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Behavior and higher cognition rely on the transfer of information between neurons
through specialized contact sites termed synapses. Plasticity of neuronal circuits, a
prerequisite to respond to environmental changes, is intrinsically coupled with the
nerve cell’s ability to form, structurally modulate or remove synapses. Consequently,
the synaptic proteome undergoes dynamic alteration on demand in a spatiotemporally
restricted manner. Therefore, proper protein localization at synapses is essential for
synaptic function. This process is regulated by: (i) protein transport and recruitment; (ii)
local protein synthesis; and (iii) synaptic protein degradation. These processes shape
the transmission efficiency of excitatory synapses. Whether and how these processes
influence synaptic inhibition is, however, widely unknown. Here, we summarize findings
on fundamental regulatory processes that can be extrapolated to inhibitory synapses.
In particular, we focus on known aspects of posttranscriptional regulation and protein
dynamics of the GABA receptor (GABAR). Finally, we propose that local (co)-translational
control mechanism might control transmission of inhibitory synapses.

Keywords: posttranscriptional gene regulation, GABA receptors, inhibitory synapse, co-translational
folding/assembly, RNA binding, RNA transport, local translation, RNA-binding proteins

INTRODUCTION

The enormous capacity of the brain to store information and respond to different environmental
conditions and challenges crucially rely on underlying mechanisms like synaptic plasticity. This
depends on the ability to modulate the strength of transmission between two nerve cells as well
as the growth and removal of synapses. Synapses consist of (at least) hundreds of proteins that
need to be organized and correctly assembled to ensure proper synaptic function. Changes in
synaptic transmission and structure are accompanied and conveyed by local alterations in protein
levels. Understanding the regulation of synaptic protein composition is, therefore, crucial to gain
insight into complex neurological processes such as learning and memory and, eventually, into
neuropsychiatric diseases such as autism spectrum disorders, schizophrenia and bipolar disorders.

In order to remodel the synaptic proteome, neurons exploit different mechanisms that allow
spatial and temporal control of protein levels. Protein synthesis was one of the first molecular
mechanisms that were discovered to be indispensable for memory formation (Hershkowitz
et al., 1975; Shashoua, 1976). Pioneer experiments showed that inhibiting translation blocked
the ability of an animal to remember after training (Flexner et al., 1963). In line with this
observation, several experiments have shown that strengthening and weakening of synaptic
transmission, so called long-term potentiation (LTP) and depression (LTD), respectively,
need active translation in a time-dependent manner (Krug et al., 1984; Linden, 1996).
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The spatial selectivity of synapses to undergo changes upon
stimulation raised the question of how a cell knows, which
synapse is destined for functional and structural remodeling.
This inspired Frey and Morris (1997) to the idea of ‘‘synaptic
tagging.’’ Repetitive activation of synapses, therefore, equips such
a synapse with a labile molecular ‘‘tag.’’ Eventually, the synaptic
tag allows the synapse to recruit newly synthesized proteins. The
concept of ‘‘synaptic tagging’’ is a very elegant model to explain
processes such as LTP and LTD at excitatory synapses (Frey and
Morris, 1997). The precise identity of the tag(s) is still lacking.
Furthermore, synaptic plasticity depends on additional processes
such as mRNA localization, which is mainly independent of
translation activity (Steward et al., 1998). mRNA transport and
localization are important determinants of synaptic function
(Jung et al., 2014). To date, it is generally believed that mRNAs
are assembled into ribonucleoprotein particles (RNPs) consisting
of mRNAs and RNA-binding proteins (RBPs). The protein
and mRNA composition of these particles differ substantially
(Kanai et al., 2004; Fritzsche et al., 2013) giving raise to the
idea that different subtypes of particles or granules co-exist
in a nerve cell. The function of these RNA granules is: (i) to
transport mRNA—in a translationally dormant stage—along
cytoskeletal elements such as microtubules to their destination
at the synapse; and (ii) to regulate the translation of their
target mRNAs. Activity-dependent disassembly of these RNA
granules then allows the release of mRNAs and subsequent
induction of translation. How neuronal stimulation, recruitment
of mRNAs and unpacking of RNPs are synchronized is largely
unknown. A pioneer study identified the kinase mechanistic
target of rapamycin (mTOR) as a central hub to recruit RNAs.
The authors suggest that mTOR might be the tag that controls
mRNA recruitment at the synapse (Sosanya et al., 2015).
mTOR is essential for proper neuronal function (Costa-Mattioli
and Monteggia, 2013; Pernice et al., 2016). It needs to be
experimentally verified though whether it might represent an
universal synaptic tag or whether it might be specific for a subset
of mRNAs.

Local protein expression control comprising mRNA
transport, local protein synthesis and recruitment of
newly synthesized protein remodel the synaptic proteome.
Consequently, protein degradation is compulsive to complete
synaptic remodeling. Synaptic protein degradation is induced
in an activity-dependent manner (Bingol and Schuman, 2006).
Moreover, it is tightly linked to translation to balance the
protein need (Klein et al., 2015). In line with this finding,
the translation repressor poly(A)-binding protein interacting
protein 2A (PAIP2A) is degraded by calpain in neurons upon
stimulation (Khoutorsky et al., 2013). Interestingly, calpain also
degrades gephyrin (Gphn), a major scaffold protein at inhibitory
synapses (Tyagarajan and Fritschy, 2014). This finding indicates
that translational activation at excitatory synapses may modulate
inhibitory synapses to alter transmission.

In this review article, we provide insight into
posttranscriptional regulatory mechanisms that control synaptic
protein expression. Since most of these studies investigated
these processes at excitatory synapses, we aim to expand these
fundamental aspects to inhibitory synapses. We speculate that

local expression control also regulates inhibitory transmission to
balance neuronal excitation.

TO LOCALIZE OR NOT TO
LOCALIZE—IT’S A MATTER OF RBP
BINDING TO THE 3′-UTR

With the emergence of the individual-nucleotide resolution
UV crosslinking and immunoprecipitation (iCLIP) technology
(Huppertz et al., 2014), transcriptome-wide identification of
RBP mRNA targets and binding site became experimentally
addressable. iCLIP has now been performed for a series of
RBPs (Tables 1, 2). Interestingly, most of the RBP binding
occurs within the 3′-untranslated region (3′-UTR) of transcripts
(Andreassi and Riccio, 2009). In addition, it was shown that
the median of the 3′-UTR length of mRNAs bound to the
RBP Staufen2 that is necessary for RNA transport (Heraud-
Farlow and Kiebler, 2014) is longer than the median of
the transcriptome (Heraud-Farlow et al., 2013). This finding
indicates that a certain 3′-UTR length is needed to allow
association with RBPs and, consequently, mRNA transport
and/or expression control (Heraud-Farlow and Kiebler, 2014).
To test whether mouse GABA receptor (GABAR) subunits
show a similar tendency towards longer 3′-UTR length, we
analyzed the nucleotide length of their 3′-ends of all GABAA
and GABAB receptor subunit isoforms (see ‘‘Methods’’ section).
Strikingly, GABAR subunits reveal a significant increase in their
3′-UTR compared to the total mouse 3′-UTRome (Figure 1A).
Moreover, the 3′-UTR length was significantly extended when
comparing the GABAR subunits with the 3′-UTRome of the
somatic and neuropil layer of the hippocampal CA1 region
(Cajigas et al., 2012; Figure 1A). An increase in 3′-UTR
length is linked with decreased translational activity in HEK
cells and human neurons (Floor and Doudna, 2016; Blair
et al., 2017) probably due to a higher number of miRNA
and RBP binding sites. In addition, 3′-UTR length is extended
during neuronal development indicating increased translation
regulation in mature neurons compared to developing nerve
cells (Blair et al., 2017). Of note, GABAR subunits exhibited a
trend towards longer 3′-ends when compared with ionotropic
glutamate receptor subunits (Figure 1B). Together, these results
suggest that GABAR subunit 3′-UTRs have a high(er) potential
to be bound by RBPs. Supportive for this hypothesis is the
fact that GABAR subunit mRNAs are enriched in the dendrite
containing neuropil layer of CA1 neurons in the hippocampus
(Cajigas et al., 2012) suggesting that these mRNAs are localized
there. The recognition of mRNA targets by RBPs relies on
binding sites within their 3′-UTRs and that each mRNA might
have its own specific RNA signature. In detail, these binding
sequences consist of both sequence and structural elements
(Kiebler and Bassell, 2006; Doyle and Kiebler, 2011; Jung et al.,
2014; Sugimoto et al., 2015). Interestingly, GABAR subunits
exhibited a lower GC content compared to the total, somatic
CA1 and neuropil 3′-UTRome (Figure 1C). Concomitantly, we
observed a higher AT content (Figure 1C). Moreover, the same
statistically significant effects were detected when comparing
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TABLE 1 | Hand-selected list of RBPs with RNAs related to GABAR as targets.

Rbp Method Tissue RNA targets related to GABAR Reference

Nova iCLIP Brain Gabbr2, Gabrg2 Ule et al. (2003)
FMRP iCLIP Brain Gabbr1, Gabbr2 Darnell et al. (2011)
Staufen1 iCLIP Brain Gabbr2 Sugimoto et al. (2015)
Staufen2 RIP, iCLIP Embryonic brain Gabra2, Gabra3, Gabbr1, Gabbr2, Gabrb1,

Gabrb2, Gabrb3, Gabrg3
Heraud-Farlow et al. (2013)
and Sharangdhar et al. (2017)

Unkempt iCLIP Embryonic brain Gabra3, Gabrb2 Murn et al. (2015)
Celf4 iCLIP Brain Gabra1, Gabra2, Gabra3, Gabra4, Gabra5,

Gabrb1, Gabrb2, Gabrb3, Gabbr1, Gabbr2,
Gabrg1, Gabrg2, Gabrg3, Gabrd

Wagnon et al. (2012)

Rbfox1, 2, 3 iCLIP Brain Gabra1, Gabra3, Gabra6, Gabbr1, Gabrb2,
Gabrb3, Gabrg1, Gabrg2

Lee et al. (2016)

Pumilio1 iCLIP Brain Gabra1, Gabra5, Gabbr1, Gabrb2, Gabrg2 Zhang et al. (2017)
Pumilio2 iCLIP Brain Gabra4, Gabrb2, Gabrg2, Gabrq Zhang et al. (2017) and

Zahr et al. (2018)
4E-T RIP Embryonic brain Gabrg2 Yang et al. (2014)
hnRNP R iCLIP Embryonic primary

mouse motorneurons
Gabra4, Gabbr1, Gabrb1, Gabrb3, Gabrg2,
Gabrg3

Briese et al. (2018)

CPEB1 RIP Striatum Gabrb1, Gabrb2 Parras et al. (2018)
CPEB4 RIP Striatum Gabra1, Gabra2, Gabra4, Gabrb1, Gabrb2,

Gabrb3, Gabrg3
Parras et al. (2018)

nELAV iCLIP Human dorsolateral
prefrontal cortex

Gabra4, Gabrb2, Gabrb3, Gabrg1, Gabrg3 Scheckel et al. (2016)

TABLE 2 | Hand-selected list of RBPs with RNAs related to scaffold protein, GABAR auxiliary and transport proteins as targets.

Rbp Method Tissue RNA targets related to GABAR Reference

Nova iCLIP Brain Gphn Ule et al. (2003)
FMRP iCLIP Brain NSF, Trak2, Ubqln1 Darnell et al. (2011)
Staufen1 iCLIP Brain KCTD12, GABARAPL3, NSF, Arfgef2,

Ubqln1
Sugimoto et al. (2015)

Staufen2 RIP, iCLIP Embryonic brain Gphn, Arhgef9, KCTD16, NSF, Arfgef2,
GABARAPL1, Zdhhc3, Plcl1, Ubqln1

Heraud-Farlow et al. (2013) and
Sharangdhar et al. (2017)

Rbfox1, 2, 3 iCLIP Brain Gphn, NSF, Arfgef2, Ubqln1 Lee et al. (2016)
Pumilio1 iCLIP Brain KCTD12, Trak2 Zhang et al. (2017)
Pumilio2 iCLIP Brain Gphn, KCTD12, Arfgef2, Trak2, Plcl1 Zhang et al. (2017) and

Zahr et al. (2018)
4E-T RIP Embryonic brain Gphn, Trak2 Yang et al. (2014)
hnRNP R iCLIP Embryonic primary

mouse motorneurons
Gphn, Arhgef9, KCTD16, NSF, Arfgef2,
Zdhhc3, Trak2, Plcl1

Briese et al. (2018)

CPEB1 RIP Striatum Arfgef2, Zdhhc3 Parras et al. (2018)
CPEB4 RIP Striatum Gphn, Arfgef2, Zdhhc3, Trak2, Ubqln1 Parras et al. (2018)
nELAV iCLIP Human dorsolateral

prefrontal cortex
KCTD16, Plcl1 Scheckel et al. (2016)

ionotropic GluR and GABAR subunit mRNAs (Figure 1D).
A lower GC content accounts for less stable secondary structures
in the 3′-UTRs of GABAR compared to the total, somatic
CA1 and neuropil 3′-UTRome as well as to GluR 3′-ends.
Interestingly, the cytoplasmic polyadenylation binding element
binding protein (CPEB) binds a short, AT-rich sequence within
the 3′-UTR of target mRNAs to control translation and to
induce the elongation of polyA tails (Mendez and Richter,
2001). By using RNA immunoprecipitation (RIP), it was shown
that CPEB1 and 4 bind different GABAR subunits as well as
mRNAs coding for scaffold protein such as Gphn (Parras et al.,
2018; see also Tables 1, 2). Moreover, ELAV proteins, among
others, bind so-called AU-rich elements (ARE) to stabilize
its target mRNAs (Fan and Steitz, 1998; Peng et al., 1998).
Therefore, it is tempting to speculate that ELAV proteins

also bind mRNAs coding for GABAR subunits to regulate
their abundance. Supportive for this idea is an iCLIP-based
ELAV target screen from human brain, which detected selective
mRNAs encoding GABAR subunits, GABAB receptor auxiliary
proteins and GABAR transport proteins (Scheckel et al., 2016;
see also Tables 1, 2).

To date, several GABAR subunits, scaffold, auxiliary and
GABAR transport proteins have been detected as targets for RBPs
by iCLIP or RIP (Tables 1, 2). Among those, known translation
regulators such as fragile X mental retardation protein (FMRP),
Pumilio1, 2, 4E-T as well as CPEB1 and 4 all bind GABAR
subunit mRNAs. However, how these RBPs act together to locally
control the expression of GABAR subunits in dendrites is still
unknown. Future studies are clearly needed to unravel the role of
RBP mediated protein expression control.
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FIGURE 1 | GABA receptor (GABAR) subunits exhibit extended 3′-untranslated region (3′-UTR) length. 3′-UTR lengths of GABAR (GABAA and GABAB receptor)
subunits compared to the global mouse, hippocampal CA1, neuropil 3′-UTRome (A) and the 3′-UTR lengths of ionotropic GluR subunits (B). GC and AT content of
GABAR subunits 3′-UTRs compared to the global mouse, hippocampal CA1 and neuropil 3′-UTRome (C) as well as ionotropic GluR subunits (D). Abbreviation:
+represents the mean. P-values were calculated using the Mann-Whitney U-test, ∗∗p < 0.01, ∗∗∗∗p < 0.0001.

TRANSLATION CONTROL: A POSSIBLE
REGULATION OF GABA RECEPTOR
PROTEIN ABUNDANCE AND COMPLEX
ASSEMBLY

Translation is a multistep process that is regulated by versatile
proteins (Jackson et al., 2010). Different sequence features of the

mRNA that influence translation activity and association with
ribosomal polysomes have been characterized in human cell lines
(Floor and Doudna, 2016). In detail, the length and structural
stability of the 3′-UTR, the number of miRNA binding sites as
well as AU elements in the 3′-UTR aremain drivers of translation
activity located at the 3′-end of the untranslated region. An
increase in these features is associated with decreased translation
activity in non-neuronal cells (Floor and Doudna, 2016) as well
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as nerve cells (Blair et al., 2017). For GABAR subunit 3′-UTRs,
we observed an increase in 3′-UTR length and AT content
(Figures 1A,C,D). These results suggest that translation of
these subunits is strongly regulated. Supportive for this idea is
the finding that GABAR subunit mRNAs are recognized and
subsequently bound by different RBPs (Table 1). In the last
decade, several studies revealed that RBPs control translation
of their target mRNAs (Hentze et al., 2018). One extensively
studied example is the FMRP. FMRP mediated translational
control is crucial for neuronal homeostasis and function since
loss-of-function leads to severe neurological impairments in
synaptic plasticity which cause intellectual disability and social
deficits hallmarked for autism spectrum disorders (Bassell and
Warren, 2008; Darnell and Klann, 2013). Furthermore, recent
studies showed that FMRP is needed for proper differentiation
of neuronal stem cells (Castrén et al., 2005; Gao et al., 2018).
FMRP has been shown to co-migrate with translationally
active ribosomal polysomes (Stefani et al., 2004). However,
this finding was challenged by the same study showing that
polysomal co-migration is detergent sensitive (Stefani et al.,
2004). A mechanistic study combining in vitro assays and
cryoelectronmicroscopy reported that FMRP inhibits translation
through binding to the ribosomal intersubunit space thereby
precluding binding of tRNAs and translation elongation factors
(Chen et al., 2014). A transcriptome-wide screen for FMRP
targets associated with polysomes identified mRNAs coding
for subunits of the GABAB receptor complex (Darnell et al.,
2011; see Table 1). Moreover, a recent study showed that the
GABAA receptor subunit δ was downregulated in an FMRP
knock-out mouse model (Gantois et al., 2006). These findings
suggest that FMRP may regulate selected subunits of the GABAB
and/or GABAA receptor, most likely at the translational level.
Another known translation regulator is Pumilio2 (Pum2). For
Pum2, it was shown that it represses translation by competing
with the eukaryotic initiation factor (eIF4E) for mRNA 5′-cap
binding (Cao et al., 2010), an essential step to start translation
initiation (Jackson et al., 2010). Moreover, Pum2 is able to form
a complex with the miRNA binding protein Argonaute (Ago)
and the eukaryotic translation elongation factor 1A to repress
translation elongation (Friend et al., 2014). Next to its role as
translation regulator, Pum2 regulates transcript stability through
recruitment of the polyA deadenylase complex CCR4-NOT (Van
Etten et al., 2012), which is the major protein complex to induce
RNA degradation (Collart, 2016). Based on a published iCLIP
dataset, Pum2 is able to bind subunits of the GABAA and
GABAB receptor (Table 1). Interestingly, double knockdown of
Pumilio1 and 2 lead to a decrease in the mRNA levels of certain
GABAR subunits (Zhang et al., 2017) indicating that they may
be regulated posttranscriptionally by Pumilio proteins. Another
RBP that impacts the expression of GABAA receptor subunits, is
the non-octamer, POU-domain DNA-binding protein (NONO,
also known as p54NRB). NONO belongs to the family of
polypyrimidine tract-binding protein-associated splicing factors
that are known to regulate various aspects of the RNA lifecycle
including transcription regulation, splicing, RNA processing and
RNA transport (Yarosh et al., 2015). Interestingly, mutations
in the NONO locus causes intellectual disability in humans

(Mircsof et al., 2015). Moreover, the authors found that the
GABAA receptor-mediated inhibition is mainly affected when
NONO is depleted (Mircsof et al., 2015) suggesting that this
RBP regulates directly or indirectly the expression of the GABAA
receptor. Nonetheless, it is widely unknown which GABAR
subunits are translationally regulated. However, the binding
of RBPs that are known to control RNA metabolism and
translation, clearly suggests the existence of posttranscriptional
gene regulation mechanisms for GABARs.

It is commonly accepted that the 3′-UTR allows for
translational regulation of mRNAs. Research in the last
years, however, has shown that the coding sequence (CDS)
can also regulate protein synthesis rate, protein folding
and protein complex assembly (Hanson and Coller, 2018).
Dynamic translation regulation mediated by the CDS became
experimentally accessible with the emergence of deep sequencing
technologies and ribosome profiling protocols (Ingolia et al.,
2009). Studies in cell lines and cultured neurons revealed
that longer CDS are associated with translationally active
‘‘heavy’’ polyribosomes; most likely because a longer CDS can
accumulate more ribosomes (Floor and Doudna, 2016; Blair
et al., 2017). Interestingly, subunits of the GABAAR receptor
complex display a shorter CDS compared to ionotropic GluR
subunits (Figure 2A) suggestive for differences in translation
activity. Another exciting possibility to regulate protein synthesis
rate and output is the usage of synonymous codons. Twenty-one
amino acids are encoded by 64 codons including three stop
codons in the eukaryotic genome (Alberts et al., 2014). This
degeneration of the genetic code leads to a codon bias, the
preferred usage of certain codons over others to encode the
same amino acid. Research in the last decades has shown that
the usage bias is not random, but in contrast is driven and
influenced by certain features such as translation activity, mRNA
stability, protein folding, protein assembly and transcription
factor binding (Grantham et al., 1980; Stergachis et al., 2013;
Hanson and Coller, 2018). Codons can influence translation
speed (Sørensen and Pedersen, 1991) most likely through the
levels of cognate and near-cognate tRNAs (Anderson, 1969;
Zhang and Ignatova, 2011; Fedyunin et al., 2012; Yu et al.,
2015; Hanson and Coller, 2018). Since the nascent chain initiates
folding already in the ribosomal exit tunnel (Lu and Deutsch,
2005), the elongation rate can also influence protein folding
and, thereby, the protein conformation as it has been shown
for the Cystic Fibrosis Transmembrane Regulator (CFTR) in
mammalian cells (Kirchner et al., 2017). In line with this
finding, Yu et al. (2015) showed using an in vitro translation
system that codon usage determines co-translational folding
through variation in the elongation rate. In particular for
a multi-domain protein, it has been suggested that cluster
of rare codons flank the parts of the mRNA that code for
protein domains. Thus, ribosomes attenuate at these sites
allowing the nascent domains to fold first to prevent misfolding
(Schieweck et al., 2016; Hanson and Coller, 2018). Protein
domains, that are encoded by the downstream mRNA, can
then interact with already folded protein substructures to
form a functional complex. Moreover, codon usage dependent
protein folding can also influence protein specificity, which
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was reported for the Multi-Drug Resistance 1 protein (MDR1).
A silent mutation in a rare codon changes the specificity of
MDR1 (Kimchi-sarfaty et al., 2007). Together, these results
strongly indicate that dynamics in the translation elongation
rate determine trajectories of (co-)translational folding. Based
on these results, an intriguing question raises: can codon
usage influence protein folding of transmembrane proteins such
as subunits of the GABAA receptor? Interestingly, GABAAR
subunits contain more transmembrane helices compared to
ionotropic GluR subunits (Figure 2B). This suggests that
GABAAR subunits may need more variation in translation
speed to allow co-translational folding than ionotropic GluR
subunits. Furthermore, GABAAR subunits differ in their codon
usage compared to GluR subunits (Figure 2C). Overall, the
codon usage profiles between the two receptor groups are
similar. For some codons, however, we detected significant
differences in their frequency (Figures 2D,E). Interestingly,
impaired translation of AGA codons leads to neurodegeneration
in a mouse model (Ishimura et al., 2014). Moreover, GABAAR
andGluR subunits exploit different stop codons.While GABAAR
subunit mRNAs display an almost 1:1:1 ratio, GluR subunits
prefer the TGA stop codon that yields the highest readthrough
potential in mammalian cell lines (Howard et al., 2000; Bidou

et al., 2004; Loughran et al., 2014; Manuvakhova et al., 2014). In
addition to co-translational folding, the assembly of large protein
complexes can also occur co-translationally (Balchin et al., 2016).
It has been shown that this process is crucial for the complex
formation in eukaryotic cells (Shiber et al., 2018). It is tempting
to speculate that for large neuronal protein complexes such as
GABAA receptors, a similar mechanism exists to ensure proper
protein-protein interaction. Of note, codon usage and optimality
differ dramatically in their impact on RNA stability comparing
neurons and non-neuronal cells (Burow et al., 2018). Therefore,
a thorough analysis of the neuronal translatome and tRNAome
is needed to understand the impact of codon usage on GABAA
receptor functioning.

To sum up, findings from different model organisms and
cells demonstrate that translation is a highly dynamic process
necessary for many aspects of the protein life cycle. For GABAA
receptors, it is widely unknown: (i) whether and how they
are translationally regulated; and (ii) whether co-translational
folding/assembly is necessary for proper GABAR function.
However, our bioinformatic predictions suggest that for some
aspects, GABAR are prone to be subject to posttranscriptional
regulation. Future studies will be clearly needed to unravel the
dynamics and regulatory factors of their translation.

FIGURE 2 | GABAA receptor codon usage differ from ionotropic glutamate receptors. CDS length (A) and the number of transmembrane (TM) helices (B) in
GABAAR and ionotropic GluR subunits. (C) Codon usage frequency of GABAAR and GluR for 20 amino acids and stop codons. Dots represent synonymous
codons. (D) Codon frequency for CAG (Q) and AGA (R). (E) Relative fraction of stop codon usage between GABAAR and GluR subunits. Abbreviations: CDS, coding
sequence; aa, amino acid. P-values were calculated using the Mann-Whitney U-test, ∗∗∗∗p < 0.0001.
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FIGURE 3 | Possible posttranscriptional regulation mechanisms for GABAA receptors. Different posttranscriptional regulatory mechanisms exist. RNA transport,
translational control and (co-translational) protein folding and assembly control local protein expression. We propose that GABARs might be regulated at inhibitory
synapses in a similar manner. Abbreviation: Gphn, Gephyrin.

IS LOCAL PROTEIN SYNTHESIS A
PREREQUSITE FOR PLASTICITY OF
INHIBITORY SYNAPSES: A PERSPECTIVE

Since the discovery of LTP by Bliss and Lomo (1973), numerous
studies have unraveled the plasticity of excitatory synapses
in the brain aiming to explain the mechanism of learning
and memory formation (Kandel et al., 2014). However, how
inhibitory synapses undergo structural and molecular plasticity
has been widely overlooked for some time (Gaiarsa and Ben-
Ari, 2006). One of the first examples that inhibitory synapses
show long-term plasticity was a study on Purkinje cells in
the cerebellum published in 1998 (Aizenman et al., 1998).
Since that time, various studies have addressed the mechanisms
of how inhibitory LTP is conveyed (Castillo et al., 2011).
Interestingly, in some aspects, inhibitory and excitatory LTP
share similar mechanisms including the exchange of synaptic
receptors (de Luca et al., 2017) as well as the importance
of scaffold proteins for LTP (Petrini et al., 2014). In this
context, it was shown that clustering of Gephyrin (Gphn),
the major scaffold protein for inhibitory synapses (Tyagarajan
and Fritschy, 2014), is essential for GABAA receptor surface
dynamics and iLTP (Petrini et al., 2014). In line with its
importance for iLTP, Gphn is posttranslationally modified in
response to neuronal activity (Flores et al., 2015; Ghosh et al.,
2016), whichmay represent amolecular hub to control inhibitory
transmission. Arguably, one of the most impressive examples
showing the dynamics of inhibitory synapse formation is the
study by Oh et al. (2016). Upon GABA stimulation, newly

formed Gphn cluster appear that are the structural basis for
inhibitory synapse formation (Tyagarajan and Fritschy, 2014).
Based on our bioinformatic predictions (Figures 1, 2) and
RBP target screens (Tables 1, 2), it is tempting to speculate
that the appearance of Gphn clusters upon GABA stimulation
requires mRNA transport and, subsequently, translation. We
propose that these mechanisms are necessary for inhibitory
synapse formation (Figure 3). In general, future studies are
clearly necessary to address the importance of posttranscriptional
gene regulation for GABAergic synaptic transmission. Therefore,
it needs to be investigated: (i) which GABAR component is
regulated by RBPs; (ii) whether their expression is regulated
at the translation, splicing and/or stability level; and (iii)
whether their posttranscriptional regulation occurs locally
at the synapse. Unraveling the role of RBPs in neuronal
inhibition will clearly improve our understanding how neuronal
networks are coordinated to find the balance between excitation
and inhibition.

METHODS

For analysis, 3′-UTR sequences and length of transmembrane
domains were extracted from the EMSEMBL database
(genome assembly GRCm38.p6) using the Gene Ontology
ID ‘‘GO:0016917’’ for GABARs, ‘‘GO:0008066’’ for glutamate
receptors and ‘‘GO:0004970’’ for ionotropic glutamate receptors.
Only annotated mRNA isoforms were analyzed. Statistics were
calculated using GraphPad Prism (version 5; GraphPad, San
Diego, CA, USA).
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