) [23, 24], may be 705 

used to distinguish between PD and AD, and vice versa. On the other hand, miRNAs that are 706 

differentially expressed both in PD or AD cases, versus controls, may be indicative of shared 707 

disease pathway(s); for example, miR-29c-3p and miR-146a-5p, which are downregulated in 708 

PD and AD [23, 24], are implicated in apoptosis through regulation of caspase genes. 709 
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 Interestingly, changes in miRNA concentrations in a bodily fluid and in an organ 710 

involved in pathology are not always concordant and sometimes change in opposite 711 

directions. For instance, miR-501-3p was down-regulated in AD patient serum, but it was up-712 

regulated in the post-mortem brains of the same donors [127]. Therefore, it is unclear whether 713 

differential miRNA expression is a cause or effect of the disease process, particularly in 714 

blood.  715 

 In the future, a blood-based test incorporating miRNA biomarkers may be available, 716 

facilitating diagnosis on the AD-PD continuum; a qPCR-based approach would provide the 717 

required sensitivity and accuracy to enable reliable quantitative measurements, in line with 718 

findings from a systematic comparison of 12 (two sequencing, three hybridization, seven 719 

qPCR) commercially available platforms for miRNA expression analysis [128].  720 
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Glossary 721 

α-synuclein: a presynaptic neuronal protein that is linked genetically and neuropathologically 722 

to Parkinson's disease. 723 

α-synucleinopathies: central nervous system disorders characterized by the presence of 724 

aggregated α-synuclein intracellularly, including Parkinson’s disease, dementia with Lewy 725 

bodies and multiple system atrophy. 726 

Alzheimer’s disease (AD): slowly progressive, late-onset neurodegenerative disorder, which 727 

affects cognitive performance, daily activities and behaviour and which is the most frequent 728 

cause of dementia. 729 

Alzheimer’s disease dementia: dementia syndrome caused by the Alzheimer’s disease 730 

pathophysiological process. 731 

Amyloid cascade: the series of events triggered by the proteolysis of amyloid precursor 732 

protein, which results in the production and deposition of harmful amyloid-β. 733 

Amyloid precursor protein (APP): a ubiquitously expressed transmembrane protein, which 734 

serves as the precursor molecule whose proteolysis generates amyloid-β. 735 

Amyloid-β protein (Aβ): a protein fragment processed from amyloid precursor protein, 736 

which is a major component of senile plaques. Cerebrospinal fluid concentrations are 737 

typically reduced in Alzheimer’s disease. 738 

β-site amyloid precursor protein cleaving enzyme 1 (BACE1): a transmembrane aspartyl 739 

protease with β-secretase activity, responsible for the rate limiting amyloid precursor protein 740 

cleavage step. 741 

Dementia: a decline in global deterioration of intellectual function that is severe enough to 742 

interfere with daily life. 743 

Dementia with Lewy bodies (DLB): second most common type of progressive dementia 744 

after Alzheimer's disease dementia. People with DLB may experience visual hallucinations 745 
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and changes in alertness and attention early during the disease course, in addition to 746 

locomotor symptoms of Parkinson's disease. 747 

Lewy bodies: circular clumps of α-synuclein (and other proteins) that are found in the brains 748 

of people with Parkinson’s disease. They are abundant in areas of the brain that have suffered 749 

cell loss, such as the region containing dopamine neurons. 750 

Parkinson’s disease (PD): slowly progressive, late-onset neurodegenerative disorder, which 751 

affects the motor system with shaking, rigidity, slowness of movement and difficulty 752 

walking. 753 

Parkinson’s disease dementia: dementia syndrome caused by the Parkinson’s disease 754 

pathophysiological process. 755 

Tau protein: an intracellular protein that stabilises microtubules. Alzheimer’s disease and 756 

other tauopathies are associated with a hyperphosphorylation of tau. Cerebrospinal fluid 757 

concentrations are typically increased in Alzheimer’s disease.  758 
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Figure 1. Network of selected genes targeted by dysregulated microRNAs in 759 

Alzheimer’s disease and Parkinson’s disease  760 

 761 

Panel A. The same gene (square) can be targeted by multiple microRNAs dysregulated in 762 

Alzheimer’s disease (AD, red circle) and Parkinson’s disease brain (PD, blue circle). Some 763 

genes (square yellow) are key actors in altered biological processes participating in the 764 

pathogenesis of both disorders [41, 50, 75, 129-132]. Symbols: circle, microRNA; square, 765 

gene. Color: red, microRNA dysregulated in AD; blue, microRNA dysregulated in PD; 766 

yellow, crossing points between pathways. 767 

Panel B. Impact of dysregulated genes on apoptosis, inflammation, and axonal guidance in 768 

AD and PD. (1) Aβ and α synuclein can activate or upregulate FAS [133, 134]. Activation of 769 

FAS stimulates the caspase signalling cascade resulting in apoptosis. (2) Aβ binds to Tumor 770 

Necrosis Factor (TNF) receptor and Toll-like receptors (TLR) leading to cytokine and 771 

chemokine production via activation of the NF κB and p38/MAPK1 pathways [136]. TNF 772 

receptor associated protein 6 (TRAF6) is involved in TLR signalling and has been linked to 773 

ubiquitination of α-synuclein and tau resulting in intracellular protein accumulation in AD 774 

and PD [137, 138]. (3) The neuron adhesion molecules N1CAM and L1CAM regulate actin 775 

cytoskeleton via CDK5R1 and MAPK1 pathways and induce axonal growth [93, 94]. 776 

Semaphorin3 and Slit2 stimulate axonal growth by binding to L1CAM/NRP1 and Robo2 777 

respectively [97, 98, 104]. The nature of interaction between soluble fragments of L1CAM, 778 

α-synuclein and Amyloid-β on L1CAM, N1CAM and Robo2 has yet to be further 779 

investigated.  780 
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Figure 2. Potential microRNA-based drug targets 781 

 782 

MicroRNA (miRNA)-based therapeutics rely on either antagonising a miRNA using an anti-783 

miR or restoring a downregulated miRNA via miRNA-mimics. The miRNA target should be 784 

able to modulate the harmful activity of some cells while retaining the protective role of 785 

others. However, miRNA-based drug development is associated with challenges: miRNAs 786 

need to survive serum endonuclease activity (A), blood brain barrier needs to be overcome 787 

(B), the compound needs to diffuse across the brain parenchyma (C), immunogenicity of 788 

miRNA-based drugs on microglia is unclear (D) and finally, ways to deliver miRNA-based 789 

drugs to the target cell (E) and methods to induce the desired repression (F) need to be clearly 790 

identified. Pathways regulated by caspase genes (Option 1), APP (Option 2) and L1CAM 791 

(Option 3) represent potential therapeutic miRNA targets in Alzheimer’s disease and 792 

Parkinson’s disease as they involve genes targeted by dysregulated microRNAs in both 793 

disorders. Moreover, experimental studies based on XIAP, a caspase-9 inhibitor and L1-794 

mimics have reported promising results on their ability to inhibit neuronal death and 795 

stimulate axonal growth.  796 

 797 


