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ANALYSIS OF PATTERNS OF ENERGY DEPOSITION

A Survey of Theoretical Relations in Microdosimetry

Albrecht M.Kellerer, Institut fir Biologile der GSF,Neuherberg,
and Rad. Res. Lab. Columbia University, New York.

Abstract: The microscopic patterns of energy deposition by
tontzing radiation are described by ROSSIs probability distri-
butions of specific energy, z. Theoretical derivation and ana-
lysts of the microdosimetric functions is based on the con-
cepts of probability theory. These concepts are outlined, some
theoretical relations of practical import are listed, and

existing computational techniques are referred to.

INTRODUCTTION

Historically microdosimetry has originated from the attempt to
determine LET distributions Or fluence distributions of charged
particles from pulse height spectra observed in proportional
counters. While this attempt has been only partly successful,
it was soon realized that the experimental spectra are of
interest in themselves, and of direct applicability to radio-
biology. It has been for this reason that H.H.ROSSI and his
coworkers started to inquire the distributions of energy im-
parted to microscopic volumes. The present paper compiles some
of the more important properties of these probability distri-
butions. The survey is based on the definitions and terminolo-
gy presented in the proceedings of this conferencel!. It is in-
tended to provide an easy orientation, and no claim for com-
pleteness is made. For brevity some of the material is present-
ed without detailed explanations, and proofs for some of the
theoretical statements have to be omitted.

Probability theory is the tool of theoretical microdosimetry.
The monographs by FISZ2, FELLER3, or GNEDENKO* as well as .any
other standard textbook on probability may be used for refer-
ence to the concepts of distributions, their moments, their
characteristic functionsy, and their semi-invariants.

There is every reason to assume that radiation fields which
produce the same spatial patterns of energy deposition also
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produce the same biological effects. It further appears that
there is essentially a one-to-one relation between the spatial
patterns of energy deposition and the set of probability dis-
tributions f,(z) for a region of given shape but varying size.
Theoretically it should therefore be possible to reconstruct
spatial patterns of energy deposition from a set of distribu-
tions f,(z). One may, conceptually, subdivide a block of tissue
into infinitesimal elements each small enough to contain at
most one ijonization. The number of possible permutations of a
given number of ionizations into these cells is finite. For
each assumed permutation one can calculate the set of functions
fi(z). Consequently one can select the permutations with mini-
mal difference of these functions to a given set of distri-
butions. Due to the enormous number of possible permutations
the method is, of course, entirely impracticable. It indicates,
however, that there is, at least in principle, a way back from
the microdosimetric functions to the actual patterns of energy
deposition. The question whether an operational method can be
found to reconstruct the spatial patterns of energy deposition
from the distributions f;(z) is one of the interesting open
problems of microdosimetry. If such a method existed it would
strongly support the present system of microdosimetric func-
tions. If it did not, one may have to look for more appro-
priate ways to describe the microscopic patterns of energy
distribution.

As yet there is no technique to extract all information con-
tained in the distributions f;(z). Consequently it is also not
possible to calculate the distributions for a non-spherical
region from those determined in spheres. Neither is it possible
to calculate the joint distributions for adjacent regions if
the distributions are known for the individual regions. Know-
ledge of the mechanisms of radiation action and of the sensi-
tive sites in the cell is still too spurious to warrant exten-
sive model building involving hypothetical critical regions
and their z-distribution. There are, however, certain experi-
mental findings which -even now require the application of
z-distributions other then those belonging to-individual
spherical regions5. Experimental determination of the distri-
butions for all cases of possible interest would lead to an
unmanageable pile-up of data. It is for this reason that one
has to go back to the fluence distribution of charged particles
associated with a radiation field. Knowing the collision cross
sections one can in principle calculate all distributions of
imparted energy which may be needed. Accordingly the following
survey will first deal with the general properties of spezific
energy, z, and its distributions. Then the derivation of the
distributions for a given radiation field is discussed.
Finally some of the methods will.be mentioned which have to be
employed if LET distributions or fluence distributions are to
be derived from observed z-distributions.
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A. GENERAL PROPERTIES OF MICRODOSIMETRIC QUANTITIES
1. The random variable, specific energy, z.

The specific energy, z, is defined as the energy imparted to a
specified region by 1onizing particles divided by the mass of
that region. There is no statement about the precise energy
value above which a charged particle is called ionizing. Con-
sequently the cut-off energy below which further degradation
of energy is not considered is left open; it may lie somewhere
between leV and 30eV. In addition there is some question whe-
ther a portion of the imparted energy should be altogether ex-
cluded from the bookkeeping®. Fortunately the freedom in the
definition of z does not affect the distributions of z too
strongly except for extremely small volumes. Electrons up to
30eV have. a range short as compared to the dimension of wolu-
mes for which microdosimetric functions are presently avail=
able. The choice of the exact cut-off level below which a fur-
ther spatial degradation of energy is neglected is therefore
irrelevant. The second ambiguity is more serious. If one de-
rives z-distributions by looking 6nly at a fraction of the ab-
sorbed energy, the distributions may appreciably change. The
change is, however, small if one deals with energies much lar-
ger than the w-value of the events which are taken into ac-
count. If, for example, one counts ‘ionizations in gas, one
ghould (with appropriate correction for the multiplication
statistics) obtain dependable spectra at z-values which cor-
respond to more than 100eV. For lower energies the definition
of z is indeed critical.

2. Distributions of specific energy

f(z;D) is the probability density (differential distribution)
of z. The corresponding sumdistribution is F(z;D). The value
of F(z;D) is equal to the probability that the specific ener-
gy is not larger than z at dose D; it is also equal to the
probability that a dose larger than D is needed to reach fhe
value z of specific energy:
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F(zsD) = P(z<z;D) = P(D>D;z) (1)

Thus F(z3;D) is a distribution with regard to both z and D. One
must note, however, that f(z;D) does not have this double pro-
perty; it is not the probability density for the dose D needed
to reach the value z. For a discussion of the latter function
and its application to radiobiology data see?. The distribu-
tions f(z;D) or F(z;D) need not be derived experimentally, they
can be calculated from the single event distribution f;(z) as
discussed in section C and E.

The single event distribution f;(z) and the corresponding sum
distribution F,(z) are commonly derived from pulse height spec-
tra observed in proportional counters. The pulse height spectra
are broadened due to the fluctuations in the number of ion
pairs produced by a certain energy and in addition by the mul-
tiplication statistics of the counter. These two stochastic
factors can, however, to a first approximation be neglected in
comparison to the genuine fluctuations of energy deposition
(see section D). Moreover the resolution error can be elimi-
nated from the spectra (see section E).

Theoretical derivation of fi(z) involves LET distribution,
cord length distribution in the volume of interest, and
straggling distributions. In general the interplay of these
statistical factors is complicated, and there is no unified
approach. A special case is that of heavy charged particles
and large mean energy losses. There the particle tracks may
be treated as straight continuous lines of energy deposition,
and straggling may be neglected (see CASWELL®). Another spe-
cial case is that of a region small as compared to the range
of the charged particles which are considered, but not much
smaller than lum in diameter so that delta-ray effects are not
prominent. Then the particle segments can be treated as
straight lines of constant LET (see?»%). Straggling is then
the central problem. With very small volumes the delta-ray
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problem becomes exceedingly complicated. Monte Carlo calcu-
lations of delta-ray tracks and experiments with wall-less
proportional counters must then be used.

3. Related quantities

The distributions of specific energy are the basic microdosi-
metric functions. The random variable y and its distributions
are useful for certain comparisons to LET theory. They are,
however, so closely connected to z and its distributions, that
“hey need not be separately discussed here. The same is true
lor the distributions of energy in z or y (seel). The moments
of the z-distributions, however, are additional quantities of
great practical importance, and must therefore be mentioned
here.

Absorbed dose, D, is equal to the mean value, z, of specific
energy. In a radiation fie]d or in a material with significant
gradients on a microscopic scale D is defined as the 1limit of
Z as the volume surrounding the point of interest shrinks to
zero.

The frequency mean, zp, of f;(z) determines the mean number,
D/Zf, of absorption events at dose D. The probability for
exactly v events is:

p(v) = e-D/EF~(D/-Z_F)v / v! with zp = jz-fl(z) dz (2)
°

The 'energy mean', zp, of f1(z) determines the mean square

deviation, o2, of-specific energy from its mean value, the

absorbed dose, D:

62 = TpeD  with Zp = f 22 £)(z) dz / ZF (3)
[}

The relative variance of z (or of imparted energy) is there-

fore eqqa] to zp/D. These relations are special cases of the

formulae derived in section C.
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If one approximates the energy absorption process by equal
and statistically independent energy absorption events (pure
Poisson process, i.e. f,(z) is assumed to be a Dirac delta.
function) and if one wants to obtain the correct mean square
fluctuations of energy deposition then one must choose the
event size ED‘ If on the other hand one wants the right fre-
quency of absorption events one must choose the event size EF
Both quantities may differ by an oder of magnitude, ED being
always larger. This indicates the inadequacy of any model as-
suming pure Poissonian statistics.

B. AUXILIARY RELATIONS
1. Moments

In this and the following paragraphs relations are given for
continuous random variables. For discrete type variables the
integration has to be substituted by summation over all jump
points. Integration or summation is understood to extend over
the full range of the random variable whenever the limits o
to » are given. The random variable is denoted by x, its dis-
tribution by f(x).

The moment of order « is the expectation value of x

m = xS = S x<of(x) dx (8)

The moments with respect to the mean are called central mo-
ments:
be = ()" (5)

The second central moment is also called variance, 02=m2-m%.
The third central moment is equal to m3-3m1-m2+2m¥¢
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2. Characteristic functions

The characteristic function of a random variable, x, is the
expectation value of eitx. Except for a constant factor it is
equal to the Fourier transform of the distribution f(x). The
characteristic function will be designated by the Greek letter
corresponding to the Roman letter used for the distribution:

o(t) = e = [ eTPr() ox (6)
. itx P e
Expanding e into a power series:
E:gltx) (7)
v=
one can express ¢ in terms of the moments:

°°m
=§[:;§.<it)“ (8)

3. Convolution

If a random variable is the sum of two statistically indepen-
dent random variables distributed according to f(x) and g(x)
then the distribution of this sum is the result of the con-

volution operation:
X

h(x) = j F(x-x") g(x') dx' (9)
o

This operation is commonly abbreviated by f(x) % g(x). The
characteristic function. (the same holds true for related
transformations as for example the Laplace transform) is of
great practical significance because it reduces the convolu-
tion to a mere multiplication. If n(t), ¢(t), and y(t) are
the characteristic functions belonging to h(x), f(x), and g(x)
one has:

n(t) = o(t) - v(t) (10)
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If one considers the logarithm of the characteristic function:
In n(t) = In ¢(t) + In y(t) (11)

One may expand In ¢(t) into a power series:
= K
n ¢(t) =§[: 3% (it)" (¢(0)=1 therefore x, =o) (12)
v=1
The coefficients, « , are called semi-invariants. They are im-
portant because they are simple combinations of the moments,
and according to equ.(11) they add in a convolution.

4., Relations between the moments, the central moments, and the
semi-invariants.

Comparisdn of the coefficients in equ.(8) and (12) leads to
the following relations between the moments and the semiin-

variants:
K] = M
2
»<2=m2-m1=02
2
K3 = M3 - My-my, + 2m1 = yus (13)

2 2 4 2
Ky m, - 3m2 - 4my-my + 12m1om2 - 6rn1 = uy - 3u2

The inverse relations are:

_ 2
mz—Kz‘f‘Kl

3
m3 k3 + 3kycky + K

2 2 4 (14)
my, = ky + 3K2 + 4kyecg + 6K1'K2 t ok

In practical cases one may use the mean and three dimension-
less parameters to characterise a distribution. The parameters

are the relative variance, V; the skewness, SK; and the kurto-
sis, K (sometimes called peakedness):
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vV = 02/;2 = K2/K§ = mz/mi -1
1.5
SK = u3/03 = K3/K2 (15)
K = py/ot = Kq/K% + 3

For normal distributions the socalled .resolution, R, is often
used. It is defined as fractional width at half of the maximum
value, and it is related to V by:

R=2.77-/V (16)

C. THE DOSE DEPENDANT z-DISTRIBUTIONS AS FUNCTIONS OF THE
SINGLE EVENT SPECTRUM

The central mathematical problem in microdosimetry is the com-
pound Poisson process. The term Poisson process implies that

a random variable is the sum of statistically independant in-

crements. The word compound (or mixed) signifies that the size
of the increments is not constant but is itself a random va-

the Poisson process.

The distributions f(z;D) are a result of a Poisson process with
the spectrum f;(z):

0

f(z;D) = Ze'" %—\:— . f’fv(z) (17)

V=0

where n=D/'z'F is the mean event number at dose D, and f?v(z)
is the v-fold convolution product of f;(z). The term

e ".nV/v! is the Poissonian probability for the occurence of
exactly v events, and ffv(z) is the distribution of z under

the condition that exactly v events have occured.
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In section C.3 it will be shown that the straggling distri-
butions are also solutions of a compound Poisson process. The
following considerations are therefore also to be applied to
the straggling problem.

Transforming the distributions f(z;D) and f,(z) into their
characteristic functions ¢(t;D) and ¢,(t) one obtains the
transformed equ. (17):

el

6 (t3D) =Ze-n ‘:—. Ce¥(z) = e Menta(t) _en(er(t)=1) (qgy

V=0

and hence:
Tn ¢(t;D) = n(e,(t)-1) (19)

If Kv(D) are the semi-invariants of f(z;D) and if m are the
moments of f,(z) then according to equ.(8), (12), and (19):

(-] N [ m
Z :!(D) (it)Y = n- Z v—:’ (it)V (20)

v=1 v=1

and since this relation holds identical in t, one has:

k. (D) = nem (21)

v v

This important relation says that in a compound Poisson pro-
cess the semi-invariants of the solutions are equal to the
product of the mean event number times the moments of the
spectrum of the Poisson process:

If one substitutes the mean event number by D:
n = D/m = D/Zf (22)

one obtains the following relations for the variance, re-
lative variance, skewness, and kurtosis of the distribution
f(z;D):
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o2 = Demy/m; = Zp+D (23)

V = 02/D% = 7p-D7!

wn
ol
n

m?.s.mz-l.s.ma.o‘o.s

K =mpempy”2.em,+D"1 + 3

For a given distribution f,(z) the dose dependant distribu-
tions f(z;D) are derived numerically. The relations between
the characteristics V, SK, and K of f(z;D) and the moments of
fi(z) provide an easy check of accuracy for the numerical
calculations. The computational techniques for the solution
of the compound Poisson process are referred to in section E.

D. FACTORS RELEVANT TO THE SINGLE EVENT SPECTRUM f,(z)

As mentioned in section 2.1 the single event spectrum reflects
various stochastic factors. Accordingly there is no general
formula for f;(z) as a function of the charged particle
fluence spectrum and the shape of the volume of interest. The
problem has to be treated with analytic or numerical tech-
niques appropriate to each individual case.

In the derivation or in the analysis of the spectrum f,(2z)
one can often start with simplified assumptions, and then
account for the deviations from the idealized model by cor-
rections. The most important idealized cases are:

a) One deals with heavy charged particles, and the mean dia-
meter, £, of the volume of interest is large as compared to
the maximal range of delta-rays. In this case straggling can
be neglected and the tracks of the heavy charged particles
can be considered as straight lines. The derivation of f,(z)
is reduced to the calculation of the distribution of initial
energies of heavy charged particles, and to the geometrical
problem of intersecting the resulting straight tracks with
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the region of interest. For further details one may refer to
the detailed treatment given be CASWELL®.

b) The mean diameter, &, of the volume of interest is large
as compared to the maximal range of delta-rays, but small as
compared to the ranges of the primary charged particles.
Though this case is hardly ever realized it has been taken as
the principal model for the derivation of LET-spectra from
measured pulse height distributions. The case is also of
interest because it reflects one aspect of the more general
treatment mentioned in the next paragraph.

In the following the sum distribution F,(E) and the density
fi(E) of energy, E, imparted in single absorption events will
be used instead of the distributions F,(z) and f;(z) of spe-
cific energy, z. This is merely done to avoid trivial con-
version factors. The LET sum distribution in tracklength is
called T(L), the corresponding density is called t(L). The
sumdistribution of cord-length, 2, is C(2), the corresponding
density c(2). Then the sumdistribution of energy deposition
in single absorption events is:

F1(E) t(L)-C(E/L) dL (24)

n
o%~———38

and therefore:

d Fi(E) d T p dL
FL(E) = — 0 s —j £(L)-C(E/L)dL = j t(Ly-c(e/L) & (25)
d E EY ) L
or: ®
f1(E)+E = J t(L)+Lec(E/L)-E/L-d1nL (26)

If one considers the logarithms of the variables E,L, and &
and designates the probability densities of these logarithms
by italics, one has:
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d Fy(E)

FL0nE) = = Ef, (E
d InE

t(ng) = 9E) - pLpqn) and (27)
dinL

e(ny) = 4C(2) 4.y

d Tnx

Thus from equ. (26) one obtains:
+ o
f1(1nE) =J. t(InL)+e(InE-1nL) dinL (28)

-0

Thus the distribution of 1nE is the result of a convolution of
the distributions of 1nL and of 1ng. This is quite obvious
even without formal derivation. The random variable E is the
product of the two statistically independent random variables
linear transfer, L, and cord length, 2. Accordingly the loga-
rithm of E is the sum of the random variables InL and Ing;
hence the convolution integral. From equ. (28) it follows that
the non-central moments of f,(E) are equal to the product of
the non-central moments of c(2) and t(L). Specifically:

E =20 and (29)

E2 = 22 . L2 or Tp =1 T (30)

where Ep = E2/T is the dose mean of the event spectrum, T
the dose mean of LET (seel), and 2=22/%7 the analogon of a
dose mean for the cord length distribution.

From equ.(21) and (30) one can easily derive the relation be-
tween the relative variance of fy(E), t(L), and c(2):

Ve = Vo VigT * Vo + VigT (31)
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This is a relation useful for a rough estimate of the shape of
the pulse height spectra. For a sphere one has VQ=O.125 (see
section D.2). Thus whenever the LET-distribution is not extre-
mely narrow, the relative variance of the single event spec-
trum in a spherical counter is mainly determined by the rela-
tive variance of LET:

Ve = 1.125 « V¢ + 0.125 (32)

E T

For the frequency and the dose mean of the single event spec-
trum one obtains in this case:

and ED = %-d‘fo (d: sphere diameter) (33)

F

.2
E = g‘d'rT

Energy straggling which is neglected here can strongly in-
crease the value of VE and fD; this is discussed in D.3.

Equation (28) can be used to derive the LET-distribution from
an observed pulse height spectrum f;(E) and a known cord
length distribution. The method which is based on the use of
characteristic functions is mentioned in section E.

c) The mean diameter of the critical volume is small as com-
pared to the range of the primary charged particles. The track
segments are considered as straight, but straggling is taken
into account.

For very small volumes the problem of delta-ray efflux and in-
flux is too complicated to be discussed here (for details
see?). For volumes of a diameter of the order of magnitude of
a micrometer one may assume a suitable cut-off energy below
which the primary collisions are considered as local and above
which they are excluded. The cut-off should actually depend on
the position of the trajectory and on the velocity of the
charged particie. Especially for electrons it is however a
reasonable approximation to assume a constant collision spec-
trum with cut-off energy corresponding to a delta-ray range
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equal to half the mean diameter of the volume. This approxi-

mation can always serve as a starting point for more refined
calculations.

Under this assumption of a constant 'effective' collision
spectrum one can calculate the straggling distributions s(E;E)
to different mean energy losses E. This is described in sec-
tion D.3. One may then first calculate the single event spec~
trum fi(E) without consideration of the straggling. In a se-

cond step the straggling can be taken into account according
to the relation:

f1(E) = J s(E;F)-f, (F) dE (34)
o)
The properties of the straggling kernel s(E;E) and the influ-
ence of the straggling on the width of f;(E) is discussed in
D.3. Analytical techniques to eliminate straggling from a dis-
tribution f;(E) are mentioned in section E.

The analysis of f,(E) cannot be fully discussed in this survey.
The following two sections are therefore restricted to the two
random factors cord length fluctuations and energy deposition
straggling. These are the two main aspects in which microdosi-
metry adds to the classical LET concept.

2. Cord length distributions

If a convex body is uniformly and isotropicly traversed by
straight particle tracks one obtains a distribution, c(2),
of cord length, 2. For a sphere ¢gf diameter d one has:

c(2) = 22/d?2 and C(2) = &2/D2 for o<g<d
whicn leads to: (35)

7=29  ang 62/T° = 0.125
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For cyi%nders cord length distributions have been calculated
numerically by WILSON and EMERY!0, BIRKHOFF et al.!l have de-
rived cord length distributions by Monte-Carlo methods; they
also present a useful discussion of analytical expressions for
some special cases. Numerical derivation of cord length dis-
tributions by direct integration over a body of arbitrary con-
vex shape is straight forward. It is performed by a computer
program which is available in ALGOL 60. The program divides
the surface of any given body into small elements by collaps-
ing a ruled-globe net over it. By summing the cord length con-
tributions from all possible pairs of surfaceelements the pro-
bability distribution is derived. Distributions for spheroids
together with the values of the mean, the relative variance,
the skewness, and the kurtosis have been published®.

The mean value of the cord length in a convex body is equal to
four times its volume divided by its surface:

o o= 4V/S (36)

This relation which has already been given by CAUCHY has found
applications in neutron physics. In the following the term
4V/S will be called mean diameter, %, of the body. The theorem
can be generalized to tracks of finite length. If the mean
length of the straight tracks is ¥, one obtains the following
formula for the mean segment length s:

(37)

w| =
1

= f—
+

Sl

The proof is omitted here. A broader generalization of the
theorem to curved tracks will be given below.

If tT is the track average LET wiph appropriate cut-off, the
mean energy deposition per event is fT-E. Accordingly one ob-
tains the following formula for the mean number, ¢(0), of
events per unit dose:
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L 3.4 (38)

o(0) = n
( 16.T; 4 ¥

or if E designates the mean initial energy of the charged par-
ticles:

#(0) = —— (2T 4 v (39)
16-F 4

The units keV and um are used here (as for the numerical cons-
tant seel).

One may suspect that the sphere has the smallest relative va-
riance of cord length (V=0.125) of all convex bodies. There 151
however, no generally known proof of this assertion. The in-
crease of V due to deviations from the spherical shape can be
seen in the curve given for spheroids®.

The preceeding discussion has been concerned with straight par=
ticle tracks. It is therefore mainly applicable to heavy char-
ged particles. For the curled tracks of electrons the situation
is more complicated, but statements on the mean segment length
are still possible. Imagine that a track is cut in all points
where it intersects the surface of the region of interest. The
term 'segment' then designates a piece of the track which lies
inside the region. If the total track lies inside the region

it is also called a segment. The length of a track or a segment
is understood to be its total integrated length. One can then
show that the mean segment length, ¥, in the c¢ase of a uniform,

1 (r: mean range of particles) (40)

¥

+

A |
S ln
<<

The symbol ¢ has been avoided here because the relation in fts
general form also holds for concave volumes and the term mean

diameter has little meaning in this case. For long tracks the
relation reduces to: )

S = 4v/S (41)

The general proof of this somewhat surprising extension of the
theorem (36) is not too difficult but must be omitted here for
brevity. The proof consists essentially of an enumeration of
the number of intersection points, starting points, and stopp-
ing points of the tracks. The theorem even holds if one in-
cludes the length of all branches and subbranches of the track
length or segment length.

-123 -



One can show that under the conditions of FANOs theorem‘%ne ob-
tains exactly the same shapes and relative frequencies of seg-
ments in a region and in a cavity which simulates this region.
The wall-etfects merely consist in an increase in the frequency
of associated segments, that is of segments which belong to the
same track and thus occur simultaneously. This increase in the
frequency of simultaneous passages leads to a corresponding in-
crease in mean event size, EF‘

A detailed study of the probabilities of multiple passages will
be necessary in order to determine the extent of wall-effects
in proportional counters. A first estimate should be possible
on the basis of the following relation which holds for spheri-
cal cavities equivalent to volumes which are small enough that
the change of energy and direction of a traversing particle can
be neglected. One can prove that in this case the probabilities
for multiple traversals through the sphere are equal to the
probabilities for multiple passages through a plane. For aniso-
tropic radiation fields one has to average the latter probabi-
lities over planes of all orientations. The probabilities for
multiple traversal through a plane (charged particle albedo)
may be derived from cloud chamber photographs or from Monte
Carlo simulations of tracks?’®

3. Energy straggling

The term energy straggling designates fluctuations of energy
loss along the track of a charged particle. The following sec-
tion deals with energy straggling along track segments which
are short enough that the mean energy loss of the charged par-
ticle is small as compared to the kinetic energy of the par-
ticle: The stopping power of the particle can then be assumed
to be constant along the track segment. The case of larger mean
energy loss is irrelevant to microdosimetry since the relative’
fluctuations of energy loss are then small enough to be neglec-
ted.
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As can be seen from equ.(24) LET and cord length variations
present no difficulties in the calculation of z-spectra.
Sttraggling is therefore the central problem in theoretical mi-
crodosimetry. The straggling problem is complicated in micro-
dosimetry by the fact that one is interested not in the dis-
tiribution of energy loss of a particle, but in the distribu-
tion of energy deposition. The escape of delta-rays from the
riegion of interest and the corresponding influx of delta-rays
formed outside the critical volume presents considerable theo-
retical difficulties. The problem has to be studied by the de-
ployment of wall-less proportional counters®and by Monte-Carlo
simulations of delta-ray tracks!“.

The collision spectrum, w(E), is the probability distribution
of energy transfers in the collisions encountered by the
charged particles. For a general discussion seel5s16, In the
special case of an non-relativistic heavy charged particle:

w(E) -~ 1/E2 for  Eyin < E < Eyay (42)

i LU
with E = 4 EKIN and E

MAX M

min = 1%/Emax

mass, m is the electron mass, and I is the ionization poten-
tial of the medium. The relation is meaningful for E>>I. The
value of EMIN has been assumed merely to arrive at the right

stopping power. In reality w(E) has renonances in the vicinity
of I.

At higher energies w(E) has to be corrected for delta-ray es-
cape and influx if it is to describe energy deposition in the
region of interest and not total energy loss of the charged
particle. One may choose an appropriate cut-off energy or
derive the effective spectrum by integrating escape and
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influx probabilities over the particle track in the vicinity
of the segment of interest.

The mean energy loss, §;, in a collision derived from equ.
(42) has no meaning since the unrealistic low energy part of
this spectrum strongly affects §;. Values of typically 60eV
are indicated by experimental resultsl!?,

The 'energy mean' is, however, mainly dependent on the shape
of w(E) at high values of E and can therefore in good
approximation be taken from equ.(42):

_ L E2.w(E) dE . FMAX
S E w(E) dE  21n(Eyax/I)

(43)

As an example one may give the value of §,=480eV for a 2MeV
proton in water (I=60.5 eV). The actual value of &, is some-
what larger due to the influence of the resonpance collisions!S

The straggling distribution reflects the succession of sta-

tistically independent collision events of varying size. It

is therefore the solution of a compound Poisson process, and
in full analogy to equ.(17) one obtains:

s(E3E) = }::e’".%; cw* (E) with n=F/s,. (44)
V=0
and also
s(r;E) = eMlulx)-1) (45)

where s(t;E) and w(t) are the characteristic functions of
s(E;E) and w(E). This relation applies not only to the cha-
racteristic functions (Fouriertransforms) but also to the
Laplace transforms. The latter -is being used in the classi-
cal straggling theory of LANDAU!® (assumption: Eypy=«) and
in the more generalized theory of VAVILOV!®, Both theories
are restricted to the 1/E2-spectrum and its relativistic
modifications and to the case of many collisions. Rough cor-
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recctions for the initial part of w(E) are introduced by BLUNCK
and LEISEGANG20 for the LANDAU theory and by SHULEK et al.2!
for the VAVILOV theory. In microdosimetry the classical theo-
ries are inadequate since one often deals with small energy
losses where few collisions occur and where the initial part
of w(E) is important. Furthermore one has to use appropriate
corrections of w(E) at high energies to account for the delta-
ray escape and influx problem. This has made a more general
soolution of the straggling problem necessary. The available
computer programs for direct numerical derivation of the
straggling distributions for arbitrary coilision spectra w(E)
are discussed in section E.

Im analogy to the results derived in section C one finds that
the semiinvariants Kv(F) of the straggling distributions are

equal to the mean collision number times the non-central mo-

ments of w(E). Specifically with E=n-s;:

V = §,/F (46)

Whenever the straggling distribution is near to a normal dis-
tribution the 'resolution' is a useful characteristic:

R=2.77 76,/ E . . (47)

The value of &, from equation (43) is usually sufficiently
accurate for.a rough estimate. For small volumes &, can how-
ever be markedly decreased due to the delta-ray escape and the
corresponding cut-off in w(E)} (see?2),

The combined influence of the various statistical factors on
the width of "the single event spectrum f;(E) is described
elsewhered. Here it may suffice to give the formula for the
relative variance of the distribution f,(E) or f;(z) which re-
sults from equ.(31) and 34):
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82

Ve—=+vV

- LET Vcord 1ength * Y

LeT * YCord Tength (48)

For the 'dose mean', ED’ of the single event spectrum f,(E)
one obtains:

Ep =62 + T - 3 (49)

Where tD is the dose mean LET, and % = ZE/I is the analogon
of a dose mean for the cord length distribution (see equ.(30)).

‘For a sphere:

7= %-d and % = %od (d:diameter of the sphere) (50)

and consequently:

-E_D = 52 + ‘Z"d‘t

—
ol
e

~

D

For the dose mean,'yb, of the event size one has:

_ - . - _3.%2 9

Y = 82/8 + rD-E/l and for a sphere yp = >4 + H'rD (52)
These formulae are important for radiation quality considera-
tions, where the dose mean LET, tD’ may be the quantity of in-
terest, while }D is experimentally observed. For brevity the
influence of the FANO fluctuations23 and of the multiplication
statistics on experimental pulse height spectra is not dis-
cussed here (see®). It may, however, be remarked that due to
the fluctuations in the number of ions (FANO fluctuations) the
value of V in equ.(48) is increased by w/2E (with w=34eV), and
due to the multiplication statistics V is increased by w/E.
The latter value corresponds to an exponential single-event
spectrum. With optimal performance of the proportional counter
the term is somewhat smaller. One may, however, state in ge-
neral that the straggling term §,/FE always exceeds the term
zw/f by far. This is the reason for the applicability of pro-
portional counters in microdosimetric measurements.
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E. COMPUTATIONAL TECHNIQUES

The following is a brief discussion of some computational pro-
cedures developed for microdosimetric calculations. Details
for the actual use of these procedures must be taken from the
available program listings.

1. Solution of the compound Poisson process by successive con-
volutions.

An early attempt to integrate equ.(44) has been made by WIL-
LIAMS2% A computer program to solve the mathematically iden-
tical equ.(17) has been developed by B.BIAVATI25, Direct inte-
gration has the disadvantage that a great number of distribu-
tions fn(z) must be calculated; moreover execution of the con-
volution operation on a linear scale is ineffective since the
spectra wW(E) or f;(z) can be extremely wide. Shorter computa-
tion times have been achieved by Monte-Carlo solutions of the

compound Poisson process’; the accuracy of Monte Carlo methods
is however limited.

A new program has therefore been developed which derives
straggling distributions by a series of successive convolu-
tions. The program is exact, and since the convolutions are

performed -on-a logarithmic scale the computation times are ac- - - -

ceptable. This program is available in FORTRAN IV and can
without alterations be used to derive straggling distributions
for any given collision spectrum w(E) or to derive dose depen-
cant distributions f(z;D) for any given single event spectrum
f1(z). For details see26 and?.

¢. Solution of the compound Poisson process by use of the fast
Fourier transform algorithm.

"he program mentioned under 1. derives solutions of the com-
pound Poisson process for a given characteristic spectrum. It
can not be used in the opposite direction. That is, it can
rnot derive the characteristic spectrum from a solution.
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It is,however, possible to derive w(E) if in the equation:

3
\Y

s(E;T) = }:E‘" nV/vl « w¥ (E) (53)

V=0

s(E;E) is known for some value of E. This can be seen from
equ. (45) which holds for the characteristic functions (or
Fourier transforms):

s(w;E) = enlu(r)-1) or (54)
w(t) = lﬂ-ﬁﬁligl i1 (55)

fhus the characteristic function of the unknewn collision
spectrum w(E) can be expressed in terms of the characteristic
function of the solution s(E;E). Equ.(55) is evaluated by a
computer program winich uses the fasi Fourier transiorm algu-
rithm of COOLEY and TUCKEY27. The logarithm, 1n s{t3E), is not
uniquely defined for complex t. In the computer program it is
made unique by the choice of a suitable continuous representa-
tion of s(t3;E) in the complex plane. Thus if one reads in a
particular solution s(E;E) one obtains a unique result w(E)-

It is not without interest to note the similarity of equ.(54)
with the formalism used in the Vavilov theory. The equation
holds not only for the Fourier transform but also for the
Laplace transform. The latter could therefore in principle
equally well be used for numerical evaluation. The Fourier
transform has been chosen because of the great advantages of
the Cooley and Tuckey algorithm. Conventional techniques re-
quire computation times proportional to the square of the
length, N, of the transformed array. In the present program
the computation time is proportional to N:-I1n(N).

The solutions of the compound Poisson process converge against
Gaussian distributions with increasing mean value E. For large
mean values the method is therefore limited by the fact that
small inaccuracies in s(E;E) lead to very large deviations in

- 130~



w(E). If due to inaccuracies s(E;E) is not a solution of a com~
pound Poisson process (i.e. is not infinitely divisible, seeZB]
one obtains solutions w(E) which are not positive definite.
This is not a limitation of the numerical technique; on the
contrary the blurring of the resulting w(E) indicates lack of
information in the input data s(E;E). This is a check for the
dependability of the results.

The method is most suitable for the derivation of collision
spectra from straggling distributions with low mean collision
numbers. It can of course as well be used in the forward direcH
tion, but it is less suitable than the method described under
1. if one deals with extremely wide spectra. The distributions
are on a linear scale and may therefore in certain cases take
too much storage space. The program is written in FORTRAN IV,

3. Elimination of cord length fluctuations from pulse height
spectra.

An LET-distribution may be derived from an observed spectrum
according to equ.(24) or (28). This possibility is limited by
the influence of straggling. In certain cases straggling may
be relatively insignificant, in other cases the influence of
straggling may be eliminated by the method mentioned in the
next paragraph.

The problem has a simple analytical solution for a sphere or a
slab (see general discussion in2°), It has been solved in ge-
reral by Monte-Carlo methods (see2? and30). In addition there

is the possibility of a direct numerical solution based on the
characteristic functions.

If ¢(t), y(t), and t(t) are the characteristic functions of
the distributions f(1nE), e(Inz2), and #(lnL) introduced in
equ.(27) then from equ.(28) one obtains:

o(t) = v(t)-x(t) and (t) = o(t)/v(t) (56)
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Thus the characteristic function of the LET-distribution (on a
logarithmic scale) is equal to the quotient of the characteris-
tic functions of the pulse height distribution and of the cord
length distribution (again on a logarithmic scale). The rela-
tion shows that the solution of this unfolding problem is
unique. Naturally the solution is a probability distribution
only for suitable input distributions f(I1nE) and e(Ine). In gey
neral the resulting LET-distribution ¢(1nL) has some negative
values. As mentioned under 2. this shows that for the given
set of input data the problem can not be strictly solved. This
is again an important control for the results. In certain ca-
ses it clearly indicates the limitations of the simplified mo-
del expressed by equ.(24). The fast Fourier transform algo-
rithm mentioned in the preceding paragraph is also used to
evaluate equ.(56). The program is extremely fast and needs
1ittle storage since one deals with logarithmic distributions
which are very narrow.

4. Elimination of the influence of straggling from an experi-
mental distribution.

Equ.(34) can be rewritten into a matrix equation. One repre-
sents the straggling kernel s(E;E) by a two dimensional array
SE,f and the distributions f(E) and f'(E) by one-dimensional
arrays Fg and F'E:

FE = SE"E- . F"E' (57)

The matrix SE,E is too large for numerical evaluation, if a
linear grid of E and T is used. Matrix and vectors are there-
fore transformed to a logarithmic grid. Then the dimension of
the matrix and vectors can be less than hundred, and the ac-
curacy of the representation is still sufficient. The computer
program first derives the distributions s(E;E) on a linear
scale. This is done by the program mentioned in paragraph 2.
‘Then these distributions are transformed to the suitable loga-
rithmic representation. Finally SE,F is inverted; since SE,E
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iss fairly near to a diagonal matrix inversion presents no
grreat problems. Thus one obtains the distribution Ff from the
exxperimental distribution FE‘

-1
F S Fe (58)

N A

Tthe method is, of course, limited by the assumptions discussed
im section C.1 case c). But it is applicable in many instances
wthere naive application of the unfolding procedure discussed
im the preceding paragraph is not justified. The resulting
diistribution Fé or f'(E) can ;hen be analyzed according to the
uinfolding procedure.

Wiithout going into details one may remark that equ.(57) and
iits solution can also be applied in order to correct for the
mwltiplication statistics of the proportional counter. In this
caase the kernel s(E;E) is derived not from the collision spec-
tirum but from the single electron spectrum of the proportio-
nial counter.
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