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Genome-wide association study identifies 30 Loci Associated
with Bipolar Disorder

A full list of authors and affiliations appears at the end of the article.

Abstract

Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide
association study including 20,352 cases and 31,358 controls of European descent, with follow-up
analysis of 822 variants with P<1x10~ in an additional 9,412 cases and 137,760 controls. Eight of
the 19 variants that were genome-wide significant (GWS, p < 5x1078) in the discovery GWAS
were not GWS in the combined analysis, consistent with small effect sizes and limited power but
also with genetic heterogeneity. In the combined analysis 30 loci were GWS including 20 novel
loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and
synaptic components. Pathway analysis revealed nine significantly enriched gene-sets including
regulation of insulin secretion and endocannabinoid signaling. BDI is strongly genetically
correlated with schizophrenia, driven by psychosis, whereas BDII is more strongly correlated with
major depressive disorder. These findings address key clinical questions and provide potential new
biological mechanisms for BD.

Bipolar disorder (BD) is a severe neuropsychiatric disorder characterized by recurrent
episodes of mania and depression that affect thought, perception, emotion, and social
behaviour. A lifetime prevalence of 1-2%, elevated morbidity and mortality, onset in young
adulthood, and a frequently chronic course make BD a major public health problem and a
leading cause of the global burden of disease 1. Clinical, twin and molecular genetic data all
strongly suggest that BD is a multifactorial disorder 2. Based on twin studies, the overall
heritability of BD has been estimated to be more than 70% 34, suggesting a substantial
involvement of genetic factors in the development of the disorder, although non-genetic
factors also influence risk.

BD can be divided into two main clinical subtypes >: bipolar | disorder (BD1) and bipolar
Il disorder (BD2). In BD1, manic episodes typically alternate with depressive episodes
during the course of illness. Diagnosis of BD2 is based on the lifetime occurrence of at least
one depressive and one hypomanic (but no manic) episode. Although modern diagnostic
systems retain the Kraepelinian dichotomy / between BD and schizophrenia (SCZ), the
distinction between the two disorders is not always clear-cut, and patients who display
clinical features of both disorders may receive a diagnosis of schizoaffective disorder-bipolar
type (SAB). Likewise, in genetic studies BD and SCZ are usually treated separately,
although recent epidemiological and molecular genetic studies provide strong evidence for
some overlap between the genetic contributions to their etiology 28.

Recent genome-wide association studies (GWAS) in BD have identified a number of
significant associations between disease status and common genetic variants %23, The first
large collaborative BD GWAS by the multinational Psychiatric Genomics Consortium
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(PGC) Bipolar Disorder Working Group comprised 7,481 BD patients and 9,250 controls
and identified four genome-wide significant loci °. Three subsequent meta-analyses that
included the PGC BD data 10.12.18 jdentified an additional 5 loci.

Estimates of the proportion of variance in liability attributable to common variants genome-
wide (SNP-heritability) indicate that ~30% of the heritability for BD is due to common
genetic variants 8. To date, only a small fraction of this heritability is explained by associated
loci, but results from other human complex traits suggest that many more will be identified
by increasing the sample size of GWAS 24, Here, we report the second GWAS of the PGC
Bipolar Disorder Working Group, comprising 20,352 cases and 31,358 controls of European
descent in a single, systematic analysis, with follow up of top findings in an independent
sample of 9,412 cases and 137,760 controls. Some of our findings reinforce specific
hypotheses regarding BD neurobiology; however, the majority of the findings suggest new
biological insights.

GWAS of bipolar disorder (BD)

We performed a GWAS meta-analysis of 32 cohorts from 14 countries in Europe, North
America and Australia (Supplementary Table 1A), totaling 20,352 cases and 31,358 controls
of European descent (effective sample size 46,582). This is a large GWAS of BD, a 2.7-fold
increase in the number of cases compared to our previous GWAS 9, and includes 6,328 case
and 7,963 control samples not previously reported. We imputed variant dosages using the
1,000 Genomes reference panel, retaining association results for 9,372,253 autosomal
variants with imputation quality score INFO > 0.3 and minor allele frequency = 1% in both
cases and controls. We performed logistic regression of case status on imputed variant
dosage using genetic ancestry covariates. The resulting genomic inflation factor (Agc) was
1.23, 1.01 when scaled to 1,000 cases and 1,000 controls (A1gg0) (Supplementary Figure 1).
The LD Score regression intercept was 1.021 (se=0.010), and the attenuation ratio of 0.053
(se=0.027) was non-significant, indicating that the observed genomic inflation is indicative
of polygenicity rather than stratification or cryptic population structure 2°. The LD-score
regression SNP-heritability estimates for BD were 0.17-0.23 on the liability scale assuming
population prevalence of 0.5-2%. See Supplementary Table 1A, Online Methods and
Supplementary Note for sample and method details.

We find a marked increase in phenotypic variance explained by genome-wide polygenic risk
scores (PRS) compared to previous publications (sample size weighted mean observed
Nagelkerke’s R2 = 0.08 across datasets, liability scale R2=0.04, for p-threshold 0.01;
Supplementary Figure 2 and Supplementary Table 2). Among the different datasets, we
observed no association between the PRS R2 and: (i) the gender distribution of the BD cases
(p=0.51); (ii) the proportion of cases with psychosis (p=0.61); (iii) the proportion with a
family history of BD (p=0.82); or (iv) the median age of onset for BD (p=0.64). In our
primary genome-wide analysis, we identified 19 loci exceeding genome-wide significance
(P<5x1078; Table 1).

Nat Genet. Author manuscript; available in PMC 2020 January 13.
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Follow-up of suggestive loci in additional samples

We tested lead variants that were significant at P<1x10~4 in our discovery GWAS meta-
analysis, a total of 794 autosomal and 28 X chromosome variants, for association in follow-
up samples totaling 9,412 cases and 137,760 controls of European ancestry (effective sample
size 23,005; Supplementary Note and Supplementary Table 1B). We first compared
discovery and follow-up sample summary statistics using LD score regression, and

estimated their genetic correlation to be 0.98 (se=0.07), consistent with homogeneous
genetic effects between the two samples. Discovery and follow-up samples also show similar
patterns of significant genetic correlations with a range of other human diseases and traits in
the LD Hub database 26 (Supplementary Table 3; correlation of 0.93, p = 8.3x10714,
Supplementary Figure 3).

Thirty autosomal loci achieved genome-wide significance (P< 5x1078) in fixed-effect meta-
analysis of our GWAS and follow-up samples (Figure 1, Table 1A, Supplementary Data 1-3,
Supplementary Table 4). In Supplementary Table 5, we present detailed descriptions of the
associated loci and genes, with bioinformatic and literature evidence for their potential roles
in BD. Of the 30 genome-wide significant loci from our combined analysis, 20 are novel BD
risk loci. These include 19 loci that were significant only in the combined analysis, of which
three were reported to have genome-wide significant SNPs in previous studies (ADCY218,
POU3F2'8 ANK31218) and 11 that were significant in our primary GWAS. We refer to
loci by the gene name attributed in previous BD GWAS publications, or by the name of the
closest gene for novel loci, without implication that the named gene is causal. Results for all
variants tested in the follow-up study are presented in Supplementary Table 4.

Of the 19 variants that were genome-wide significant in the discovery GWAS, 8 were not
genome-wide significant in the combined analysis (Table 1B), and 11 were non-significant
in one-tailed association tests in the follow-up samples (p>0.05 in Table 1). Still, the follow-
up results for these 19 variants are clearly non-null in aggregate: all 19 had consistent
directions of effect between discovery GWAS and follow-up (9.5 expected by chance,
binomial test p=4x1075), and eight of the 19 had follow-up 1-tailed p<0.05 (1 expected by
chance, sign test p=2x1078). Using effect sizes corrected for winner’s curse 27:28 for each of
the 19 variants that were genome-wide significant in the GWAS, we calculated power to
achieve significant results (1-tailed p<0.05) in the follow-up samples or genome-wide
significance in combined analysis (Supplementary Note, Supplementary Table 6,
Supplementary Figure 4). We found that the number of variants significant in follow-up is
close to expectation (8 observed with follow-up p<0.05, 8.26 expected, Poisson binomial p =
0.57), and that 11 variants achieving genome-wide significance in the combined analysis is
also within the expected range (p = 0.29). As an alternative to winner’s curse correction, we
conducted a polygenic inference analysis using a mixture of Gaussian effect size
distributions to model BD genetic architecture and estimate the variants’ true effect sizes 2°
(Supplementary Note, Supplementary Figure 5). Under this model, we found that only two
variants were nominally significantly weaker in follow-up than expected by chance
(TRANK1rs9834970 p = 0.012, and rs13821 p = 0.026; Supplementary Table 7), and none
were Bonferroni significant (p>0.05/19=0.0026). Thus, the overall replication rate is within
the expected range given the polygenic architecture of BD.

Nat Genet. Author manuscript; available in PMC 2020 January 13.
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We next asked if the variants tested in the follow-up samples were, in aggregate, consistent
with the presence of additional sub genome-wide significant BD association signals. After
excluding 47 variants that were genome-wide significant in our GWAS, our combined
analysis or previous BD GWAS, 775 variants remained in our follow-up experiment. 551
variants had the same direction of effect in the discovery GWAS and follow-up (71%,
compared to a null expectation of 50%, sign test p = 1.3x10732), and 110 variants had the
same direction of effect and were nominally significant (p<0.05) in the follow-up (14%,
compared to an expected value of 5%, binomial test p = 2.1x10722). This consistency
between our GWAS and follow-up results suggests that many more true BD associations
exist among these variants.

To identify additional independent signals, we conducted conditional analyses across each of
the 30 significant BD loci (Supplementary Table 8). We used the effective number of
independent variants based on LD structure within loci 30 to calculate a multiple test-
corrected significance threshold (p=1.01x1075, see Supplementary Note). Only one locus
showed evidence for an independent association signal (rs114534140 in locus #8, FSTL5;
Peonditional = 2x1076). At another locus (#30,S7K4 on chr 20), we found two SNPs with
genome-wide significance in low LD (R? < 0.1); however, conditional analysis showed that
their associations were not independent.

Shared loci and genetic correlations with other traits

We next examined the genetic relationships of BD to other psychiatric disorders and traits.
Of the 30 genome-wide significant BD loci, 8 also harbor schizophrenia (SCZ) associations
3132 Based on conditional analyses, the BD and SCZ associations appear to be independent
at 3 of the 8 shared loci (NVCAN, TRANKI and chr7g22.3:105Mb) (Supplementary Table 9).
No genome-wide significant BD locus overlapped with those identified for depression
(DEPR), including 44 risk loci identified in the most recent PGC GWAS of major depression
33, and those reported in a large study of depressive symptoms or subjective well-being 34.
As previously reported 3%, we found substantial and highly significant genetic correlations
between BD and SCZ 3! (LD-score regression estimated genetic correlation rg=0.70, se =
0.020) and between BD and DEPR 3 (rg = 0.35, se = 0.026). The BD and DEPR genetic
correlation was similar to that observed for SCZ and DEPR (ry = 0.34, se = 0.025)
(Supplementary Table 10A).

We found significant genetic correlations between BD and other psychiatric-relevant traits
(Supplementary Table 10B), including autism spectrum disorder 8 (rg=0.18, P=2x107%),
anorexia nervosa ® (ry = 0.23, P=9x107%), and subjective well-being 3* (ry = -0.22,
P=4x1077). There was suggestive positive overlap with anxiety disorders (rg=0.21, P=0.04)
37 and neuroticism (rg=0.12, P=0.002) 8. Significant rys were seen with measures of
education: college attendance 39 (rg = 0.21, P=1=x10"") and education years 40 (r4=0.20,
P=6x10"14), but not with childhood 1Q 4! (r4=0.05, P=0.5) or intelligence 4 (r;=—0.05,
P=0.08). Among a large number of variants in BD risk loci that were associated with
additional traits in the GWAS catalog 43, we found a handful of loci with non-independent
associations (in one overlapping locus with each of educational attainment, biliary atresia,
bone mineral density, lipid-related biomarkers) (Supplementary Table 9). Biliary atresia and

Nat Genet. Author manuscript; available in PMC 2020 January 13.
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lipid- related biomarkers, however, did not show significant genetic correlation with BD
(Supplementary Table 10B).

BD subtypes

We performed a secondary GWAS focusing on three clinically recognized subtypes of
bipolar disorder: BD1 (n=14,879 cases), BD2 (n=3,421 cases), and SAB (n=977 cases)
(Supplementary Note, Supplementary Tables 1A & 11, Supplementary Figure 6). We
observed variants in 14 loci with genome-wide significance for BD1, 10 of which were in
genome-wide significant loci in the combined BD GWAS analysis. Not surprisingly given
the sample overlap, 3 of the 4 remaining loci genome-wide significant for BD1 have P <
1078 in either our discovery GWAS or combined analysis. The remaining locus (MADIL 1,
chr7:1.9Mb, discovery GWAS p = 2.4x1076) was recently published in two BD GWAS that
included Asian samples 444%, We did not observe genome-wide significant results for the
smaller BD2 and SAB analyses. BD1, BD2 and SAB all have significant common variant
heritabilities (BD1 %, = 0.25, se = 0.014, p = 3.2x10777; BD2 h%,, = 0.11, se = 0.028, p
=5.8x107°; SAB hzsnp =0.25, se = 0.10, p = 0.0071). Genetic correlations among BD
subtypes show that these represent closely related, yet partially distinct, phenotypes
(Supplementary Table 12).

We conducted polygenic risk score (PRS) analyses to explore the relationship between
genetic risk of SCZ and DEPR, and BD subtypes and psychosis (Figure 2, Supplementary
Table 13). PRS calculated from SCZ 31 were significantly higher in BD1 cases than in BD2
cases (p=5.6x10"17, P threshold = 0.1) and in cases with psychosis compared to those
without psychosis (p=2.12x1076, P threshold =0.1). Conversely, PRS calculated from DEPR
33 were significantly higher in BD2 cases than in BD1 cases (P=8.5x10710, P threshold =
0.01), independent of psychosis. Genetic correlations from LD-score regression support
these results; genetic correlations were greater for SCZ with BD1 (rg = 0.71, se = 0.025)
than with BD2 (ry = 0.51, se = 0.072), and were greater for DEPR with BD2 (rg = 0.69, se =
0.093) than with BD1 (rgq = 0.30, se = 0.028) (Supplementary Table 12).

Systems biology and in silico functional analyses

We tested for functional genomic enrichment in our BD GWAS using partitioned LD-score
regression and a range of functional annotations across tissues 46 (Supplementary Note,
Supplementary Table 14). SNP-based BD heritability was most enriched in open chromatin
annotations in the central nervous system (proportion SNPs = 0.14, proportion h2SnIO =0.60,
enrichment =3.8, p = 3 x 10714). We also used DEPICT 4 to test for expression of BD-
associated genes across tissues, and found significant enrichment of central nervous system
(p < 1.4x1073, FDR < 0.01) and neurosecretory system (p = 2.0x1078, FDR < 0.01) genes
(Supplementary Table 15).

To prioritize genes that may play a functional role in BD, we integrated BD GWAS
association statistics with eQTL (SNP-gene expression association) and mQTL (SNP-DNA
methylation association) data using summary Mendelian randomization (SMR) 48:49.50
(Supplementary Table 16; Supplementary Note). SMR identified 21 genes using eQTL data
that were significant after multiple testing correction, without evidence of heterogeneity
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between GWAS and eQTL association signals. Association with GNL3was observed in
both brain and blood, highlighting the utility of using blood eQTL data as proxy for brain
eQTLs %0, Methylation profiles at 6 CpGs in brain and 10 CpGs in blood were associated
with BD, four of which overlapped between brain and blood mQTL: MUSTN1, GLT8D1,
HAPLN4and FADSZ.

Finally, we used MAGMA °1 to conduct a gene-wise BD GWAS and to test for enrichment
of pathways curated from multiple sources (see Supplementary Note). We note that
significance levels were assigned to genes by physical proximity of SNPs, and do not imply
that significant genes are causal for BD. Genic association results included 154 Bonferroni
significant genes (MAGMA pjoinT < 2.8%1079), including 82 genes in 20 genome-wide
significant loci, and 73 genes in 27 additional loci that did not reach genome-wide
significance (Supplementary Table 17). Nine related pathways were significantly enriched
for genes with BD associations (p < 7.0x107°, FDR < 0.05), including abnormal motor
coordination/balance pathways (from mice), regulation of insulin secretion, and
endocannabinoid signaling (Supplementary Table 18, Supplementary Figure 7).

DISCUSSION

We carried out a large bipolar disorder (BD) GWAS and identified 30 genome-wide
significant loci, including 20 that were novel. Previous BD GWAS have reported a total of
20 loci significantly associated with BD923 ; twelve of these previously reported loci were
not genome-wide significant in our GWAS meta analysis, but all had Pgyas < 1.3x107°
(Supplementary Table 4C). Our recent GWAS of BD and SCZ 52, which included our
discovery GWAS data jointly analyzed with published SCZ data 3! (without overlapping
control subjects), highlighted similarities and differences in BD and SCZ in terms of known
associated SNPs and PRS-subphenotype associations; here we maximized power to identify
BD associations. Phenotypic variance explained by polygenic risk scores (PRS) based on
our BD GWAS data is ~8% (observed scale; 4% on the liability scale 33), an increase from
2.8% (1.2% on the liability scale) in our previous study °. The results of our BD subtype
PRS analyses support the nosological distinction between BD1 and BD2, but also highlight
the importance of psychosis beyond DSM subtypes, corroborating and expanding evidence
from previous clinical °* and genetic studies 525556, The DEPR vs. BD PRS analyses
provide further support for the distinction between BD1 and BD2, independent of the
presence of psychosis.

Of the 19 loci identified in our discovery GWAS, only 11 were genome-wide significant in
meta-analysis of our GWAS and follow-up samples. These results are not unexpected given
small effect sizes, the winner’s curse 2857 (Supplementary Note and Supplementary Figure
4); SNPs can teeter-totter around the genome-wide significance threshold even as sample
sizes increase. Genetic heterogeneity observed among BD GWAS cohorts® could also
contribute to inconsistent replication results; we observed variable polygenic effects between
BD subtypes (Figure 2, Supplementary Table 13) as well as between cohorts in our study
(Supplementary Figure 2, Supplementary Table 4) which used a diversity of criteria to define
cases (Supplementary Note). Remarkably, the strongest association signal from the
discovery GWAS, at the TRANK locus (rs9834970; Peombined = 5-7E-12, OR = 0.93),
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exhibited significant heterogeneity among discovery GWAS cohorts (Cochran’s Q p =
1.9x1074), and did not replicate in the follow-up sample (1-tailed Prollowup = 0-3)
(Supplementary Data 2 & 3). This locus has been significant in recent 11.12.17.18 pyt not
earlier BD GWAS 2:13.20, Thus, complex genetic architecture as well as phenotypic
heterogeneity may contribute to the inconsistency of genome-wide significant findings
within and across BD GWAS studies. The observed heterogeneity is a major challenge for
GWAS of psychiatric disorders and calls for careful and systematic clinical assessment of
cases and controls in parallel with continued efforts to collect larger sample sizes.

Of the 30 BD associated loci, 8 also harbor associations 31:32:58 with schizophrenia (SCZ):
however, conditional analyses suggest that the BD and SCZ associations at 3 of the 8 shared
loci (in the NCAN, TRANKI and chr7g22.3:105 Mb loci) may be independent
(Supplementary Table 9). Differential BD and SCZ associations may represent opportunities
to understand the genetic distinctions between these closely related and sometimes clinically
difficult to distinguish disorders. We did not find BD loci that overlap with those associated
with major depression33.

The confirmed association within loci containing CACNAIC and other voltage-gated
calcium channel genes supports the rekindled interest in calcium channel antagonists as
potential treatments for BD, with similar examination ongoing for other genes implicated in
SCZ GWAS 9. Other genes within novel BD-associated loci include those coding for other
ion channels and transporters (SCN2A, SLC4A1), neurotransmitter receptors (GRINZA) and
synaptic components (R/MS1, ANK?3). Further study will confirm whether or not these are
the causal genes in the loci. These processes are important in neuronal hyperexcitability80,
an excess of which has been reported in iPSC derived neurons from BD patients, and which
has been shown to be affected by the classic mood stabilizing drug lithium 1. In addition,
SMR eQTL and mQTL analyses implicate GL78D1, which is involved in proliferation and
differentiation of neural stem cells 62, Pathway analyses reveal new genetic evidence for
insulin secretion and endocannabinoid signaling in BD. There is evidence of insulin action
in the brain 63 and in BD 84. The endocannabinoid system has possible roles in
schizophrenia 5:66 and depression 7. Top genes appearing in these pathways include
calcium and potassium channel subunit, MAP kinase and GABA-A receptor subunit genes
(Supplementary Table 18).

We observe significant positive genetic correlations with educational attainment, but not
with either adult or childhood 1Q, suggesting that the role of BD genetics in educational
attainment may be independent of general intelligence. This result is inconsistent with
suggestions from epidemiological studies 58, but in agreement with a recent clinical study ©°.

In summary, findings from the genome-wide analysis of BD reveal an extensive polygenic
genetic architecture of the disease, implicate brain calcium channels and neurotransmitter
function in BD etiology, and confirm that BD is part of a spectrum of highly correlated
psychiatric and mood disorders.
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Accession codes:

Accessioned data were part of the following datasets analyzed in this study. Fat2:
phs000167.v1.pl or PGC bundle phs001254.v1.p1 (MGS nonGAIN controls). Gain: doGAP
phs000017.v3.p1 (GAIN Bip cases/controls), phs000021.v3.p2 (GAIN scz controls); also
part of the PGC dbGAP bundle phs001254.v1.p1. Jjst: phs000092.v1.p1 or PGC bundle
phs001254.v1.p1l (SAGE controls). St2c, NIMH RGR Bipolar Study 19 (STEP-BD), dbGAP
phs000294.v1.p1 (MIGEN controls). Mich: NIMH RGR Bipolar Study 2 (Pritzker). Wtcc:
EGAD00000000002.

Data Availability.

The PGC’s policy is to make genome-wide summary results public. Summary statistics for
our meta-analysis are available through the PGC (https://www.med.unc.edu/pgc/results-and-
downloads). Data are accessible with collaborative analysis proposals through the Bipolar
Disorder working group of the PGC (https://med.unc.edu/pgc).

ONLINE METHODS
GWAS and follow-up cohorts.

Our discovery GWAS sample was comprised of 32 cohorts from 14 countries in Europe,
North America and Australia (Supplementary Table 1A), totaling 20,352 cases and 31,358
controls of European descent. A selected set of variants (see below) were tested in 7 follow-
up cohorts of European descent (Supplementary Table 1B), totalling 9,025 cases and
142,824 controls (Ngff = 23,991). The Supplementary Note summarizes the source and
inclusion/exclusion criteria for cases and controls for each cohort. All cohorts in the initial
PGC BD paper were included °. Cases were required to meet international consensus criteria
(DSM-1V or ICD-10) for a lifetime diagnosis of BD established using structured diagnostic
instruments from assessments by trained interviewers, clinician-administered checklists, or
medical record review. In most cohorts, controls were screened for the absence of lifetime
psychiatric disorders and randomly selected from the population.

GWAS cohort analysis

We tested 20 principal components for association with BD using logistic regression; seven
were significantly associated with phenotype and used in GWAS association analysis (PCs
1-6, 19). In each cohort, we performed logistic regression association tests for BD with
imputed marker dosages including 7 principal components to control for population
stratification. For all GWAS cohorts, X-chromosome association analyses were conducted
separately by sex, and then meta-analyzed across sexes. We also conducted BD1, BD2, and
SAB GWAS, retaining only cohorts with at least 30 subtype cases and filtering SNPs for
MAF > 0.02. Results were combined across cohorts using an inverse variance-weighted
fixed effects meta-analysis 7%. We used Plink ‘clumping’ 7272 to identify an LD-pruned set
of discovery GWAS meta-analysis BD-associated variants (< 0.0001, and distance >500
kb or LD r2 < 0.1, n variants =822) for analysis in the follow-up cohorts. Conditional
analyses were conducted within each GWAS cohort and meta-analyzed as above.
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Follow-up cohort analysis.

In each follow-up cohort we performed BD association analysis of the 822 selected GWAS
variants (when available) including genetic ancestry covariates, following QC and analysis
methods of the individual study contributors. We performed inverse variance-weighted
fixed-effects meta-analyses of the association results from the follow-up cohorts, and of the
discovery GWAS and follow-up analyses.

Polygenic risk score (PRS) analyses.

We tested PRS for our primary GWAS on each GWAS cohort as a target set, using a GWAS
where the target cohort was left out of the meta-analysis (Supplementary Table 2). To test
genetic overlaps with other psychiatric diseases, we calculated PRS for DEPR and SCZ in
our GWAS cohort BD cases ’3. In pairwise case subtype or psychosis analyses (Figure 2,
Supplementary Table 13), we regressed outcome on the PRS adjusting for ancestry principal
components and a cohort indicator using logistic regression, and visualized covariate-
adjusted PRS in BD1 and BD2 subtypes (Figure 2). Outcome sample sizes were BD1
n=8,044, BD2 n=3,365, SAB n=977; BD1 cases with and without psychosis n= 2175 and
798 respectively, BD2 cases with and without psychosis n= 146 and 660.

Linkage disequilibrium (LD) score regression.

LD score regression 2226 was used to conduct SNP-heritability analyses from GWAS
summary statistics. LD score regression bivariate genetic correlations attributable to
genome-wide common variants were estimated between the full BD GWAS, BD subtype
GWASs, and other traits and disorders in LD-Hub 26. We also used LD score regression to
partition heritability by genomic features 46.

Relation of BD GWA findings to tissue and cellular gene expression.

We used partitioned LD score 474 and DEPICT #7 regression to evaluate which somatic
tissues and brain tissues were enriched in the BD GWAS. We used summary-data-based
Mendelian randomization (SMR) 4850 to identify SNPs with strong evidence of causality of
brain or blood gene expression or methylation in BD risk (Supplementary Table 16), with a
test for heterogeneity to exclude regions with LD between distinct causal SNPs (pHET <
0.01).

Gene-wise and pathway analysis.

Guided by rigorous method comparisons conducted by PGC members .75, p-values
quantifying the degree of association of genes and gene sets with BD were generated using
MAGMA (v1.06) 51, We used ENSEMBL gene coordinates for 18,172 genes giving a
Bonferroni corrected A-value threshold of 2.8x1076. Joint multi-SNP LD-adjusted gene-
level p-values were calculated using SNPs 35 kb upstream to 10 kb downstream, adjusting
for LD using 1,000 Genomes Project (Phase 3 vba, MAF = 0.01, European-ancestry
subjects) 76. Gene sets were compiled from multiple sources. Competitive gene set tests
were conducted correcting for gene size, variant density, and LD within and between genes.
The pathway map (Supplementary Figure 5) was constructed using the kernel generative
topographic mapping algorithm (k-GTM) as described by 77.
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Genome build.

All genomic coordinates are given in NCBI Build 37/UCSC hg19.
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Genome-wide analysis identifies 30 loci associated with bipolar disorder, allowing for
comparisons of shared genes and pathways with other psychiatric disorders, including

schizophrenia and depression.

Editorial Summary:
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Figure 1.
Manhattan plot for our primary genomewide association analysis of 20,352 cases and 31,358

controls. GWAS -log1gP-values are plotted for all SNPs across chromosomes 1-22
(diamonds, green for loci with lead SNP GWAS P < 1075). Combined GWAS+followup
—logygP-values for lead SNPs reaching genome-wide significance in either GWAS or
combined analysis (triangles, inverted if GWAS+followup —logigP > GWAS -logP).
Labels correspond to gene symbols previously reported for published loci (black) and the
nearest genes for novel loci (blue), at top if GWAS+followup P < 5x1078, Loci with one-
tailed follow-up p > 0.05 (Table 1) have dotted underlined locus names.
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Scaled Polygenic Risk Score
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Figure 2.

Association of BD1 and BD2 subtypes with schizophrenia (SCZ) and major depression
(DEPR) polygenic risk scores (PRS). Shown are mean PRS values (1 s.e. error bars),
adjusted for study and ancestry covariates and scaled to the PRS mean and sd in control
subjects, in BD1 (red) and BD2 (blue) cases, for increasing source GWAS P-value
thresholds (increasing grey) as indicated. P-values (italics) test BD1 vs BD2 mean PRS, in
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logistic regression of case subtype on PRS with covariates. Results are detailed in
Supplementary Table 13.
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