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Inflammasome-driven release of interleukin(IL)-1β is a central element of many forms

of sterile inflammation and has been evident to promote the onset and progression of

diabetic kidney disease. We microdissected glomerular and tubulointerstitial samples

from kidney biopsies of patients with diabetic kidney disease and found expression

of IL-1β mRNA. Immunostaining of such kidney biopsies across a broad spectrum of

diabetic kidney disease stages revealed IL-1β positivity in a small subset of infiltrating

immune cell. Thus, we speculated on a potential of IL-1β as a therapeutic target and

neutralizing the biological effects of murine IL-1β with a novel monoclonal antibody

in uninephrectomized diabetic db/db mice with progressive type 2 diabetes- and

obesity-related single nephron hyperfiltration, podocyte loss, proteinuria, and progressive

decline of total glomerular filtration rate (GFR). At 18 weeks albuminuric mice were

randomized to intraperitoneal injections with either anti-IL-1β or control IgG once

weekly for 8 weeks. During this period, anti-IL-1β IgG had no effect on food or

fluid intake, body weight, and fasting glucose levels. At week 26, anti-IL-1β IgG had

reduced renal mRNA expression of kidney injury markers (Ngal) and fibrosis (Col1,

a-Sma), significantly attenuated the progressive decline of GFR in hyperfiltrating diabetic

mice, and preserved podocyte number without affecting albuminuria or indicators

of single nephron hyperfiltration. No adverse effect were observed. Thus, IL-1β

contributes to the progression of chronic kidney disease in type 2 diabetes and might

therefore be a valuable therapeutic target, potentially in combination with drugs with

different mechanisms-of-action such as RAS and SGLT2 inhibitors.
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INTRODUCTION

Type 2 diabetic mellitus (T2DM) is systemic disorder and global health concern. Chronic kidney
disease (CKD) is common in T2DM and largely contributes to morbidity and mortality. Diabetic
and non-diabetic nephropathies or a combination of both contribute to the progression of CKD
in T2DM and all involve a contribution of local and systemic sterile inflammation driving
kidney atrophy (1). Sterile inflammation is a consequence of danger signals released from cells
under glycotoxic, oxidative, or other forms of stress activating inflammasomes and other pattern
recognition receptors (2, 3). For example, the NLRP3 inflammasome induces the assembly of
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several cytosolic proteins ultimately leading to activation
of caspase-1, which promotes the enzymatic activation and
secretion of mature IL-1β (4, 5). IL-1β activates ubiquitously
expressed IL-1 receptors inducing numerous pro-inflammatory
mediators (6). Given its central role in orchestrating sterile
inflammation, IL-1, or IL-1R-targeting therapeutics have
been proven effective in hereditary fever syndromes, Still
disease, juvenile arthritis, gout, and cardiovascular events
in including patients with T2DM (7–12). The evidence
supporting the mechanistic concept that IL-1β would drive
systemic inflammation and vascular injury in diabetes is less
consistent (10, 13–17).

Two preclinical studies support targeting the NLRP3-IL-1-IL-
1R axis in T2DM-related CKD. Shahzad et al. found db/db mice
with T2DM to be protected from kidney disease by injecting the
human recombinant IL-1R antagonist anakinra (18). Orellana
et al. found that anti-IL-1β IgG reduced urinary TNF-α levels in
T1 diabetic DBA/2J mice (19).

We therefore speculated that a IL-1β-neutralizing
antibody could have protective effects on CKD progression
in T2DM. To address this concept, we performed an
interventional study using uninephrectomized obese db/db
mice with T2DM and CKD, a model previously validated
to predict the outcome of clinical trials on diabetic kidney
disease (20–23).

MATERIALS AND METHODS

Human Kidney Biopsy Transcriptomics
Human renal biopsies from patients with diabetic nephropathy
(DN) (n = 7) and livinv donor (LD) controls (n = 18)
were collected within the framework of the European Renal
cDNA Bank—Kröner-Fresenius Biopsy Bank (24). Biopsies
were obtained from patients after informed consent and
with approval of the local ethics committees. Following renal
biopsy, the tissue was transferred to RNase inhibitor and
microdissected into glomerular and tubular fragments. Total
RNA was isolated from both micro-dissected compartments,
linearly amplified and hybridized to Affymetrix HG-U133 Plus
2.0 microarrays as reported previously (25). Fragmentation,
hybridization, staining, and imaging were performed
according to the Affymetrix Expression Analysis Technical
Manual (Affymetrix, Santa Clara, CA). The raw data was
normalized using Robust Multichip Algorithm (RMA) and
annotated by Human Entrez Gene custom CDF annotation
version 18 (http://brainarray.mbni.med.umich.edu/Brainarray/
Database/CustomCDF/genomic_curated_CDF.asp). To identify
differentially expressed genes the SAM (Significance analysis
of Microarrays) method was applied using TiGR (MeV,
Version 4.8.1) (26). A q-value below 5% was considered to be
statistically significant.

Human Kidney Biopsy
Immunohistochemistry
Human renal tissue, fixed in formaldehyde, and embedded in
paraffin, was selected from the files of the Service of Pathology,
University Hospital Geneva: control normal renal tissue was

obtained from a patient with nephrectomy performed for
neoplasia, involving the possibility of tumor-related immune
exhaustion. Eight biopsy specimens were obtained from patients
with diabetes (2 females, 6 males; mean age: 53 year-old;
2 diabetes type I and 6 diabetes type 2). These 8 biopsies,
performed for proteinuria, demonstrated diabetic nephropathy
with different degrees of interstitial fibrosis and tubular
atrophy (IFTA): 4 biopsy specimens with IFTA <40% and 4
biopsy specimens with IFTA >50%. For all biopsy specimens,
standard analyses were performed. Each patient gave informed
consent before enrollment. The institutional ethical committee
board approved the clinical protocol (CEREH number 03-
081). The research was performed according to the Helsinki’s
declaration principles. Immunohistochemistry: after antigen
heat retrieval, 3µm serial sections of the formaldehyde-fixed,
paraffin-embedded biopsy specimens were incubated with four
different antibodies: rabbit anti-human NLRP3 (ABF23, Merck,
Darmstadt, Germany) at a 1:1,500 dilution 1 h at room
temperature, mouse anti-human CD68 (clone PG-M1, code
M 0876, DakoCytomation, Glostrup, Denmark) at a 1:100
dilution, mouse anti-human IL1-alpha (LS-B1581, LifeSpan
BioSciences, Seattle, Washington, USA) at a 1:500 dilution,
and rabbit anti-human IL1-beta (ab82558, Abcam, Cambridge,
UK) at a 1:400 dilution. Serial sections were incubated
with the adequate antibody for 1 h at room temperature
followed by the appropriate second antibody for 30min and
then by liquid diaminobenzidine substrate-chromogen system
(DakoCytomation). Counterstaining was performed usingMayer
hematoxylin. Negative controls included the absence of the
primary antibody (not shown).

Animal Studies
Eight-week-old male BKS db/db and nondiabetic BKS wild
type mice (Taconic, Ry, Denmark) were housed in groups of

TABLE 1 | Primer used in animal study.

Gene Forward Reverse

IL-1a AGGGAGTCAACTCATTGGCG ACTGTAGTCTTCGTTTTCACTGT

IL-1b TGCCACCTTTTGACAGTGATG AAGGTCCACGGGAAAGACAC

IL-1R1 CTGTTGGTGAGGAATGTGGCTG GGCTCAGGATAACAGGTCTGTC

IL-1R2 CAGTGCAGCAAGACTCTGGTAC GCAAGTAGGAGACATGAGGCAG

NLRP3 ACGTGTCATTCCACTCTGGC AGGGAGTCAACTCATTGGCG

WT-1 CTGTACTGGGCACCACAGAG CCAGCTCAGTGAAATGGACA

Synatopodin AGGAGCCCAGGCCTTCTCT GCCAGGGACCAGCCAGATA

IL-6 TGCCACCTTTTGACAGTGATG AAGGTCCACGGGAAAGACAC

TNF-alpha CTCTTCTGCCTGCTGCACTTTG ATGGGCTACAGGCTTGTCACTC

TGF-beta TGATACGCCTGAGTGGCTGTCT CACAAGAGCAGTGAGCGCTGAA

CCR5 GTCTACTTTCTCTTCTGGACTCC CCAAGAGTCTCTGTTGCCTGCA

CCL5 CCTGCTGCTTTGCCTACCTCTC ACACACTTGGCGGTTCCTTCGA

VCAM-1 GCTATGAGGATGGAAGACTCTGG ACTTGTGCAGCCACCTGAGATC

ICAM-1 AAACCAGACCCTGGAACTGCAC GCCTGGCATTTCAGAGTCTGCT

KIM-1 TGGTTGCCTTCCGTGTCTCT TCAGCTCGGGAATGCACAA

Ngal ATGTCACCTCCATCCTGG GCCACTTGCACATTGTAG

Col1alpha1 ACATGTTCAGCTTTGTGGAC TAGGCCATTGTGTATGCAG

Alpha-SMA GCTGTTGTAGGTGGTCTCAT ACCATCGGCAATGAGCGTTT

18s GCAATTATTCCCCATGAACG AGGGCCTCACTAAACCATCC
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FIGURE 1 | IL-1β expression in diabetic kidney disease. (A) Gene expression data of microdissected glomeruli and tubulointerstitium from kidney biopsies of patients

with diabetic glomerulopathies and living donors as controls. IL-1β, IL1R1 gene expression was upregulated in both glomeruli and tubulointerstitium in diabetic

(Continued)
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FIGURE 1 | nephropathy; NLRP3 gene expression was also increased in glomeruli in diabetic nephropathy. (B) Archived kidney biopsies were stained for CD68,

IL-1α, IL-1β, and NLRP3. A semi-quantatitive score for staining positivity was employed and is illustrated for different kidney compartments in cases with IFTA 0% to

IFTA 70%. Representative images are shown at an original magnification of 250x. (C) Kidney mRNA expression levels of IL-1β and related genes from 26 weeks old

non-diabetic wildtype and diabetic db/db mice. Data in C are means ± SEM of 5–9 mice in each group and the values given are normalized to 18S rRNA and WT-2K

group. *p < 0.05.

2–3 under standard conditions including enrichment. Mice
underwent morning uninephrectomy (DM-1K for diabetic
mice; WT-1K for nondiabetic mice) or sham surgery (DM-
2K for diabetic mice, WT-2K for nondiabetic mice) with
rigorous core body temperature control (27, 28). Group size
calculation was based on glomerular filtration rate (GFR) as
a primary endpoint and quantitative assumptions obtained
from our previous studies (20, 21, 27). The group size for
WT-2K, WT-1K, DM-2K, DM-1K+IgG, and DM-1K+antiIL-
1β was, 5, 5, 9, 8, and 9, respectively. At age 18 weeks,
only DM-1K mice with proteinuria at baseline were assigned
by stratified randomization to different groups injected with
either anti-IL-1β IgG (RO7114667, developed and provided by
Hoffmann La Roche, Basel, Switzerland) or control IgG (10
mg/kg body weight weekly intraperitoneally for 8 weeks). The
antibody was raised as a monoclonal antibody in a mouse
hybridoma and then reformatted using VHVL sequences and
a murine IgG1 scaffold with effector silencing DAPG muations
(29). Antibody specificity was raised against human IL-1β
but showed strong cross reactivity to murine Il-1β, while it
did not bind recombinant human and mouse IL-1α (29).
The antibody is neutralizing the biological effects of human
and murine IL-1β as verified by ELISA-based protein:protein
interaction inhibizion assays (29). Animal welfare was monitored
throughout the study. All experiments were conducted according
to the European equivalent of the NIH’s Guide for the Care and
Use of Laboratory Animals and had been approved by the local
government authorities.

Primary Endpoint
GFR was determined in conscious mice by transcutaneous
measurement with FITC-sinistrin (Mannheim Pharma and
Diagnostics) injection as first described (30) with slight inhouse
modifications (28, 31). GFR (µl/min) was calculated from the
decrease in fluorescence intensity over using a one-compartment
model (32). Body weight of the mouse was used as an empirical
conversion factor.

Secondary Endpoints
Proteinuria was a secondary endpoint. Urine was collected
at different time intervals, analyzed for albumin by ELISA
(Bethyl Labs, Montgomery, TX, USA) and urinary creatinine
(Jaffe’ reaction; DiaSys Diagnostic Systems, Holzheim, Germany),
and reported as albumin/creatinine ratio. Blood samples
were obtained after 4 h fasting and analyzed for blood
glucose level (Glucose GOD FS, DiaSys Diagnostic Systems,
Holzheim, Germany).

Histology was a secondary endpoint. Kidneys were fixed
in 4% formalin, embedded in paraffin, and stained with
periodic acid–Schiff (PAS) reagent. Glomerular tuft area and

capsule area were quantified on at least 25 glomeruli in
PAS staining using ImageJ software. Sirius red staining was
performed by staining paraffin sections with 0.1% of picro-sirius
red solution (Direct Red 80, Sigma-Aldrich). Immunostaining
was performed as described using anti-mouse Wilms Tumor
(WT)-1 (immunohistochemistry staining; 1:200; Santa Cruz
Biotechnology, Santa Cruz, CA), rabbit anti-mouse alpha smooth
muscle actin (αSMA) (Dako GmbH, Germany), and rat anti-
mouse Mac2 (1:5,000; Cederlane) (33). For WT-1 and Mac-
2 staining, cells were counted in a minimum of 15 glomeruli
per section by a blinded observer.

Gene transcription levels was a secondary endpoint. Total
mRNA from whole kidney was transcribed into cDNA
using Superscript II and subjected to real-time PCR on a
Light Cycler 480 (Roche, Mannheim, Germany, Real Time
PCR Detection Systems) using SYBR green (SABiosciences)
as described (34). Primers used for the genes were listed
in Table 1.

Statistical Analysis
Data are presented as mean ± SEM. Comparison between
DM1K control IgG and anti-IL-1β treatment was performed
with Student’s t-test or Mann–Whitney U-test. Comparison of
multiple groups was performed using ANOVA or Kruskal–Wallis
test and post-hoc Dunnett’s test or Dunn’s test was used for
multiple comparisons. A value of p < 0.05 was considered
to indicate statistical significance. Data was presented as
means± SEM.

RESULTS

IL-1β Expression in Diabetic Kidney
Disease
The paradigmatic proinflammatory cytokine IL-1β is not
expressed under basal conditions and is induced only upon
specific stimulation (4, 6). As such the human protein atlas
does not display constitutive IL-1β positivity in healthy
human kidney tissue, neither in the glomerular nor in
the tubulointerstitial compartment (www.proteinatlas.com). In
contrast, glomeruli and tubulointerstitial samples microdissected
from diagnostic biopsies of diabetic patients with DKD revealed
a significant induction of IL-1β transcripts in both compartments
(Figure 1A). To localize IL-1β protein expression we performed
immunostaining on several such diagnostic biopsies from
patients with different stages of diabetes-related CKD and
found IL-1β positivity exclusively localized to few infiltrating
mononuclear cells, most likely macrophages, inside glomeruli
as well as the tubulointerstitium and in some tubular cells
(Figure 1B). IL-1β positivity increased with the stage of CKD
as indicated by increasing amounts of interstitial fibrosis and
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FIGURE 2 | Effects of anti-IL-1β IgG on type 2 diabetic db/db mice. DM-1K mice were injected from week 18 to 26 of age with anti-IL-1β antibody, which did not

affect fasting blood glucose (A), body weight (B), water intake (C), or food intake (D) as compared to DM-1K with control IgG injection group. GFR (E) was measured

(Continued)
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FIGURE 2 | at different time intervals. Note that at 26 weeks of age anti-IL-1β treatment significantly preserved higher GFR in DM-1K mice compared to control IgG.

Urinary albumin/creatinine (A/C) ratio (F) was determined at different time intervals. (G) Kidney sections of 26 weeks old mice of all groups were stained for WT-1 to

quantify podocytes per glomerular cross section. Graphs showed the mean numbers of WT-1 positive cells in 15-25 glomeruli ± SEM in sections. (H–I) Kidney mRNA

expression levels were quantified by real–time RT-PCR. (J) Kidney sections of 26 weeks old mice of all groups were stained for Mac-2 to quantify macrophages per

glomerular cross section. The graphs shows the mean numbers of Mac-2 positive cells in 15–25 glomeruli ± SEM in sections. (K) Representative images of WT-1

staining and Mac-2 staining. N = 5 in WT-2K and WT-1K groups, n = 7–9 in DM-2K group, n = 8 in DM-1K+IgG group, and n = 9 in DM-1K+antiIL-1β group. Data

represent means ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

tubular atrophy (Figure 1B). Consistent with this finding, we
analyzed proIL-1β transcript levels in a mouse model of T2DM
and found increased levels of IL-1β only in mice in which
the progression of kidney disease had been accelerated by
uninephrectomy (Figure 1C). Thus, IL-1β protein expression in
the kidney predominately originates from infiltrating immune
cells inside glomeruli and outside nephrons in the interstitium,
as well as tubular cells.

Therapeutic IL-1β Inhibition Does not
Affect Type 2 Diabetes in db/db Mice
To test the functional contribution of IL-1β in diabetes we
started to inject male db/db mice starting 10 weeks after
uninephrectomy (18 weeks of age) with anti-IL-1β IgG or
control IgG and analyzed its impact on phenotypic parameters
of T2DM. Anti-IL-1β IgG did not affect body weight,
food and water intake or blood glucose levels over time
(Figures 2A–D), implying that IL-1β has no major role in these
metabolic aspects.

Therapeutic IL-1β Inhibition Preserves
Renal Structure and Function in db/db

Mice
GFR slope is the main determinant of CKD progression to
end stage kidney disease, also in diabetes. Anti-IL-1β IgG
significantly preserved GFR by around 50 µl/min although
not affecting urine albumin excretion (Figures 2E,F). This
GFR was still in a range of increased total GFR due to
diabetes-related single nephron hyperfiltration. IL-1β blockade
also preserved more podocytes as indicated by either WT-
1 staining or WT-1 and synaptopodin mRNA expression
(Figures 2G–I), however, it did not alter glomerular tuft
area, Bowman’s capsule area, or tuft over capsule ratio, three
indirect markers of diabetes- and nephron loss-related single
nephron hyperfiltration (Supplementary Figure 1A). Anti-IL-
1β IgG also decreased the number of infiltrated macrophages
in glomeruli as evident by Mac-2 staing (Figures 2J,K),
however it did not significantly affect proinflammatory
cytokine expression, such as IL-6, TNFα, or TGFβ , neither
chemokine expression, such as CCR5, CCL5, CXCR1, or VCAM-
1 (Supplementary Figures 2A–G). For tubule injury-related
genes, Ngal and Kim-1 expression levels were reduced in the
anti-IL-1β IgG-treated group but only Ngal reached a significant
difference (Supplementary Figures 2H,I). Thus, IL-1β blockade
attenuated numerous markers of progressive CKD in db/dbmice.
IL-1β blockade did not significantly affect interstitial fibrosis as
detected by aSMA staining or mesangial sclerosis as detected
by Sirius red staining (Supplementary Figures 1B-E), though

anti-IL-1β treatment reduced αSMA but not collagen 1alpha1
gene expression (Supplementary Figures 2J,K). Thus, IL-1β
blockade attenuated numerous markers of progressive CKD in
db/dbmice.

Adverse Events
No adverse events were observed during the study period as per
regular scoring.

DISCUSSION

We had hypothesized that IL-1β would contribute to the
progression of CKD in T2DM and used a novel IL-1β-
specific antibody that can neutralize its biological effects
in a validated mouse model of CKD in T2DM. We
found renoprotective effects on GFR, podocyte loss, and
intrarenal inflammation.

Several studies reported IL-1 blockade to improve β-cell
function and glucose control in experimental or human T1
or T2DM (35–38). In contrast, in obese db/db mice with
T2DM injection of recombinant IL-1β can cause long-lasting
hypoglycemia in db/db mice (39). In our experimental setting,
IL-1 blockade did not affect glucose control, which may relate to
a different neurohumoral regulation of glucose control in db/db
mice compared to humans (39).

CKD progression in diabetes results from direct glycotoxicity
on renal cells as well as from hyperglycemia-induced and
SGLT2-mediated glomerular hyperfiltration and tubular
hyperreabsorbtion (1, 40, 41). A low nephron number, as
induced here by early uninephrectomy, further aggravates
hyperfunction, and accelerates the demise of the remnant
nephrons (42). Several studies have documented an increased
expression of NLRP3 inflammasome components in renal
parenchymal cells in experimental and human DKD and hence
speculated on a role of IL-1β in CKD progression (18, 43–46).
Indeed, Shahzad et al. found db/db mice with T2DM to be
protected from kidney disease by injecting human recombinant
IL-1R antagonist anakinra (18). Anakinra blocks signaling of
IL-1R, a receptor for both IL-1α and IL-1β (47). As we could not
find a similar protective effect by specifically neutralizing IL-1β
in the same disease model, we conclude that the effects on CKD
observed with anakinra must have been IL-1β-independent and
involve e.g., IL-1α.

We conclude, specific targeting of IL-1β has a moderate
effect on GFR decline, podocyte loss, and renal inflammation
in T2DM mice with CKD. Whether these findings can
translate into better outcomes also in human DKD remains to
be determined.
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Supplementary Figure 1 | Kidney pathology evaluation of anti-IL-1β IgG on type

2 diabetic db/db mice. (A) Area of glomerular tuft (encircled by yellow lines), area

of Bowman’s capsule (encircled by green line), and the ratio of tuft over capsule

were measured in PAS staining at an original magnification of 400X. (B) Kidney

sections of all groups were stained for alpha-smooth muscle actin (aSMA) to

quantify kidney fibrosis. Original magnification 25x. (C) Kidney sections of all

groups were stained for Sirius red to quantify the glomerular collagen deposition.

(D,E) Glomerulosclerosis was quantified in all groups upon staining kidney

sections with sirius red by using automated digital morphometry upon selecting

only tuft areas. Original magnification 400x. Data represent means ± SEM. ∗p <

0.05, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001.

Supplementary Figure 2 | Kidney gene expression by RT-PCR in animal study.

(A–G) Pro-inflammatory cytokine and chemokine gene expression was quantified.

(H,I) Tubular injury genes of KIM-1 and Ngal were measured. (J,K) Extracellular

matrix gene expression were quantified as described in methods.
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