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ABSTRACT 

Chemokines orchestrate leukocyte recruitment in atherosclerosis and their blockade is a 

promising anti-atherosclerotic strategy, but few chemokine-based approaches have advanced 

into clinical trials, in part owing to the complexity and redundancy of the chemokine network. 

Macrophage migration-inhibitory factor (MIF) is a pivotal mediator of atherosclerotic lesion 

formation. It has been characterized as an inflammatory cytokine and atypical chemokine 

(ACK) that promotes atherogenic leukocyte recruitment and lesional inflammation through 

interactions with the chemokine receptors CXCR2 and CXCR4, but also exhibits phase-

specific CD74-mediated cardioprotective activity. The unique structural properties of MIF and 

its homolog MIF-2/D-DT offer intriguing therapeutic opportunities including small molecule-, 

antibody-, and peptide-based approaches that may hold promise as inhibitors of athero-

sclerosis, while sparing tissue-protective classical chemokine pathways. In this review, we 

summarize the pros and cons of anti-MIF protein strategies and discuss their molecular 

characteristics and receptor specificities with a focus on cardiovascular disease. 

 

 

Key Words: MIF / chemokine receptor / atypical chemokine / small molecule drug (SMD) 

compound / peptide / antibody  
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NON-STANDARD ABBREVIATIONS AND ACRONYMS 

Apoe–/– Apolipoprotein E 

ACK  Atypical chemokine 

ACKR  Atypical chemokine receptor 

CXCL12  CXC motif chemokine 12 

CXCR  CXC motif chemokine receptor 

CXCR4 CXC motif chemokine receptor 4 

MIF   Macrophage migration-inhibitory factor 

SDF-1 Stromal cell-derived factor-1alpha 
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INTRODUCTION 

Atherosclerosis is a chronic inflammatory disease of our arteries that is characterized by the 

development of lipid-rich inflamed plaques in the vessel wall. Lesion progression and plaque 

rupture may result in detrimental cardiovascular events such as acute myocardial infarction 

and ischemic stroke (1, 2), leading causes of death worldwide (3). Influenced by genetic and 

environmental risk factors such as hyperlipidemia, atherosclerosis is initiated by endothelial 

dysfunction, followed by an accumulation of oxidized low-density lipoproteins (oxLDL) and an 

inflammatory cell infiltrate dominated by monocytes and T cells into the atherogenic vessel 

wall. Infiltrating monocytes differentiate into macrophages and lipid-laden foam cells. Lesion 

progression also involves vascular smooth muscle cell (VSMC) proliferation, necrotic core 

formation, and wall remodeling that may eventually lead to plaque destabilization, rupture, and 

thrombosis (4).  

These processes are mediated by inflammatory cytokines and chemokines at all 

stages. Some 50 classical chemokines interact with 18 G-protein-coupled receptor (GPCR)-

type chemokine receptors. This network is characterized by a high degree of redundancy and 

promiscuity and chemokines are divided into CC-, CXC-, CX3C-, and C-type sub-classes and 

correspondingly-termed receptors (5, 6).  

Due to their causal role in atherogenesis, anti-cytokine/-chemokine approaches are 

pursued as therapeutic strategies to attenuate atherosclerosis (7). A number of chemokine-

blocking antibodies and chemokine receptor-inhibiting small molecule compounds (SMDs) are 

in advanced pre-clinical testing and (early) clinical trial phases (7-11). Importantly, the 

promising results obtained with an interleukin-1  (IL-1)-blocking antibody in the CANTOS 

trial have validated the inflammatory hypothesis in atherosclerosis and demonstrated the 

power of cytokine-based anti-inflammatory drugs in patients with established atherosclerotic 

disease (12). 

Macrophage migration-inhibitory factor (MIF) is an inflammatory cytokine with 

chemokine-like characteristics and unique structural properties and is classified as a 

prototypical member of the emerging family of ACKs (13-16). ACKs lack the typical chemokine-
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fold and conserved N-terminal cysteines of classical chemokines (6), but exhibit chemotactic 

activity and bind to classical chemokine receptors (16). MIF is upregulated in human 

atherosclerotic lesions (17) and its levels correlate with coronary artery disease (CAD) (18, 

19). Mif gene deletion (Mif-KO) and antibody-based neutralization of MIF in experimental 

atherosclerosis suggest it is a major driver of atheroprogression during several stages of the 

disease (14, 18). 

Here we discuss molecular strategies to inhibit MIF and its structural homolog D-

dopachrome tautomerase (D-DT), also termed MIF-2, in atherosclerosis and other 

inflammatory diseases. We cover antibody-based strategies, small molecules directed at the 

unique MIF catalytic pocket around N-terminal proline-2 or at allosteric sites, and emerging 

peptide-based approaches. The pros and cons of these strategies, potential side-effects, and 

envisaged receptor pathway specificities are compared. 

 

MIF IS A CHEMOKINE-LIKE INFLAMMATORY MEDIATOR THAT PROMOTES ATHERO-

SCLEROSIS  

MIF is one of the first cytokines to be discovered. It was originally described in 1966 by John 

David as a soluble factor produced by human lymphocytes that was capable of inhibiting the 

random migration of macrophage-like cells out of capillary tubes, while earlier reports on 

myeloid cell migration even date back to 1932 (15, 20, 21). MIF is a 12.5 kD protein containing 

114 amino acids that crystallizes as a trimer, but equilibria between monomers, dimers, and 

trimers are observed under physiological solution conditions (22, 23). Today, MIF is known as 

a pleiotropic inflammatory mediator that is structurally distinct from other cytokines, but shares 

structural homology with bacterial tautomerases/isomerases, suggesting evolutionary 

conservation (15, 23, 24). It is broadly expressed, but regulated secretion that occurs from 

semi-constitutive cytosolic stores by a p115-dependent non-conventional mechanism is 

predominantly seen in cells of the immune system as well as endothelial and tumor cells (15, 

25, 26). MIF is the founding member of the MIF protein family that also comprises D-DT/MIF-

2 and MIF-like orthologs in numerous species. MIF is an upstream regulator of the host innate 
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and adaptive immune response, but -if dysregulated- it is a driver of inflammatory diseases as 

well as cardiovascular diseases including atherosclerosis. Contrary to its eponymous name, 

MIF has been classified as an ACK that, similar to arrest chemokines such as CXCL1/8, 

enhances atherogenic leukocyte chemotaxis and arrest. It has been suggested that inhibition 

of random macrophage migration as observed in the historic experiments, is likely to represent 

a desensitization effect as well-known for chemokines (14, 16). 

 Serving as an inflammatory, chemokine-like cytokine and upstream regulator of innate 

immunity, it is not unexpected that MIF has a key role in numerous inflammatory and 

autoimmune conditions, including septic shock, rheumatoid arthritis, systemic lupus 

erythematosus, Crohn’s disease, obesity, glomerulonephritis, and inflammatory and allergic 

lung conditions (reviewed in: (15, 27-30). Owing to the close mechanistic links between chronic 

inflammation and cancer, MIF also has been identified as a pro-tumorigenic factor in several 

tumor entities, enhancing cancer cell proliferation, promoting tumor angiogenesis, and 

modulating anti-tumor immunity (15, 31-34). 

Its chemokine-like and inflammatory properties render MIF a potent regulator of the 

atherogenic process. MIF expression is upregulated in human and murine atherosclerotic 

lesions with peak levels observed in advanced plaques (17, 19). It is not only upregulated in 

the atherogenic endothelium and infiltrating leukocytes, but also in vascular smooth muscle 

cells (VSMCs) and platelets following inflammatory stimulation (17, 35, 36). Antibody-mediated 

neutralization in Apoe-/- mice resulted in reduced lesional immune cell content and lowered 

levels of inflammatory mediators associated with atherosclerosis (37). Similarly, Mif-deficient 

Ldlr-/- mice showed reduced atherosclerotic plaque areas compared to controls (14, 38). 

Targeting MIF with neutralizing antibodies resulted in significant plaque regression (14). The 

pro-atherogenic activity of MIF is predominantly mediated via non-cognate interaction with the 

chemokine receptors CXCR2 and CXCR4, leading to monocyte and T cell recruitment, 

respectively (14). This is accompanied by an upregulation of adhesion molecules like ICAM-1 

and release of atherogenic chemokines such as CCL-2 (39, 40). Moreover, MIF stimulates 

oxLDL uptake to promote foam cell formation. Foam cells undergo apoptosis and form a 
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necrotic core surrounded by a fibrous cap (41). MIF is associated with plaque instability as it 

induces matrix degradation through matrix metalloproteinases (MMPs), followed by fibrous cap 

thinning resulting in plaque rupture (42). MIF also promotes intra-plaque inflammation by 

stimulating macrophages to secrete inflammatory mediators such as TNF-α or IL1-β (43). The 

role of MIF-2 in chronic atherogenesis is subject to current investigations. 

Pro-atherogenic effects of MIF are supported by observational clinical studies in CAD 

patients. For the G/C SNP rs755622 at position -173, a higher susceptibility to develop CAD 

has been observed for C allele carriers (44-46). Moreover, the MIF gene features a 

tetranucleotide CATT repeat polymorphism (‘the CATT5-8 microsatellite’) at position -794 that 

was initially identified in rheumatoid arthritis patients and controls gene expression from the 

MIF promoter (47). CATT7 or CATTnon-5 MIF high-expressers show an increased severity of 

coronary artery atherosclerosis (CAA) and patients carrying the rs755622 C allele and 

CATT7/C haplotype are more prone to develop CAD (48). This correlates with associations 

between plasma MIF and CAD, e.g. in acute coronary syndrome (18, 19, 49, 50). Moreover, 

MIF plasma levels were found to be elevated in a high proportion of ST elevation myocardial 

infarction (STEMI) patients, were suggested to be an early marker of acute STEMI, and STEMI 

patients with high admission MIF level experienced a poorer recovery of cardiac function and 

worse long-term adverse outcomes (19, 51-53). Moreover, the role of MIF in myocardial 

ischemia/reperfusion (I/R) injury has become apparent from clinical studies in cardiac surgery 

patients and mouse models. The cardiac surgery procedure recapitulates the ischemic and 

reperfusion stress seen in myocardial infarction patients, but in contrast to the endogenously 

occurring myocardial infarction pathology in STEMI patients subjected to percutaneous 

coronary intervention (PCI),  the onset of inflammation and oxidative injury in cardiac surgical 

patients is predictable as cardiac surgery with the cardioplegia-induced myocardial arrest, 

assistance of cardio-pulmonary bypass (CPB) and the following myocardial reperfusion, 

reproducibly elicits an ischemia-reperfusion sequelae. Intriguingly, the increase in peri-

operative MIF levels in cardiac surgery patients, as well as ratios of MIF and its soluble receptor 

CD74 (sCD74), suggest a cardioprotective role of MIF in the ischemic and early reperfusion 
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phase after myocardial infarction (54-56). In fact, cardioprotection by MIF in myocardial 

ischemia/reperfusion injury (MI/RI) is confirmed in numerous mouse models (19, 57-62). Along 

the same lines, the myocardium-specific conditional knockout of D-dt/Mif-2 exacerbates MI/RI, 

while MIF-2 levels positively correlated with worse outcome in cardiac surgery patients (54, 

63). Interestingly, experimental models addressing the later post-ischemic phase indicated that 

the role of MIF in cardiac ischemia is complex, with phase-dependent cardioprotective and 

exacerbating effects observed (57-59, 61, 64). MIF is initially released by ischemic 

cardiomyocytes or endothelial cells and triggers a cardioprotective autocrine/paracrine 

signaling response in cardiomyocytes. Here, MIF not only binds to the chemokine receptors 

CXCR2 and CXCR4, but also to CD74, the surface-expressed form of the MHC class II 

invariant chain, which serves a secondary function as a high-affinity MIF receptor (65). 

Cardiac-derived – 1st wave – MIF interacts with cardiomyocyte-expressed CD74 in the 

ischemic and early reperfusion phase of myocardial I/R to trigger cardioprotective signaling 

through AMP kinase metabolic reprogramming, an increase in glucose uptake via membrane 

translocation of GLUT4, and the AKT and ERK survival pathways, while pro-apoptotic JNK 

signaling is attenuated (58, 60). MIF-2 also mediates cardioprotection in this phase via 

CD74/AMPK signaling (63). MIF/CD74/AMPK-mediated ischemic recovery is impaired in the 

senescent heart, suggesting that this protective mechanism could be dampened in aged CHD 

patients (66). MIF’s antioxidant capacity that is based on its redox-active CXXC motif and that 

it shares with thiol-protein oxidoreductases such as thioredoxin (Trx) (67) also contributes to 

cardioprotection in the early phase of I/R stress (57, 59, 62). In contrast, MIF’s role in the later 

phase of I/R stress in the heart is an “inflammatory” one that is mediated by CXCR2/CXCR4-

dependent recruitment of monocytes and neutrophils. Second wave MIF is additionally and 

abundantly produced by infiltrating inflammatory cells to amplify the inflammatory response 

(64). MIF’s chemokine receptors serve a dual role in this phase with both protective 

(cardiomyocyte-expressed CXCR2/4) and pro-inflammatory (CXCR2/4 expressed on 

infiltrating myeloid cells) activity (68, 69). 
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MIF PROTEINS AND THEIR RECEPTORS  

MIF binds to CXCR2 and CXCR4, representing non-cognate interactions between an ACK and 

classical chemokine receptors. MIF also binds to CD74, the surface-expressed form of 

invariant-chain. All three receptors have important roles in atherosclerosis and cardiac disease 

(see above). Recent evidence also suggests engagement of CXCR7-mediated pathways by 

MIF (70-72). 

Binding of MIF to CXCR2 drives atherogenic recruitment of monocytes and neutrophils 

(14, 73, 74). Mechanistically, binding of MIF to CXCR2 is similar but not identical to that of the 

cognate ligand CXCL8 and requires an N-like loop and pseudo-ELR motif (16, 74-76). While 

data are not yet available, it has been speculated that MIF-2 does not activate CXCR2 as it 

lacks the pseudo-(E)LR motif of MIF. MIF/CXCR4 binding supports the recruitment of 

atherogenic T cells (14), but has also been implicated in cancer metastasis and endothelial 

progenitor cell recruitment (16). Recent evidence suggests an important role of the MIF/-

CXCR4 axis in B cell migration that may also contribute to the pro-atherogenic phenotype of 

MIF (70, 77, 78). CXCR4 is one of the few GPCRs for which an X-ray structure has been 

elucidated (79, 80) and recent structure-activity studies revealed that the MIF/CXCR4 interface 

involves an extended N-like loop of MIF, an RLR motif at position 87-89, and the N-terminal 

Pro-2 (81, 82).  

Interestingly, both CXCR2 and CXCR4 are able to form receptor complexes with CD74, 

offering unexpected mechanistic options as to the fine-tuning of MIF-driven pathways in 

atherogenesis. In fact, MIF-mediated CXCR2/CD74 signaling has a role in atherogenic leuko-

cyte recruitment (14, 83), while CXCR4/CD74 complex formation and/or cross-talk is 

necessary for MIF-driven B cell migration responses and elicits downstream ZAP-70 signaling 

(77, 84).   

Intracellular CD74/invariant-chain acts as an MHC II chaperone facilitating antigen 

loading to class II complexes in the endoplasmic-reticulum (85). However, CD74 may be also 

expressed in class II-negative cells, i.e. upon inflammatory stimulation, and exhibits a major 

role as cytokine receptor for MIF and MIF-2 (65, 86). MIF and MIF-2 bind to the extracellular 
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domain of CD74, but as CD74 exhibits a short cytoplasmic domain, signal transduction 

necessitates accessory molecules such as CD44 or CXCR2/4 (14, 16, 65, 87). A soluble form 

of CD74 (sCD74) was identified in patients with autoimmune liver disease (88) and as outlined 

above, evidence from cardiac surgery patients suggests that circulating sCD74 levels correlate 

with better outcome (54, 56). sCD74-derived strategies could thus represent interesting MIF-

targeting approaches in the future. 

 

ANTIBODY-BASED ANTI-MIF STRATEGIES  

Antibody-based anti-cytokine/-chemokine strategies are promising therapeutic approaches in 

inflammatory and cardiovascular diseases. Prominent examples are the IL-1 antibody 

canakinumab, which was shown in the CANTOS trial to reduce vascular inflammation accom-

panied by a lower rate of recurrent cardiovascular events (12), the anti-TNF- antibody 

infliximab, successfully used in RA (89), and numerous chemokine antibodies such as anti-

CCL2 (CNTO888/ABN912), which are in phase 1/2 clinical studies for various inflammatory 

conditions and cancer (90, 91). Chemokine antibodies such as anti-CCL2 have been effi-

cacious in preclinical models of atherosclerosis (7), suggesting their potential in CAD patients.  

 Neutralization of MIF by blocking antibodies has improved disease exacerbation in 

numerous preclinical inflammation models including atherosclerosis (18, 37, 92, 93). The most 

widely used antibody has been the monoclonal NIH/IIID.9, which was raised against full-length 

mouse MIF. It was initially tested in immunologically-induced kidney disease (94) and has been 

demonstrated to potently block disease progression in numerous inflammatory, autoimmune 

and cardiovascular conditions (14, 16, 18, 19, 37, 95). The epitope recognized by NIH/IIID.9 

has not been characterized, but it has been suggested that it recognizes a solvent-exposed 

region of MIF in the middle part of the sequence (95) similar to mAb clone 1C10 (Bernhagen 

et al., unpublished), but unlike clone F11, which blocks cecal-ligation-and-puncture-induced 

sepsis and is directed against the N-terminal of murine MIF (96). 

From the existing anti-MIF antibodies successfully tested in pre-clinical inflammation, 

cancer, and atherosclerosis models, only the MIF-antibody Imalumab has so far advanced into 
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phase 1/2a clinical trials (NCT01765790) against colorectal cancer and lupus nephritis (97). 

Imalumab has an anti-inflammatory capacity as it reduces circulating TNF-, MCP-1 and IL-6, 

and attenuates disease progression in mouse models of glomerulonephritis and cancer. Based 

on biochemical and immunochemical experiments, it was suggested that this antibody 

recognizes an oxidized form of MIF with the oxidoreductase motif of MIF trapped in an oxidized 

state, and that Cys-81 serves as a molecular redox switch between the latent reduced form of 

MIF and its oxidized state (93, 98, 99). While the antibody was reported to detect an oxidized 

MIF species termed ‘oxMIF’ in tumor tissue from patients with colorectal, pancreatic, ovarian, 

and lung cancer (100), the claim that oxMIF is the pathophysiologically-relevant MIF species 

appears speculative and convincing evidence that Imalumab targets pathogenic oxidized MIF 

species is missing (67, 95). 

MIF-2/D-DT shares with MIF a pronounced pro-inflammatory activity profile and has 

been reported to promote endotoxemia, adipose tissue inflammation, and tumorigenesis 

similar to MIF. As discussed, MIF-2 also is involved in early cardioprotection after M/I and 

regulates kidney regeneration, but its role in atherosclerosis has not been studied (19, 63, 86, 

101-103). Functional studies on MIF-2 have capitalized on Mif-2 gene deletion (63) and a 

neutralizing antibody (86). While this polyclonal antibody shows good blocking potency in pre-

clinical models (86), a monoclonal antibody has not been published. 

Cytokine/chemokine pathways may be targeted by neutralization of the ligand or may 

rely on strategies to block the receptor binding site of the ligand and/or receptor signaling. 

Antibodies against CD74 recapitulate many of the effects seen with neutralizing MIF 

antibodies, but differences have also been noted. As both MIF and MIF-2 bind to CD74, these 

may be due to MIF-2-triggered responses that are inhibited by anti-CD74 but not anti-MIF 

strategies. No other endogenous ligands than MIF or MIF-2 have been identified for CD74. 

Yet, the blocking phenotype of anti-CD74 may differ from a combined anti-MIF/anti-MIF-2 

strategy due to class II-associated functions of endolysosomal-expressed CD74/invariant 

chain. In fact, specific peptide-based strategies have been developed to block class II-

associated functions of CD74 in multiple sclerosis (104-107) (see below).  

https://clinicaltrials.gov/ct2/show/NCT01765790


13 

 

A neutralizing CD74 mAb has shown potent inhibitory activity in hematologic cancers 

such as chronic lymphocytic leukemia (CLL) and multiple myeloma (108, 109). One of these 

mAb clones, a humanized anti-CD74 monoclonal termed Milatuzumab/hLL1, is in clinical trials 

for CLL and multiple myeloma treatments. However, although gene deletion of CD74 

significantly attenuates atherosclerosis in atherogenic Ldlr-/- mice (110) and although CD74 

serves as an accessory molecule in MIF-driven CXCR2/4-mediated leukocyte recruitment 

responses (14), neutralizing CD74 antibodies have not been studied in atherosclerosis. It 

should be emphasized that anti-CD74 strategies may be intrinsically limited regarding their 

translational potential in atherosclerotic disease due to cardiac protection mediated via the 

CD74/AMPK pathway in cardiomyocytes following ischemic stress (58). It rather seems that 

MIF-based strategies in cardiovascular disease should aim at sparing CD74-mediated 

pathways (19). 

CXCR2 and CXCR4 are bona fide GPCRs, but antibody development against GPCRs 

has been delayed. In fact, of the numerous GPCR-modulating agents available, most are small 

molecules or peptides. Recently, the first GPCR-directed antibody (Erenumab), an antibody 

against calcitonin-gene-related peptide-receptor (CGRPR), was FDA-approved for treatment 

of migraine (111). Meanwhile, the development of additional anti-GPCR antibodies including 

antibodies against CC and CXC chemokine receptors is underway (111). 

CXCR4 antibodies are in advanced clinical trials for hematologic malignancies (112), 

and anti-CXCR4 SMDs such as the bicyclam Plerixafor/AMD3100 which promotes CXCR4-

dependent hematopoietic stem cell egress from bone marrow is clinically used in autologous 

stem cell transplantation of cancer patients (113). Nevertheless, anti-CXCR4 antibody 

strategies as a means to block MIF-driven pathogenic pathways in atherosclerosis should be 

pursued with caution. The CXCR4/CXCL12 axis has important homeostatic functions in 

development and physiology that render generalized anti-CXCR4 strategies difficult. 

Moreover, disrupting the CXCL12/CXCR4 axis in a mouse model of atherosclerosis promoted 

lesion formation through dysbalanced neutrophil homeostasis (114) and a recent study 
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demonstrated a potent atheroprotective effect of vascular CXCR4 via maintaining arterial 

integrity, endothelial barrier function, and preserving contractile VSMC functions (115).  

Cxcr2 gene deficiency reduces the progression of advanced atherosclerosis in mice 

and in fact, CXCR2 has been one of the first chemokine receptors implicated in atherogenesis 

(116, 117). CXCR2 also is involved in MIF-elicited atherogenic monocyte and neutrophil 

recruitment (14, 16, 75), emphasizing the significance of the MIF/CXCR2 axis in leukocyte 

arrest and atherogenesis. Moreover, anti-MIF antibodies proved superior to anti-CXCL1 (and 

anti-CXCL12) in an atherosclerosis regression model (14). An anti-CXCR2 antibody therapy is 

considered a translatable strategy in solid cancer, e.g. through improving the efficacy of 

checkpoint blockade by preventing trafficking of myeloid-derived suppressor cells (MDSCs) to 

the tumor site (118) and anti-CXCR2 strategies are pursued in various clinical trials (119), 

including acute coronary syndrome (ACS) (120). An anti-CXCR2 biparatopic nanobody is in 

phase I development for the treatment of inflammation (111). Antibody strategies for epitopes 

specifically targeting MIF/CXCR2 receptor pathways in vascular inflammation and 

atherosclerosis have not been pursued. 

Table 1 summarizes published antibody-based strategies directed at MIF proteins 

and/or their receptors. 

 

SMALL MOLECULE (SMD)-BASED ANTI-MIF STRATEGIES  

MIF proteins are structurally unique among cytokines/chemokines in harboring a conserved 

catalytic tautomerase cavity that contains the unusually acidic Pro-2 residue. This offers the 

opportunity to target pathogenic activities of MIF by small molecule approaches. Capitalizing 

on efficient drug discovery pipelines including in silico and high throughput screening, 

numerous anti-MIF SMDs have been identified that bind into or modulate the tautomerase 

pocket of MIF and/or MIF-2/D-DT by covalent or non-covalent mode.  

Small molecule MIF inhibitors have been compiled in several recent review articles (24, 

95, 121, 122). Here, we discuss some of these compounds with a focus on their potential utility 

in atherosclerosis. Table 2 summarizes the key features of these inhibitors. 
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Mechanistically, small molecule MIF inhibitors are classified into different categories: i) 

competitive inhibitors that non-covalently bind into the cavity; ii) suicide inhibitors that 

covalently bind into the cavity; iii) allosteric inhibitors that disrupt the active-site through 

dissociation of the MIF trimer or an otherwise-induced conformational switch; iv) allosteric 

inhibitors that prevent higher-order MIF oligomers (123, 124). In addition, stabilizers of the MIF 

monomer have been proposed as inhibitors through prevention of re-association into trimer 

(123). These may only qualify as inhibitors of MIF/CD74 interactions, which involve trimeric 

MIF, whereas it has been assumed that the interaction between MIF and CXCR2/CXCR4 is a 

function of the monomer (14). While most inhibitors have been developed against MIF, some 

also block MIF-2, although significant differences in Ki and IC50 values have been noted (125). 

A recent study has identified a selective MIF-2 inhibitor that exhibits 13-fold higher binding to 

MIF-2 than MIF (125). 

The MIF tautomerase activity is highly conserved across kingdoms, but to date, 

physiological substrates in mammalians have not been identified, raising the possibility that it 

is an evolutionary remainder with no function in humans. Thus, it is now thought that by binding 

to the tautomerase site, these compounds induce conformational changes in MIF that 

subsequently alter its receptor-binding properties (82, 126-129) and therefore ‘indirectly’ 

influence MIF activities. 

The structures of the small molecule MIF inhibitors have been extensively reviewed 

(121, 122). Briefly, with the isooxazoline compound ISO-1 serving as a reference MIF inhibitor 

in various inflammation models (130), they can be grouped into isooxazolines (examples: ISO-

1, ISO-66, CPSI-1306), chromenes (examples: Orita-13, Kok-17), iminoquinones (example: N-

acetyl-p-benzoquinone imine (NAPQI)), triazoles (example: Cisneros-3i), benzoxazolones 

(example: MIF098), pyrimidazoles (example: K664-1), and isocoumarins (e.g. SCD-19) (121, 

122, 131). Allosteric MIF inhibitors encompass pyrazolopyridines (example: clinically-used 

PDE4 inhibitor Ibudilast), benzoisoselenazolones (example: anti-inflammatory drug Ebselen), 

and azo compounds (example: p425 or Chicago Sky Blue 6b) (73, 123, 124). Of note, Ibudilast, 

which can cross the blood-brain-barrier, was recently demonstrated in a phase II clinical trial 
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in progressive multiple sclerosis, to be associated with slower progression of brain atrophy 

than placebo (132). Isothiocyanates such as phenethylisothiocyanate (PEITC), are a reactive 

class of ‘natural’ MIF inhibitors that are present in appreciable amounts in broccoli and water 

cress. They covalently bind to the acidic Pro-2 residue in the catalytic site of MIF, attenuate 

MIF antibody binding, and inhibit inflammatory MIF activities in vitro, but have not yet been 

studied in atherosclerosis (123, 133).  

While most of these compounds have not yet been studied in atherosclerosis-relevant 

test systems or preclinical models, some of them may hold promise as pathway-specific MIF 

inhibitors in atherogenesis. However, a ‘black-and-white’ categorization into receptor-specific 

blockers appears too simplistic. For example, CD74 is a receptor mediating cardio- and tissue-

protective MIF activities (19, 58); on the other hand, it drives pro-proliferative functions of MIF 

and can interact with the MIF chemokine receptors, which would be pro-atherogenic (14, 70, 

109). CXCR4 mediates pro-atherogenic lymphocyte recruitment by MIF (14, 78), but also 

exhibits homeostatic and atheroprotective activities through CXCL12 (115). Notwithstanding, 

it may be speculated that MIF trimerization inhibitors such as Ebselen might have specificity 

for MIF/chemokine receptor pathways, while sparing MIF trimer-dependent CD74 signaling 

(123), which could lead to an overall atheroprotective effect. Ibudilast was found to block 

MIF/CD74 interactions in vivo by preventing astrocyte-derived MIF from interacting with CD74+ 

microglia during the colonization process of brain metastatic tumors resulting in reduced 

secondary brain tumor loads (134). Similarly, ISO-1 reduces MIF/CD74 binding albeit at 

relatively weak IC50 values (121), but interestingly, was recently also shown to partially interfere 

with MIF binding to CXCR4, opening up the possibility that certain MIF inhibitors may have 

utility in cardiovascular disease. However, given their small interaction surface, it remains 

questionable whether they would sufficiently differentiate between receptor pathways. 

Table 2 summarizes a selection of the developed small molecule MIF inhibitors from 

different structural classes and compares them to MIF chemokine receptor inhibitors. To this 

end, AMD3100/Plerixafor and Reparixin are established CXCR4 and CXCR2 inhibitors, 

respectively. AMD3100 also was shown to be a partial -allosteric- inhibitor of MIF/CXCR4 
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signaling (82); however, its preferential targeting of CXCL12/CXCR4 responses and its limited 

application window in autologous transplantation and HIV, probably limits an efficacious usage 

as a specific anti-MIF compound. Reparixin has so far only been studied in MIF-dependent in 

vitro inflammatory assays (135).   

 

PEPTIDE-BASED ANTI-MIF STRATEGIES  

Peptide therapeutics are a powerful alternative to small molecule and antibody strategies with 

over 60 peptide drugs approved worldwide. The peptide therapeutic landscape has been 

reviewed in excellent recent reviews (136-138). Advantages of peptide-based inhibitors are: i) 

good selectivity and potency, ii) good interaction surface coverage, iv) favorable safety, and v) 

comparatively low production costs due to standard synthesis protocols. On the other hand, 

they are prone to degradation and oxidation, but this can be improved by smart mimic 

chemistry (136, 139). 

Even though peptide-based inhibitors have been pursued as potential therapeutics in 

atherosclerosis, e.g. targeting lipid-regulating and inflammatory pathways such as 

apolipoproteins, NF-B, and the IL-4 receptor (140-142), peptide approaches targeting MIF-

specific pathways are still in its infancies. Interestingly, a recent approach established 

designed stable peptide inhibitors that specifically disrupt proinflammatory CCL5-CXCL4 

interactions, attenuating monocyte recruitment and reducing atherosclerosis. Targeting of 

CCL5-CXCL4 heteromers avoids side-effects of generalized anti-CCL5 strategies which would 

compromise systemic host immunity (143, 144), thus underscoring the potential of anti-

chemokine peptide strategies. 

Anti-MIF peptides have been examined in-vitro and partially in preclinical disease 

models. Peptides targeting both the MIF/CD74 and MIF/chemokine receptor axes have been 

considered (Table 3); some of them are derived from mapping studies of the interfaces 

between MIF and its receptors.  

MIF-derived peptides targeting interactions with CD74 have not yet been tested in 

disease models. This is probably due to the complex nature of the MIF/CD74 interaction 
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surface, encompassing all three subunits of the MIF trimer and discontinuous epitopes within 

an MIF monomer. Nevertheless, a MIF epitope scan for reactivity of the CD74 ectodomain 

identified MIF peptide 79-86. This octapeptide was able to compete for biotinylated MIF binding 

to plate-bound CD74 (88), indicating its principal inhibitory utility. A screening for anti-

melanoma peptides derived from conserved complementarity-determining region (CDR) 

sequences of different immunoglobulins identified peptide C36L1, a 17-mer peptide that binds 

to CD74 on tumor-associated macrophages and dendritic cells and blocks immunosuppressive 

activities in melanoma models (145, 146). Other inhibitors that target the MIF-CD74 interaction 

have been developed based on antigenic peptide-loaded fragments of class II resulting in 

reduced severity of EAE, the experimental mouse model of multiple sclerosis (104, 105, 107). 

One such peptide is the DR2-restricted myelin determinant mouse (m) myelin oligodendrocyte 

glycoprotein (MOG)-35-55 covalently linked to a human leukocyte antigen (HLA)-DRα1 

domain (the ‘DRα1-MOG-35-55’ construct) and has been found to reduce CNS inflammation 

and tissue injury in models of multiple sclerosis, ischemic stroke, and traumatic brain injury 

(104, 105, 107, 147). RTL1000 is a variant of this construct additionally containing the 1 

domain of DR1 (‘DRα11-MOG-35-55’) and is in clinical studies for multiple sclerosis (148, 

149). It is thought that these peptide constructs interfere with MIF/CD74-driven neuro-

inflammation (150). 

A note of caution should be sounded regarding their potential application in 

atherosclerosis and cardiovascular disease settings due to the protective role of the MIF/CD74 

axis in ischemic heart disease (19, 58). 

As discussed above, structure-activity studies (SAR) have identified the motifs and 

residues contributing to the interface between MIF and CXCR2 and CXCR4 and highlighted 

differences compared to the classical chemokine ligands CXCL8/1 and CXCL12, respectively. 

The two-side binding mechanism for MIF and CXCR2 is similar but not identical to that for 

CXCL1/8, while significant differences were noted for the binding interface of MIF/CXCR4 

versus CXCL12/CXCR4 (14, 16, 74-76, 81, 82). Peptides served as important tools in these 

studies and some of them might become templates for peptide-based anti-MIF strategies in 
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atherosclerosis and inflammation. For example, MIF peptide 47-56, spanning the N-like loop 

that contributes to site 1 binding with CXCR2, competes with MIF binding to CXCR2 and MIF-

mediated atherogenic leukocyte arrest (16, 76). Stabilized variants of this peptide or related 

ones spanning MIF regions contributing to site 1 or 2 binding might qualify as interesting 

templates for the future development of MIF-based peptide drugs against atherogenic 

inflammation. 

MIF acts as a partial allosteric agonist of CXCL12, consistent with the notion that the 

binding interface between MIF and CXCR4 differs from that of CXCL12 and CXCR4 (82). Major 

differences are the contributions of the extended N-like loop and the cavity around Pro-2 in 

MIF (81, 82) and the REFFESH motif in CXCL12 (80, 151). This SAR information as well as 

the crystal structures of MIF and of CXCR4 in complex with small molecules and cyclic 

peptides give valuable hints as to the development of peptide inhibitors that may specifically 

block MIF-driven responses (80).  

Of note, CXCR4 pathways have already been targeted by peptide inhibitor strategies. 

CVX15, a 16-residue cyclic peptide analog of the horseshoe crab peptide polyphemusin was 

co-crystallized with CXCR4 (80) and characterized as an HIV-inhibiting and anti-metastatic 

agent (152, 153). Polyphemusin II-related synthetic peptides T22, T140, and FC131 were 

pioneered by Fujii and co-workers to adopt a -hairpin conformation stabilized by disulfide 

bonds, resulting in high-affinity CXCR4 inhibitory peptides with a low nanomolar IC50 (153-

155). This principle was developed further by Kessler and colleagues, who furthered the 

principle of protein-epitope mimetics and devised novel classes of super-high-affinity CXCR4-

targeting cyclopeptides (156, 157), e.g. by “freezing” the conformation of a CXCR4 ligand into 

a single-active conformation by using a ‘peptoid’ motif (156). In another approach, peptide 

inhibitors were derived from the N-terminal of CXCL12 and further optimized and stabilized to 

give rise to sub-nanomolar serum-stable CXCL12/CXCR4 inhibitors with anti-metastatic 

activity in vitro (158, 159). Furthermore, peptides based on the sequence of CXCR4 were 

linked in an attempt to mimic the ecto-surface of CXCR4 and shown to compete with HIV-

gp120 and HIV entry (160, 161). MIF is not able to inhibit HIV entry (82) and peptides targeting 
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the MIF/CXCR4 axis have not been systematically studied, although a peptide spanning the 

RLR motif of MIF competes with MIF-mediated lymphocyte migration (81). 

 

CONCLUSION AND OUTLOOK  

MIF is a pivotal mediator of atherosclerosis, MIF-2/D-DT shares critical inflammatory activities 

with MIF, and the MIF receptors CD74, CXCR2, and CXCR4 have all been implicated in 

atherosclerosis, suggesting that it will be important to develop therapeutic strategies against 

MIF proteins in atherosclerosis. Importantly, the MIF network is amenable to targeting by all 

major inhibitor classes, i.e. small molecule compounds, antibodies, and peptides (Figure 1). 

In fact, inhibitors against MIF and/or its receptors from all three classes are in clinical 

development and the CXCR4 blocker AMD3100, which is a partial inhibitor of MIF/CXCR4 

binding, is an FDA-approved drug in cancer. However, to make such strategies applicable for 

cardiovascular disease, MIF pathway-specific concepts need to be developed that specifically 

target the atheroprogressive activities of MIF.  

 Considering the Janus-faced effects of MIF proteins in cardiovascular complications 

and the complex homeostatic and inflammatory roles of their receptors, this is a challenging 

task. One strategy might be to specifically target the MIF/CXCR2 interface which is 

atheropromoting and largely detrimental in the myocardium during an ischemic insult. Both 

antibodies and peptide-based compounds such as stabilized derivatives of MIF(47-56) could 

potentially qualify as MIF/CXCR2-specific agents. Similarly, inhibitor strategies specifically 

targeting the MIF/CXCR4 interaction could be envisioned, although great caution would need 

to be taken to spare the various protective activities of CXCR4 in the atherogenic vasculature 

and the ischemic-stressed heart. On the other hand, the cardioprotective effect of MIF and 

MIF-2 observed in the early phase following myocardial I/R provides a narrow albeit critical 

therapeutic window to pharmacologically promote the cardioprotective function of MIF before 

late-phase inflammatory responses kick in. This could especially be relevant in cardiac surgery 

patients and one relevant agent is the small molecule agonist MIF-20, which binds near MIF’s 

tautomerase pocket and has been reported to have protective effects in an experimental model 
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of cardiac ischemic injury (162). Such a ‘pharmacological augmentation’ strategy would be 

selective to MIF proteins due to their structurally unique tautomerase cavity and might become 

particularly important in cohorts of patients identified as MIF ‘low-expressers’ (19, 58). 

Therapeutically, a combinatorial treatment approach might be considered, in which the 

cardioprotective effect of MIF in the early-phase of myocardial I/R is carefully and phase-

specifically enhanced, followed by phase-specific pharmacological inhibition in the late -

inflammatory- phase of I/R injury. Whether any anti-MIF strategy would qualify as a treatment 

regimen to ‘prevent’ or ‘reverse’ chronic atherogenesis similar to canakinumab will have to be 

subject to comprehensive future investigations. Reversal of atherosclerotic lesions as 

observed in an experiment mouse model of plaque regression applying anti-MIF but not anti-

CXCL12 or anti-CXCL1 antibodies is a promising start in this direction (14). 

In conclusion, for applications in atherosclerotic cardiovascular disease, MIF pathway-

specific concepts would need to i) specifically target the atheroprogressive activities of MIF, ii) 

preserve homeostatic effects of intracellular MIF, iii) take into account the cardioprotective 

functions of CD74, iv) and/or spare CXCL12/CXCR4-dependent vascular protection pathways. 

Molecular characteristics of such agents would need to account for the necessities of chronic 

treatment over the course of lesion development and/or phase-specificity in the sequelae 

related to acute cardiac ischemia. 

 

ACKNOWLEDGEMENTS 

This work was supported by Deutsche Forschungsgemeinschaft (DFG) grant SFB1123-A03 

to J.B. and A.K., SFB1123-B03 to Y.A., and by DFG within the framework of Munich Cluster 

for Systems Neurology (EXC 1010 SyNergy) to J.B.. 

 

 

CONFLICT OF INTEREST 

JB is a co-inventor of patents covering anti-MIF strategies in inflammatory and cardiovascular 

diseases. Authors declare no additional competing financial interests.  



22 

 

TABLES 

 

Table 1. Antibodies targeting MIF proteins or their receptors 

Antibody 

 

Target / Antigen Application / Utility 

in Atherosclerosis 

References 

NIH/IIID.9 (mAb) 

 

Mouse MIF (full-

length) 

Research and preclinical 

models; blocks athero-

genic effects of MIF 

(14, 37, 94) 

Imalumab (Bax69) 

(humanized mAb) 

Oxidized form of 

human MIF 

Phase IIa trial for 

metastatic colorectal 

cancer 

(97) 

BaxB01, BaxG03, 

BaxM159 

Oxidized form of 

human, mouse, or 

rat MIF 

Research and preclinical 

models 

(93, 98-100, 

163) 

NbE10-NbAlb8-NbE10 

(half-life-extended 

nanobody) 

Human and mouse 

MIF 

Research and preclinical 

sepsis model 

(164) 

Anti-MIF-2/D-DT 

 

Mouse MIF-2/D-DT 

(full-length) 

Research and preclinical 

models 

(86) 

Milatuzumab 

 

CD74 Multiple myeloma, NHL, 

CLL 

(108, 165)  

i-bodies (AM3-114, 

AM4-272, AM3-523; 

single domain antibody) 

CXCR4 Research and preclinical 

models 

(166) 

MEDI3185 

 

CXCR4 Research and preclinical 

models 

(112) 

Anti-CXCR2 biparatopic 

nanobody  

CXCR2 Preclinical models and 

phase I clinical trial 

(111) 

MAB331 

 

CXCR2 Research and preclinical 

models 

(14, 167) 

*sCD74 

 

Human and mouse 

MIF 

Research and preclinical 

models 

(56, 65, 88) 

Legend: *sCD74; is not an antibody, but the soluble ectodomain of MIF receptor CD74. 
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Table 2. Small molecules targeting MIF proteins or their receptors 

Small Molecule (SMD) 

Inhibitor 

 

Target / 

Binding Mode 

Ki IC50 / EC50 References 

NAPQI  

N-acetyl-p-benzoquinone imine 

MIF 

Pro-2 

Covalent 

N/A IC50 

(dopachrome) 

= 40 µM 

(131, 168) 

4-IPP  

4-iodo-6-phenylpyrimidine 

MIF/D-DT  

Pro-2 

Covalent 

N/A IC50 (HPP) =  

0.2-0.5 µM 

(169, 170) 

ISO-1  

4,5-Dihydro-3-(4-hydroxyphenyl)-5-

isoxazoleacetic acid methyl ester 

MIF  

Tautomerase site  

Competitive 

Ki (HPP) =  

24 µM 

IC50 

(dopachrome) 

=  

7 µM 

(130, 171) 

SCD-19 

Isocoumarin 

MIF  

Tautomerase site  

Competitive 

Not tested 100% 

inhibition at 

100 µM 

(172, 173) 

4-CPPC  

4-(3-Carboxyphenyl)-2,5-pyridine-

dicarboxylic acid 

MIF-2/D-DT  

C-terminus 

V114−L118 

Ki (HPP) =  

33 ± 0.7 μM 

--- (125) 

Ebselen 

2-Phenyl-1,2-benzisoselenazol-

3(2H)-one 

MIF trimer  

Cys-81 

Covalent 

Ki (HPP) = 

0.57 μM 

IC50 

(dopachrome) 

= 2.4 µM 

(123) 

p425 

6,6'-[(3,3-Dimethoxy[1,1'-biphenyl]-

4,4'-diyl)bis(azo)]bis[4-amino-5-

hydroxy-1,3-napthalenedisulphonic 

acid] 

MIF trimer 

Allosteric 

Ki (HPP) ≤  

12 μM 

IC50 (CD74 

inhibition) =  

0.81 µM 

(124) 

Ibudilast 

AV411; 3-isobutyryl-2-isopropyl-

pyrazolo-[1,5-a]pyridine 

MIF  

Tyr-37 

Allosteric 

Ki (HPP) = 

30.9 μM 

--- (73, 132, 

134) 

Plerixafor/AMD 3100 

(1-[4-(1,4,8,11-Tetraza-

cyclotetradec-1-ylmethyl)phenyl]-

methyl)-1,4,8,11-tetrazacyclo-

tetradecan 

CXCL12/CXCR4 

Orthosteric anta-

gonist 

MIF/CXCR4 

Partial allosteric 

antagonist 

--- IC50 (CXCR4) 

= 0.65 µM 

EC50 (HIV 

entry) = 0.4-2 

µM 

(80, 82, 156, 

174) 

IT1t 

Isothiourea-1t 

6,6-dimethyl-5H-imidazo[2,1-

b][1,3]thiazol-3-yl)methyl N,N'-

dicyclohexylcarbamimidothioate 

CXCL12/CXCR4 

Orthosteric anta-

gonist 

MIF/CXCR4 

Partial allosteric 

antagonist 

--- IC50 (gp120 

inhibition) =  

8 nM 

(80, 82, 174) 

Reparixin 

(αR)-α-methyl-4-(2-methylpropyl)-

N-(methylsulfonyl)-

benzeneacetamide 

CXCL8/CXCR2 

Allosteric anta-

gonist 

MIF/CXCR2 (?) 

--- IC50 (neutrophil 

migration) =  

1 nM 

(174, 175) 

Legend: HPP, hydroxy-phenylpyruvate. 
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Table 3. Peptides and peptide mimics targeting MIF proteins or their receptors 

Peptide Inhibitor 

 

Target / 

Binding Mode 

Application / 

Utility in Athero-

sclerosis (IC50) 

References 

MIF(79-86) (mouse) 

LCGLLSDR 

MIF/CD74 

interface 

IC50 = ca. 2-3 µM (88) 

MIF(47-56) (human) 

LMAFGGSSEP 

MIF 

Competitive 

EC50 = ca. 1-2 µM (76) 

MIF(50-65) (human) 

FGGSSEPCALCSLHSI 

MIF 

Competitive 

Not determined (176, 177) 

Conserved CDR peptide C36L1 

KSSQSVFYSSNNKNYLA-NH2 

CD74 

 

IC50 = upper µM 

range 

(146) 

RTL1000 

Class II-derived 

Dr11MEVGWYRSPFSRVVHLYRNGK 

CD74 trimer  

MIF/CD74 axis 

Competitive 

IC50 = nanomolar 

range 

(107) 

DR1-MOG-35-55 

Class II-derived 

DR1MEVGWYRSPFSRVVHLYRNGK 

CD74 trimer  

MIF/CD74 axis 

Competitive 

IC50 = nanomolar 

range 

(104, 107) 

CXCL12(22-29)2 

KGVSLYR-K-RYSLVGK 

CXCL12/CXCR4 

axis 

--- 

Not known 

(178) 

CXCL12a(1-9[P2G]) dimer 

MNAKVVVVL-S-S-LVVVVKANM 

CXCL12/CXCR4 

axis 

IC50 = 2.6 µM 

Not known 

(178) 

Ac-Arg-Ala-[D-Cys-Arg-Phe-His-

Pen]-COOH 

Derivative of CXCL12 N-terminal  

CXCL12/CXCR4 

axis 

IC50 = 1.5 nM (158, 159) 

CVX15 

16-residue cyclic peptide analog of the 

horseshoe crab peptide polyphemusin 

CXCR4 Not known (80) 

MCoTI-based cyclotides CXCR4 IC50 = 20 nM 

EC50 (HIV entry) = 2 

nM 

(179) 

Peptides T22 and T140 

Polyphemusin II-related synthetic 14-16-

meric derivatives 

CXCR4 IC50 = 17 nM 

 

(153, 154) 

Cyclopentapeptide FC131 

Head-to-tail-cyclized variant of T140 

CXCR4 IC50 = 8 nM 

 

(154) 

Peptoid 8 

Peptoid derivative of FC131 

CXCR4 IC50 = 40 pM 

EC50 (HIV entry) = 29 

nM 

(156) 

Legend: IC50 refers to replacement of ligand (MIF, CXCL12) from receptor (CD74, CXCR4). 
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FIGURE LEGENDS 

 

Fig. 1. Overview of inhibitory approaches to target the MIF/receptor network in 

atherosclerosis. The potential utility of all three classes of anti-MIF network inhibitors, i.e. 

antibodies, small molecule compounds (SMD), and peptides, in attenuating atherosclerosis 

and/or atherogenic inflammation is indicated with respect to MIF and MIF-2/D-DT, as well as 

the MIF receptors CXCR4, CD74, and CXCR2. The pros and cons for each inhibitor-type 

regarding each target ligand/receptor or pathway are indicated by scoring their properties (e.g. 

specificity) with +, +/–, or –. The outcome boxes are color-coded (red, pro-atherogenic; green, 

athero-/cardioprotective).           
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