Association is published every month by the New York 10017. © American Diabetes Association at 18 East 48th Street, New York, New York 10017. All rights reserved under International and Pan-American Copyright Conventions. Professional Members receive the Journal as part of their membership privileges. The annual subscription rates for nonmembers are as follows: $23.00 for one year; $40.00 for two years; $57.00 for three years. Individual copies $2.00. For subscriptions outside the United States and U. S. Possessions, add $2.00 per year for postage.

Subscriptions for medical students and physicians within five years after completion of medical school and biochemists who are predoctoral or not more than two years postdoctoral: $11.50 per year plus $2.00 for foreign postage where applicable. Subscriptions in this category may be entered or renewed for only one-year terms. Correspondence concerning subscriptions should be addressed to the Subscription Department.

TERMS EXPiring DECEMBER 1973

JOHN W. ENSINCK, M.D., Seattle
Stefan S. Fajans, M.D., Ann Arbor
Gebold M. Grodsky, Ph.D., San Francisco
Irving H. Leopold, M.D., New York
Roger H. Unger, M.D., Dallas
Peter H. Wright, M.D., Indianapolis

TERMS EXPiring DECEMBER 1974

Margaret J. Albright, M.D., Montgomery, Va.
Rubin Bressler, M.D., Tucson
Ronald K. Kalkhoff, M.D., Milwaukee
Christian R. Klimt, M.D., Dr. P.H., Baltimore
Arnold Lazarow, M.D., Ph.D., Minneapolis
Alexander Marble, M.D., Boston
Arthur H. Rubenstein, M.D., Chicago

TERMS EXPiring DECEMBER 1975

David R. Challoner, M.D., Indianapolis
Allan L. Drash, M.D., Pittsburgh
Bryce L. Munger, M.D., Hershey, Pa.
Hiromichi T. Narahara, M.D., Albany
Daniel Porte, Jr., M.D., Seattle
Lillian Recant, M.D., Washington, D.C.
Donald F. Steiner, M.D., Chicago

ABSTRACTS

TERMS EXPiring DECEMBER 1973

HUey G. McDaniel, M.D., Birmingham
SumE R Pek, M.D., Ann Arbor
Paul S. Rosenfield, M.D., Milwaukee
Paul H. Schreibman, M.D., New York
Charles R. Shuman, M.D., Philadelphia

TERMS EXPiring DECEMBER 1974

John D. Bagdade, M.D., Seattle
Guenthier Boden, M.D., Philadelphia
Paul S. Entmacher, M.D., New York
Jeremy M. Feldman, M.D., Durham
Dinesh Kumar, M.D., Los Angeles
Thomas G. Skillman, M.D., Columbus, Ohio

ABSTRACTORS

TERMS EXPiring DECEMBER 1975

R. Philip Eaton, M.D., Albuquerque
N. Katslambras, M.D., Athens, Greece
Roger L. Lerner, M.D., New York
Thomas J. Merimee, M.D., Boston
James E. Vance, M.D., Indianapolis

An abstract or summary of the content of the paper in not more than 250 words should usually appear at the beginning. This should be self-contained and understandable without reference to the text.

Photographs, drawings, and figures should be suitable for reproduction. Photographs should be unmounted, untrimmed glossy prints. The names of authors should appear on the back. The tops of photographs and figures should be indicated. Galley proofs are sent to the principal author of each paper, with a price list and order blank for reprints.

All manuscripts and editorial correspondence should be addressed to the Editorial Office, DIABETES, American Diabetes Association, Inc., 18 East 48th Street, New York, New York 10017.

Subscription and Advertising Information

DIABETES. The Journal of the American Diabetes Association is published every month by the Association at 18 East 48th Street, New York, New York 10017. © American Diabetes Association, Inc., 1971. All rights reserved under International and Pan-American Copyright Convention. Professional Members receive the Journal as part of their membership privileges. The annual subscription rates for nonmembers are as follows: $23.00 for one year; $40.00 for two years; $57.00 for three years. Individual copies $2.00. For subscriptions outside the United States and U. S. Possessions, add $2.00 per year for postage.

Subscriptions for medical students and physicians within five years after completion of medical school and biochemists who are predoctoral or not more than two years postdoctoral: $11.50 per year plus $2.00 for foreign postage where applicable. Subscriptions in this category may be entered or renewed for only one-year terms. Correspondence concerning subscriptions should be addressed to the Subscription Department.

DIABETES. Checks, money orders and drafts for subscriptions should be made payable to the American Diabetes Association, Inc. and sent to the aforementioned address.

All inquiries about advertising and other business matters should be addressed to the Executive Director of the American Diabetes Association. The publishers reserve in their full discretion the right to accept or reject any proposed advertisement and the right to cancel any advertising contract.
SUBJECT INDEX 1972

This index covers all reading matter in Volume 21 of DIABETES. Entries marked with an asterisk (*) indicate material that appeared in the Abstracts only. The Author Index begins on page 44.

A

ABDOMEN
insulin administration to, 204
and lipid mobilization and food uptake, *774

ABETALIPOPROTEINEMIA, *60

ACETATE I-C-14
utilization for fat synthesis in rat strain differences in, *770

ACETIC THIOKINASE
and lipogenesis, *982

ACETOACETATE
brain utilization of, *247
metabolism, °343
and ketosis, 258, 259, 261

N-ACETYL-GLUCOSAMINE
and insulin release, 540, 543

ACHLORHYDRIA, 646

ACID ETHANOL
and serum nonsuppressible insulin-like activity, 271, 272-278

ACID MUCOPOLYSACCHARIDES
skin assays, 735, 738-742

ACIDOSIS
ammonium chloride induced and glucose tolerance and insulin sensitivity in rats, 794-796

ACIDOSIS, LACTIC
and phenoformin, *1198

ACIDOSIS, METABOLIC
and carbohydrate tolerance, 1109-1114

ACIDS
alpha-ketomonocarboxylic, °359
alpha-amino-isobutyric and pancreas beta cell transport, °181
blood lactic and pyruvic and diabetic coma, °350
isovaleric and alpha-methylbutyric and hypoglycin A, °316
lactic and Tol-insane and phenformin therapy, °351
nicotinic and lipolysis, 427

ACROMEGALY
and blood proinsulin-like components, °664
and insulin secretion and serotonin antagonists, °352
and secretin and insulin release, °1118

ACTH. See Adrenocorticotrophic hormone

ACTINOMYCN D
and hexokinase, °185
and rat adipocyte fatty acid synthetase activity, °914

ADENOSINE 3', 5'-MONOPHOSPHATE. See also Cyclic adenosine 3',5'-monophosphate; Dibutyryl adenosine 3',5'-monophosphate
and isolated fat cells, 1027-1034
and potassium flux and glucose output, °254
rat liver and adipose tissue and glucagon, °54
and sympathetic activity and dopamine-sensitive adenyl cyclase, °773

ADENYL CYCLASE, 440
dopamine-sensitive and nervous system, °773
epinephrine-responsive and insulin, °1117-1118
glucagon-responsive macromolecular inhibitor of, °180
and glucagon and tolbutamide and islet cell adenoma, °912
inhibition study, 289-293

and insulin release, °328-329
in islets of Langerhans in obese and lean mice, °179
localization in islets of Langerhans, °328
response to glucagon, ACTH and epinephrine, °772

ADIPOSE TISSUE
adenosine 3',5'-monophosphate and glucagon, °54
cellularity and growth hormone treatment in ateliotic dwarfs, °366
epinephrine-stimulated lipolysis in siblings of diabetics, °361
fat cell size and obesity, °54
fat cell size and number assay, °247
and metabolism in middle-aged men and women, °180
fatty acid synthetase and glucose and insulin, °914
and insulin, 427
free fatty acids release, °59-60
glucose metabolism and response to bovine insulin, 1151-1161
and ventromedial hypothalamic nuclei destruction, °1204-1205
and insulin sensitivity and obesity, 6-11
isolated cells and adenosine 3',5'-monophosphate and dibutyryl adenosine 3',5'-monophosphate, 1027-1034
and lipotropic diabetes, 827-830
lipolysis and cellularity and weight reduction in obese adolescents and adults, 754-760
lipolysis and glyceral kinase and body weight, °911-912
lipoprotein lipase, °344
metabolism and glyceral kinase regulation by insulin, °122

DIABETES: VOLUME 21 (1972) PAGE NUMBERS BY ISSUE

January, 1-64 Supplement 1, 321-384
February, 65-128 Supplement 2, 385-714
March, 129-192 June, 715-778
April, 193-256 July, 779-842
May, 257-320 August, 843-922

September, 923-986
October, 987-1050
November, 1051-1130
December, 1131-1210
monoglyceride hydrolase
and obese hyperglycemic mice, *186
noncollagen protein and cell number, *1201
phosphofructokinase
and cyclic AMP and dibutyryl cyclic AMP, *363
proinsulin activity, 485
rat
and diabetes and hyperinsulinism, 13-15
and sepharose-bound insulin, *335-336

ADRENAL GLANDS
and catecholamine release
and phenothiazine-induced hyperglycemia, *184
and glucagon secretion, *375
insufficiency
and hypoglycemia, *248
and insulin response to hemorrhagic shock, *364
isolated cells
corticosterone production studies, *983
and myocardial infarction, *838

ADRENALECTOMY
and glucagon effect on adenosine 3'5'-monophosphate levels, *54
and insulin response to hemorrhagic shock, *364
and liver mitochondria structure, 259
and splanchic nerve stimulation, *770

ADRENALINE
and adenyl cyclase activity, *179
and amino acid metabolism, *56
and blood glucose and free fatty acid responses to catecholamines, *912

ADRENOCORTICOTROPIC HORMONE
action
and cyclic AMP, *251
adenyl cyclase response to, *772
and diabetic ketosis, 946-954
and growth hormone assays, *775-776
and insulin
and adipose tissue lipolysis, 427
in isolated adrenal cells, *983
and lipolysis
and mercury, *771

AFRICAN PYGMIES
metabolism studies in, *1045-1046

AGE
and blood glucose levels
and exercise, 89-99
and carbohydrate metabolism, *183-184
and insulin, glucagon and growth hormone, *357
and carbohydrate tolerance, *347
diabetes
and microangiopathy, *837
in Pima Indians, *180
in rural population in India, 1192
and diabetic mortality, *1044
and education of juvenile diabetics, 969
and fat cell size and number, *247
and glucose tolerance tests in children, 19
and motor nerve conduction velocity in rats, 296-297
and muscle capillary basement membrane changes
and diabetes, 881-896, 899-905
and proinsulin response to oral glucose, *356
and retinal blood flow, *354
and retinopathy, *187
and serum glucose
in Mystromys albicaudatus, 718, 719, 720
and serum triglycerides response to dietary fructose, *835

ALANINE
and glucagon secretion, *183
and gluconeogenesis
in diabetics and normal patients, *341-342
and ethanol, *1202
-induced hyperglucagonemia
and alpha-adrenergic blockade, *1043
and insulin activity, *1122-1123
and liver metabolism, 51
metabolism, *57
and glucose, *56
synthesis by muscle
and exercise, *770-771
uptake by pancreatic beta cells, *772

L-ALANINE
and pancreas a-amino isobutyric acid transport, *181

L-ALANINE-C-14
metabolism
and tissue injury, *315

ALBUMINURIA
and bacteriuria, *118

ALCOHOL
and glucose tolerance, *247-248
and hypoglycemia
and basal insulin secretion, 65-69
-induced glucose intolerance, *184
and ketoacidosis, *56-57
sensitivity
ethnic differences in, *254

ALCOHOLISM
and fatty liver
and fatty acid metabolism, *835
and liver metabolism
and blood clearance rates, *983

ALDOSE REDUCTASE
galactosemic cataracts, 295, 299-300
in human placenta, *330

ALKALINE PHOSPHATASE
diabetic pregnancy, 34-35

ALLERGY
to insulin
and purified pork insulin, 638-643

ALLOXAN
action
and diphenylhydantoin, 80-83
and beta cell membrane changes, *326
and glucose, *123
and insulin secretion, *326
and pancreatic beta cells, 77-78

ALLOXAN DIABETES
in arteriosclerotic and nonarteriosclerotic rats, *1123
in female rats
and fetal pancreas transplants, 193-201
and glucagon secretion, *183
and glucose control, *123
and glycemic and glycosaminoglycans metabolism, 1162-1166
and hypertriglyceridemia
and diet, *353-354
and jejunal mucosa enzymes, *188
and ketosis
and kidney function, *121
and lipid synthesis, *189
and lipoprotein lipase release, 149-155
and liver mitochondria 2-oxoglutarate
 carbosylation, *981
and liver protein synthesis, *339
and liver ribosomes, 84-88
and pH of inflammatory exudates,
 *1201
and pressor response to angiotensin
 and norepinephrine
and pH of inflammatory exudates,
 *1201
and pressor response to angiotensin
 and norepinephrine
and pH of inflammatory exudates,
 *1201
and pressor response to angiotensin
 and norepinephrine
and pH of inflammatory exudates,
 *1201
and pressor response to angiotensin
 and norepinephrine
and pH of inflammatory exudates,
 *1201
and pressor response to angiotensin
 and norepinephrine
and pH of inflammatory exudates,
 *1201
and pressor response to angiotensin
 and norepinephrine
and pH of inflammatory exudates,
 *1201
and pressor response to angiotensin
 and norepinephrine

SUBJECT INDEX 1972

"U100 Insulin: A New Era in Dia­
 betes Therapy," 1128
International Diabetes Federation
 Eighth Congress, 1050, 1128,
 1208
new members, 191-192, 256, 921-922,
 1208-1209
news of Affiliate Associations, 128, 192,
 319-320, 778, 986, 1129, 1209
news notes, 62-63, 128, 192, 256, 320,
 778, 842, 922, 986, 1050,
 1130, 1210
obituaries
 Beardwood, Joseph T., Jr., 839
 Marks, Henry E., 178
 personal, 63, 256, 320, 922, 1050,
 1130, 1210
 and 2-deoxy-D-glucose and nianno­
 heptulose, 1-5
 and insulin release, 539, 570-571
 liver transport
 and proteins, *316
 metabolic and hormonal responses to
 in malnourished infants, *182
 metabolism
 and exercise, *770-771
 and glucose, *56
 in perfused rat liver, *57
 and starvation during pregnancy,
 *1118-1119
 plasma and tissues
 and starvation, *179
 sequences of insulin, 457-459, 485
 uptake
 by brain, *315
 by pancreatic beta cells, *772

6-AMINONICOTINAMIDE
 as diabetogenic agent in rats, 143-148
 and insulin release
 and glucose C-14 metabolism, *1198

AMINOPHYLLINE
 and 6-aminonicotinamide, *1198
 and glucagon and insulin secretion,
 289-293
 and insulin release, 689-690
 and insulin-resistant hyperglycemia, *775
 and insulin response to glucose, *770

AMITRIPTYLINE
 and lipolysis and cyclic AMP in iso­
 lated fat cells, *1045

AMMONIA
 intoxication
 and mitochondrial swelling, *835-
 836
 production
 and ketone bodies, *251
 in muscle, *1203
 and renal gluconeogenesis, *57

AMMONIUM CHLORIDE
 and diabetes, 289-293
 and insulin secretion, 689-690
 and insulin-resistant hyperglycemia, *775
 and insulin release, 689-690

AMNIOTIC FLUID
 substrates
 and maternal caloric deprivation,
 *1502

AMPHETAMINES
 and 6-aminonicotinamide, *1198
 and glucagon and insulin secretion,
 289-293
 and insulin release, 689-690
 and insulin-resistant hyperglycemia, *775
 and insulin release, 689-690

ANDROGENS
 and diabetic impotency, 23-28

January, 1-64
February, 65-128
March, 129-192
April, 193-256
May, 257-320
Supplement 1, 321-384
Supplement 2, 385-714
June, 715-778
July, 779-842
August, 843-922
September, 923-986
October, 987-1050
November, 1051-1130
December, 1131-1210
ANEMIA
hemolytic
and pancreatic acinar atrophy and fibrosis, *773-774
hypochromic microcytic
and acetoacetate, *311
and hypothyroidism
and diabetes, *769
ANGINA PECTORIS
and Clofibrate therapy, °838, *910
ANGIOGRAPHY
fluorescein
and prediabetes diagnosis, *354
ANGIOPATHY, DIABETIC
and hemochromatosis
and cirrhosis, °123
in juvenile diabetics, °913
ANGIOTENSIN
pressor response to
and insulin treatment in alloxan diabetic rats, °354-355
ANOXIA
and lactic acid levels
and phenformin and Tolinate therapy, °351
ANTIBODIES
to insulin, 649-656, 657-659, 660, 677
assays, °769
and diabetes, °57, °775
in dogs adapted to bovine-porcine insulin, °182
and insulin secretion, °914
and insulins, 764-765
polyethylene glycol screening test for, °379
and serum-bound insulin neutralization, 930-934
without previous immunization, 814-825
to C-peptide, 10|3-1025
proinsulin
in insulin-resistant patient, °368
to smooth muscle tissue
binding to fibroblasts, °314
to thyroid antigen, °253
ANTICOAGULANT DRUGS
hereditary resistance to
and vitamin K, °183
ANTIMITOTIC AGENTS
and insulin release, 987-997
ANTIMYCIN A
and insulin release, °56
APES, See Macaca nigra
ARGAMINE
and lipolysis, 427
ARGININE
and blood glucose levels, 308-310
derivatives
and metabolism, °1122-1123
and glucose
and serum insulin and growth hormone, °316
and glucose-induced insulin secretion, °1045
and growth hormone secretion
and sex, °774-775
and diabetogenic insulin-induced glucagon and insulin secretion and aminophylline, 289-293
and diabetogenic insulin release and diabetes, °324
and insulin release
and cyclic AMP system in man, °312
and Huntington's chorea, °1121
and insulin release, 1-2, °36, 370, 517
insulin response to in acomys cahirinus, 1063
and diethylstilbestrol and growth hormone, °378
and maternal and fetal, °251
metabolism
and glucose, °36
and plasma glucagon, 218-223
plasma growth hormone response to and diabetes, °312
provocative tests
plasma growth hormone unresponsiveness to, °981
uptake by pancreatic beta cells, °772
ARGININE-U-C-14
incorporation into blood glucose, 308-310
ARTERIES
calcification
and glucose tolerance, °252
ARTERIOGRAPHY
and insulinoma diagnosis, °1206
and islet cell adenomas, °185
ARTERIOSCLEROSIS
and diabetes mortality, 634
and hyperglycemia
and tolbutamide therapy, °122-123
in rats
and alloxan diabetes, °1123
ARTERITIS
and insulin response to glucose, °837
L-ASPARAGINASE
and leukemia
and transient diabetes, °1119
ASPARTATE
metabolism, °57
ASPIRIN
and hypoglycemia, °959
ATHEROSCLEROSIS
and familial hypercholesterolemia, °1121
and insulin, °186, 684
and insulin response, °836
and macroangiopathy, 679-680
and plasma insulin, blood sugar, and serum lipid abnormalities, °253
ATROPINE
and serum insulin response to glucose and konnyaku ingestion, °60
AUTOANALYZER, 308-310, 644
and glucose tolerance tests in Macaca nigra, 1078-1088
AUTO-IMMUNE DISEASE, °914
and insulitis in late-onset diabetes, 784-766
AUTOTUTOR MARK II, 967-971
B
BABOONS
and alpha-adrenergic blockade and insulin release, °181
and diabetes
and kidney glomerulosclerosis, °338
and hemorrhagic shock insulin release during, °982
BACTERIA
and jet insulin injection studies, 41
BACTERIURIA
and diabetes, °118
BANTING, FREDERICK G., 385-395
BANTING MEMORIAL LECTURE, 1131-1150
BASEMENT MEMBRANE
and diabetic glomerulosclerosis, 163-173
and fluid secretion, °315
thickening
and aging and diabetes, 881-896, 899-905

January, 1-64
February, 65-128
March, 129-192
April, 193-256
May, 257-320

Supplement 1, 321-384
Supplement 2, 385-714
June, 715-778
July, 779-842
August, 843-922
September, 923-986
October, 987-1050
November, 1051-1130
December, 1131-1210

SUBJECT INDEX 1972

4
and glucose tolerance, *321
and insulin and gamma globulin complexes, 872-879
and juvenile diabetes, *913
and pseudodiabetes of myopathy, *118
width, *254
BEARDWOOD, JOSEPH T., JR., 839
BETA ADRENERGIC BLOCKING AGENTS
and glucagon secretion, *332-333
and insulin secretion, 783-784
and pancreatic glucagon and insulin secretion, *332
and tolbutamide response and diazoxide, *311
BETA ADRENERGIC RECEPTORS
and carbohydrate metabolism, *1203
BICARBONATE
and diabetic ketoacidosis, *323, °1203
and lactic acidosis, *1198
BIGUANIDES
and sugar transport, *119
and unstable diabetes, *123
BILE
lipids
and pregnancy, *912
BLADDERT
function and diabetes, *364
and prediabetes, *359
neurogenic and diabetic impotency, 24, 26-27
BLOOD
acetate, 3-hydroxybutyrate and glucose
diurnal variations in, *1205
and acetate injections in rats, *311
and brain metabolism, *774
cholesterol and diet, *1043
cholesterol, triglycerides and immunoreactive insulin
in normals and pre diabetics, *383
circulation and diabetes, *981
citrated and exchange transfusion, *185
cogulation and diabetes, 108-112
constituents and diet, *1202
erythrocytes
glycolytic enzymes, in insulinoma, *773
ethanol and tolbutamide clearance and alcoholism, *983
flow and brain perfusion technic, *1123
and diabetes and prediabetes, *769
and glucose tolerance during bedrest and exercise, 103-104
pancreatic, and exogenous insulin, *1204
and prostaglandins, *369
retinal, *354
ketone bodies
rapid estimation of, *1117
lactate and ketone bodies
and diabetic ketoacidosis, *186-187
lactic and pyruvic acids
and diabetic coma, *350
lips in monkeys, 1084-1086
lipoproteins in combined hyperlipoproteinemia, *376
lymphocytes
response to phytohemagglutinin and Candida albicans antigen, 906-907
lymphocytes and fibroblasts
insulin binding to, 426-427
C-peptide, 661-670
platelet aggregation
and diabetes, 108-112; *355
and glucagon, *311-312
platelets
and diabetic retinopathy, *120-121
and fatty acid metabolism, *312
proinsulin, 661-670
prothrombin time and vitamin K, *183
samples and responses to amino acids in malnourished infants, *183
in study of diabetes in Mystromys albicaudatus, 716
and sulfonylurea study, 217-223
transfusions and glucose, *1120

DIABETES: VOLUME 21 (1972) PAGE NUMBERS BY ISSUE

January, 1-64
February, 65-128
March, 129-192
April, 193-256
May, 257-320
Supplement 1, 321-384
Supplement 2, 385-714
June, 715-778
July, 779-842

BLOOD GLUCOSE. See also Blood sugar and alloxan and diphenylhydantoin and glutathione, 80-83
and 6-amino nicotinamide, 144-148
and arginine, 308-310
assays and surgery for islet cell adenomas, *185
and body weight, *362-363
capillary and venous, 1103-1105, 1107
control and vascular diseases, 976-978
determination and reflectance meter/enzyme test strip system, *1119
and diabetic instability, *839
diabetic and juvenile diabetics, *254

and juvenile diabetics, *254
BLOOD SUGAR

and glucose, *913
BLOOD PRESSURE. See also Hypertension and kidney transplantation and diabetes. *322

BLOOD SUGAR and atherosclerosis, *253; control, 634; and nerve tissue sorbitol and fructose, 1173-1178; determination and Ames reflectance meter, *1120; in diabetes survey, 1193-1196; formation and lactate, *189; and glucagon infusion in congestive heart failure patients, 940-944; and glycemia and insulin, *186; and insulin stability, 812; and nialamide, *363-364; in normals and prediabetics, *383; and pancreas extract injection in depancreatized dogs; and discovery of insulin, 386-395; and phenobarbitone, *1123; and sulfonylureas, *1120; and kidney failure, *1120-1121; and uterine relaxants, *1045.

BLOOD VESSELS. See Capillaries; Cardiovascular disease; Vascular system

BRIJ 98 and oral insulin, 643-647, 648.

BRUNNER'S GLAND enterokinase secretion and glucagon, *771.

BUPHENIN and hyperglycemia, *1045.

Caffeine and cholesterol and triglyceride changes during glucose tolerance tests in prediabetics, *365; and insulin secretion, 540, 543, 571.

and glucose ingestion in children, *376
and insulin action, 696, 697-698
and insulin release, 544-545, 570, *837
and insulin storage, 591-592
intestinal absorption, *775
in isolated adrenal cells, *982
and lipoprotein lipase, *188
and pancreatic beta cell amino acid uptake, *772
and serum cholesterol and triglycerides uptake and cytochalasin B, 602, 605
CALCIUM-45 efflux from perfused islets, *326-327
CALORIES intake and plasma insulin levels, 613, 617-618
and weight loss in obese hyperglycemic mice, *835
and pregnancy and amino acid metabolism, •1118-1119
and maternal and amniotic fluid substrate level, *1202
CANDIDA ALBICANS ANTIGEN peripheral blood lymphocytes response to and diabetes, 906-907
CAPILLARIES basement membrane thickening and age and diabetes, *837
and pseudodiabetes of myopathy, *118
muscle basement membrane changes, *254, 881-896, 899-905
permeability and blood flow and diabetes and prediabetes, *769
and polyol pathway activity, *330
CARBOHYDRATES antinatriuretic effects of, *772
dietary and childhood ketotic hypoglycemia, *56
and glucagon and insulin secretion, *912-913
SUBJECT INDEX 1972
and hypertriglyceridemia, *55
and liver glucose-6-phosphate dehydrogenase, 45, 53
and plasma tryptophan, *909
and regulation of pancreatic enzymes, *186
homeostasis and insulin, glucagon and growth hormone, *357
and insulin release, 559-561
and insulin release, 559-561 metabolism and adrenergic agents, *1203
and age, *183-184
and alcohol, *247-248
and catecholamines and methylprednisolone, *772
and diabetic microangiopathy, 872
and glucagon, 939-944
and glucose tolerance and insulin response to glucose, *1119
in infants of diabetic mothers, *1046
and menstrual cycle, *1204
and metformin, *914
in newborn infants of diabetic mothers, *912
and psoriasis, *250
and streptozotocin, *59
CARBOHYDRATE INTOLERANCE and acromegaly, *352
and chemical diabetes screening in childhood, 46-47
severity of and proinsulin response to oral glucose, *356
CARBOHYDRATE TOLERANCE and acute uremia and metabolic acidosis, 1109-1114
and aging, *347
and progestin, *313
protein-bound and diabetes, 865-870
and serotonin, *1200
CARBON DIOXIDE production and obesity, 6-11
CARCINOMA and glucose metabolism and insulin secretion, *1200
islet cell circulating insulin, *909-910
and streptozotocin therapy, *1204
and pancreateoduodenectomy, *188
CARDIOVASCULAR DISEASE and disodium ethylenediaminetetraacetate and hypoglycemia, 960 etiology, 679-680
and oral hypoglycemic drug labeling, 832
and patient selection for UGDP, 1035-1036
and pheochromocytoma and insulin-dependent diabetes, *838
CARDIOVASCULAR SYSTEM in chickens
and nonanual insulin, *59
and weight reduction, *980
CARNITINE and liver palmitate metabolism, 259
CASE REPORTS abetalipoproteinemia, *60
adipose tissue resection, 13-15
adrenocorticotropic hormone unresponsiveness and excessive growth, *981
alcoholic ketosis, *56
atletic dwarfism and growth hormone treatment, *366
concurrent bullous and atrophic skin lesions, *251
congenital neuroblastoma and islet hyperplasia, *1122
diabetes Cushing's syndrome and growth retardation, *1122
diabetes and defective pituitary reserve capacity, *981
and hypokalemic nephropathy, *1042
and mumps in siblings, *182
in neonate, *249
and renal transplantation, *322
and rhinocerebral phycomycosis, *185
secondary to L-asparaginase therapy in acute leukemia, *1119
diabetic coma and fibrinolysis and peritoneal dialysis, *913
diabetic glomerulosclerosis without diabetes, *769

January, 1-64
February, 65-128
March, 129-192
April, 193-256
May, 257-320
Supplement 1, 321-384
Supplement 2, 385-714
June, 715-778
July, 779-842
August, 843-922
September, 923-986
October, 987-1050
November, 1051-1130
December, 1131-1210
diabetic microangiopathy in identical twins, *321-322
drug-induced hypoglycemia, 956-962
femorotibial bypass, *322-323
generalized lipodystrophy with abnormal growth hormone homeostasis, *771
hyperglycemia and hypoglycemia attacks
and anti-insulin antibodies production without previous immunization, 814-825
hyperparathyroidism
and plasma insulin, *773
hypoglycemia during pregnancy following pancreateoduodenectomy, *188
hypophysectomy during diabetic pregnancy, 972-974
idiopathic hypoglycemia and epinephrine excretion, *1200
infant hypoglycemia and cataracts, *182
infant ketoacidosis
new syndrome in, *181
insulin and late-onset diabetes, 762-763
islet hypertrophy and beta-cell hyperplasia in juvenile diabetic, 114-116
ketoadiposis and hemorrhaging, 108-110
lipotrophic diabetes without ketosis, 827-830
lipotrophy, *381-382
lipoproteinemia, 745
maternal blood sugar levels and fetal mortality and morbidity, *188
pancreas transplantation, *355
phocromocytoma with insulin-dependent diabetes, *838
temperate sprue, *773
CATARACTS
and galactosemia, 202, 295-300
and infant hypoglycemia, *182
and polyol accumulation, *352
in tuco-tuco, *1206
CATECHOLAMINES
action
and cyclic AMP, *251
blood glucose and free fatty acid responses to
and noradrenaline and adrenaline, *912

SUBJECT INDEX 1972
and carbohydrate metabolism, *772
and exercise-induced glucagon secretion, *334
and insulin secretion, *119, *316
and methysergide, 783-784
release
and glucagon, 944
and phenothiazine-induced hypoglycemia, *184
-secreting tumors
and glucose intolerance, *838
CATS
adrenalectomized
and splanchic nerve stimulation, *770
CAUDAL DYSPLASIA
and diabetic pregnancy, *1042
CEREBROSPINAL FLUID
and brain metabolism, *774
and diabetic ketosis, *181
CHICKS
galactose toxicity in, *315
and nonavian insulin
and cardiovascular response, *59
and oral glucose loading and plasma insulin and glucose, *1046
ornithine utilization in, *771
CHILDREN. See also Diabetes, juvenile; Infants
and chemical diabetes, 45-47
and Cushing's syndrome and growth retardation, *1122
diabetes control evaluation in, *361-362
and diabetic ketoacidosis and coma, *60
of diabetic parents
retinal blood flow in, *354
and effects of neonatal hypoglycemia, *910
and glucose ingestion and calcium, magnesium and phosphorus flux, *376
and glucose tolerance tests and diphenylhydantoin therapy, *355-356
and growth hormone levels during sleep, *776
and hypoglycemia, *248
and epinephrine excretion, *1200
and intravenous hyperalimentation, *837
and ketotic hypoglycemia, *56
obese
and five-hour oral glucose tolerance test, *1042-1043
and oral glucose tolerance tests, 16-20
and salicylate-induced hypoglycemia, 959
of short stature and metabolic response to growth hormone, *110-120
CHINESE
and diabetes prevalence, *353
CHINESE HAMSTER
prediabetic diabetes prevention in, *337-338
pancreas structure in newborns, 1051-1059
CHLORMADINONE ACETATE
and insulin release, *313
CHLORPROMAZINE
-induced hypoglycemia, *184, 961
CHLORPROPAMIDE
antiuretic action of, *189
and plasma glucagon, 216-223
CHOLECYSTOKININ
release, *252
CHOLESTEROL
and clofibrate, *838, *910
levels
and alloxan diabetes, 1163-1166
and pediatric familial type II hyperlipoproteinemia, *1043
metabolism and clofibrate, *1200-1201
and insulin, *186
and temperature, *314
and metformin, *771
CHOLESTEROL-C-14
production and liver tissue injury; *315
CHOLINERGIC AGENTS
and pancreatic glucagon and insulin secretion, *332
CHORIONIC GONADOTROPIN
and diabetic pregnancy, 33-34
CHORIONIC SOMATOMAMOTROPIN
and insulin and glucagon release, 1072-1075

DIABETES: VOLUME 21 (1972) PAGE NUMBERS BY ISSUE

<table>
<thead>
<tr>
<th>Month</th>
<th>Pages</th>
<th>Supplement</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>1-64</td>
<td>1, 321-384</td>
<td>2, 385-714</td>
</tr>
<tr>
<td>February</td>
<td>65-128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>March</td>
<td>129-192</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April</td>
<td>193-256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>257-320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>715-778</td>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>779-842</td>
<td></td>
<td></td>
</tr>
<tr>
<td>August</td>
<td>843-922</td>
<td></td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>923-986</td>
<td></td>
<td></td>
</tr>
<tr>
<td>October</td>
<td>987-1050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>November</td>
<td>1051-1130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>December</td>
<td>1131-1210</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHROMATOGRAPHY
and isolation of insulin-tryptophan complex, *1045
and mucopolysaccharides assays, 735
and glycoprotein study, 865-866
and insulin antibodies study, 822-823
and serum nonsuppressible insulin-like activity study, 271-278
thin layer
and sodium acetate incorporation into rat aorta lipids, *186
CHROMIUM
dietary
and diabetes in monkeys, 1079
in glucose tolerance factor, *1043
and glucose utilization and marasmus, *313
hepatic
and diabetes, *1046
CINANSERIN
and insulin secretion, 784-786
CITRATE
and amino acid metabolism, *56
pancreatic
and insulin release, 999-1001
CITRIC ACID CYCLE
and diabetic ketoacidosis, 257
and liver ketogenesis, 50-52
CLOFIBRATE
and cholesterol metabolism
and hyperlipidemia, *1200-1201
and fatty acid metabolism, *835
and ischemic heart disease, *838, *910
and tumor-bearing mice, *837
COLCHICINE
and insulin release, 991, 996-997
COLLAGEN
in connective tissue study of diabetic rats, 736, 739
COMA, DIABETIC
and blood ketone body estimation method, *1117
and blood lactic and pyruvic acids, *350
and diabetic ketoacidosis, *60
and drug-induced hypoglycemia, 955-962
and fibrinolysis and peritoneal dialysis, *913
CORTICOTROPIN
and lipolysis
and iodinated insulin, *355
CORTISONE ACETATE
and fasting triglyceride and cholesterol in offspring of diabetic couples, *1044-1045
COXSACKIE B VIRUS
and diabetes, 766-767
CTENOMYS TALARUM. See Tuco-Tuco CUSHING’S SYNDROME
and growth retardation, *1122
in infancy, *120
CYCLAMATES
and blood constituents and hepatic lipids, *1202
CYCLIC ADENOSINE 3',5'-MONOPHOSPHATE
and adipose tissue metabolism and insulin, 414-424
and adrenalectomy, *340
and amino acid metabolism, *56
binding mechanisms, *1122
formation in islet cell adenoma, *912
formation and degradation in islet cell tumor, *185
and glucagon
and pancreactomcy, 453
and glucose, 571
and glucose-induced insulin release, *1042
and glucose release and glucagon, *332
and glucose repression in rat liver, *187
and glycogen synthase, 429, 433-436
and growth hormone secretion, *313
and hormone action, *251
and insulin
and lipolysis, 403
and liver metabolism, 439-445
and insulin action, 454-455, 696-697, *772
and insulin release, 1, 224-225, *312, *329, 545
and prediabetes, 689-690
in islet cell adenomas and glucose, glucagon, tolbutamide and theophylline, *346-347
in isolated adrenal cells, *983
in isolated fat cells, 1027-1034
and amitriptyline, *1045
and kidney gluconeogenesis, *910
and lipolysis and mercury, *771
and tolbutamide, *836
and liver protein synthesis, 453
and phosphofructokinase, *363
and plasma insulin, *180
and plasma insulin response to tolbutamide, *311
and protein synthesis and hormones, *119
in white fat cells and tolbutamide, *835
CYCLIC ADENOSINE 3',5'-MONOPHOSPHATE PHOSPHODIESTERASE, *838.
and insulin, *355
localization in islets of Langerhans, *328
and insulin, 415-416
and insulin, 415-416
localization in islets of Langerhans, *328
CYCLIC GUANOSINE 3',5'-MONOPHOSPHATE
and glycogen synthase, 435
phosphodiesterase activity against, *838
CYCLIC NUCLEOTIDES
and islet cell adenomas and glucose, glucagon, tolbutamide and theophylline, *346-347
and insulin
and lipolysis, 403
and liver metabolism, 439-445
and insulin action, 454-455, 696-697, *772
and insulin release, 1, 224-225, *312, *329, 545
and prediabetes, 689-690
in islet cell adenomas and glucose, glucagon, tolbutamide and theophylline, *346-347
in isolated adrenal cells, *983
in isolated fat cells, 1027-1034
and amitriptyline, *1045
and kidney gluconeogenesis, *910
and lipolysis and mercury, *771
and tolbutamide, *836
and liver protein synthesis, 453
and phosphofructokinase, *363
and plasma insulin, *180
and plasma insulin response to tolbutamide, *311
and protein synthesis and hormones, *119
in white fat cells and tolbutamide, *835

SUBJECT INDEX 1972

- and insulin, 632-633
- and mortality, 633-634
- symposium on, *246
- COMA, HYPOGLYCEMIC
diagnosis, 961
treatment, 961-962
- CONCAVALIN A
binding to isolated white fat cells, *336-337
and insulin, 1144
- CONGENTIAL DEFECTS
neuroblastoma and islet hyperplasia, *1122
rubella
diabetes incidence, *248-249
- CORONARY DISEASE. See Arteriosclerosis; Cardiovascular disease; Heart disease; Myocardial infarction
- CORTICOTROPIN
and lipolysis
and iodinated insulin, *355
- CORTISONE ACETATE
and fasting triglyceride and cholesterol in offspring of diabetic couples, *1044-1045
- COXSACKIE B VIRUS
and diabetes, 766-767
- CTENOMYS TALARUM. See Tuco-Tuco CUSHING’S SYNDROME
and growth retardation, *1122
in infancy, *120
- CYCLAMATES
and blood constituents and hepatic lipids, *1202
- CYCLIC ADENOSINE 3',5'-MONOPHOSPHATE
and adipose tissue metabolism and insulin, 414-424
and adrenalectomy, *340
and amino acid metabolism, *56
binding mechanisms, *1122
formation in islet cell adenoma, *912
formation and degradation in islet cell tumor, *185

Diabetes: Volume 21 (1972) Page Numbers by Issue

January, 1-64
February, 65-128
March, 129-192
April, 193-256
May, 257-320
Supplement 1, 321-384
Supplement 2, 385-714
June, 715-778
July, 779-842
August, 843-922
September, 923-986
October, 987-1050
November, 1051-1130
December, 1131-1210

9
CYCLOHEXAMIDE
and gluconeogenesis, *349
and hexokinase, *185
and insulin secretion, *55
and rat adipocyte fatty acid synthetase activity, *914

CYCLOHEXYLAMINE
and insulin secretion, *248

CYCLOPHOSPHAMIDE
and immune response to insulin, *58

CYPROHEPTADINE
and acromegaly, *352
and insulin release, 784-786
and pancreatic beta-cell alterations, 71-78

CYTOCHALASIN B
and insulin release, °327, 598, 600-602, 603
and beta-cell sensitivity to glucose, 224-233
and bladder dysfunction, *364
and blood glucose levels and walking, 89-99
in children, 45-47
and hyperglycemia and hyperinsulinemia, °1121
and circulating C-peptide immunoreactivity, °11025
and connective tissue changes, 733-743 control
and diabetic retinopathy, °382 diagnosis
and glucose tolerance during pregnancy, °118
and scintiphotoscanning, °351
and UGDP patient selection criteria, 1036
duration
and platelet aggregation, °190-121
and retinopathy, °187, °321-322
and employment, 834-835 etiology
and insulin action, 698-700
and virus, 713-714
and fructose, °314
and gangrene surgery study, °187
and glibenclamide therapy, °35, °913
and glomerular lesions
in guinea pigs, °338
and glucagon, °60, °332
and glucagon secretion, °183
and glucogenogenesis
and alanine, °341-342
and glucose tolerance
and microangiopathy, °321
and glycopenic fucose elevation, 863-870
and graded insulin infusions and plasma glucose, serum growth hormone and cortisol responses to, °379
growth-hormone induced
and Huntington’s chorea, °374-375
in guinea pigs, °338
and hemochromatosis
and angiopathy, °123
hospital care for, °1120

and beta-cell sensitivity to glucose, 224-233
and bladder dysfunction, °364
and blood glucose levels and walking, 89-99
and body weight constancy, °362-363 and calcium absorption, °983
in children, 45-47
and hyperglycemia and hyperinsulinemia, °1121
and circulating C-peptide immunoreactivity, °11025
and connective tissue changes, 733-743 control
and diabetic retinopathy, °382 diagnosis
and glucose tolerance during pregnancy, °118
and scintiphotoscanning, °351
and UGDP patient selection criteria, 1036
duration
and platelet aggregation, °190-121
and retinopathy, °187, °321-322
and employment, 834-835 etiology
and insulin action, 698-700
and virus, 713-714
and fructose, °314
and gangrene surgery study, °187
and glibenclamide therapy, °35, °913
and glomerular lesions
in guinea pigs, °338
and glucagon, °60, °332
and glucagon secretion, °183
and glucogenogenesis
and alanine, °341-342
and glucose tolerance
and microangiopathy, °321
and glycopenic fucose elevation, 863-870
and graded insulin infusions and plasma glucose, serum growth hormone and cortisol responses to, °379
growth-hormone induced
and Huntington’s chorea, °374-375
in guinea pigs, °338
and hemochromatosis
and angiopathy, °123
hospital care for, °1120
and pseudo-dwarfism and Mauriac syndrome, 633
“remission,” *1205
and self-management, *1204
and sensory perception thresholds, *1199
and ketone body metabolism, *246
and kidney disease
in Pima Indians, *365-366
late-onset
and insulin, 762-767
-like syndrome
and encephalomyocarditis virus infection, *247
and lipemia
and insulin concentrations, *376-377
and liver cholesterol turnover, *314
and liver chromium content, *376-377
and liver cholesterol turnover, *314
and liver free fatty acid metabolism, *314
and liver 3-hydroxybutyrate dehydrogenase, *184-185
and liver metabolism, 257-268
and lower extremity ischemia
and femorotibial bypass, *322-323
management, 683, 684
computer-delivered protocol for, *367
and diabetic neuropathy, 679
and diet, 681-682
and insulin, 678, 713
and macroangiopathy and atherosclerosis, 679-680
and microangiopathy, 680-681
and new insulins, 637-647
maternal
and carbohydrate metabolism in newborn infants, *912
and diabetic fetopathy, 687
and infant erythroblastosis fetalis, *1199-2000
and infant hypocalcemia, *914
and infant hypoglycemia, *1202-1203
and neonatal carbohydrate metabolism, *1046
maturity-onset
and diet, 1116-1117
and serotonin antagonists, *352
and metabolic insulin clearance, 1003-1011
and metformin, *771
and microangiopathy
and age, *837
mortality studies, *1044
and mumps, *182
and muscle capillary basement membrane changes, 881-896, 899-905
and muscle capillary permeability and blood flow, *769
in Mystromys albicaudatus, 715-721
in neonate, *249
and neuropathy of hands, *314
new research on, *314
and obesity, *246
and insulin resistance, *370
and insulin secretion, *1118
and low calorie diet with phenylalanine resin, *361
and phenformin, *362
onset
and heredity and diet, *770
and oral hypoglycemic drug labeling, 833
and pancreatic alpha cell function and insulin, 301-307
and pancreatic beta cell function, 511
and pancreas transplantation, *355
and peripheral circulation
infrared thermography studies, *981
and phenformin and lactic acidosis, *1198
and pituitary gland reserve capacity, *981
and placental glycogen metabolism, 1185-1190
and plasma amino acids, *340-341
and plasma glucagon levels, *324
and plasma immunoreactive insulin during continuous blood glucose monitoring, *324-325
and platelet aggregation, *355
and prediabetes transition to, 691-693
prevalence among Florida Seminoles, *776
and heredity and obesity, *250
prevention, 693
and diet, *337-338
and rat liver nuclear proteins, *377
and renal transplantation, *392
research
and beta-cell dysfunction, 703-704
and blood glucose analysis, 705-706
and glucose-insulin relationships, 704, 707-710
and rhinocerebral phycomycosis, *185
screening errors in, *254
and serum N-acetyl-beta-glucosaminidase, 1168-1171
and serum phospholipids, *123
and serum protein changes and microangiopathy, *371
and skin lesions, *251
spontaneous
in Macaca nigra, 1077-1088
and submaxillary gland extraparation, 722-731
and sulfonyleureas
and kidney insufficiency, *1192-1195
surveys among Chinese, *355
and Pima Indians, *180
of rural population of India, 1192-1195
therapy
and U100 insulin, 832
and thyrotoxicosis, *370-371
transient
and L-asparaginase therapy in acute leukemia, *1119
treatment
and hemochromatosis, *1199
and jet insulin injection, 39-44
and sulfonyleureas, *120
and UGDF, 1036-1037
in tuco-tuco, *1205
unstable
and biguanides, *123
and diurnal growth hormone and glucose abnormalities, *1203
and insulinogenic reserve, *836
and vascular disease, *314
and blood coagulation study, 108-112
in combined hyperlipoproteinemia, *376
and venous changes, *909
DIALYSIS
and diabetes, *322
peritoneal
and diabetic coma, *913
DIAMINE OXIDASE
and diabetic pregnancy, 35
20, 25-DIAZACHOLESTEROL, *837
DIAZOXIDE
and amino acid metabolism, *56
and beta cell tumors, 835

SUBJECT INDEX 1972

and carbohydrate metabolism in newborn infants, *912
and diabetic fetopathy, 687
and infant erythroblastosis fetalis, *1199-2000
and infant hypocalcemia, *914
and infant hypoglycemia, *1202-1203
and neonatal carbohydrate metabolism, *1046
maturity-onset
and diet, 1116-1117
and serotonin antagonists, *352
and metabolic insulin clearance, 1003-1011
and metformin, *771
and microangiopathy
and age, *837
mortality studies, *1044
and mumps, *182
and muscle capillary basement membrane changes, 881-896, 899-905
and muscle capillary permeability and blood flow, *769
in Mystromys albicaudatus, 715-721
in neonate, *249
and neuropathy of hands, *314
new research on, *314
and obesity, *246
and insulin resistance, *370
and insulin secretion, *1118
and low calorie diet with phenylalanine resin, *361
and phenformin, *362
onset
and heredity and diet, *770
and oral hypoglycemic drug labeling, 833
and pancreatic alpha cell function and insulin, 301-307
and pancreatic beta cell function, 511
and pancreas transplantation, *355
and peripheral circulation
infrared thermography studies, *981
and phenformin and lactic acidosis, *1198
and pituitary gland reserve capacity, *981
and placental glycogen metabolism, 1185-1190
and plasma amino acids, *340-341
and plasma glucagon levels, *324
and plasma immunoreactive insulin during continuous blood glucose monitoring, *324-325
and platelet aggregation, *355
and prediabetes transition to, 691-693
prevalence among Florida Seminoles, *776
and heredity and obesity, *250
prevention, 693
and diet, *337-338
and rat liver nuclear proteins, *377
and renal transplantation, *392
research
and beta-cell dysfunction, 703-704
and blood glucose analysis, 705-706
and glucose-insulin relationships, 704, 707-710
and rhinocerebral phycomycosis, *185
screening errors in, *254
and serum N-acetyl-beta-glucosaminidase, 1168-1171
and serum phospholipids, *123
and serum protein changes and microangiopathy, *371
and skin lesions, *251
spontaneous
in Macaca nigra, 1077-1088
and submaxillary gland extraparation, 722-731
and sulfonyleureas
and kidney insufficiency, *1192-1195
surveys among Chinese, *355
and Pima Indians, *180
of rural population of India, 1192-1195
therapy
and U100 insulin, 832
and thyrotoxicosis, *370-371
transient
and L-asparaginase therapy in acute leukemia, *1119
treatment
and hemochromatosis, *1199
and jet insulin injection, 39-44
and sulfonyleureas, *120
and UGDF, 1036-1037
in tuco-tuco, *1205
unstable
and biguanides, *123
and diurnal growth hormone and glucose abnormalities, *1203
and insulinogenic reserve, *836
and vascular disease, *314
and blood coagulation study, 108-112
in combined hyperlipoproteinemia, *376
and venous changes, *909
DIALYSIS
and diabetes, *322
peritoneal
and diabetic coma, *913
DIAMINE OXIDASE
and diabetic pregnancy, 35
20, 25-DIAZACHOLESTEROL, *837
DIAZOXIDE
and amino acid metabolism, *56
and beta cell tumors, 835

DIABETES: VOLUME 21 (1972) PAGE NUMBERS BY ISSUE

January, 1-64
February, 65-128
March, 129-192
April, 193-256
May, 257-320
Supplement 1, 321-384
Supplement 2, 385-714
June, 715-778
July, 779-842
August, 843-922
September, 923-986
October, 987-1050
November, 1051-1130
December, 1131-1210

11
and hyperresponsiveness to tolbutamide, °360
and insulin secretion, °327, 856-861, °1045
and pancreatic beta cell uptake of amino acids, °772
and tolbutamide response, °311

DIBUTEROL
and amino acid metabolism, °56

DIBUTYRYL CYCLIC 3',5'-ADENOSINE MONOPHOSPHATE
and fat cell metabolism, °343
and adipose tissue lipolysis, 427
and insulin release in acomys cahirinus, 1065, 1067
and isolated fat cells, 1027-1034
and lipolysis
and insulin, 415-424
and phosphofructokinase, °363
and protein synthesis, °119

DIET
and adipose tissue glucose metabolism
and insulin response, 1152
and alimentary lipemia, °58
and blood constituents and hepatic lipids, °1202
and blood glucose control
and tolbutamide and phenformin, 976-978
and blood glucose and serum insulin in obese hyperglycemic mice, °119
and carbohydrate
and glucose metabolism, °179
and pancreatic alpha cell function, °301-307
and cerebral development in rat fetus, °189
and diabetes control, °361-362
and diabetes management, 681-682
and diabetes onset, °770
and diabetes prevention, °337-338
and diabetes survey of rural population in India, °1192
and diabetes treatment, 1116-1117
and diabetic
and xylitol, °350-351
and differential feeder for parabiotic rats, °983
“elemental” liquids
and hemolytic anemia and pancreatic acinar atrophy and fibrosis, °773-774
and exocrine pancreas development in neonatal rat, °186
and food intake
and stomach tumors in obese mice, °774
and galactose
and motor nerve conduction studies in rats, °295-300
and glucagon and insulin secretion, °912-913
and glucose tolerance tests, °1197
and growth hormone release during sleep, °913
and high fat
and obese-hyperglycemic and non-obese mice, °182
and high fructose
and juvenile diabetes, °349-350
and high protein
and liver gluconeogenesis from fructose and glycerol, °358
and hyperinsulinaemia in gerbils, °60
and hypertriglyceridemia of streptozotocin diabetes, °353-354
and -induced hypercholesterolemia, °1044
and -induced jejunal lipodystrophy, °248
and isocaloric in lipoproteinemia study, 744
and konnyaku ingestion
and serum insulin response to glucose, °60
and lactose intolerance, °871
and low calorie
and anorectic agents, obese diabetics and, °361
and low casein and methionine and rat fatty liver metabolism, °183
and low cholesterol, high polyunsaturated fat
and insulin sensitivity, °361-362
and nutrient regulation of insulin secretion, 606-615, 617-618
and obesity
and hyperinsulinemia, °249
and pancreatic enzymes, °186
in weaned rats, °59
and pediatric familial type II hyperlipoproteinemia, °1043
and plasma glucagon, °331-332
and plasma lipid levels, °986
and proliferative diabetic retinopathy, °982

proteinsrestricted
and neonatal growth hormone production and bone development, °1047
safflower oil
and insulin secretion, °923-928
sucrose
and serum triglyceride response to, °835
and ventromedial hypothalamic nuclei destruction
and glucose metabolism, °1204-1205
and vitamin K deficient
and resistance to oral anticoagulants, °183

DIETHYLTLETROL
and insulin response to arginine and tolbutamide, °378

DIHYDROXYACETONE
and liver gluconeogenesis, °330-331

DI-ISOPROPYLAMMONIUM DICHLORACETATE, °358

DILANTIN. See Diphenylhydantoin

DIMETHYLBIGUANIDE. See Metformin

DIPA. See Di-isopropylammonium dichloracetate

DIPHENYLHYDANTOIN
and alloxan diabetogenic action, °80-83
and insulin secretion, °327, 856-861, °982
and long-term therapy and glucose and insulin responses to glucose tolerance tests, °355-356

DISODIUM ETHYLENEDIAMINE- TETRA-ACETATE
and insulin and hypoglycemia, °960

DIURESIS
and secretin, °769

DNA
fetal, °315
kidney
in progeny of protein-deficient rats, °1041
in mouse diaphragm, °184
pancreatic
and diet in neonatal rats, °188

SUBJECT INDEX 1972

January, 1-64
February, 65-128
March, 129-192
April, 193-256
May, 257-320

Supplement 1, 321-384
Supplement 2, 385-714
June, 715-778
July, 779-842

August, 843-922
September, 923-986
October, 987-1050
November, 1051-1130
December, 1131-1210

DIABETES: VOLUME 21 (1972) PAGE NUMBERS BY ISSUE
SUBJECT INDEX 1972

and acute uremia and metabolic acidosis
and carbohydrate tolerance, 1109-1114
adrenalectomized
and splanchnic nerve stimulation, *770
and ammonium chloride acidosis
and glucose tolerance, 794, 796
and antidiuretic action of chlorpropamide, *189
arginine and tolbutamide infusion
and diethylstilbestrol and growth hormone, *378
and glucagon, *771
and carbohydrate metabolism
and catecholamines and methylprednisolone, *772
dehpancreatized
and discovery of insulin, 385-394
and exercise
and plasma glucagon, °339
and glucagon secretion
and growth hormone, °313
glucagon studies in, °360-361
and glucose feeding
and insulin secretion, °911
and glucose kinetics studies, °188
hypophysectomized
and tolbutamide and glybenclamide injections, °378-379
and insulin antibodies, °182
insulin distribution and binding in hindlimb of, °775
and insulin-induced hypoglycemia, 802-803
and insulin release
and amino acids, °56
and insulin secretion
and oral glucose feedings, °909
and thyroid and hypophysectomy, °253
and intestinal glucagon-like immunoreactivity
and insulin secretion and glucose levels, °98
and liver free fatty acids metabolism
and anti-insulin serum, 280-288
mongrel and beagle
and serum insulin response, °356

and pancreas blood flow and insulin output
and prostaglandins, °369
partially depancreatized
and glucose tolerance and insulin response, °250
and pepsin secretion study, °250
reticuloendothelial system
and and vascular clearance and lipid metabolism, °313
and secretin
and diuresis, °769
and sodium linoleate infusion
and plasma free fatty acids, glucose, insulin and ketones, 1179-1184
submaxillary gland extirpation in
and glucose and insulin tolerance, 722-731
and tolbutamide response
and diazoxide, °311
L-DOPA
and plasma free fatty acids and glucose, °1121
and plasma growth hormone, insulin, and thyroxine, °911
DOPAMINE
and insulin secretion, °184
-sensitive adenyl cyclase
and synaptic transmission, °773
DOPAMINE BLOCKING AGENTS
and insulin release, 783-784
D. PNEUMONIAE
and liver cycloleucine, °316
DULCITOL
and nerve conduction defect in galactose-fed rats, 295-300
DWARFISM
ataliotic
and growth hormone treatment effect on glucose tolerance and adipose tissue cellularity, °366
and plasma insulin response to glucose, °1045-1046
diabetic sexual ateliotic
and microangiopathy, 872-873
hypopituitarit
and growth hormone therapy, °982-983
pseudo, °633
pseudohypopituitarit, °1046

E
EDEMA
cerebral, °1203
and diabetic ketosis, °180-181
ELECTROPHORESIS
agar, °816
of glycoproteins and collagen
in connective tissue study of diabetic rats, 736, 738-739
and neutral regular insulin study, 236, 241
ELIPTEN, °837
EMBRYO, See also Fetus
pancreas islets study, 511-533
EMOCYTOSIS
and insulin release, °535, 603
ENCEPHALOMYOCARDITIS VIRUS
and diabetes-like syndrome, °247
and mouse pancreas, °338-339
ENDOCRINE GLANDS
adenomatosis
and familial nesidioblastosis, °1122
and diabetic microangiopathy, 872-873
ENDOPEPTIDASE
trypsin-like
and proinsulin conversion to insulin, 577-578
ENZYMES
N-acetyl-beta-glucosaminidase
and diabetes, °1168-1171
adenyl cyclase
and nervous system function, °773
adenyl cyclase and cyclic AMP phosphodiesterase
localization in rat islets of Langerhans, °328
adenylate cyclase and phosphodiesterase and insulin release, °328-329
aldose reductase
and insulin release, °327
assays
and diabetic pregnancy, °34-35
and cyclic AMP
and insulin, 439-445
cyclic AMP phosphodiesterase, °328
and insulin, °415-416

DIABETES: VOLUME 21 (1972) PAGE NUMBERS BY ISSUE

January, 1-64
February, 65-128
March, 129-192
April, 193-256
May, 257-320

Supplement 1, 321-384
Supplement 2, 385-714
June, °715-778
July, °779-842

August, °843-922
September, °923-986
October, °987-1050
November, °1051-1130
December, °1131-1210

13
enterokinase
and glucagon, *771
and galactose metabolism, 202, 208
glutathione-insulin transhydrogenase, *935
glycogen synthetase
and insulin, 428-437
and diabetes, 1185-1190
glycolytic
and insulinoma, *773
hexokinase, °1205
and insulin degradation, 468
by placenta, *374-375
and proinsulin assays, *122
and insulin and proinsulin degradation, 1093-1100
in jejunal mucosa
and alloxan diabetes and fasting in rats, *188
lipoprotein lipase
in rat heart and adipose tissue, *344
liver
and alcoholism, *983
liver acetic thiokinase
and lipogenesis, °982
liver adenylate cyclase
and glucagon, *981
liver threonine dehydratase, *980-981
pancreatic
and diet, °186
and serum anti-insulin, °911
phosphodiesterase
and cyclic AMP and cyclic GMP, °838
phosphofructokinase
and cyclic AMP and dibutyryl cyclic AMP, °363
of placental polyol pathway, °330
and proinsulin conversion to insulin, 577-578, 581-583
proteolytic
and fat cell lipolysis, 423
and leucine incorporation into protein, °336

EPINEPHRINE
adenyl cyclase response to, °772
and calcium transport, °327
and cyclic AMP, 441, 445
excretion
and idiopathic hypoglycemia, °1200
and glucagon secretion, °332-333
and glycogen synthase, 436
and insulin
and adipose tissue lipolysis, 427
and insulin release
and glucose administration, °348
and insulin response to glucose, °773
and insulin secretion, °770
and lipolysis
and mercury, °771
and protein synthesis
and cyclic AMP, °119
-responsive adenyl cyclase
and insulin, °1117-1118
-stimulated lipolysis
in siblings of diabetics, °361
ERYTHROBLASTOSIS FETALIS
and fetal pancreas, °253-254
and glucose metabolism, plasma insulin and growth hormone secretion, °1199-2000
17B-ESTRADIOL
and tRNA methylases, °253
ESTROGEN
and diabetic pregnancy, 31-32
and growth hormone secretion, °774-775
ETHANOL
and alanine
and gluconeogenesis, °1202
blood clearance of
and alcoholism, °983
and diabetes, °1042
-induced fatty liver
and pyrazole and glucose, °247
-induced hypoglycemia, 958
-and insulin release
in healthy subjects, 158-161
and intestinal triglyceride synthesis, °769-770
metabolism
and hypo-, hyper, and euthyroid rats, °181
-and muscle damage, °838
-and phenformin
in obesity and prediabetes, °363
-and skeletal muscle lactate metabolism, °367
ETHINONINE
and pancreas mitotic activity, 1055
EXERCISE
and amino acid levels
in fasted and fed rats, °119
-and amino acid metabolism, °770-771
-and cardiovascular system
-and weight reduction, °980
-decreased
-and glucose intolerance, 101-107
-and glucagon secretion, °1198-1199
-and glucose metabolism, °179, °776
-and glucose turnover in depancreatized dogs
-and insulin and glucagon infusion, °382-383
-induced glucagon secretion
-and catecholamines, °334
-and insulin and glucose uptake, °980
-and insulin secretion
-and obesity, °909
-and phentolamine, °119
-and lactic acid levels
-and phenformin and Tolnaine therapy, °351
-walking
-and blood glucose levels in normals and diabetics, 89-99

FAMILY HISTORY
and alcohol-induced glucose intolerance, °184
and chemical diabetes in children, 45
-and diabetes following mumps in siblings, °182
-and diabetes prevention, °337-338
-and endocrine adenomatosis, °1122
-and epinephrine-stimulated lipolysis, °361
-and myotonic dystrophy
-and insulin secretion, °378
-and prediabetes, °359
-and renal glycosuria, °248
-and sensory perception thresholds in relatives of diabetics, °1199

FASTING. See Starvation

FAT CELLS. See also Adipose tissue adenylate cyclase
-and insulin, °772
-and antilipolytic action of tolbutamide, °836
-and insulin action study, 454
-and insulin binding with membranes of, 398-401
-and insulin and lipolytic hormones
-and mercury, °771
-insulin receptor of
-and insulin resistance, °1042
-and leucine incorporation into protein by, °336

January	1-64
February	65-128
March	129-192
April	193-256
May	257-320

Supplement 1, 321-384
Supplement 2, 385-714
June, 715-778
July, 779-842
August, 843-922
September, 923-986
October, 987-1050
November, 1051-1130
December, 1131-1210
FATS and insulin release, 613-615, 617-618 tolerance and oral contraceptives, *316

FATTOY ACIDS

D-FRUCTOSE and insulin response to glucose, 540 transport and biguanides, *119

FUCOSE protein-bound and diabetes, 868-870

GALACTOSEMIA and brain metabolism, 202, 208 and diabetic microangiopathy, *352

GAMMA GLOBULIN and insulin complexes and diabetic microangiopathy, 872-879

GASTRECTOMY
and glucagon and insulin response, *1047

GASTRIN
and insulin secretion, 535

GASTROENTERITIS
and hypoglycemia, °248

GASTROINTESTINAL SYSTEM
absorption
and diabetes, *252-253
and cholecystokinin
and secretin, °252
and diet-induced jejunal lipodystrophy, *248
diseases
and "elemental liquid" diets, *773-774
and duodenal acidification
and pepsin secretion study, *250
enzyme activity
in rats, *59
gastric emptying rate
and oral glucose tolerance tests, *88
and glucagon and insulin responses, *1047
and glucagon-like immunoreactivity, *837-838
assays, °1206
and insulin and glucose, *58
glucose and galactose absorption, 1107
growth and hexose transport
in diabetic rats, *59
hormones
and insulin response to triglyceride, 928
and insulin administration
and plasma immunoreactive insulin, 203-207
jejunal mucosa
and glycolytic and pentose phosphate
pathway enzymes, *188
lipodystrophy
diet-induced, °1044
lipoprotein production, °121
mechanical stimulation of
and serum insulin response to glucose,
*60
microflora
and calcium and magnesium absorption,
*775
and oral insulin, 643-647
permeability to glucose
and synthetic surfactants, °182-183
and portacaval shunting
and glucose tolerance and serum
immunoreactive insulin response,
°179
small bowel
and insulin response to glucose absorbed from, °54
small intestine
permeability for fructose, °249
sugar transport
and biguanides, °119
surgery
and glucose homeostasis, °1199
transport
and glucagon, °983
triglyceride synthesis
and ethanol, °769-770
xylitol absorption, °350-351

GEES
and liver metabolism
and glucagon, °55

GENES
and autosomal recessive inheritance of
renal glycosuria, °248
and familial hypercholesterolemia,
°1121
and longevity in mice, °914

GERBILS
and diet-induced intestinal lipodystrophy,
°1044
and hyperlipemia, °60
pancreas structure in newborns, 1051-1059

GIRAFFES
muscle capillaries basement membrane width in, °254

GLIBENCLAMIDE
and amino acid metabolism, °56
-glucose-response-test, °913
-intrapancreatic infusion
and insulin release, 209-215
and pancreatic beta cell uptake of
amino acids, °772
pharmacodynamic aspects, °249, °249-250
studies, °55

GLIBORNURIDE
pharmacodynamic aspects, °249, °249-250

GLICLAZIDE
and microangiopathy, °357

GLISOXEPIDE
pharmacodynamic aspects, °249, °249-250, °912

GLUCAGON
action
and cyclic AMP, °251
and adenosine 3'5'-monophosphate levels, °54
and adenylyl cyclase activation in islet cell adenoma, °912
adenyl cyclase response to, °772
biosynthesis, °58-59
and carbohydrate homeostasis, °357
and carbohydrate metabolism, insulin and growth hormone secretion
in congestive heart failure patients, 939-944
chronic administration of
and glucose tolerance and insulin hyperresponsiveness, °374
and cyclic AMP, °440
and pancreatectomy, 453
and diabetes and infection, °324
and diuresis, °769
and enterokinase secretion, °771
gastrointestinal response to, °1047
and gastrointestinal transport, °983
and gluconeogenesis, °331
and hypoglycemic coma, 961-962
immunoactive in islet cell tumors, °333
and immunoreactive insulin and blood glucose, °360-361
infusion
and glucose turnover in depancreatized dogs, °382-383
and insulin immunoreactivity, °313
-insulin ratio
and liver metabolism, °341
and insulin release and arginine, °312
and insulin response, 1
in acomys cahirinus, 1064, 1069
and islet cell adenoma cyclic AMP content, °346-347
kidney sensitivity to
and starvation, °334
-like immunoreactivity assays, °1206
and insulin secretion and glucose concentration, °58

GLOMERULOSCLEROSIS, DIABETIC
immunohistopathological study of, 163-173
without diabetes, °769

GLUCOSE
and cytochrome oxidase, °772
and diabetes
and diet, °1212
and hyperglycemia, °31
and insulin, °59
and pancreatic biogenic amine content, °772
and portal hyperpermeability, °59
and urinary glucose concentration, °58
and liver adenosine 3',5'-monophosphate and glucose, *187
and liver cirrhosis, *121-122
and liver gluconeogenesis and D-glyceraldehyde and dihydroxyacetone, *330-331
-mediated plasma insulin responses and theophylline, *180
metabolism, *333
and diabetes, *332
and myocardial oxygen consumption and potassium balance, *118-119
physiology and pathophysiology, *60
and plasma amino acids, *340-341
and plasma lipids and blood platelets, *311-312
and related synthetic peptides, 843-855
release and human chorionic somatomammotropin, 1072-1075
resistance and lipemia, *357
-response adenyl cyclase macromolecular inhibitor of, *180
secretion, *314
adrenergic control of, *332-333
and alanine, *183
and aminophylline, 289-293
and catecholamines, *334
and diet, *912-913
and exercise, *1198-1199
during glucose infusions in starvation and diabetes, *359
and growth hormone, *913
and insulin deficiency, *183
and pituitary and adrenal glands, *375
selectively blocked and liver adenylyl cyclase, *981
serum insulin response to in mongrel and beagle dogs, *356
GLUCAGON I-131
and glucagon metabolism studies, *333

GLUCOCORTICOIDS
and ACTH, growth hormone or thyroxine and ketosis, 414
and diabetic ketosis, *946-954
and gluconeogenesis, *252
and liver gluconeogenesis and diabetes, *393-340
and liver mitochondrial structure, 258

GLUCONEOGENESIS
and alanine
and diabetes, *341-342
and ethanol, *1202
from arginine, 308-310
and cyclic AMP
and insulin, 439-445
from fructose and glycerol
in liver of high-protein fed rats, *358
and glucagon, *183
and glucocorticoids, *252

GLUCORECEPTOR MECHANISMS, 555-568, 570, 611-613
GLUCOSAMINE
and insulin release, *328, 543, 544, 561, 570
D-GLUCOSAMINE
and insulin response to glucose, 540-541

GLUCOSE. See also Glucose intolerance; Glucose tolerance; Glucose tolerance tests
absorption and gut glucagon-like immunoreactivity, *337
and adenyl cyclase activity, *179
and alloxan and insulin secretion, *326
and alloxan toxicity, *123
and amino acid metabolism, *56
and arginine
and serum insulin and growth hormone, *316
beta cell sensitivity to and prediabetes and diabetes, 224-233
binding to intestinal epithelial brush borders and diabetes, *252-253
brain metabolism in newborn rat, *775
and calcium metabolism, *327
disappearance rates in infants of diabetic mothers, *1046
and methysergide maleate, *316
disposal and myopathy, *118
and ethanol-induced fatty liver, *247
and fatty acid metabolism, *835
and fatty acid synthetase activity, *914
and fetal metabolism, *187
glibenclamide-response-test, *913
and glucagon, *60
and glucagon-like immunoreactivity, *58
homeostasis and gastric surgery, *1199
and glucagon, *314
and hypoglycemia, *815
and hypoglycemic coma, *961
infusion insulin and glucagon patterns during, *359-360
ingestion and metabolism, 1102-1108
ingestion in children and calcium, magnesium and phosphorus flux, *376
and insulin and hypoglycemia, *373
and lipatrophy, *381-382
-insulin relationships, 704, 707-710
in acomys cahirinus, 1062
and adenylate cyclase and phosphodiesterase, *328-329
and ammonium ion, *248
and arginine, *312, *1045
and carbohydrate and lipid metabolism, *1119
and chlormadinone acetate, *313
and cyclic AMP, *1042
and cytochalasin B., *327
and diabetes and obesity, *187-188 and diphenylhydantoin and diazoxide, 856-861
and epinephrine, *770, *773
and human chorionic somatomammotropin, 1072-1075
and immunohistological detection of insulin in pancreatic tissue, *246
and iodoacetate and antimycin A, *56
and juvenile diabetes “remission,” *1205
and konnyaku ingestion, *60
and kwashiorkor, *1119-1120
and methysergide, 780-787
and ouabain, *246
and peripheral vascular disease, arteritis, and Raynaud’s phenomenon, *838-837
in rat islets, *1205
and serotonin and dopamine, *184
and small vessel disease, *836
stimulus-secretion coupling of, 594-603
and tolbutamide, 884
intestinal permeability to
and synthetic surfactants, *182-183
intestinal transport
and biguanides, *119
and islet cell adenoma cyclic AMP content, *346-347
kinetics
in dogs, *188
levels
and alcohol hypoglycemia, 65-69
and liver cirrhosis and insulinemia, *121-122
and liver gluconeogenesis, *371
loading
and diet and fasting, *1046
and iodinated insulin, *55
and obesity, *54
and maternal diabetes
and infant hypoglycemia, *1202-1203
metabolism
adipose tissue, 1151-1161
and carcinoid syndrome, *1200
and cyclic and dibutyryl AMP, 1028-1030
and erythroblastosis fetalis, *1199-2000
and insulin, *184
in isolated pancreas islets, 538-545
in isoproterenol-stimulated rat salivary glands, *982
during leg exercise, *776
and methylene blue, *350
and obesity, 6-11
and pancreas alpha and beta cells, *809
in rat skin, *189
and shock, *1201
and ventromedial hypothalamic nuclei destruction, *1204-1205
oral
and alimentary lipemia, *58
and insulin secretion, *909, *911
output
and insulin and adenosine 3',5'-monophosphate, *254
oxidation
in cultured fibroblasts, *300
and exercise and dietary carbohydrate, *179
of isolated islets in tissue culture, 548, 550-551
and norepinephrine and theophylline, 416-417
pancreatic islet response to, *344-345
and plasma glucagon, growth hormone and insulin
during exchange transfusion, *1120
and plasma insulin
and diabetes, 1012
and theophylline, *180
and plasma and pancreatic insulin, *375-376
production
and mannose, fructose and hydroxybutyrate, 797-803
proinsulin response to
and age, obesity, and degree of carbohydrate intolerance, *356
prolonged infusion
and insulin secretion, *372
regulation
and hypertension, *776
renal, *314
repression in rat liver cyclic 3'5'-AMP during, *187
responses
and diphenylhydantoin therapy, *355-356
and serum insulin levels
and trauma, *183
-stimulated insulin release
and glucoreceptor mechanisms in islets of Langerhans, 555-568
and insulin storage, 585-592
and sulfonylureas, *249-250
transport
in fat cells, 403
in rat adipose tissue, *1042
turnover
in depancreatized dogs, *382-383
uptake
and exercise, *980
by isolated perfused rat brain, *1206
uptake by brain
and perfusion technics, *1123
uptake by fat tissue
and β-hydroxybutyrate, *836
utilization
and chromium, *313
and growth hormone, *342-343
and thyrotoxicosis, *370-371
GLUCOSE INTOXICITY
alcohol-induced, *184
and catecholamine-secreting tumors, *838
and chromium deficiency, *313
and decreased physical activity, 101-107
and gastrectomy, *1047
and hypokalemia, *1043-1044
and myocardial infarction, *119
and obesity, *1118
and phenytoin, *187
GLUCOSE TOLERANCE
and acute uremia and metabolic acidosis, 1109-1114
and alcohol, *247-248
and ammonium chloride-induced acidosis, 794-796
and arterial calcification, *252
and carbohydrate and lipid metabolism, *1119
and chronic glucagon administration, *374
and encephalomyocarditis infection, *247
and glibenclamide, *55
growth hormone treatment in ateliotic dwarfism, *366
and insulin response
in partially pancreatectomized dogs, *339
intravenous and myocardial infarction, *184
and metformin, *771
and microangiopathy, *321
and myotonic dystrophy, *378
and nicotinic acid, *313
and obesity, 759, *1205
and portacaval shunt in rats, *179
and prediabetes, 686
and renal lesions, *769
seasonal variations in, *312-313
and submaxillary gland extirpation, 722-731
tempterate sprue, *773
GLUCOSE TOLERANCE FACTOR
and insulin, *1043
GLUCOSE TOLERANCE TESTS
and acute pancreatitis, *911
and bedrest and exercise, 102-106
and caffeine
and prediabetes, *365
and chemical diabetes in childhood, 46-47
and Chinese, *353
in diabetics and obese patients, 1012
and diphenylhydantoin therapy, *353-356
and ethanol and phenformin, *363
among Florida Seminoles, *776
and gastric emptying, *381
and glucose metabolism, 1102
in guinea pigs, *338
and Huntington’s chorea, *1121
and hypertension, *776
and liver cirrhosis, *356
in Macaca nigra, 1078-1088
and myocardial infarction, *119
in neonates of diabetic mothers, *912
in obese children, *1042-1043
and obesity, *1205
oral
and diabetes screening errors, *254
discriminant analytical technic, *251
and serum insulin and growth hor­
monne levels in children, 16-20
standardization of, 1197-1198
and peripheral vascular disease, ar­
teritis, and Raynaud’s phe­
omenon, *837
and phenformin
and diabetic obesity, *362
and Pima Indians, *180
plasma catecholamines during, *348
and plasma insulin and uric acid
and nicotinic acid, *313
and plasma lipids
in normals and prediabetics, *383
and pregnancy, *186
and serum immunoreactive insulin
levels and age, *183-184
D-GLUCOSE
and alloxan toxicity, *123
brain uptake of
and phlorizin, *315
and insulin release, 559-561
transport
and biguanides, *119
GLUCOSE C-14
metabolism
and 8-aminonicotinamide, *1198
GLUCOSE-6-PHOSPHATE DEHY-
DROGENASE
in jejunal mucosa
and alloxan diabetes, *188
GLUCOSE U-C-14
metabolism
in fasted and streptozotocin diabetic
rats, *122
utilization
rat strain differences in, *770
GLUCOSURIA
and chemical diabetes screening, 47
and dietary fructose, *349
GLUTAMATE
metabolism, *57
GLUTATHIONE
and alloxan, 81-83
GLUTATHIONE-INSULIN TRANSHY-
DROGENASE, *353, 1095-1100
GLYBENCAMIDE
and hypophysectomized dogs, *378-
379
GLYBURIDE. See Glibenclamide
D-GLYCERALDEHYDE
and liver gluconeogenesis, *330-331
GLYCERIDE-GLYCEROL SYNTHESIS
of mammalian adipose tissue, 1154-
1155
GLYCEROL
gluconeogenesis from, *358
and insulin secretion, 923-928
release
and weight reduction, 758
GLYCEROL KINASE
in adipose tissue
and body weight, *911-912
and insulin regulation, *122
L-GLYCEROL 3-PHOSPHATE
and lipid synthesis in rat skin, *189
GLYCINE
metabolism, *57
GLUCOGEN
placental metabolism
and diabetes, 1185-1190
GLUCOGEN STORAGE DISEASE
and hypoglycemia, *248
GLUCOGEN SYNTHASE
and insulin, 428-437
GLUCOGENOLYSIS
and arginine infusion, 308-310
and cyclic AMP
and insulin, 439-445
GLYCOLATE
urinary
and streptozotocin diabetes, *372
GLYCOLYSIS
and insulin secretion, 4
GLYCOPROTEIN
in connective tissue study of diabetic
rats, 736, 738-739, 740-741
GLYCOPROTEIN FUCOSE
and diabetes, 863-870
GLYCOSAMINOGLYCANS
metabolism
and alloxan diabetes, 1162-1166
GLYCOSURIA
and diabetes prevalence among Chi-
nese, *353
in diabetes survey of rural population
in India, 1193-1196
and insulin, *186
and nicotinic acid, *313
GOLGI APPARATUS, 620
and insulin biosynthesis, 574-577, 582,
583
and insulin secretion, 510
GROWTH HORMONE
activity
and lipoprotein, *381-382
and body composition of hypopituitary
dwarfs, *982-983
and carbohydrate homeostasis, *357
and cerebrat development in rat fetus,
*189
and diabetes, 699-700, *1203
and diabetic ketosis, 946-954
and diabetic retinopathy, *349
diurnal
and unstable diabetes, *1203
and glucagon secretion, *313
and glucose tolerance and adipose tissue
cellularity
in ateliotic dwarfs, *366
homeostasis abnormalities
and generalized lipodystrophy, *771
-induced diabetes
and Huntington’s chorea, *374-375
insufficiency
beta-1-24 corticotropin tests of, *775-
776
and insulin response to arginine and
tolbutamide, *378
and juvenile diabetes, *312
levels
in small normoglycemic and hypo-
glycemic infants, *230
and lipid and carbohydrate homeo-
stasis, *342-343

January, 1-64
February, 65-128
March, 129-192
April, 193-256
May, 257-320

Supplement 1, 321-384
Supplement 2, 385-714
June, 715-778
July, 779-842
August, 843-922
September, 923-986
October, 987-1050
November, 1051-1130
December, 1131-1210
and lipoatrophic diabetes, 829, 830
and lipolysis
and iodinated insulin, *55
metabolic clearance rates
and juvenile diabetes, 175-177
metabolic response to
and short stature, *119-120
and metabolism of obese patients, *1046
neonatal
and maternal protein restriction, *1047
and pancreas compartments of insulin, *372
release
in sleep, *776, *913
secretion
and Cushing's syndrome, *1122
and L-dopa, *911
and erythroblastosis fetalis, *1199-2000
and glucagon, in congestive heart failure patients, 939-944
ischaemic and clofibrate, *838, *910
HEMOCROMATOSIS
and diabetes, *1199
and diabetic angiopathy, *123
HEMORRHAGE
and argon laser photocoagulation, *189
and diabetes, 108-112
and insulin release, *982
and shock
insulin response to, *364
HEPARIN
and lipolysis, *342
and lipoprotein lipase
and oral contraceptives, *316
release from alloxan diabetic rat heart, 149-155
HEPATITIS
autoimmune, *314
HEREDITY
and autoimmune disorders, *914
and diabetes, *250
and fasting triglycerides and cholesterol in offspring of diabetic couples, *1044-1045
and Huntington's chorea, *1121
and diabetes onset
and diet, *770
and diabetic-like microangiopathy, *373
and endocrine adenomatosis, *1122
and hypercholesterolemia, *1121
and lactose tolerance, 871
and lipodystrophy and growth hormone abnormality, *771
sex steroids
and liver triglyceride biosynthesis, *365

HUNTINGTON'S CHOREA
and diabetes, *374, *1121

HYDROCORTISONE
and liver mitochondrial structure, 258
and rat fatty liver, *183

HYDROCORTISONE SODIUM SUCINATE
and hypoglycemic coma, 961-962

3-HYDROXYBUTYRATE
and lipolysis, *836
and liver glucose production and insulin-induced hypoglycemia, 797-803
metabolism, *343

4-HYDROXYBUTYRATE
brain utilization of, *247

D-3-HYDROXYBUTYRATE
uptake by isolated perfused rat brain, *1206

3-HYDROXYBUTYRATE DEHYDROGENASE
in diabetic liver mitochondria, *184-185

5-HYDROXYTRYPTAMINE
and insulin secretion, *251-252

HYPERALIMENTATION
intravenous in children, *837

HYPERAMMONEMIA
and glucose metabolism and insulin, *184

HYPERBILIRUBINEMIA
neonatal and phenobarbitone therapy, *1123

HYPERCALCEMIA
and hyperparathyroidism, *773

HYPERCHOLESTEROLEMIA
and diabetes and diet, *366
diet-induced, *1044
familial, *1121

HYPERCOAGULABILITY
and diabetes, 108-112

HYPERGLUCAGONEMIA
alanine-induced and alpha-adrenergic blockade, *1043
and insulin, 381-387

HYPERGLYCEMIA
and alcohol ingestion, *247-248
and L-asparaginase therapy, *1119
and chemical diabetes, *1121
compared with ketosis, 257
and diabetes in tuco-tuco, *1206
and diet, *770
in obese mice, *119
and glucagon, *360-361
and glucagon secretion and alanine, *183
and growth hormone metabolic clearance rates, 176
and hemorrhagic shock, *364
and hyperglucagonemia, 301-307
and hypoglycemia and anti-insulin antibodies production, 814-825
and hypothalamic stimulation, *771
insulin-resistant and aminophylline, *775
and intravenous alimentation, *837
and islet of Langerhans structure, *1043
and liver cirrhosis, *356
and metabolic acidosis and acute uremia, 1109-1114
and myocardial infarction and tolbutamide therapy, *122-123
in Mystromys albicaudatus, 716-721
neonatal and insulin studies, *181
and obesity and high-fat diet in mice, *182
and pentobarbital, *836
and phenytoin toxicity, *187
and postheparin lipolytic activity, *342
and splanchnic nerve stimulation and androlecmtum, *770
and streptozotocin, *59
and synthetic glucagon peptides, 845-846
and uterine relaxants, *1045
and vascular disease, 679-680

HYPERINSULINISM
and adipose tissue resection, 13-15
and chemical diabetes, *1121
and diabetes and connective tissue changes, 733-743
and diabetic pregnancy, *912
and insulin insensitivity, 6
and insulin resistance in genetically obese rats, *838
and liver cirrhosis, *356
and liver glucose production, *380-381

and obesity, *314, *380, 613, 617-618
and blood proinsulin, 663-664
and diet, *249
and obesity and hyperlipidemia induced in monkeys, *1201

HYPERLIPIDEMIA
alcoholic, *770
and diabetes, *1123
in gerbils, *70

HYPERLIPIDEMIA
and calcium, *980
and cholesterol metabolism and clofibrate, *1200-1201
and metformin, *771
and obesity and hyperinsulinemia induced in monkeys, *1201

HYPERLIPOPROTEINEMIA, 744-752
combined and diabetes and vascular disease, *976
and cortisone acetate, *1044
pediatric familial type II and diet, *1043
type II, *1121
and diet, *366

HYPEROSMOLALITY
and diabetes and ketogenesis, *369-370
in galactose-fed chicks, *915

HYPERPARATHYROIDISM
and infant hypocalcemia, *914
and plasma insulin, *773

HYPERPHAGIA
dietary prevention of, *337-338
and polydipsia and adrenalectomy and hypophys-ectomy, *358-359

HYPERTENSION
and glomerulonephritis without diabetes, *769
and glucose regulation, *776

HYPERTHYROIDISM
and thyroid function tests, 1012

HYPERTRICGLYCERIDEMIA
endogenous and plasma triglycerides synthesis, *55
and insulin deficiency, *366-367
and phenformin and insulin and free fatty acids, *380
and plasma free fatty acid metabolism, *895

DIABETES: VOLUME 21 (1972) PAGE NUMBERS BY ISSUE

January, 1-64
February, 65-128
March, 129-192
April, 193-256
May, 257-320

Supplement 1, 321-384
Supplement 2, 385-714

June, 715-778
July, 779-842

August, 843-922
September, 923-986
October, 987-1050
November, 1051-1130
December, 1131-1210

21
and postheparin lipolytic activity, *342
and pregnancy, *365
and streptozotocin diabetes
and diet, *353-354

HYPOCALCEMIA
in infants of diabetic mothers, *914

HYPOCHOLESTEREMIC DRUGS
and tumor-bearing mice, *857

HYPOGLYCEMIA
and alcohol
and basal insulin secretion, 65-69
and arginine-induced insulin release, *182
and biguanides
and insulin, *123
and cataracts
in infants, *182
and diabetes
and kidney insufficiency, *1120-1121
drug-induced, 955-962
and exchange transfusions of citrated
blood, *185
factitious, *980
and gliboexepid, *912
and hyperglycemedia
and anti-insulin antibodies production,
814-825
and hyperparathyroidism, *773
idiopathic
and epinephrine excretion, *1200
and infants, *248
and beta cell neosdioblastosis, *189
and glucose administration in diabetic
mother, *1202-1203
and growth hormone levels, *250
and insulin
and central nervous system, *337
and growth hormone, 22, 30
and intravenous glucose, 610
and iodinated insulin, *55
ketotic
diagnosis in children, *56
and lactic acidosis, *1198
liver response to
and mannose, fructose and hydroxy-
butyrate, 797-803
and metformin, *771
and monamineoxidase inhibitor, *251-
252
neonatal, *179-180, *910
nondiabetic reactive and asymptomatic
biochemical
and insulin-glucose dynamics, *373
and oral insulin, 644, 645
and pancreatoduodenectomy
and pregnancy, *188
and phenobarbione, *1123
reactive
and phenformin therapy, *367-368
and tolbutamide, *1123

HYPOGLYCIN A
and Jamaican vomiting sickness, *316

HYPOGONADISM
hypogonadotropic
and diabetic impotency, 23, 26

HYPOGLYCEMIA
and alcohol
and basal insulin secretion, 65-69
and arginine-induced insulin release, *182
and biguanides
and insulin, *123
and cataracts
in infants, *182
and diabetes
and kidney insufficiency, *1120-1121
drug-induced, 955-962
and exchange transfusions of citrated
blood, *185
factitious, *980
and gliboexepid, *912
and hyperglycemedia
and anti-insulin antibodies production,
814-825
and hyperparathyroidism, *773
idiopathic
and epinephrine excretion, *1200
and infants, *248
and beta cell neosdioblastosis, *189
and glucose administration in diabetic
mother, *1202-1203
and growth hormone levels, *250
and insulin
and central nervous system, *337
and growth hormone, 22, 30
and intravenous glucose, 610
and iodinated insulin, *55
ketotic
diagnosis in children, *56
and lactic acidosis, *1198
liver response to
and mannose, fructose and hydroxy-
butyrate, 797-803
and metformin, *771
and monamineoxidase inhibitor, *251-
252
neonatal, *179-180, *910
nondiabetic reactive and asymptomatic
biochemical
and insulin-glucose dynamics, *373
and oral insulin, 644, 645
and pancreatoduodenectomy
and pregnancy, *188
and phenobarbione, *1123
reactive
and phenformin therapy, *367-368
and tolbutamide, *1123

HYPOGLYCEMIA
and alcohol
and basal insulin secretion, 65-69
and arginine-induced insulin release, *182
and biguanides
and insulin, *123
and cataracts
in infants, *182
and diabetes
and kidney insufficiency, *1120-1121
drug-induced, 955-962
and exchange transfusions of citrated
blood, *185
factitious, *980
and gliboexepid, *912
and hyperglycemedia
and anti-insulin antibodies production,
814-825
and hyperparathyroidism, *773
idiopathic
and epinephrine excretion, *1200
and infants, *248
and beta cell neosdioblastosis, *189
and glucose administration in diabetic
mother, *1202-1203
and growth hormone levels, *250
and insulin
and central nervous system, *337
and growth hormone, 22, 30
and intravenous glucose, 610
and iodinated insulin, *55
ketotic
diagnosis in children, *56
and lactic acidosis, *1198
liver response to
and mannose, fructose and hydroxy-
butyrate, 797-803
and metformin, *771
and monamineoxidase inhibitor, *251-
252
neonatal, *179-180, *910
nondiabetic reactive and asymptomatic
biochemical
and insulin-glucose dynamics, *373
and oral insulin, 644, 645
and pancreatoduodenectomy
and pregnancy, *188
and phenobarbione, *1123
reactive
and phenformin therapy, *367-368
and tolbutamide, *1123

HYPOGLYCEMIA
and alcohol
and basal insulin secretion, 65-69
and arginine-induced insulin release, *182
and biguanides
and insulin, *123
and cataracts
in infants, *182
and diabetes
and kidney insufficiency, *1120-1121
drug-induced, 955-962
and exchange transfusions of citrated
blood, *185
factitious, *980
and gliboexepid, *912
and hyperglycemedia
and anti-insulin antibodies production,
814-825
and hyperparathyroidism, *773
idiopathic
and epinephrine excretion, *1200
and infants, *248
and beta cell neosdioblastosis, *189
and glucose administration in diabetic
mother, *1202-1203
and growth hormone levels, *250
and insulin
and central nervous system, *337
and growth hormone, 22, 30
and intravenous glucose, 610
and iodinated insulin, *55
ketotic
diagnosis in children, *56
and lactic acidosis, *1198
liver response to
and mannose, fructose and hydroxy-
butyrate, 797-803
and metformin, *771
and monamineoxidase inhibitor, *251-
252
neonatal, *179-180, *910
nondiabetic reactive and asymptomatic
biochemical
and insulin-glucose dynamics, *373
and oral insulin, 644, 645
and pancreatoduodenectomy
and pregnancy, *188

I

IMMUNE COMPLEX DISEASE
and diabetic microangiopathy, *352

IMMUNOELECTROPHORESIS
and diabetic glomerulosclerosis, 163-173
and insulin antibodies assays, 816, 819

IMPOTENCE
and diabetes
and androgenic function studies, 23-28

IMURAN
and immune response to insulin, *58

INDIA
diabetes survey of rural population of,
1192-1195

INFANTS
big
and glucose tolerance during preg-
nancy, *186
congenital neuroblastoma and islet hy-
perplasia, *1122
and Cushing's syndrome, *120
of diabetic mothers
and carbohydrate metabolism, *912,
*1046
and caudal dysplasia, *1042
and drug-induced hypoglycemia, 955
and hypocalcemia, *914
and erythroblastosis fetalis
and glucose metabolism, plasma in-
sulin and growth hormone se-
cretion, *1199-2000
and exchange transfusion
of citrated blood, *185
and glucose, *1120
and hyperbilirubinemia
and phenobarbione therapy, *1123
and hypoglycemia, *248
and cataract, *182
and glucose administration in dia-
betic mother, *1202-1203
hypoglycemic and normoglycemic
and growth hormone levels, *776
and hypoglycemia, *248

HYPOTHALAMIC-HYPOPHYSEAL
SYSTEM
and insulin, *1200

HYPOTHALAMUS
damage
and obesity, *1206
lesions
and insulin resistance and hyperinsu-
linemia, *838
and lipolysis, *55
stimulation
and plasma glucose, insulin and glu-
cagon, *771
ventromedial destruction
in diabetic rats, *1043
and glucose metabolism, *1204-1205

HYPOTHYROIDISM
and diabetes, *769

HYPOGLYCEMIA
and alcohol
and basal insulin secretion, 65-69
and arginine-induced insulin release, *182
and biguanides
and insulin, *123
and cataracts
in infants, *182
and diabetes
and kidney insufficiency, *1120-1121
and pregnancy, *188
INFRARED THERMOGRAPHY

INFECTION

INSULIN

INSULIN action, 454-455, 485
and amino acid sequences, 457-459
and atomic structure, 509
computer studies of, *347
and insulin-dextran complex studies, *1122
and insulin receptor, 396-401
and lead intoxication, *381
molecular basis of, 468-474, 695-700
related to atomic structure, 492-505
acute hypoglycemic action
and insulin-dependent diabetes, *182
acute response to glucose
and epinephrine, *773
and adipose tissue lipolysis, 427
administration
to gastrointestinal tract in rabbit, 203-207
amino acid sequences, 485
analogs synthesis, *772-773
antibodies, *57, *182, *379, 649-656,
657-659, 660, 677, *775, 764-765,
*769, 814-825, 914, 930-934
antisera
proinsulin cross-reactivity with, 465-466
assays
in monkeys, 1078-1089
in obese rats, *1123
and atherosclerosis, 684
"big"
and streptozotocin therapy for islet cell carcinoma, *1204

"big" and "little", 677
binding
to lymphocytes and fibroblasts, 426-427
binding activity
in diabetics and nondiabetics, *775
and hormones, *1121-1122
-binding proteins, 426
bioassays
and insulin stability determinations, 805-812
biosynthesis
and amino acids, *772
and cytochalasin B, 602-603
monolayer newborn rat pancreas for study of, 627-630
and blood glucose levels
and exercise, 98-99
and carbohydrate homeostasis, *357
circulating antibodies to
polyethylene glycol screening test for, *379
concentrations
and diabetic lipemia, *376-377
corelease of beta cell tumors, 535
of fetal rat pancreas, 193-201
and cyclic AMP and dibutyryl cyclic AMP activity, 1028
and cyclic AMP levels, 453
deamino-A1 sheep
synthesis, *981
deficiency
and glucagon secretion, *183
and hypertriglyceridemia, *366-367
and ketosis, 257-258
and liver glucose production, *380-381
and liver ribosomal aggregation, 84-85
degradation
and chemicals and hormones, 468-469
and fat cells, 403-411
by human placenta, *374-375
in rat liver, *382
in rats, 1091-1100
-degrading enzymes
and proinsulin assay, *122
-dependent diabetes
and blood glucose production and oxidation, *375
and pheochromocytoma, *838
derivatives, 427-473
and diabetes control
and retinopathy, *382
and diabetes management, 632-636, 678
and diabetes mortality, 633-636
and diabetic pregnancy, *315
dimer, 494, 496-497
macromolecular modeling system for, 506-508
disappearance rates
in nondiabetics and diabetics, *1047
discovery of, 385-395
distribution and binding
in dog hindlimb, *775
dosage
and diabetes in neonate, *249
and drug-induced hypoglycemia, 959-960
exogenous
and insulin secretion in normal and obese hyperglycemic mice, *344
and fat cells
and lipolysis, 414-424
and mercury, *771
and fatty acid synthetase, *914
and fish
amino acid sequences, 459
and fructose metabolism, *314
and gamma globulin
and diabetic microangiopathy, 872-879
and glucagon, *60
-glucagon ratio
and liver metabolism, *341
and glucose
and hypoglycemia, *373
and glucose metabolism
in hyperammonemic rats, *184
in rat diaphragm and epididymal fat pads, 935-938
in rat skin, *189
-glucose relationships, 704, 707-710
and glucose tolerance factor, *1043
and glucagon synthase, 428-437
and glycolytic enzymes, *773
and glycosuria, *186
graded infusions of
and plasma glucose, serum growth hormone and cortisol responses, *379
in guinea pig and coypu
amino acid sequences, 457-458
hexamer structure, 497-499
hyperresponsiveness
and chronic glucagon administration, *374
and hypertriglyceridemia
and phenformin, *380
immune response to, *58
immunoassays
and antibodies study, 814-825

DIABETES: VOLUME 21 (1972) PAGE NUMBERS BY ISSUE

January, 1-64
February, 65-128
March, 129-192
April, 193-256
May, 257-320
Supplement 1, 321-384
Supplement 2, 385-714
June, 715-778
July, 779-842
August, 843-922
September, 923-986
October, 987-1050
November, 1051-1130
December, 1131-1210
immunohistological detection in pancreatic tissue, *246
immunoreactive
- induced hypoglycemia
- mannose, fructose and hydroxybutyrate, 797-803
and plasma growth hormone, *312
infusion
and glucose kinetics in dogs, *188
and glucose turnover in depancreatized dogs, *382-383
and insulin antibodies
in dogs, *182
interaction with liver membranes, *334-335
intestinal response to, *1047
in islet cell carcinoma, *909-910
jet injections of, 39-44
and late-onset diabetes, 763
levels
and obesity, *380
- like activity
of arginyl compounds, *1122-1123
in fibrosarcoma, *352-353
nonsuppressible, 271-278
and lipid synthesis, *189
and liver adenylate cyclase, *772
and liver enzymes, 713
and liver epinephrine-responsive adenyl cyclase, *1117-1118
and liver gluconeogenesis, *371
and liver glucose-6-phosphate dehydrogenase, 49, 53
and liver metabolism, 453, *1200
and intracellular cyclic AMP level, 439-445
and liver plasma membranes, *335
and liver protein synthesis, 453
liver response to
and prediabetes, *323-324
metabolic clearance of, 1003-1011
modified activity of, 502-504
monomer structure, 493-494
neutral Regular, 235-245, 637-638
new forms of, 637-647, 648
nonavian
and cardiovascular response in chicken, *59
nonhypoglycemic, *55
oral, 643-647, 648
and oxytetracycline
and hypoglycemia, 960
pancreas compartments of, and growth hormone, *372
and pancreatic alpha-cell function and diabetes, 301-307
and pancreatic blood flow and insulin output, *1204
and placent al glycogenesis, *1199
and plasma amino acids, *340-341
plasma growth hormone unresponsiveness to, *981
and plasma insulin, glucose and free fatty acids, *325
and plasma tryptophan in rats, *909
polyalanyl derivatives of, *835
and potassium flux and glucose output, *254
and presor response to angiotensin and norepinephrine
and alloca diabetes, *354-355
and proinsulin, *57, *314
conformational studies, 486-491
proinsulin conversion to, 572-579, 581
proinsulin-like component of, *313
-insulin ratio and diabetes, 664
and propranolol
and hypoglycemic coma, 960
and protein synthesis, 447-451
in anterior pituitary gland, *1200
and cyclic AMP, *119
and protein turnover in skeletal muscle, *341
purified pork
and insulin allergy, 638-643
and pyruvic dehydrogenase, 427
rat
amino acid sequences, 458-459
and rat adipocytes, *60
and rat fatty liver, *183
and rat mammary cell metabolism, *315
reactions and pituitary reserve capacity, *981
receptor sites in fat cells, *336
receptors in central nervous system, *337
of liver plasma membranes, *335
and regulation of glycerol kinase, *122
release and acromegaly, *1118
“acute phase,” 157-161
and adenylate cyclase and phosphodiesterase, *328-329
and age, *184
and aldose reductase inhibitors, *327
and alpha adrenergic receptors, *348
and alpha-adrenergic receptor blockade, *181
and amino acids, *56
and 6-aminonicotinamide, *1198
and antimitotic agents, 987-997
growth hormone-induced, *312
and autonomic nervous system, 624-627
and cyclic 3'5' AMP, *185
diazoxide, *360
diphosphohydantoin and diazoxide, *327
e and encephalomyocarditis infection, *247
and fats and fatty acids, 613,615, 617-618
in fetal pancreas, *345-346
glucose sensitivity mechanisms, 570
glucosamine-induced, *328
and glucose, 143, 713, *1042
glyburide infusion, 209-215
and human chorionic somatomammotropin, 1072-1075
and intracellular pH of pancreatic beta cells, *911
and iododecetate and antimycin A, *56
in islet cell adenomas, *346-347
and islet glucoreceptor mechanisms, *252
L-leucine and L-phenylalanine induced, *369
methamphetamine induced, *252
by monoamineoxidase inhibitor, *363-364
and ouabain, *246
and packet storage, 585-592
and pancreatic calcium uptake, *837
and pancreatic islet citrate levels, 999-1001
perfusion studies, 987-997
and phenformin, *1045
and phenytoin, *187
and prostaglandins, *329, *369
and protein and amino acids, 613, 617-618
and pyridine nucleotide, *983
stimulus-secretion coupling of, 594-603, 605
and uremia, *910-911
release and content in rat islets, *1205
release and inhibition in fetal rat pancreas, *121
and infection, *824
and diabetes instability, *836
and alcohol, *247-248
and fat cell insulin receptors, *1042
in genetically obese rats, *838
and hemochromatosis, *1199
in obese mice, *314-315
and obesity, *249, *314
and proinsulin antibodies, *368
and steroid-induced ketoadiposity, *54
resistance factor
secretion by hyperfunctioning pancreatic islets, *370
response to glucose-resistant hyperglycemia
and resistance and release
and obesity, *316
-resistant hyperglycemia
and aminophylline, *775
response
by adipose tissue, 1151-1161
to amino acids, 2-deoxy-D-glucose,
manomonoehosphate and, 1-5
to arginine and tolbutamide, *378
diphenylhydantoin, therapy, *355-356
to hemorrhagic shock, *364
in partially depaeritized dogs, *339
and prediabetes, 685-687
of pregnant women and their fetuses, *251
and small-vessel disease, *836
to sucrose and glucose, *58
to tolbutamide and propranolol, *122
response to glucose
and carbohydrate and lipid metabolism, *1-131
and chloramphenicol acetate, *315
and myocardial infarction, *119
and peripheral vascular disease, arteritis and Raynaud’s phenomenon, *836-837
and prediabetes and diabetes, 224-233
from small bowel, *54
and tolbutamide, 684
-secreting tumors, *1120
secretion, *188, 510, 535
in acomys cahirinus, 1060-1070
and alcohol hypoglycemia, 65-69
and alpha-ketomonoeharboxylic acids, *359
and amines and pancreatic beta cells, *248
and amino acids, 570-571
and aminophylline, 289-293

and ammonium ion, *248
and arginine, *1045
and beta adrenergic and cholinergic agents, *352
and body composition in obese patients, *1118
and carcinoid syndrome, *1120
and chemical diabetes, *1151
diazoxide, *1045
and diet, *912-913
diphenylhydantoin, *982
diphenylhydantoin and diazoxide, 856-861
epinephrine, *770
glibenclamide, *913
and Glisoxepid, *912
and glucagon, in congestive heart failure patients, 939-944
and glucagon-like immunoreactivity, *58
glucose, 606-613, 617-618
and glucose and alloxan, *326
glucose-induced, and juvenile diabetes “remission,” *1205
during glucagon administration in starvation and diabetes, *359-360
glucose and tolbutamide, *370
and isolated insulin antibodies, *914
in isolated pancreas islets, 538-545
and kwashiorkor, *1119-1120
and lipoatrophy, *381-382
and long-chain triglycerides, 923-928
and metal ions, 570
and metformin, *914
and methylene blue, *350
and methysergide maleate, *351-352
and monoamines, *251-252
and myotonic dystrophy, *378
nutrient modulation of, 606-615, 617-618
and obesity after exercise, *909
and oral glucose administration, *909, *911
and ouabain, *913
and pancreatic beta-cell webs, 838
and pancreatic monooeharnoines, *345
and phenolamine, *119
and prediabetes, 688-691
and prolonged glucose infusion, *372
seasonal variations in, *312-313
and serotonin antagonists, *352, 779-787
and serotonin and dopamine, *184
and slow-rise and square wave stimulus, *55
and sodium beta-hydroxybutyrate, *373-374
and sulfonfylureas, *1120
and synthetic glucagon, 845-846
and thyrotoxicosis, *370-371
and thyrone and hypophysectomy, *253
tolbutamide, *1123
and xylitol and glucose, *187-188
secretion and content
of isolated islets in tissue culture, 548-549, 551-553
sensitivity
and ammonium chloride-induced acidosis, 794-796
scoring system for clinical evaluation of, *361-362
sensitivity of adipose tissue
and obesity, 6-11
sepahrose-bound
and muscle, adipose tissue and cultured liver cells, *335-336
serum-bound
and insulin antibodies, 930-934
and sodium acetate incorporation into lipids of rat aorta, *186
storage threshold distribution hypothesis for, 585-592
structure, 1131-1149
synthesis, 469-471
therapy
and antigenicity, 649-656, 657-659,
660, 677
and tissue cyclic AMP levels, 426
tolerance and dosage, *121
and submaxillary gland extirpation, 722-731
tolerance tests
during bedrest, 104-105
and triglyceride synthesis, *351-352—tryptophan complex isolation of, *1045
U100 Lente, 832, 954
and unstable diabetes
and biguanides, *123
and zinc, 487-489
INSULIN RECEPTOR, 396-401
I-131 INSULIN
and fat cell metabolism, 403-411
metabolic clearance studies of, 1003-1011
uptake
and exercise, *980
INSULINASE, 1085-1100
INSULINEMIA
and liver cirrhosis
and glucose, tolbutamide and glucagon administration, *121-122

INSULINOMAS
and blood proinsulin-like components, *665
and glycolytic enzymes, *773

INSULITIS
and late-onset diabetes, 762-767

IODINE
—treated insulin, *55

IODOACETAMIDE
and amino acid metabolism, *56

IODOACETATE
and insulin release, *56
in fetal rat pancreas, *121

IONOGRAMS
and tissue glycogen synthase study, 429, 431

IRON
deficiency
and acetoacetate-induced anemia, *80

ISLETS OF LANGERHANS. See also Pancreas, islets
adenyl cyclase, *179
alpha and beta cells
and glucose and fatty acid oxidation, *909
of fetal pancreas, *253-254
glucose receptor mechanisms, 555-568
hyperplasia
and congenital neuroblastoma, *1122
immunohistological detection of insulin in, *246
and insulin biosynthesis, 572-579, 581-583
insulin secretion
and insulin antibodies, *914
isolated in tissue culture
metabolism studies, 546-553
localization of adenyl cyclase and cyclic AMP phosphodiesterase, *328
structure, *1043

L-ISO PROPYLNORADRENALINE
and insulin secretion, *252

ISOPRENAINE
insulin response to
in acomys cahirinus, 1065, 1069

ISOPROTERENOL
—stimulated rat salivary glands and glucose metabolism, *982

ISOXSUPRINE
and hyperglycemia, *1045

JAMAICAN VOMITING SICKNESS, *316

KETOACIDOSIS
alcoholic, *56-57
in infancy, *181

KETOACIDOSIS, DIABETIC, 794,
*1203
and L-asparaginase, *1119
and bicarbonate therapy, *323
and blood coagulation, 108-110
and blood ketone body estimation method, *1117
and blood lactate and ketone bodies, *186-187
and blood lactic and pyruvic acids, *350
and brain utilization of ketone bodies, *247
and coma, *60
and insulin, 832-833
steroid-induced, *54

KETONE BODIES
in amniotic fluid and maternal caloric deprivation,
*1202
brain utilization of in normal and ketoacidotic rats, *247
formation, *1203
and diabetes, 257-268
and lipoylpo suppression, *377
metabolism
in fasted and diabetic rats, *246
in perfused skeletal muscle, *343
and renal ammoniogenesis, *251
and renal metabolism, *314
and unstable diabetes, *836
uptake by dog kidney, *251

KETONURIA
and dietary fructose, *349-350
and ketoadidosis in infancy, *181
and lipoatrophic diabetes, 827-830
and nicotinic acid, *313

KETOGENESIS
and hyperosmolar diabetic syndrome, *369-370
regulation, *1203

KETOSTIX
and blood ketone body estimation, *1117

KIDNEY
amino acids
and exercise, *119
ammoniogenesis and ketone bodies, *251
and antidiuretic action of chlorpropamide, *189
and bladder dysfunction, *364
and diabetic glomerulosclerosis, 163-173
in diabetic guinea pigs, *338
diabetic-like microangiopathy, *373
disease and diabetes, in Pima Indians, *365-366
dog and ketone bodies uptake, *251
failure and sulfonylurea blood-sugar-reducing action, *1120-1121
function and bacteriuria, *118
and diabetic ketosis, *131
glomerular lesions and proteinuria, *1120
glomerulonephritis without diabetes, *769
glomerulosclerosis in diabetic baboons, *338
diabetic-like, *373
glucononogenesis and ammonia production, *57
and cyclic AMP, *910
glycosaminoglycans and alloxan diabetes, 1163-1166
glycosuria and heredity, *248
hypokalemic nephropathy, *1042
and insulin and proinsulin degradation, 1091-1090

DIABETES: VOLUME 21 (1972) PAGE NUMBERS BY ISSUE
January, 1-64
February, 65-128
March, 129-192
April, 193-256
May, 257-320

Supplement 1, 321-384
Supplement 2, 385-714
June, 715-778
July, 779-842
August, 843-922
September, 923-986
October, 987-1050
November, 1051-1130
December, 1131-1210
and liver cholesterol synthesis in rat, *1047
metabolism, *314
microangiopathy, *357
polyalanyl insulin, *835
of progeny of protein-deficient rats, *1041
and starvation
and mineralcorticoid and glucagon sensitivity, *354
transplantation
and diabetes, *322
and pancreas transplantation, *355
uric acid excretion
and nicotinic acid, *313
KIMMELSTIEL-WILSON DISEASE
and glomerulosclerosis without diabetes, °322
KWASHIORKOR
and insulin secretion, °1119-1120
L
LACTASE
and race, 871
LACTATE
and blood sugar and liver glycogen formation, *189
and liver gluconeogenesis and phenyl-ethylbiguanide, *910
metabolism
and ethanol, °367
LACTIC ACID
and serum and plasma osmolality, °838
LACTOSE TOLERANCE TESTS
in Nigeria, 871
LACTOSURIA
in diabetes survey, 1193
LEAD
intoxication
and insulin action, °381
LESIONS
arterial
and diabetes, °187
beta-cell
and encephalomyocarditis infection, °247
glomerular
and proteinuria, °1120
microangiopathic, *357
neurologic
and impotency, 23-28
skin
and diabetes, °251
testicular
and diabetic impotence, 25-28
LEUCINE
incorporation into protein, °336
and insulin release, 3-4, °56
and insulin secretion, 539
metabolism
and glucose, °56
pancreatic islet cell electrical activity in response to, °345
uptake by pancreatic beta cells, °772
L-LEUCINE
- induced insulin release, °369
LEUCINE-C-14
incorporation into growth hormone and lipids, °187
LEUKEMIA
and L-asparaginase therapy
and transient diabetes, °1119
LEYDIG CELLS
and diabetic impotence, 25-26
LIPEMIA
alimentary
and sucrose and glucose, °58
and diabetes
and insulin concentrations, °376-377
and glucagon resistance, °357
LIPIDS
biliary
and pregnancy, °912
and growth hormone synthesis, °187
metabolism
in dogs, °312
and glucose tolerance and insulin response to glucose, °1119
and menstrual cycle, °1504
and prediabetes, °687
and streptozotocin, °59
mobilization
and tumors in obese mice, °774
rat aorta
and sodium acetate incorporation, °186
synthesis
and starvation, alloxan diabetes and insulin, °189
LIPOTROPHIC DIABETES
and urine polypeptides, °837
without ketosis, 827-830
LIPOMATOSIS
and adipose tissue resection, 13-15
LIPOPROTEIN LIPOASE, °188
and insulin, °377
and plasma triglyceride removal, °342
post heparin
and oral contraceptives, °316
in rat heart and adipose tissue, °344
release
from alloxan diabetic rat heart, °149-155
LIPOPROTEINS
release
and cyclic AMP and insulin, 439-445
LIPTROPIN
and lipolysis
and iodinated insulin, °55
LIVER
acetic thiolinkase
and lipogenesis, °982

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>LACTATE</td>
<td>°838</td>
</tr>
<tr>
<td>LACTASE</td>
<td>°367</td>
</tr>
<tr>
<td>LACTIC ACID</td>
<td>°381</td>
</tr>
<tr>
<td>LACTOSURIA</td>
<td>°871</td>
</tr>
<tr>
<td>LEAD</td>
<td>°1193</td>
</tr>
<tr>
<td>LESIONS</td>
<td>°187</td>
</tr>
<tr>
<td>LIPID</td>
<td>°247</td>
</tr>
<tr>
<td>LIPIDS</td>
<td>°312</td>
</tr>
<tr>
<td>LIPOTROPHIC DIABETES</td>
<td>°336</td>
</tr>
<tr>
<td>LIPOMATOSIS</td>
<td>°355</td>
</tr>
<tr>
<td>LIPPROTEINS</td>
<td>°357</td>
</tr>
<tr>
<td>LIPOTROPIN</td>
<td>°367</td>
</tr>
</tbody>
</table>

Subject Index 1972

Skin
- and diabetes, °251
- and impotence, 25-28

Leucine
- incorporation into protein, °336
- and insulin release, 3-4, °56
- and insulin secretion, 539
- metabolism
- and glucose, °56
- pancreatic islet cell electrical activity in response to, °345
- uptake by pancreatic beta cells, °772

Lipids
- biliary
- and pregnancy, °912
- and growth hormone synthesis, °187

Lipoprotein lipase
- and insulin, °377
- and plasma triglyceride removal, °342
- post heparin
- and oral contraceptives, °316

Liver
- acetic thiolinkase
- and lipogenesis, °982

Diabetes: Volume 21 (1972) Page Numbers by Issue

<table>
<thead>
<tr>
<th>Month</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>1-64</td>
</tr>
<tr>
<td>February</td>
<td>65-128</td>
</tr>
<tr>
<td>March</td>
<td>129-192</td>
</tr>
<tr>
<td>April</td>
<td>193-256</td>
</tr>
<tr>
<td>May</td>
<td>257-320</td>
</tr>
<tr>
<td>Supplement 1</td>
<td>321-384</td>
</tr>
<tr>
<td>Supplement 2</td>
<td>385-714</td>
</tr>
<tr>
<td>June</td>
<td>715-778</td>
</tr>
<tr>
<td>July</td>
<td>779-842</td>
</tr>
<tr>
<td>August</td>
<td>843-922</td>
</tr>
<tr>
<td>September</td>
<td>923-986</td>
</tr>
<tr>
<td>October</td>
<td>987-1050</td>
</tr>
<tr>
<td>November</td>
<td>1051-1130</td>
</tr>
<tr>
<td>December</td>
<td>1131-1210</td>
</tr>
</tbody>
</table>
adenylate cyclase
and insulin, °772
and selectively blocked glucagon, *981
and alcoholic ketoacidosis, *56-57
amino acids
and exercise, *119
cells
and sepharose-bound insulin, °335-336
cholesterol
and temperature, *314
cholesterol synthesis
and kidney inhibitory factor, *1047
chromium
and diabetes, °1046
cirrhosis
and angiopathy, °123
and diabetes and hemochromatosis, *1199
and hyperinsulinemia, °356
and insulinemia, °121-122
cycloleucine
and D. pneumoniae, °316
cytosol
and ethanol and sorbitol metabolism, °181
enzymes
and alloxan diabetes, °188
and cold exposure, °58
and insulin, 713
epinephrine-responsive adenyly cyclase activity
and insulin, °1117-1118
ethanol-oxidizing and drug metabolizing enzymes
and alcoholism, °983
fatty alcohol-induced, °770
and pyrazole and glucose, °247
free fatty acid metabolism
and anti-insulin serum, °280-288
and diabetic ketosis, 947-954, 950-954
glucagon-responsive adenyly cyclase
macromolecular inhibitor of, °180
gluconeogenesis
from fructose and glycerol, °358
and glucagon, °331
and glucocorticoids, °339-340
and D-gluceraldehyde and dihydroxyacetone, °330-331
and insulin and glucose, °371
and phenylethylbiguanide, °910
and glucose homeostasis, 686-687
glucose output
and acute hypoglycemic action of insulin, °182
plasma membrane
and calcium and insulin binding mechanisms, °1122
and insulin receptors of, °335
protein synthesis
and alloxan diabetes, °339
and insulin and cyclic AMP, 453
rat
and carbohydrate metabolism and adrenergic agents, °1203
and cyclic 3'5'-AMP during glucose repression, °187
and diabetic ketosis, °257-268
and diet, °183
and glucagon and adenosine 3'5'-monophosphate levels, °54
and insulin degradation, °382
nuclear proteins and diabetes, °377
ribozones
and insulin deficiency, °84-88
and protein synthesis, °339
sensitivity to endogenous insulin and prediabetes, °323-324
splanchic nerve stimulation and adrenalec­tomy, °770
threonine dehydrase and tris aminmethane and orthophos­phate, °980-981
triglycerides
biosynthesis, and pregnancy and sex steroids, °365
and ethanol, °247
and glucagon, °55
and oral contraceptives, °316
MACROANGIOPATHY
and atherosclerosis, 679-680
MAGNESIUM
flux and glucose ingestion in children, °376
and insulin action, 696, 697-698
and insulin secretion, °570
intestinal absorption, °775
loss and ammonia toxicity, °836
MALATE
labeled and gluconeogenesis study, °252
MALNUTRITION
infantile
and amino acid responses, °182
kwashiorkor
and insulin secretion, °1119-1120

SUBJECT INDEX 1972

glucose production
and insulin deficiency and hyperinsulinemia, °380-381
and mannose, fructose and hydroxybutyrate, 797-803
and glucose-6-phosphate dehydrogenase and carbohydrate and insulin, 49, 53
and glycerol kinase
and regulation by insulin, °122
glucagon formation and lactate, °189
glycogen synthesis and kidney inhibitory factor, °1047
glucagon-responsive adenyl cyclase macromolecular inhibitor of, °180
and hyperglycemic response to splanchic nerve stimulation, °770
and pancreatic mitosis, 1054-1055
and insulin and proinsulin degradation, 1091-1100
ketogenesis
and gluconeogenesis, 50-52
lipids
and diet, °1200
lipogenesis
and diet, °60
and free fatty acid conversion to triglyceride fatty acid, °835
membranes
insulin interaction with, °334-335
metabolism
and glucagon:insulin ratio, °341
and insulin, 453, °1200
and insulin and cyclic AMP levels, 439-445
and rapid indicator-dilution technic studies, °180
and streptozotocin, °59
and tissue injury, °315
mitochondria
and diabetic ketosis, 257-268
mitochondrial swelling and ammonia toxicity, °835-836
2-oxoglutarate carboxylation and diabetes, °981
perfused rat
and amino acid metabolism, °57
and glucocorticoids and gluconeogenesis, °252
potassium flux and glucose output studies, °254
perfused sheep, °57-58
and plasma angiotensinogen and renin levels, °253

M

MACROANGIOPATHY
and atherosclerosis, 679-680
MAGNESIUM
flux and glucose ingestion in children, °376
and insulin action, 696, 697-698
and insulin secretion, °570
intestinal absorption, °775
loss and ammonia toxicity, °836
MALATE
labeled and gluconeogenesis study, °252
MALNUTRITION
infantile
and amino acid responses, °182
kwashiorkor
and insulin secretion, °1119-1120

DIABETES: VOLUME 21 (1972) PAGE NUMBERS BY ISSUE

<table>
<thead>
<tr>
<th>Month</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>1-64</td>
</tr>
<tr>
<td>February</td>
<td>65-128</td>
</tr>
<tr>
<td>March</td>
<td>129-192</td>
</tr>
<tr>
<td>April</td>
<td>193-256</td>
</tr>
<tr>
<td>May</td>
<td>257-320</td>
</tr>
<tr>
<td>Supplement 1</td>
<td>321-384</td>
</tr>
<tr>
<td>Supplement 2</td>
<td>385-714</td>
</tr>
<tr>
<td>June</td>
<td>715-778</td>
</tr>
<tr>
<td>July</td>
<td>779-842</td>
</tr>
<tr>
<td>August</td>
<td>843-922</td>
</tr>
<tr>
<td>September</td>
<td>923-986</td>
</tr>
<tr>
<td>October</td>
<td>987-1050</td>
</tr>
<tr>
<td>November</td>
<td>1051-1130</td>
</tr>
<tr>
<td>December</td>
<td>1131-1210</td>
</tr>
</tbody>
</table>
MAMMARY GLAND metabolism and insulin, *315

MANGANESE-induced hypoglycemia, 960

MANNHEPTULOSE and amino acid metabolism, *56 and glucose protection from alloxan toxicity, *123 and insulin release, 544, 570-571 in fetal rat pancreas, *121 and insulin response to amino acids, 1-5 and insulin synthesis, 570 and pancreas metabolism, 562-564

D-MANNHEPTULOSE and insulin response to glucose, 541

MANNOSE and insulin secretion, 539, 543 and liver glucose production and insulin-induced hypoglycemia, 797-800

D-MANNOSE and alloxan toxicity, *123

MARASMUS and glucose utilization and chromium, *313

MARIHUANA and hypoglycemia, 961

MARKS, HENRY E., 178

MARMORETS and diet-induced jejunal lipodystrophy, *248

MAURIAC SYNDROME, 633

MEBANAZINE and insulin and hypoglycemia, 960

MENSTRUATION and carbohydrate and lipid metabolism, *1204 and growth hormone secretion, *774-775

MENTAL ILLNESS and sulfonylureas, 959

MENTAL RETARDATION and galactosemia, 202, 208

6-MERCAPTOPURINE and immune response to insulin, *58

MERCURY and fat cell response to insulin and lipolytic hormones, *771

ethanol and sorbitol in hypo-, hyper-, and euthyroid rats, *181

SUBJECT INDEX 1972

of isolated pancreas islets in tissue culture, 546-553
isolated perfused sheep liver, *58
ketone bodies
in fasted and diabetic rats, *246
in perfused skeletal muscle, *343
kidney, *910
lactate
and ethanol, *367
lipid
in dogs, *312
and lipoatrophy, *381-382
liver, 50-52
and anti-insulin serum, 280-288
and diabetic ketosis, 257-268
and glucagon, *55
and glucagon:insulin ratio, *341
and insulin, 453, *1200
and insulin and cyclic AMP levels, 439-445
and rapid indicator-dilution technic studies, *180
and tissue injury, *315
mammary cell
and insulin, *315
and exogenous growth hormone, *1046
ornithine, *771
pancreatic beta cell
and phlorizin, *910-911
pancreatic islet
and glucose, *344-345
placental glycogen
and diabetes, 1185-1190
and prediabetes, 685-693
proinsulin, *347
protein
and insulin, 447-451
renal, *314
triglyceride and insulin, 923-928
METABOLITES
and glucose
in perfused pancreas, 564-565
islet cell, 571
and insulin secretion, *344-345
METAFORMIN
and carbohydrate metabolism
in obese, non diabetic women, *914
and hyperlipidemia, *771
and hypoglycemia, *771
METHAMPHETAMINE
-induced insulin release, *252
METHIONINE
and pancreas mitotic activity, 1055
and pancreatic beta cell uptake of amino acids, *772
and rat fatty liver metabolism, *183
L-METHIONINE
and pancreas a-amino-isobutyric acid transport, *181
METHOTREXATE
and immune response to insulin, *58
3-O-METHYL-D-GLUCOSE
excretion
and metformin, *771
intestinal uptake, *249
transport
and biguanides, *119
N-METHYLBENZYLAMINE,
and insulin secretion, *248
METHYLCOLANTHRENE
-induced thyroiditis and autoimmunity, *253
METHYLENE BLUE
and glucose metabolism and insulin secretion, *350
METHYLPHENIDATE
and tumor-bearing mice, *837
METHYLPREDNISOLONE
and carbohydrate metabolism, *772
METHYLSERGIDE MALEATE
and insulin secretion, *315-316, 779-787
MICROANGIOPATHY
and bacteriuria, *118
and diabetes, 680-681
and age, *837
diabetic
and concurrent bullous and atrophic skin lesions, *251
in humans and animals, *357
and insulin and gamma globulin interactions, 872-879
and muscle capillary basement membrane changes, 881-896, 899-905
and polyol metabolism, galactosemia, and immune complex disease, *352
and serum protein changes, *371
diabetic-like, *375
glucose tolerance, *321
MICROSCO PY
electron
and abetalipoproteinemia, *60
MINERALOCORTICOID
kidney sensitivity to light of isolated islets in tissue culture, 547-553
light and electron of human embryonic and fetal pancreatic islets, 511-533
and islet cell changes in streptozotocin diabetic rabbits, 129-137
pancreas and long-term juvenile diabetes, 115-116
of pancreatic islets from cyproheptadine-treated rats, 71-78
in late-onset diabetes, 763-767
MINERALS
calcium, magnesium and phosphorus flux and glucose ingestion in children, *576
and insulin secretion, 570
lead intoxication and insulin action, *381
zinc and insulin, 497-498, 509
MONKEYS
and glucose tolerance tests and bedrest and exercise, 105
and induced obesity, hyperinsulinemia and hyperlipidemia, *1201
of beta cell tumors, 535
capillary basement membrane, *118
de pancrearetized baboon kidney, *538
do f diabetic rat liver, 259-260, 264-268
of endocrine pancreas in newborn rodents, 1051-1059
of glomerular basement membrane of juvenile diabetics, *913
and intestinal lipoprotein production, *121
and islets of Langerhans, *1043
of mouse pancreatic beta cells, 1068-1070
and muscle capillary basement membrane changes, 882, 884-896
of pancreas of diabetic monkeys, 1086, 1087
and pancreatic islets, 595-603
of testicular tissue, 25-28
of a beta cell tumors, 535
MINERALS
calcium, magnesium and phosphorus flux and glucose ingestion in children, *576
and insulin secretion, 570
lead intoxication and insulin action, *381
zinc and insulin, 497-498, 509
MONKEYS
and glucose tolerance tests and bedrest and exercise, 105
and induced obesity, hyperinsulinemia and hyperlipidemia, *1201
SUBJECT INDEX 1972

Macaca nemestrina
and streptozotocin diabetes induced by direct pancreatic infusion, 138-141

Macaca nigra
spontaneous diabetes in, 1077-1089
rhino and insulin response to hemorrhagic shock, *364
and jet insulin injections, 39-44

MONOAMINE OXIDASE
in mouse pancreas, *120

MONOAMINE OXIDASE INHIBITORS
and hypoglycemia, °251-252
and insulin release, *363-364

MONOAMINES
and insulin secretion, 779-787

MONOGLYCERIDASE
postheparin, °54

MONOGLYCERIDE HYDROLASE
in obese hyperglycemic mice, *186

MORTALITY
and Cushing’s syndrome in infancy, *120
and diabetes, *1044
and arteriosclerosis, *1123
and insulin, 633-636
fetal
and maternal blood sugar levels, *1201-1202
and galactose toxicity in chicks, 208 and heart disease and clofibrate therapy, *838
and lactic acidosis, *1198
and renal transplantation and diabetes, *322
and sulfonfylurea treatment, *120
and tolbutamide in UGDP study, 1096-1037
and x-irradiation in mice, *914

MOUSE
acomys cahirinus
and defective immunoreactive insulin secretion, 1060-1070
and alloxan and diphenylhydantoin, 80-83
and anti-insulin serum and pancreatic islet studies, *911
diabetic
and glomerular lesions and proteinuria, *1120
and diabetic-like microangiopathy, *373
and encephalomyocarditis virus infection
and diabetes-like syndrome, *247
hyperglycemic and pancreas a-amino isobutyric acid transport, *181
and insulin release and methamphetamine, *252
islets
and insulin release, *328-329, *914
longevity and mortality distribution studies, *914
and microangiopathy, *357
mutant "acatalasemic" and hypolipidemia, °56
obese, *1044
and adipose tissue glycerol kinase and lipolysis, °911-912
and glycerol kinase regulation, *122
and insulin resistance, *314-315
and plasma growth hormone, *122
with transplanted tumors, °774
obese hyperglycemic
and adipose tissue monoglyceride hydrolase, °186
and caloric restriction studies, °835
and diabetes-like syndrome, °247
and diabetes and prediabetes, °769
and ethanol, °838
and insulin and proinsulin degradation, 1091-1100
myopathy and capillary basement membrane thickening, °118
phosphofructokinase and cyclic AMP and dibutyryl cyclic AMP, °363
and sepharose-bound insulin, °335-336
skeletal ketone-body metabolism in, °343
lactate metabolism and ethanol, °367
protein turnover in, °341

MYOCARDIAL INFARCTION
and clofibrate therapy, °838, °910
and glucose tolerance, °184
and glucose tolerance tests, °312-313
and hormone and metabolic disturbances, °119
and hypercglycemia and tolbutamide therapy, °122-123

MYOTONIC DYSTROPHY
and insulin secretion, °378

MYSTROMYS ALBICAUDATUS
pancreatic islet structure studies, °1043

N

NAUSEA
and oral insulin, 645

NEPHRECTOMY
and uremia and insulin release, °910-911

NERVOUS SYSTEM
and adenyl cyclase, °773
autonomic and insulin release, 624-627
and insulin-sensitive receptor in, °337
conduction in galactose-fed rats, 295-300
and diabetic impotence, °23
and hypoglycemia, °248
growth hormone release, °913
and impotence and diabetes, 23-28
and lipolysis and O-hydroxybutyrate, °836
and phenothiazine-induced hyperglycemia, °184

capillary permeability and blood flow and diabetes and prediabetes, °769
and ethanol, °838
and insulin and proinsulin degradation, 1091-1100
myopathy and capillary basement membrane thickening, °118
phosphofructokinase and cyclic AMP and dibutyryl cyclic AMP, °363
and sepharose-bound insulin, °335-336
skeletal ketone-body metabolism in, °343
lactate metabolism and ethanol, °367
protein turnover in, °341

MUCOPOLYSACCHARIDES
metabolism and psoriasis, °250

MUMPS
and diabetes, °182, 766

MUSCLE
alanine synthesis and exercise, °770-771
amino acids and exercise, °119
ammonia production, °1203
antibody to binding to fibroblasts, °314
capillaries basement membrane changes, °254
and aging and diabetes, 881-896, 899-905
and diabetes and prediabetes, °769
and ethanol, °838
and insulin and proinsulin degradation, 1091-1100
myopathy and capillary basement membrane thickening, °118
phosphofructokinase and cyclic AMP and dibutyryl cyclic AMP, °363
and sepharose-bound insulin, °335-336
skeletal ketone-body metabolism in, °343
lactate metabolism and ethanol, °367
protein turnover in, °341

MYOCARDIAL INFARCTION
and clofibrate therapy, °838, °910
and glucose tolerance, °184
and glucose tolerance tests, °312-313
and hormone and metabolic disturbances, °119
and hypercglycemia and tolbutamide therapy, °122-123

MYOTONIC DYSTROPHY
and insulin secretion, °378

MYSTROMYS ALBICAUDATUS
pancreatic islet structure studies, °1043

N

NAUSEA
and oral insulin, 645

NEPHRECTOMY
and uremia and insulin release, °910-911

NERVOUS SYSTEM
and adenyl cyclase, °773
autonomic and insulin release, 624-627
and insulin-sensitive receptor in, °337
conduction in galactose-fed rats, 295-300
and diabetic impotence, °23
disease and hypoglycemia, °248
and growth hormone release, °913
and impotence and diabetes, 23-28
and lipolysis and O-hydroxybutyrate, °836
and phenothiazine-induced hyperglycemia, °184

capillary permeability and blood flow and diabetes and prediabetes, °769
and ethanol, °838
and insulin and proinsulin degradation, 1091-1100
myopathy and capillary basement membrane thickening, °118
phosphofructokinase and cyclic AMP and dibutyryl cyclic AMP, °363
and sepharose-bound insulin, °335-336
skeletal ketone-body metabolism in, °343
lactate metabolism and ethanol, °367
protein turnover in, °341

DIABETES: VOLUME 21 (1972) PAGE NUMBERS BY ISSUE

January, 1-64
February, 65-128
March, 129-192
April, 193-256
May, 257-320
Supplement 1, 321-384
Supplement 2, 385-714
June, 715-778
July, 779-842
August, 843-922
September, 923-986
October, 987-1050
November, 1051-1130
December, 1131-1210

31
sensory perception thresholds and diabetes, *1199
splanchnic nerve stimulation, *770
tissue
and insulin binding proteins, 427
sorbitol and fructose, blood sugar control and, 1173-1178

NEUROBLASTOMA
congenital and islet hyperplasia, *1122

NEUROPATHY, DIABETIC
and diabetes management, 679
galactosemic, 295-300
and impotence, 23-28
and prediabetes, *359

NIALAMIDE
and insulin release, *363-364

NICOTINAMIDE
and streptozotocin-induced beta-cell toxicity, *325-326

NICOTINAMIDE ADENINE NUCLEOTIDES
and insulin, *315

NICOTINIC ACID
and glucose tolerance, plasma insulin, and uric acid excretion, *313

NIGERIA
lactase activity levels in, 871

NITROGEN
conservation placental, *340

NITROGEN MUSTARD
and steroid-induced ketoacidosis, *54

NORADRENALINE
and blood glucose and free fatty acid responses to catecholamines, *912

NOREPINEPHRINE
and fat cell metabolism, 420
and glucose tolerance tests, *348
and insulin release
and prostaglandins, *329
pressor response to
and insulin treatment in alloxan diabetic rats, *354-355
and theophylline
and cyclic AMP, 417

NUCLEOTIDES
and glucagon, 440

NUTRITION, *50. See also Diet; Malnutrition; Starvation
and insulin secretion, 606-615, 617-618
postnatal and kidney cellular development in progeny of protein-deficient rats, *1041

OBESITY
and adipose tissue
fat cell size and metabolism, *54
glycerol kinase and lipolysis, *911-912
monoglyceride hydrolase, *186
and caloric restriction, *835
and cardiovascular disease, *980
in children
and glucose tolerance tests, *1042-1043
and diabetes, *246, *250
and low calorie diet with phenylalanine resin, *361
and phenformin, *362
and diabetes prevalence, *776
and ethanol
and phenformin, *363
and exercise
and insulin secretion, *909
and food intake
and plasma glucagon, *331-332
and glucose tolerance, 1012, *1205
and growth hormone administration, *1046
and hyperglycemia
and high-fat diet in mice, *182
and hyperinsulinemia, *380, 613, 617-618
and adipose tissue resection, 13-15
and beta cell hyperplasia and insulin resistance, *314
and blood proinsulin, 663-664
and diet, *249
and hyperinsulinemia and hyperlipidemia
induced in monkeys, *1201
and hypothalamic damage, *1206
and insulin assays, *1123
and insulin resistance, *314-315, *370
and insulin resistance and release, *316
and insulin secretion and alcohol hypoglycemia, 65-69
and body composition, *1118
and sylitol and glucose, *187-188
and insulin sensitivity of adipose tissue, 6-11

and metformin and carbohydrate metabolism, *914
in new strain of mouse, *1044
and plasma growth hormone response to hypoglycemia and arginine, *312
and proinsulin response to oral glucose, *356
and weight reduction and adipose tissue lipolysis and cellularity, 754-760

OBITUARIES
Beardwood, Joseph T., Jr., 839
Marks, Henry E., 178

OCTANOATE
and fat cell lipolysis, 418, 419, 421
and growth hormone synthesis, *187

OLEATE
and fat cell lipolysis, 418, 419

OLIGOMYCIN
and insulin release in fetal rat pancreas, *121

ORAL CONTRACEPTIVES
and plasma lipids, lipoproteins, and intravenous fat tolerance, and post-heparin lipoprotein lipase activity, *316

ORAL HYPOGLYCEMIC AGENTS
and diabetic mortality, *1044
di-isopropylammonium dichloracetate, *358
labeling laws, 833, 1116-1117
and vascular disease, *57

ORNITHINE
utilization by chick, *771

ORPHENADRINE
-induced hypoglycemia, 961

ORTHOPHOSPHATE
and liver threonine dehydratase, *980-981

OUABAIN
and glucose-induced biphasic insulin release, *346
and insulin secretion, *913

OXYGEN
consumption by splanchnic bed, 50-51
myocardial consumption of and glucagon, *118-119
uptake in diabetic rat liver, 257-268 of isolated islets in tissue culture, 547-548, 550

Diabetes: Volume 21 (1972) Page Numbers by Issue

January, 1-64
February, 65-128
March, 129-192
April, 193-256
May, 257-320
Supplement 1, 321-384
Supplement 2, 385-714
June, 715-778
July, 779-842
August, 843-922
September, 923-986
October, 987-1050
November, 1051-1130
December, 1131-1210
<table>
<thead>
<tr>
<th>Subject</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>OXYTETRACYCLINE and insulin and hypoglycemia</td>
<td>960</td>
</tr>
<tr>
<td>PALMITATE and glucose metabolism, 419 and growth hormone synthesis, 187 and metabolism and ketosis, 258, 259, 261, 267</td>
<td></td>
</tr>
<tr>
<td>PANCREAS acinar atrophy and fibrosis and hemolytic anemia, 773-774 of acromys cahirinus, 1068-1070 and alloxan and alpha cell C-peptide and diphenylhydantoin, 81-83 alpha cell function and alpha cell beta cells and glucose and fatty acid oxidation, 909 alpha cell function and diabetes, 301-307 amino acid metabolism and glucose, 56 anglerfish islets and glucagon biosynthesis, 58-59 beta cell dysfunction and diabetes, 703-704 beta cell metabolism and phlorizin, 910-911 beta cells beta cell nesidioblastosis in idiopathic hypoglycemia of infancy, 189 beta cell C-peptide immunoreactivity studies, 1013-1025 beta cell responses, 619-630 beta cell structure, 536 beta cell tumors, 533 beta cell webs and insulin secretion, 838 beta cells alanine, arginine and leucine uptake by, 772 and alloxan and streptozotocin, 326 and amines, 248 and a-amino-isobutyric acid transport, 181 and arginine, 312 calcium uptake assays, 837 and cyclic AMP, 329 of cyproheptadine-treated rats, 71-78 embryonic, 523, 528, 531-533 and encephalomyocarditis infection, 247 and glucose-induced insulin release, 594-603, 605 and glucose protection from alloxan toxicity, 123 insulin detection study, 246 and insulin secretion, 914 intracellular pH, 911 and obesity, 314 replication, 346 and sensitivity to glucose in prediabetics and diabetes, 224-233 and sulfonylurea-induced insulin response, 122 vital damage, 713-714 blood flow and insulin output and exogenous insulin, 1204 citrate levels and insulin release and inhibition, 990-1001 cultured fetal human, 345-346 of diabetic monkeys, 1086, 1087 duct-ligated response to glucose, 344-345 early research, 385-385 endocrine structure in newborn rodents, 1051-1059 endocrine cells in embryos, 519-523 enzyme activity in rats, 59 enzymes and dietary regulation, 186 exocrine and diet, 186 fetal, 620, 621, 623-624 fetal and embryonic, 536 fetal endocrine cytological studies, 253-254 fetal rat insulin content study, 193-201 insulin release and inhibition studies, 121 glucagon and sulfonlyureas, 216 glucagon and insulin secretion and beta adrenergic and cholinergic agents, 332 golden hamster cell cultures and insulin secretion study, 370 insulin and glucose, 375-376 insulin output and blood flow and prostaglandins, 369 insulin release and calcium, 591-592 and hemorrhagic shock, 982 and insulin secretion, 510 and diphenylhydantoin and diazoxide, 856-861 and species variation, 184 and sulfonlyureas, 1120 islet cell adenoma and adenyl cyclase activation by glucagon and tolbutamide, 912 cyclic AMP content, glucose, glucagon, tolbutamide and theophylline and, 346-347 and factitious hypoglycemia, 980 islet cell carcinoma circulating insulin in, 909-910 and streptozotocin, 1204 islet cell tumors and immunoreactive glucagon, 333 and plasma proinsulin, 1204 proinsulin content, 675-676 and proinsulin-like component of insulin, 313 islet hyperplasia, 536 congenital, 1122 islet insulin secretion and exogenous insulin, 344 islets and 6-aminonicotinamide, 1198 and anti-insulin serum, 911 calcium efflux from, 326-327 cyclic AMP levels, starvation and, 329 in diabetic guinea pigs, 338 and electrical activity in response to leucine and tolbutamide, 345 embryogenesis, 511-533 hypertrophy and beta cell hyperplasia in long-term juvenile diabetics, 114-116 and insulin release, 571 and insulin release and content, 1205 and insulin resistance factor secretion, 370 insulin secretion and glucose metabolism, 538-545 and late-onset diabetes, 762-767 and late-onset diabetes, 546-553 and monoamines, 120 pyridine nucleotide depletion, 789-792 response to glucose, 344-345 and streptozotocin diabetes, 129-137 structure, 536-537, 1403 ultrastructure studies, 120 isolated perfused rat and human chorionic somatomammotropin effects on insulin and glucagon release, 1072-1075 isolated rat islets perfusion, 987-997 monoamines and insulin secretion, 345, 779-787</td>
<td></td>
</tr>
</tbody>
</table>
monolayer cultures and insulin biosynthesis studies, 627-630
mouse and monoamines, *251-252
perfused canine and glucagon secretion studies, *314
perfused rat and insulin release studies, *55, *56, *369
rat endocrine function in monolayer cultures of, *368
and ouabain and insulin release, *246
rat islets and alloxan and glucose interactions, *326
and methylene blue, *350
cistrictophotoscanning, *351
and streptozotocin-induced beta cell toxicity and nicotinamide and pyridine nucleotides, *325-326
streptozotocin infusion in Macaca nemestrina, 138-141
transplantation in diabetic subject, *355
tumors insulin secreting, *1120
<table>
<thead>
<tr>
<th>SUBJECT INDEX 1972</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-PHOSPHOGLUCONATE DEHYDROGENASE in jejunal mucosa and alloxan diabetes, *188</td>
</tr>
<tr>
<td>PHOSPHOLIPIDS levels and alloxan diabetes, 1163-1166</td>
</tr>
<tr>
<td>PHOSPHORUS flux and glucose ingestion in children, *376</td>
</tr>
<tr>
<td>PHOSPHORYLASE and synthase, 430</td>
</tr>
<tr>
<td>PHOSPHORYLATION fatty acid and diabetes, 257-268</td>
</tr>
<tr>
<td>PHOTOCOAGULATION argon laser and diabetic retinopathy, *189</td>
</tr>
<tr>
<td>PHYTOHEMAGGLUTININ peripheral blood lymphocyte response to and diabetes, 906-907</td>
</tr>
<tr>
<td>PIMA INDIANS and diabetes, *180 and kidney disease, *365-366 and viral hypothesis, 766</td>
</tr>
</tbody>
</table>

DIABETES: VOLUME 21 (1972) PAGE NUMBERS BY ISSUE

January, 1-64	Supplement 1, 321-384
February, 65-128	Supplement 2, 385-714
March, 129-192	June, 715-778
April, 193-256	July, 779-842
May, 257-320	August, 843-922
	September, 923-986
	October, 987-1050
	November, 1051-1130
	December, 1131-1210
and diet and fasting, *1046
insulin and triglycerides
seasonal variations in, *312-313
insulin and uric acid
and pirotinic acid, *313
isovaleric acid and α-methylbutyric acid
and hypoglycin A, *316
lipase activity
and heparin, 152-153
lipozymes
and diet, *366
and glucagon, *311-312
and glucose tolerance tests, *383
and pregnancy in rhesus monkeys, *774
lipozymes and lipoproteins
and oral contraceptives, *316
membrane vesicles
and glucose transport, *1042
membranes of fat cells
and insulin, 403-411
osmolality
and serum osmolality, lactic acid values and, *838
and platelet aggregation, *355
proinsulin assay
and islet cell tumors, *1204
proinsulin-like components of, 673-676
tryptophan
and insulin, *909
and liver triglyceride biosynthesis, *365
and maternal protein restriction
and postnatal growth hormone production and bone development, *1047
and maternal protein restriction
and plasma lipids during glucose tolerance tests, *383
and pregnancy in rhesus monkeys
and plasma lipid levels, *774
and uterine relaxants
and hyperglycemia, *1045
PREGNANCY
and amino acid metabolism
and starvation, *1118-1119
and biliary lipids, *912
and caloric deprivation
and maternal and amniotic fluid substrate level, *1202
and glucose tolerance test indications, *186
and human chorionic somatomammotropin
and insulin and glucagon release, 1074-1075
and hypoglycemia following pancreateoduodenectomy, *188
and insulin response and arginine, *251
and liver triglyceride biosynthesis, *365
and maternal protein restriction
and postnatal growth hormone production and bone development, *1047
and placental nitrogen conservation, *340
in rhesus monkeys
and plasma lipid levels, *774
and uterine relaxants
and hyperglycemia, *1045
PREGNANCY, DIABETIC
and blood sugar levels
and perinatal mortality and morbidity, *1201-1202
and fetal and placental composition, *315
and glucose tolerance tests in neonates, *912
and hypophysectomy for diabetic retinopathy, 972-974
and insulin deficiency
and endogenous hypertriglyceridemia, *366-367
and laboratory studies, 31-35
and lactosuria, 1195
and phyocomelic diabetic embryopathy syndrome, *1042
and pituitary reserve loss, *981
and placental carbohydrate metabolism, 1185-1190
and streptozotocin, *316
PROGESTERONE
and diabetic pregnancy, 34
PROGESTIN
and carbohydrate tolerance, *313
PROINSULIN
action, *57
PREDNISOLONE
and immune response to insulin, *58
POLYOL PATHWAY
activity
in isolated capillary preparation, *330
placental, *329-330
enzymes, *330
POLYPEPTIDES
diabetogenic
from pituitaries, *837
synthesis, 476-484
POSTHEPARIN LIPOLYTIC ACTIVITY
deficiency in
and hyperglycemia, *342
POTASSIUM
and antinatriuretic effects of carbohydrate, *772
flux
and insulin and adenosine 3', 5'-monophosphosphate, *254
and insulin action, 687-698
and insulin secretion, 570
myocardial and glucagon, *118-119
and prostaglandins
and growth hormone secretion, *313
uptake and loss and cyclic AMP and insulin, 439-445
POTASSIUM PARA-AMINOBENZOATE
and hypoglycemia, 960
PREDIABETES
and beta cell sensitivity to glucose, 224-233
and caffeine
and glucose tolerance tests, *365
in children, 45-47
in Chinese hamster
and prevention of diabetes, *337-338
and diabetes prevention, *337-338, 693
and diabetic neuropathy, *359
and ethanol
and phenformin, *363
and glucose tolerance, *321
and hypoglycemia
and insulin-glucose dynamics, *373
and insulin secretion, *314, 688-691
and liver sensitivity to endogenous insulin, *323-324
and low insulin response, 685-687
and plasma lipids during glucose tolerance tests, *383
and renal blood flow, *354
and transition to diabetes, 691-693
POLYDIPSIA
and hyperphagia
and adrenalectomy and hypophysectomy, *358-359
POLYETHYLENE GLYCOL
and insulin antibodies screening test, *379
POLYOL
metabolism
and diabetic microangiopathy, *352
SUBJECT INDEX 1972

in adipose tissue, 485
and structure, 505
amino acid sequences, 461-463, 465-466
antibodies
and insulin resistance, 368
and antibodies to insulin, 656-657
assay, 122
biosynthesis
and glucose, 538
biosynthesis, intracellular transport, and conversion to insulin and C-peptide, 572-579, 581-583
in blood, 661-670
content of beta cell tumors, 535
conversion to insulin, 314
degradation
in rats, 1091-1100
and glucose metabolism
in rat diaphragm and epididymal fat pads, 935-936
and insulin
conformational studies, 486-491
-like component of insulin, 912-913
and glucagon and insulin secretion, 356-358
hepatic synthesis and tissue injury, 315
insulin binding, 426
and insulin release, 613, 617-618
leucine incorporation of, 336
of plasma very-low-density lipoprotein selenomethionine incorporation into, 744-752
rat liver nuclear
and diabetes, 377
restriction in pregnant rats and postnatal growth hormone production and bone development, 1047
synthesis
and alloxan diabetes, 339
and cyclic AMP and hormones, 119
and fatty acid synthetase activity, 914
and insulin, 447-451
and insulin and cyclic AMP, 453
synthesis in anterior pituitary and insulin, 1200
turnover in skeletal muscle and insulin, 341
PROTHERMURIA
and glomerular lesions, 365
in Pima Indians, 365-366
PROTEOLYSIS
and cyclic AMP and insulin, 439-445
and myopathy and capillary basement membrane thickening, 118
and insulin release, 329
PROSTATE GLAND
hexokinase and testosterone, 185
PROTEIN KINASE
and cyclic AMP, 571
PROTEINS
in adipose tissue noncollagen as index of cell number, 1201
and amino acid flux into liver tissue, 316
-and bound carbohydrates and diabetes, 863-870
deficiency in pregnant rats, 1041
dietary
and glucagon and insulin secretion, 912-913
and glucagon biosynthesis, 58-59
insulin binding, 426
and insulin release, 613, 617-618
leucine incorporation of, 336
of plasma very-low-density lipoprotein selenomethionine incorporation into, 744-752
rat liver nuclear and diabetes, 377
restriction in pregnant rats and postnatal growth hormone production and bone development, 1047
synthesis
and alloxan diabetes, 339
and cyclic AMP and hormones, 119
and fatty acid synthetase activity, 914
and insulin, 447-451
and insulin and cyclic AMP, 453
synthesis in anterior pituitary and insulin, 1200
turnover in skeletal muscle and insulin, 341
and insulin secretion, 329
and amino acids and 2-cleoxy-D-glucose and mannose, 1-5
and iodinated insulin, 55
and neutral Regular insulin, 242-245
renal gluconeogenesis and ammonia production in, 57
and serum insulin levels and trauma, 183
and streptozotocin diabetes and islet cell changes, 129-137
and thryotoxicosis
and glucose utilization and insulin secretion, 370-371
R
RABBIT
acidotic diabetic and pH of inflammatory exudates, 1201
and antibodies to insulin, 651-656, 657-659, 660
and blood sugar and insulin storage times, 812
and insulin administration to gastrointestinal tract, 203-207
and insulin response to amino acids and 2-deoxy-D-glucose and mannose, 1-5
and iodinated insulin, 55
and neutral Regular insulin, 242-245
renal gluconeogenesis and ammonia production in, 57
and serum insulin levels and trauma, 183
and streptozotocin diabetes and islet cell changes, 129-137
and thryotoxicosis and glucose utilization and insulin secretion, 370-371
RACE
acidotic diabetic and pH of inflammatory exudates, 1201
and antibodies to insulin, 651-656, 657-659, 660
and blood sugar and insulin storage times, 812
and insulin administration to gastrointestinal tract, 203-207
and insulin response to amino acids and 2-deoxy-D-glucose and mannose, 1-5
and iodinated insulin, 55
and neutral Regular insulin, 242-245
renal gluconeogenesis and ammonia production in, 57
and serum insulin levels and trauma, 183
and streptozotocin diabetes and islet cell changes, 129-137
and thryotoxicosis and glucose utilization and insulin secretion, 370-371
RADIOIMMUNOLOGY
in synthetic glucagon studies, 844-845, 846-848, 855

<table>
<thead>
<tr>
<th>Month</th>
<th>Page Range</th>
<th>Supplement</th>
<th>Page Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>1-64</td>
<td>Supplement 1</td>
<td>321-384</td>
</tr>
<tr>
<td>February</td>
<td>65-128</td>
<td>Supplement 2</td>
<td>385-714</td>
</tr>
<tr>
<td>March</td>
<td>129-192</td>
<td>June</td>
<td>715-778</td>
</tr>
<tr>
<td>April</td>
<td>193-256</td>
<td>July</td>
<td>779-842</td>
</tr>
<tr>
<td>May</td>
<td>257-320</td>
<td>August</td>
<td>843-922</td>
</tr>
<tr>
<td></td>
<td></td>
<td>September</td>
<td>923-986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>October</td>
<td>987-1050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>November</td>
<td>1051-1130</td>
</tr>
<tr>
<td></td>
<td></td>
<td>December</td>
<td>1131-1210</td>
</tr>
</tbody>
</table>

37
and effects of maternal protein restriction, °1047
and ethanol-induced fatty liver
and pyrazole and glucose, °247
fasted and fed
and amino acid levels, °119
feeding response
and brain calcium, °1046
fetal development
and diet and growth hormone, °189
galactose-fed
and nerve conduction defects, 295-300
gastrointestinal transport
and glucagon, °983
genetically obese
and hyperinsulinemia and insulin resistance, °838
and glibenclamide, °55
and glucose oxidation
and diet and exercise, °179
and glucose-U-C-14 and acetate 1-C-14
utilization for fat synthesis, °770
heart
lipoprotein lipase, °344
high protein fed
and liver gluconeogenesis, °358
hyperammonemic
and glucose metabolism, °184
and hyperglycemia
and aminophylline, °775
hypo-, hyper-, and euthyroid
and ethanol and sorbitol metabolism,
°122
and Pregnancy and sex steroids, °1123
adenyl cyclase and cyclic AMP phosphodiesterase, °328
and allantoic and glucose, °326
and ketone body metabolism, °246
and kidney function
and diabetes, °181
and liver gluconeogenesis
and glucose and insulin, °371
and liver triglyceride biosynthesis and pregnancy and sex steroids, °365
mammary cell metabolism
and insulin, °315
and microangiopathy, °357
SUBJECT INDEX 1972

RETICULOENDOTHELIAL SYSTEM
- lipid metabolism and vascular clearance in dogs, *312

RETINA
- blood flow
 - in children of diabetics and prediabetics, *354
 - of diabetic monkeys, 1086
- glycosaminoglycans
 - and alloxan diabetes, 1163-1166
 - and microangiopathy, *357

RETINOPATHY, DIABETIC
- and argon laser photocoagulation, *189
- and bacteriuria, °118
- and blood platelet adhesiveness and aggregation, •120-121
- and diabetes control program, °382
- factors in progression of, °187
- and hypophysectomy, °349
- and pregnancy, 972-974
- in identical twins, °321-322
- and plasma growth hormone levels, °322
- and platelet aggregation, *355

REYE'S SYNDROME
- and hypoglycemia, °248

RHESUS MONKEYS
- and pregnancy
 - and biliary lipids, °912
 - and plasma lipid levels, *774
- and biliary lipids, °912
- and plasma lipid levels, *774

RHINOCERERRAL PHYCOMYCOSIS
- and diabetes, *185

RNA
- binding to hepatic ribosomes
 - and insulin deficiency, 84-88
 - and insulin action, 455
 - messenger
 - and insulin and liver metabolism, 453
- pancreatic
 - and diet in neonatal rats, *186
 - synthesis
 - and fatty acid synthetase activity, *914
- transfer
 - and insulin and protein synthesis, 449
- viruses, 714

tRNA METHYLASES
- regulation, *253

RP 22410. See Glisoxepid

RUBELLA
- congenital
 - and diabetes incidence, *248-249
- and hypoglycemia, 959-960
- **SALICYLATES**
- and hypoglycemia, °248-249
- **SALIVARY GLANDS**
- isoproterenol-stimulated
 - and glucose metabolism, °912
- **SCINTIPHOTOSCANS OF PANCREAS, **°351
- **SECRETIN**
 - and diuresis, °769
 - and insulin release
 - and glucagon, °1118
 - and pepsim secretion, °250
 - release, °252
 - and serum gastrin immunoassays, °249
- **SELENIUM SCAN**
 - and insulinoma diagnosis, °1206
- **SELENOMETHIONINE**
 - incorporation into apoprotein of plasma
 - very-low-density lipoprotein, 744-752
 - and diabetes, 1168-1171
 - **SEROGRAPHIC VENOUS TUBULUS**
 - and diabetic impotence, 26
- **SEMINOLES**
 - diabetes survey among, °776
- **SEPHAROSE**
 - and muscle, adipose tissue and cultured liver cells, °335-336
 - **SEROTONIN**
 - antagonists
 - and insulin secretion, 779-787
 - and insulin secretion in acromegaly, °352
 - and carbohydrate tolerance
 - and insulin secretion, °1200
 - and insulin secretion, °184, °316
 - and insulin, cholesterol and triglyceride levels
 - in obese diabetics, °361
 - and diet in neonatal rats, °186
 - and fatty acid synthetase activity, °914
 - transferrin and insulin and protein synthesis, 449
 - viruses, 714
 - **SERUM**
 - N-acetyl-beta-glucosaminidase
 - and diabetes, 1168-1171
 - antiguclagen
 - in synthetic glucagon study, 844-855
 - anti-insulin assays, °769
 - and enzyme histochemical studies of pancreatic islets, °911
 - and hyperglucagonemia, °183
 - and liver free fatty acid metabolism in dogs, 280-288
 - betalipoproteins
 - and abetalipoproteinemia, °60
 - bound insulin
 - and insulin antiserum, 930-934
 - cholesterol
 - and atherosclerotic disease, °253
 - cholesterol and triglycerides
 - and caffeine, °365
 - and calcium, °980
 - creatine, sodium and potassium and acidosis diagnosis, 1110
 - creatinine
 - in Pima Indians, °365-366
 - free fatty acids
 - and weight reduction, 758
 - free fatty acids and glucose
 - and L-dopa, °1121
 - free fatty acids, insulin, and growth hormone
 - and myocardial infarction, °119
 - gastrin immunoassays
 - and secretin, °249
 - glucose
 - in Mystromys albicaudatus, 715-721
 - glucose, ketones, immunoreactive insulin and free fatty acids
 - and sodium beta-hydroxybutyrate, °373-374
 - glycoproteins
 - and diabetes, 863-870
 - growth hormone and cortisol responses to graded insulin infusions, °379
 - immunoreactive insulin
 - and age, °183-184
 - and exercise, 104
 - in genetically obese rats, °838
 - in monkeys, 1078-1079, 1081
 - in obese rats, °1123
 - and portacaval shunt, °179
 - response to glucagon, glucose and tolbutamide, °121-122
 - insulin
 - and arginine, 308-310
 - and insulinoma, °250
 - in obese hyperglycemic mice, °119
 - and trauma, °183
 - insulin, cholesterol and triglyceride levels
 - in obese diabetics, °361
 - insulin and growth hormone
 - and arginine and glucose, °316
 - during oral glucose tolerance tests in children, 16-20

DIABETES: VOLUME 21 (1972) PAGE NUMBERS BY ISSUE

<table>
<thead>
<tr>
<th>Month</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>1-64</td>
</tr>
<tr>
<td>February</td>
<td>65-128</td>
</tr>
<tr>
<td>March</td>
<td>129-192</td>
</tr>
<tr>
<td>April</td>
<td>193-256</td>
</tr>
<tr>
<td>May</td>
<td>257-320</td>
</tr>
<tr>
<td>August</td>
<td>843-922</td>
</tr>
<tr>
<td>September</td>
<td>923-986</td>
</tr>
<tr>
<td>October</td>
<td>987-1050</td>
</tr>
<tr>
<td>November</td>
<td>1051-1130</td>
</tr>
<tr>
<td>December</td>
<td>1131-1210</td>
</tr>
</tbody>
</table>
insulin responses
differences between mongrel and beagle dogs, *356
and small-vessel disease, °836
insulin response to glucose
and konnyaku ingestion, *60
lipids
in "acatalasemic" mice, *56
and atherosclerosis, °253
and metformin, °771
in monkeys, 1078-1079
nonsuppressible insulin-like activity, 271-278
osmolality
and galactose toxicity syndrome, °315
and plasma osmolality, lactic acid values and, °838
C-peptide and proinsulin, 1013-1025
phospholipids
and diabetes, »123
proinsulin and insulin, »347
protein
and diabetic microangiopathy, °371
triglycerides
response to fructose, age and, °835
and sucrose and glucose, »58
SEX
and adipose tissue fat cell size and number, °180
and blood glucose levels
and exercise, 89-99
and diabetic mortality, *1044
and glucose tolerance tests in children, °19
and growth hormone secretion, °774-775
and muscle capillary basement membrane changes, 883-896, 899-905
and serum glucose
in Mystromys albicaudatus, 718, 719, 720
SEXUAL FUNCTION
and diabetes, 23-28
SHEEP
renal glucose, free fatty acid and ketone body metabolism in, °314
SHOCK
and fibrinolysis and peritoneal dialysis, °913
hemorrhagic
and insulin release, *364, °982
traumatic
and glucose metabolism, °1201
SKIN
bullous and atrophic lesions
and diabetes, °251
and diabetes
and hyperinsulinism, 733-743
fibroblasts
and glucose metabolism
and insulin, °189
glycosaminoglycans
and alloxan diabetes, 1163-1166
and lipid synthesis
and starvation, alloxan diabetes and insulin, °189
psoriasis
and carbohydrate metabolism, °250
to and proinsulin action study, °57
SLEEP
growth hormone release during, °913
SMOKING
and hypoglycemia, 961
SODIUM
extracellular
and glucose metabolism, 543
and insulin secretion, °570, °861
and pancreatic α-amino isobutyric acid transport, °181
transport
and proinsulin action, °57
SODIUM ACETATE
incorporation into lipids of rat aorta and insulin, °186
SODIUM ACETATE I-C-14
incorporation into rat aorta and insulin, °186
SODIUM BETA-HYDROXYBUTYRATE
and insulin secretion, °373-374
SODIUM LINOLEATE
and plasma free fatty acids, glucose, insulin and ketones, 1179-1184
SODIUM FENTOBARBITAL
and plasma glucose and free fatty acids, °836
SORBITOL
brain synthesis and cerebral edema during diabetic ketosis, °180-181
and insulin release, 565
metabolism in fasted and streptozotocin diabetic rat, °122
and hypo-, hyper-, and euthyroid rats, °181
in nervous tissues
and blood sugar control, 1173-1178
SORBITOL DEHYDROGENASE
in human placenta, °330
L-SORBOSE
intestinal uptake, °249
SPASMYLYTIC DRUGS
and vein reactivity in diabetes, °909
SPLANCHNIC NERVE
stimulation and adrenalectomy, °770
SPRUE
temperate, °773
STARVATION
and amino acid metabolism during pregnancy, °1118-1119
and carbohydrate, °772
and diabetes treatment, 52, °53
and fat and lactate metabolism and insulin production, °1045
and fetal metabolism, °187
and glucose secretion, °331-332
and insulin and glucagon patterns, °359-360
and insulin-induced hypoglycemia, 797-803
and jejunal mucosa enzymes, °188
and ketone body metabolism, °246
and kidney gluconeogenesis, °910
and kidney sensitivity to mineralocorticoid and glucagon, °334
and lipid synthesis in rat skin, °189
and lipolysis
and iodinated insulin, °55
and liver ketogenesis, 50-52
and liver metabolism
and glucagon:insulin ratio, °341
and metabolism in streptozotocin diabetic rats, °122
and plasma and tissue amino acids, °179
and postheparin lipolytic and monoglyceride activities, °54
and tissue and islet cyclic AMP levels, °329
STERIDOGENESIS
in isolated adrenal cells, °983
STEROIDS
-induced diabetic ketoacidosis, °54
STREPTOZOTOCIN
and beta cell membrane changes, °326
and carbohydrate and lipid metabolism, *59
and diabetic pregnant rats, *316
and glucose metabolism
and insulin secretion, *1200
-induced beta cell toxicity
and nicotinamide and pyridine nucleotides, *325-326
-induced diabetes
and fetal and placental composition, *315
and islet cell carcinoma
and "big" insulin, *1204
and islet cell tumors
and plasma proinsulin, *1204
and pancreatic beta cells, 77-78
STREPTOZOTOCIN DIABETES
and connective tissue changes in rats, 733-743
and glucose and fatty acid metabolism, *909
and hyperosmolar diabetic syndrome
and ketogenesis, *369-370
and hyperphagia and polydipsia
and adrenalectomy and hypophysectomy, *358-359
and hypertriglyceridemia
and diet, *353-354
and islet cell changes, 129-137
and kidney function, *121
and liver mitochondria a-oxoglutarate carboxylation, *981
and liver nuclear proteins, *377
in Macaca nemestrina
induced by pancreatic infusion, 138-141
and metabolism, *122
and pyridine nucleotide depletion in pancreatic islets, 789-792
and urine glycolate, *372
and ventromedial hypothalamic destruction, *1043
STRESS
and glucose tolerance, *184
SUBMAXILLARY GLAND extirpation
and glucose and insulin tolerance, 722-731
SUCCHINATE
and amino acid metabolism, *56
SUCROSE
and diabetes, *770
dietary
and blood constituents and hepatic lipids, *1202
oral
and alimentary lipemia, *58
SUGAR
and alloxan toxicity, *123
and insulin release, 559-561, 570
transport
and biguanides, *119
SUGAR ALCOHOL formation
and nerve conduction defects, 295-300
SULFATION FACTOR and dwarfism, *1046
SULFONYLUREAS and blood sugar
and kidney failure, *1120-1121
and chemical diabetes in children, 47
and diabetes treatment, *120
glibenclamide, *55
and hypoglycemic coma, 955-962
and insulin release, 160-161
and blood sugar, *1120
and labeling laws, 833
pharmacodynamic aspects, *249, *249-250
and plasma glucagon suppression, 216-223
-response test, *913
SURGERY
adipose tissue resection
and diabetes and hyperinsulinism of symmetric lipomatosis, 13-15
adrenalectomy
and insulin response to hemorrhagic shock, *364
and splanchnic nerve stimulation, *770
and adrenalectomy and hypophysectomy
and diabetic hyperphagia and polydipsia, *358-359
and bladder dysfunction, *364
femorotibial bypass and diabetes, *322-323
for gangrene, *187
gastrectomy
and intestinal glucagon and insulin responses, *1047
gastric
and glucose homeostasis, *1199
and glucagon secretion, *313
hypophysectomy
during diabetic pregnancy, 972-974
and diabetic retinopathy, *349
and glucagon secretion, *375
and tolbutamide and glybenclamide injections, *378-379
and islet cell adenosas
and blood glucose and plasma immunoreactive insulin assays during, *185
pancreatectomy
in baboons, *338
and glucose turnover, *382-383
pancreatectomy and hypophysectomy and diabetic ketosis in rats, 946-954
and liver 3-hydroxybutyrate dehydrogenase, *184-185
pancreatoduodenectomy
and hypoglycemia following pregnancy, *188
parathyroidectomy, *773
partial pancreatectomy
and glucose tolerance and insulin response, *339
portacaval shunt, *179
and serum insulin levels, *183
submaxillary gland extirpation
and glucose and insulin tolerance, 722-731
ventromedial hypothalamic destruction, *1043
and glucose metabolism, *1204-1205
and obesity, *1206
SYNALBUMIN, 714
T
TEMPERATURE
and cholesterol turnover, *314
and insulin secretion, *312-313
and liver enzymes activities, *58
TESTES
and diabetic impotence, 25-26
TESTOSTERONE
and rat prostate hexokinase, *185
a-THALASSEMIA
and fetal pancreas, *253-254
THEOPHYLLINE
and calcium metabolism, *327
and glucose stimulated insulin release, 559-560, 561
and insulin response, 1
in Acomys cahirinus, 1065, 1069-107C
and islet cell adenoma cyclic AMP content, *346-347
and norepinephrine and cyclic AMP, 416-417

DIABETES: VOLUME 21 (1972) PAGE NUMBERS BY ISSUE

January, 1-64
February, 65-128
March, 129-192
April, 193-256
May, 257-320
Supplement 1, 321-384
Supplement 2, 385-714
June, 715-778
July, 779-842
August, 843-922
September, 923-986
October, 987-1050
November, 1051-1130
December, 1131-1210
SUBJECT INDEX 1972

and plasma insulin responses
in subhuman primate fetus and neo­
nate, *180

THROMBIN
and fatty acid metabolism, *312

THYROID FUNCTION TESTS, 1012

THYROID GLAND
and ethanol and sorbitol metabolism,
*181
and glibenclamide, *55
and thyrotoxicosis
and insulin secretion and glucose
utilization, *370-371

THYROIDITIS
methyl-cholanthrene-induced and spon­
taneous
and autoimmunity studies, *253

THYROTOXIC PERIODIC PARALYSIS
and immunoreactive insulin, *1047

THYROXINE
and insulin secretion, *253
and rat fatty liver, *183

TISSUE
adipose. See Adipose tissue
amino acids
and starvation, *179
and ammonia production, *1203
connective
and diabetes and hyperinsulinism,
733-743
cyclic AMP levels
and insulin, 426
and starvation, *329
epipydymal fat pads
enlargement modes, *247
glycosaminoglycans
and alloxan diabetes, 1162-1166
and jet insulin injections, 41-42
liver
metabolic response to injury, *315
liver plasma membranes
and insulin, *334-335, *1200
mouse diaphragm
DNA content, *184
nervous system
and blood sugar control, 1173-1178
rat adipose tissue and muscle
phosphofructokinase, *963
rat diaphragm
insulin-like activity bioassays, 272-
273
rat diaphragm and epididymal fat pads
and insulin and proinsulin, 935-938
rat epididymal fat pads
protein synthesis studies, *1119
testicular
and diabetic impotence, 24-28
TISSUE CULTURES
of isolated islets, 546-553
TOADFISH
islets
and pyridine nucleotide, *983
TOLBUTAMIDE
and adenyl cyclase activation in islet
cell adenoma, *912
and 6-aminonicotinamide, *1198
and hyperglycemia
and arterial disease, *122-123
hyperresponsiveness to
da dioxyazepoxide pretreatment, *360
and hypophysectomized dogs, *378-379
-duced hypoglycemia
and hyperparathyroidism, *773
-duced insulin release, 989
and cytochalasin B, *927
and iodoacetate and antymycin A.,
*56
and propranolol, *122
in rat islets, *1205
and insulin immunoreactivity, *313
insulin response to
diethylisobutyl and growth
hormone, *378
and insulin response to glucose, 684
and insulin secretion, *55, *370
and blood sugar, *1120
and hypoglycemia, *1123
and islet cell adenoma cyclic AMP
content, *346-347
and labeling laws, 833, 1116-1117
and lipolysis and cyclic AMP in white
fat cells, *835
and liver cirrhosis
and insulinemia, *121-122
and microangiopathy, *957
and pancreas islet cell electrical activ­
ity in response to, *345
pharmacodyenic aspects, *249, *249-
250
and plasma glucagon, 216-223
plasma insulin response to
and diabetes, 1012
response
and diazoxide, *311

UGDP study of, 976-978, 1036-1037
TOLBUTAMIDE TEST
and insulinoma, *250, *1206
TOLINASE
and lactic acid levels
and anoxia and exercise, *351
TRANSPLANTATION
of fetal rat pancreas into maternal hosts
and insulin content study, 193-201
kidney
and diabetes, *322
of pancreas
and diabetes, *355
TRAUMA
and liver metabolism, *315
TRIGLYCERIDES
long-chain
and insulin secretion, 923-928
synthesis
and ethanol, *769-770
and insulin, *351-352
and ketogenesis, *1203
TRYPsin
and fat cell lipolysis, 423
-reated fat cells
and insulin degradation, 409
TRYPTOPHAN
-insulin complex
isolation of, *1045
TUBERCULOSIS
and diabetes, 634
TUco-TUCo
diabetic syndrome in, *1205
TUMORS
adrenal
and Cushing's syndrome in infancy,
*120
beta cell, 535
catecholamine-secreting
and glucose intolerance, *838
docrine adenomatosis
and familial nesidioblastosis, *1122
fibrosarcoma
insulin-like activity in, *352-353
and glucose metabolism
and insulin secretion, *1200
and hypocholesteremic drugs in mice,
*837
insulinoma
diagnosis, *1206
and glycolytic enzymes, *773

DIABETES: VOLUME 21 (1972) PAGE NUMBERS BY ISSUE

January, 1-64
February, 65-128
March, 129-192
April, 193-256
May, 257-320

Supplement 1, 321-384
Supplement 2, 385-714
June, 715-778
July, 779-842
August, 843-922
September, 923-986
October, 987-1050
November, 1051-1130
December, 1131-1210

42
islet cell
and blood proinsulin-like components, 665
and cyclic 3'5' AMP formation and degradation, *185
and hypoglycemia, *248
immunoreactive glucagon in, *333
and insulin and glucose patterns, *250
and plasma proinsulin, *1204
proinsulin content, 675-676
proinsulin-like component of insulin, *313
and surgery, *185
islet cell adenomas
and adenylcyclase activation by glucagon and tolbutamide, *912
and effects of glucose, glucagon, tolbutamide and theophylline on cyclic AMP content of, *346-347
and surgical procedures, *185
in obese mice
and lipid mobilization and food uptake, *774
pancreatic insulin-secreting, *1120
TWINS
and chemical diabetes study, 45
identical
and diabetic retinopathy, *321-322
TYROSINE AMINO TRANSFERASE
and cyclic AMP
and cyclic AMP
and insulin, 439-445

U
UMBILICAL CORD
glucose
and infant hypoglycemia, *1202-1203
UNIVERSITY GROUP DIABETES PROGRAM, *57
evaluation of, 976-978, 1035-1039
and labeling laws for oral hypoglycemic drugs, 1116-1117
UREMIA
and carbohydrate tolerance, 1109-1114
and experimental diabetic ketosis, *121
and insulin release, *910-911
UREOGENESIS
and cyclic AMP
and insulin, 442-443
URIC ACID
excretion
and nicotinic acid, *313
URENE
catecholamines
and ouabain, *913
epinephrine and norepinephrine
and idiopathic hypoglycemia, *1200
glycolate
and streptozotocin diabetes, *372
17-ketosteroid excretion
and diabetic impotence study, 24
sodium and potassium
and growth hormone, *1046
tests
and lipoatrophic diabetes, 830
UTERUS
relaxants
and hyperglycemia, *1045
VASCULAR DISEASE
and blood glucose control, 976-978
and diabetes, 678-683
and blood coagulation, 108-112
and combined hyperlipoproteinemia, *576
and insulin, 633
and serum phospholipids, *123
and diabetes duration, *314
and oral hypoglycemic agents, *57
peripheral
and insulin response to glucose, *836-837
and insulin response studies, *836
VASCULAR SYSTEM
aorta
glycosaminoglycans, 1163-1166
clearance
and reticuloendothelial system in dogs, *312
and disseminated intravascular coagulation and diabetes, 108-112
VASOPRESSIN
action
and cyclic AMP, *251
and antidiuretic action of chlorpropamide, *189
VEIN
reactivity
and diabetes, *909
VENOPATHY, DIABETIC, *909
VINBLASTINE
and insulin release, 989-991, 996-997
VIRUSES
diabetes, 713-714
campomamycocarthritis
and mouse pancreas, *338-339
and insulin in late-onset diabetes, 766-767
VITAMINS
B
and hemoglobin synthesis, *311
K
and resistance to oral anticoagulant drugs, *183
W
WEIGHT. See also Body, weight; Obesity
gain
and high-fat diet, *182
loss
and calorie restriction in obese hyperglycemic mice, *835
and insulin sensitivity, 6-11
and low calorie diet with anorectic agent, *361
reduction
and adipose tissue lipolysis and cellularity, 754-760
and phenformin, *962
and serum glucose in Mystromys albicaudatus, 718, 719, 720

X
XANTHOMA
and familial hypercholesterolemia, *1121
X-IRRADIATION
and mortality and longevity in mice, *914
XYLITOL
absorption
in healthy men, *350-351
and insulin release, 561, 565
and diabetes and obesity, *187-188
and pancreas metabolism, 562-564
metabolism
in fasted and streptozotocin diabetic rat, *122
D-XYLOSE
excretion
and metformin, *771
transport
and biguanides, *119
Z
ZINC
and insulin, 487-489, 497-498, 509, 570
AUTHOR INDEX 1972

In this index are the names of authors of articles that have appeared in DIABETES and those whose articles have been abstracted in the Journal during 1972. Entries marked with an asterisk (*) indicate authors of material that appeared in the ABSTRACTS only. The Subject Index appears on page 1.

A

Abe, Hiroshi, 203-208
Abildgard, F., *769
Abrams, M. E., *980, *1047
Ackerman, Eugene, *775, *836
Adams, Donald A., *349
Adams, Yvonne L., °179
Adelman, Neil, 1-5
Adibi, Siamak A., *179
Adnitt, P. I., *187, °771
Agot, H., *912
Ahlborg, Gunvor, *776
Ahrens, E. H., Jr., °1200-1201
Ahrens, Richard A., °179
Aiach, M., °1123
Alexander, James K., *980
Alexander, Kenneth R., °1123
Allen, Lindsay H., °1041
Allen, Michael, °772
Alpert, Joseph S., *769
Alric, R., °912
Alvarez, Enrique S., °54
Amherdt, Mylene, °326, °346, 1060-1071
Ammon, H. P. T., 143-148, °350, °365, °1198, °1205
Amsterdam, Daniel, °338-339
Andersen, Dana K., °292
Anderson, O., °769
Anderson, James H., Jr., °311
Anderson, James W., °188
Anderson, P. A., °352
Andersson, Arne, 546-554
Andres, Reubin, °347
Ansh, B., °1204
Antoniades, Harry N., 930-934, °1123
Aoki, T., °323
Aranda, J. V., °185
Arieff, Allen, °774
Arky, Ronald A., °54, °334, °772
Arons, Daniel L., °54
Asano, T., °350-351
Ashcroft, Stephen J. H., 538-545
Ashkar, F. S., °1117
Ashmore, James, 426-427, 453, °982
Assal, J.-Ph., °179, °323, °361-362, °366
Assan, Roger, 843-855, °1120
Assemayny, Salma R., °1042
Atkin, E., 149-156
Atkins, T., °179
Avruch, Joseph, °1042
Avruskin, T. W., °381
Azumi, Kazuo, °776

B

Bagdade, John D., 65-70
Bagul, C. D., °351-352
Baker, David H., °771
Baker, Lester, °189
Baker, Nome, °914
Baker, R. W. R., 1173-1178
Balasse, Edmond O., 280-288
Baldwin, R. L., °315
Ball, Michael, °3118
Balodimos, Marios C., °118, °769
Barbier, P., °123
Barriga, Isabel M., 289-294, °837-838
Barrett, Philip J., *835
Bassett, John M., 538-545
Batchelder, Timothy, °372
Bates, Margaret W., °246
Battaglia, Frederick C., °187
Bauer, G. Eric, °58-59
Bayley, T. J., °773
Beall, Robert J., °983
Beard, Alice, °179-180
Beugels, S. B., °370
Becker, Kenneth L., °328-329, °375-376
Begn-Hick, Nicole, °912
Behrens, Otto K., viii Supplement 2, 685
Beisel, W. R., °316
Beitch, Janis, 506-508
Belloire, Francesco, 1168-1172
Bender, S. A., °1046
Bengtsson, Calle, °180
Bengtsson, Kristina, °1198
Bennet, G. Vann, °1042
Bennett, Peter H., °180, °365-366
Benson, Bryant, 935-938
Bernerson, Gerald S., 733-743
Bergan, °355
Bergman, E. N., °118, °314
Berkowitz, Stuart, °980
Berman, Mones, °347
Bernardis, Lee L., °771, °1043, °1204-1205
Bernick, Sol, °248
Bernstein-Hahn, L., 23-30
Berridge, Michael J., °359-360
Best, Charles H., °383-385
Best, Peter D., °186
Beyer, °249, °249-250
Beyer, W. R., °370
Bhai, Idrees, °311
Bhatia, S. K., °365
Bhawanji, Jain, °359-360
Bianchi, R., °769
Bianchini, Joseph R., °1121
Bianco, Jesús A., °118-119
Bier, Dennis M., °280-288
Bierman, Edwin L., 65-70, °342, °380
Binkiewicz, A., °377
Bitenson, Mark W., °80, °981, °1117-1118
Bitsch, Vibeke, °186-187, °1045
Bivens, C. H., °352
Björntorp, Per, °54, °180, °312-313, °771, °909
Black, W. L., °367
Blackard, William G., °187, °188, 311, °360
Blanks, M. C., °337-338
Block, Marshall B., 661-672, 1013-1026
Bloom, Göran, °180

DIABETES: VOLUME 21 (1972) PAGE NUMBERS BY ISSUE

<table>
<thead>
<tr>
<th>Month</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>1-64</td>
</tr>
<tr>
<td>February</td>
<td>65-128</td>
</tr>
<tr>
<td>March</td>
<td>129-192</td>
</tr>
<tr>
<td>April</td>
<td>193-256</td>
</tr>
<tr>
<td>May</td>
<td>257-320</td>
</tr>
<tr>
<td>June</td>
<td>715-778</td>
</tr>
<tr>
<td>July</td>
<td>779-842</td>
</tr>
<tr>
<td>August</td>
<td>843-922</td>
</tr>
<tr>
<td>September</td>
<td>923-986</td>
</tr>
<tr>
<td>October</td>
<td>987-1050</td>
</tr>
<tr>
<td>November</td>
<td>1051-1130</td>
</tr>
<tr>
<td>December</td>
<td>1131-1210</td>
</tr>
</tbody>
</table>
AUTHOR INDEX 1972

Blondel, B., *346, *368
Bloodworth, J. M. B., Jr., *321, *352
Bloom, A., *120-121
Bloom, G., *346-347
Blum, André L., *54
Blumenthal, Stanley A., *180-181, *1205
Blundell, T. L., 492-505
Bogerd, J., *316
Boder, George B., 535-537
Bombay, J. D., *332, *340-341
Bommer, G., *911
Bonar, J. R., *352-353
Boquist, Lennart, 1051-1059
Borchers, Raymond, *980-981
Borek, Ernest, *253
Borenstajn, J., *344
Borin, Bruce M., *837
Borner, E., *769
Bortz, W., *375
Breur Richard I., *1199
Boucher, B., *1047
Boulanger, M., *357
Boulter, Philip R., *334
Bowen, A. E., *184-185
 Bowen, V. R., *328-329
Bowser, Mary, *325
Bradley, R. F., *118
Brancato, Paul, *338-339
Brandenburg, Dietrich, 468-475
Brange, J., 469-486
Braun, Theodor, *60
Braun, Ivan R., *180
Braay, George A., *838, *1206
Bressler, Rubin, 713-715
Breur Richard I., *1199
Breure, H., *775-776
Brickman, Fred, 733-743
Bridge, L. F., *769
Birdgen, E. W. D., *120-121
Brook, Frances E., *58
Bromer, William W., 485, 509
Brooks, Mary R., *914
Brophy, P. D., *1046
Brown, Joseph D., *385, *1045
Bruhnfeld, K., *769
Brunner, John D., *342, *348
Brush, James S., *122
Bray, Mary J., *59
Bryant, Gideon M., *910
Buret V., *1119
Buchan, Keith D., *1122, *1206
Buckman, M., *1043
Burch, Thomas A., *180
Burgess, J. A., *248-249
Burke, P. A., *246
Burns, T. W., 89-100
Burr, I. M., *246
Burrill, Karen C., *982
Buse, John, *911
Buse, Maria G., *911
Buschmeyer, J. D., *232
Bussey, Dietrich, *248
Butcher, Fred R., *54
Bux, J., *250-251
Butterfield, W. J. H., *980
Buzi, Alfredo, *359
Byrd, Gerald W., *311

C

Caccamo, Anna, *312
Cahill, George F., Jr., 703-712
Camann, P., *122
Cameron, Donald F., 1080-1071
Campbell, G. D., *250
Camus, J., *59
Canary, John J., *1118
Canever, J. V., *120-121
Canfield, Robert E., *835
Canivet, J., *838
Cantrill, Jerald W., *872-880
Car, Joseph B., *358-359
Caren, Raymond, *311-312
Carpentier, Mark, *312
Carr, Joseph J., *253
Carr, H., *254
Carter, James R., Jr., *1042
Caspary, W. F., *119
Cassar, J., *1109
Castillo, E. J., *184-185
Castillo, L., *775
Casteleman, Benjamin, *1042
Cavall-Sforza, L. L., *1045-1046
Cederquist, J. D., *983
Celener, David, *359
Celik, Ziya, *364
Cerchio, Gerard, *982
Cerletty, James M., *773
Chabot, V., *1119
Chance, Ronald E., *461-467, 657-660
Chandler, Michael L., *353
Chang, M. L. W., *770
Chao, Ping-Yu, *353
Chapal, J., *1045, *1120
Chapman, Betty B., *837
Charles, M. Arthur, *327

Chase, G. R., 89-100
Check, Donald B., *1201
Chen, S., *344
Chernick, Sidney S., 946-954
Cherrington, A., *382-383
Cherry, Thomas, *1204
Chevalier, M., *835
Chez, Ronald A., 39-44, *180
Chick, William L., *1120
Chisholm, D. J., *1118
Chiumello, Giuseppe, *312
Chochinov, Ronald H., *341-342, *1199
Chow, Yee-Wing, *835-836
Christacopoulos, P. D., *354
Christensen, Halvor N., *55-56
Christiansen, Aa. Hein, 649-656
Christie, A. Ronald, *354-355
Cibera, Jose B., *359
Clancy, Barbara A., *983
Clark, Charles M., Jr., 946-954
Clayton, Barbara E., *119-120
Clements, Rex S., Jr., *180-181, *330
Clifford, A. J., *184
Clough, G., *913
Cloutier, Mark D., *982-983
Cochin, Alan, *392
Coddin, J. C., *399, *1204
Coffman, Jay D., *769
Cohen, A. M., *770
Cohn, Major L., 39-44
Cole, Harold S., 16-22
Colinas, Rodolfo, *359
Colle, E., *185
Colipp, Nolan J., *366
Colwell, A. B., Jr., 209-215
Colwell, Arthur R., Jr., 839
Colwell, James R., *187
Conly, Patricia, 175-177
Constand, G. R., *120
Conway, Martin, *1043
Corbo, Lucille, *311-312
Corkey, B. E., *344-345
Cornblath, Marvin, *179-180, *181
Cornell, Robert F., *312
Corredor, D. G., *250
Costantine, Nicholas V., *773
Court, J. M., *1042-1043
Cowen, Donald H., 906-907
Cragan, Mary, *1200
Craig, James W., *56
Craig, L. S., *254
Craighead, John E., *247
Crawford, John S., *182

DIABETES: VOLUME 21 (1972) PAGE NUMBERS BY ISSUE

January, 1-64
February, 65-128
March, 129-192
April, 193-256
May, 257-320
Supplement 1, 321-384
Supplement 2, 385-714
June, 715-778
July, 779-842
August, 843-922
September, 923-986
October, 987-1050
November, 1051-1130
December, 1131-1210
AUTHOR INDEX 1972

M

Maccioni, I. A., *370
McCormick, J. R., *775
Mackay, Ian R., *914
Mackerer, C. R., *981
Mackay, J. S., *253
Macleod, R. J., *775
Mackowski, Edgar L., *187
Majno, Guido, *314
Majid, P. A., *913
Makulu, David R., *58, *982
Makowski, Mary E., *1013-1026
Mako, Mary E., *251
Markey, S. A., *1045
Malathy, K., 1162-1167
Maler, Mario, *359
Malherbe, Christian, *982
Malins, J. M., *186
Malone, John I., *315
Manchester, Keith L., 447-452
Mandel, Emanuel E., *364-365
Mann, J. I., *58
Mannheimer, Shoshana, *57
Mannz, F., *323
Marble, Alexander, 623-636
Marco, Jose, *58, 289-294, *837-838
Maria, J., *838
Mariani, M. M., *912, *1045, *1120
Marin, N., *250
Marinetti, G. V., *1121-1122
Marreiro Rocha, Dalva, *324
Marshall, Garland R., 508-508
Martin, David E., *774, *912
Martin, Donald B., *57, *1042
Martin, Pierre, *251
Martin, R. J., *315
Martino, Joseph A., *772
Masazumi, Adachi, *364
Mashiter, Keith, *346-347, *1047
Massara, F., *122
Massi-Benedetti, Ferdinando, *1199-1200
Masson, Georges M. C., *253
Matsaniotis, N., *182
Matty, A. J., *179
Maturo, Joseph M., Ill, *1045
Mayhew, Donald E., *774, *912
Mayhoff, R. C., *983
Mayer, M., *1046
Mayer, S. A., *838
Meyer, Alfred F., *163-174
Meyer, James H., *252
Meyer, Michael J., *252
Meyer, Richard J., *372
Meyers, B. D., *912-913
Meyer, Burton, *982
Muzzo, Santiago, *1042
Myers, R. D., *1046

N

Nafa, Mary Ann, *383
Najarian, J. S., *322
Nakao, Komei, *773-774
Nankin, Howard, *909-910
Napoli, Elena, 1168-1172
Narrod, Stuart A., *247
Nath, M. C., *311
Nath, N., *311
Needham, L. B., *337-338
Nemerson, Yale, *312
Nestel, Paul J., *835, 923-929
Neubauer, B., *252

DIABETES: VOLUME 21 (1972) PAGE NUMBERS BY ISSUE

January, 1-64
February, 65-128
March, 129-192
April, 193-256
May, 257-320

Supplement 1, 321-384
Supplement 2, 385-714
June, 715-778
July, 779-842
August, 843-922
September, 923-986
October, 987-1050
November, 1051-1130
December, 1131-1210
AUTHOR INDEX 1972

Neville, David M., Jr., *334-335, *1200
Neville, E. D., *836
New, Maria I., *120, *1046
Newman, G. B., *188
Newton, N. E., *1200
Newton, R. H., *314
Nielsen, Poul Ebbe, *186-187
Nijjar, M. S., °836
Nishikawa, Mitsuo, °60
Nitzan, M., °315
Nobis, H., °913
Noda, Katuhiko, °183
Noe, Bryan D., °58-59
Nonaka, K., °836
Noe, Bryan D., °58-59
Norman, Nils, 814-826, 939-945
Novak, J., °314
Novak, Ladislav P., °911
Ockner, Robert K., °121
O'Dell, Boyd L., °59
Oden, A., °312-313
Ogilvie, James T., °362-363
Ogilvie, R. I., °1206
Ohira, S., °1204
Oj, N., °252
Okada, Akira, °1204
Oldendorf, William H., °315
Olefsky, Jerrold, °372, °380, °1121
Olsen, Ward A., °252-253
Olsson, A. G., °980
Ono, Masayoshi, °1122
Opperman, W., °321, °373
Orch, Leo, °121, °326, °346, °368, °511-534, °594-604, °838, °1060-1071
O'Reilly, Robert A., °183
Orrnholt, Jorgen, °911
Oró, L., °860
Osborne, Robert K., °57
Oschman, James L., °315
Osterby, R., °913
Ostheimer, Gerald W., °118-119
Ostrowski, K., °909
O'Sullivan, John B., °183-184
Ouyang, Ann, °247-248
Overack, Daniel E., °182-183
Oweiss, Ibrahim M., °1118
Owen, Charles A., Jr., °775
Owen, O., °375
Owen, W. Crawford, °157-162, °1202

Packer, James T., 715-721, °1043
Palazzolo, M., °336
Pallotta, Johanna, °367, °376-377
Pallofta, M. G., °323
Pandos, °775-776
Pannbaker, R. G., °838
Park, B. N., °373
Park, C. R., °254, °385, 439-446
Parker, Donald C., °913
Park, Gary A., °1046
Parrilla, Roberto, °341
Parrish, James E., °980
Partidge, John W., °1204
Paxa, P., °838
Pasz, Victor, 722-732
Patel, D., °373
Patel, Tehmi N., °350, °1205
Paul, P., °375
Peabody, Robert R., °189
Pearson, Donald, °184
Pearson, Margaret J., °1204
Pek, Sum, °55-56, 216-223, °324, °331-332, °1204
Pekar, A. H., °836
Pellizzari, E. D., °313
Penhos, Juan C, °356, °360-361, °375, °775
Peretz Lloret, A., °25-30
Perley, Michael J., °837
Perry, W. F., °183
Petersen, Daniel T., °339
Petersen, James D., °572-581
Petersson, Bengt, °909
Petersson, B., °1120-1121
Pfeiffer, Ernst F., °313, °369, °913, °1072-1076
Phillips, Gerald B., °184
Pilkis, S. J., °335
Pillay, Veerasamy, K. G., °54
Pinnock, Bernard L., °58, °771
Pinel, M., °805-813
Pinto, J. E. B., °253
Pirat, J., °123
Pitot, Henry C, °187
Pitot, Henry C, °187
Pitvak, E. D., °313
Pock, G., °253
Porch, James, °338
Porte, Daniel Jr., °342, °348, °775, °1123
Poter, Barry L., °374-375
Pottier, Van R., °54
Povilge, P. R., °120
Powell, William John Jr., °118-119
Pratt, O. E., °247
Price, Steven, °345
Priegge, William F., °55
Prior, R. L., °184
Prakas, A. C., °184
Prout, Thaddeus E., °1035-1040
Pruit, Kenneth M., °872-880
Pyke, D. A., °321-322, °1199
Quibra, Ricardo, °55-56
Quickel, Kenneth E., Jr., °184, °315-316, °779-788, °1200
Rackley, C. E., °967
Rackhasthnamurthy, B., °733-743
Ragab, Abdelsalam H., °906-907
Raghuramulu, N., °1119-1120
Rahela, Krishan L., °1046
Raiha, Niels, °250-251
Raines, P. L., °775
Rajio, K., °250-251
Ramey, Estelle R., °975
Rand, Robert W., °349
Randell, Philip J., °538-545
Rao, K. Visweswara, °1192-1196
Rao, Kamal S. Jaya, °1192-1196
Rappaport, A. M., °1204
Raptis, S., °913
Ratho, Eugenio, °330
Raskin, Philip, °101-107
Rauls, Tyler J., °189
Reaven, Efe P., °339
Reaven, Gerald M., °84-88, °339, °372, °794-796, °1109-1115, °1121
Recant, Lillian, °329, °359-360, °775
Reddy, W. J., °351-352, °371
Reddy, Bandaru S., °775
Redetzki, H. M., °838
Redetzki, J. E., °838
Reed, D. W., °838
Reed, Peter C., °982
Regen, D. M., °775
Reichard, G. A., Jr., °375

January, 1-64
February, 65-128
March, 129-192
April, 193-256
May, 257-320

Supplement 1, 321-384
Supplement 2, 385-714
June, 715-778
July, 779-842

Author Index 1972
AUTHOR INDEX 1972

<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rottiers, R.</td>
<td>322-323</td>
</tr>
<tr>
<td>Roth, Jesse</td>
<td>313, 334-335, 572-581, 661-662, 1013-1026</td>
</tr>
<tr>
<td>Ross, Iain S.</td>
<td>54</td>
</tr>
<tr>
<td>Ross, Noel R.</td>
<td>1043-1210</td>
</tr>
<tr>
<td>Rott, Rolf</td>
<td>1122-1123</td>
</tr>
<tr>
<td>Renold, Albert E.</td>
<td>179, 246, 326, 368, 510, 619-631, 1060-1071</td>
</tr>
<tr>
<td>Retzlaff, K.</td>
<td>911</td>
</tr>
<tr>
<td>Reuter, Melanie</td>
<td>772</td>
</tr>
<tr>
<td>Reza, Michael J.</td>
<td>30</td>
</tr>
<tr>
<td>Ribes, G.</td>
<td>912, 1120</td>
</tr>
<tr>
<td>Ricketts, Henry T.</td>
<td>648, 660, 677, 684</td>
</tr>
<tr>
<td>Riken, J. F.</td>
<td>352</td>
</tr>
<tr>
<td>Rifenberick, David</td>
<td>247</td>
</tr>
<tr>
<td>Rimoin, D. L.</td>
<td>1045-1046</td>
</tr>
<tr>
<td>Rishi, Surendra</td>
<td>248, 414-425</td>
</tr>
<tr>
<td>Rittenberg, H.</td>
<td>349</td>
</tr>
<tr>
<td>Rovan, Ora M.</td>
<td>185</td>
</tr>
<tr>
<td>Rose, Shelby D.</td>
<td>1043-1210</td>
</tr>
<tr>
<td>Rossman, Lawrence G.</td>
<td>913</td>
</tr>
<tr>
<td>Rössner, S.</td>
<td>316, 980</td>
</tr>
<tr>
<td>Rott, Jesse</td>
<td>313, 334-335, 673-677, 1200</td>
</tr>
<tr>
<td>Rott, Nathaniel H.</td>
<td>349</td>
</tr>
<tr>
<td>Rottiers, R.</td>
<td>322-323</td>
</tr>
<tr>
<td>Roux, J.</td>
<td>250-251</td>
</tr>
<tr>
<td>Roux, Nathan H.</td>
<td>349</td>
</tr>
<tr>
<td>Ruderman, Neil B.</td>
<td>341, 343</td>
</tr>
<tr>
<td>Ruddle, R. D.</td>
<td>983</td>
</tr>
<tr>
<td>Ruegamer, W. R.</td>
<td>1047</td>
</tr>
<tr>
<td>Ruiz, Michael J.</td>
<td>30</td>
</tr>
<tr>
<td>Rupp, John W.</td>
<td>57, 315-316, 56, 181, 771-772</td>
</tr>
<tr>
<td>Ruttgers, H.</td>
<td>1045</td>
</tr>
<tr>
<td>Ry, Graeme B.</td>
<td>314</td>
</tr>
<tr>
<td>Ryan, Jerome R.</td>
<td>185</td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Saba, Thomas M.</td>
<td>312</td>
</tr>
<tr>
<td>Sadeghi-Nejad, A.</td>
<td>377</td>
</tr>
<tr>
<td>Safrit, Henry F.</td>
<td>184</td>
</tr>
<tr>
<td>Saito, Tokuko</td>
<td>1047</td>
</tr>
<tr>
<td>Sakagami, Masanori</td>
<td>476-484</td>
</tr>
<tr>
<td>Sakai, Tunesada</td>
<td>336</td>
</tr>
<tr>
<td>Sakura, Naohiro</td>
<td>778-784</td>
</tr>
<tr>
<td>Salen, Gerald</td>
<td>1200-1201</td>
</tr>
<tr>
<td>Salten, Robert S.</td>
<td>913</td>
</tr>
<tr>
<td>Saner, G.</td>
<td>313</td>
</tr>
<tr>
<td>Santeusamino, Fausto</td>
<td>324</td>
</tr>
<tr>
<td>Santti, Risto S.</td>
<td>185</td>
</tr>
<tr>
<td>Saraceni, D.</td>
<td>23-30</td>
</tr>
<tr>
<td>Sauer, K.</td>
<td>361</td>
</tr>
<tr>
<td>Sauer, Christopher D.</td>
<td>334</td>
</tr>
<tr>
<td>Sauerherber, Richard D.</td>
<td>372</td>
</tr>
<tr>
<td>Savory, J.</td>
<td>376</td>
</tr>
<tr>
<td>Sax, Daniel S.</td>
<td>374, 1121</td>
</tr>
<tr>
<td>Saxon, C.</td>
<td>913</td>
</tr>
<tr>
<td>Sayers, George</td>
<td>983</td>
</tr>
<tr>
<td>Schanberg, Saul M.</td>
<td>252</td>
</tr>
<tr>
<td>Schauder, Peter</td>
<td>377-378</td>
</tr>
<tr>
<td>Schell, Harold P.</td>
<td>59, 983</td>
</tr>
<tr>
<td>Scheid, C.</td>
<td>377</td>
</tr>
<tr>
<td>Schein, P. S.</td>
<td>59</td>
</tr>
<tr>
<td>Scheynias, A.</td>
<td>123</td>
</tr>
<tr>
<td>Schieff, D.</td>
<td>185</td>
</tr>
<tr>
<td>Schimmel, Richard J.</td>
<td>59-60</td>
</tr>
<tr>
<td>Schieff, Edward M.</td>
<td>1198-1199</td>
</tr>
<tr>
<td>Schlickkrull, J.</td>
<td>849-865</td>
</tr>
<tr>
<td>Schmidt, William M. I.</td>
<td>912</td>
</tr>
<tr>
<td>Schnatz, J. David</td>
<td>353-354, 1043</td>
</tr>
<tr>
<td>Schneebock, B.</td>
<td>187-188</td>
</tr>
<tr>
<td>Schneider, Louis E.</td>
<td>983</td>
</tr>
<tr>
<td>Schnelle, Norbert</td>
<td>185</td>
</tr>
<tr>
<td>Scherr, Joel I.</td>
<td>101-107</td>
</tr>
<tr>
<td>Schiff, K.</td>
<td>249, 249-250</td>
</tr>
<tr>
<td>Scholz, Michael C.</td>
<td>914</td>
</tr>
<tr>
<td>Schubert, Paul H.</td>
<td>95, 1200-1201</td>
</tr>
<tr>
<td>Schroeder, Karl E.</td>
<td>1072-1076</td>
</tr>
<tr>
<td>Schott, Helmut G.</td>
<td>1121</td>
</tr>
<tr>
<td>Schteingart, David E.</td>
<td>331-332</td>
</tr>
<tr>
<td>Schullinger, John N.</td>
<td>837</td>
</tr>
<tr>
<td>Schwartz, Ernst</td>
<td>1046</td>
</tr>
<tr>
<td>Schwartz, Robert</td>
<td>60, 250-251</td>
</tr>
<tr>
<td>Schwarz, F.</td>
<td>1046</td>
</tr>
<tr>
<td>Schwarz, K.</td>
<td>369</td>
</tr>
<tr>
<td>Scopio, Ralph M.</td>
<td>247</td>
</tr>
<tr>
<td>Scott, David F.</td>
<td>54</td>
</tr>
<tr>
<td>Scow, Robert O.</td>
<td>946-954</td>
</tr>
<tr>
<td>Scriba, P.</td>
<td>983</td>
</tr>
<tr>
<td>Scully, Robert</td>
<td>1042</td>
</tr>
<tr>
<td>Seelig, Steven</td>
<td>983</td>
</tr>
<tr>
<td>Segal, Stanton</td>
<td>356</td>
</tr>
<tr>
<td>Sechlin, Judave</td>
<td>185, 771-772</td>
</tr>
<tr>
<td>Seifert, Eli</td>
<td>773-774</td>
</tr>
<tr>
<td>Seiler, M. W.</td>
<td>60</td>
</tr>
<tr>
<td>Selawry, Helena</td>
<td>329, 359-360</td>
</tr>
<tr>
<td>Seltzer, Holbrooke S.</td>
<td>955-966, 976-980</td>
</tr>
<tr>
<td>Senior, B.</td>
<td>377</td>
</tr>
<tr>
<td>Sarafini, A. N.</td>
<td>351</td>
</tr>
<tr>
<td>Service, F. John</td>
<td>836</td>
</tr>
<tr>
<td>Setchell, B. F.</td>
<td>57-58</td>
</tr>
<tr>
<td>Sethi, S. S.</td>
<td>373-374</td>
</tr>
<tr>
<td>Shah, Madhukar N.</td>
<td>983</td>
</tr>
<tr>
<td>Shanahan, E. Anne</td>
<td>118-119</td>
</tr>
<tr>
<td>Shapiro, Stanley H.</td>
<td>129-137, 325-326</td>
</tr>
<tr>
<td>Sharma, Bal K.</td>
<td>54</td>
</tr>
<tr>
<td>Sharma, Opendrka K.</td>
<td>253</td>
</tr>
<tr>
<td>Shaw, Ralph A.</td>
<td>367-368</td>
</tr>
<tr>
<td>Shaw, Walter N.</td>
<td>viii Supplement 2</td>
</tr>
<tr>
<td>Shchelkholisam, Bagher M.</td>
<td>378</td>
</tr>
<tr>
<td>Sheldon, W. H.</td>
<td>1201</td>
</tr>
<tr>
<td>Sheridan, B.</td>
<td>253</td>
</tr>
<tr>
<td>Sherman, Barry M.</td>
<td>313, 1043-1044, 1204</td>
</tr>
<tr>
<td>Sherman, Herbert</td>
<td>367</td>
</tr>
<tr>
<td>Sherwin, Robert S.</td>
<td>947</td>
</tr>
<tr>
<td>Shetty, Kaup R.</td>
<td>378</td>
</tr>
<tr>
<td>Shichiri, Motoaki</td>
<td>205-208</td>
</tr>
<tr>
<td>Shier, Nathan William</td>
<td>983</td>
</tr>
<tr>
<td>Shigeta, Yokio</td>
<td>203-208, 827-831</td>
</tr>
<tr>
<td>Shih, Vivian</td>
<td>316</td>
</tr>
<tr>
<td>Shima, Kenji</td>
<td>60</td>
</tr>
<tr>
<td>Shimizu, Taeko</td>
<td>1047</td>
</tr>
<tr>
<td>Shishida, Yoshimasa</td>
<td>1047</td>
</tr>
<tr>
<td>Shizume, Kazuo</td>
<td>1047</td>
</tr>
<tr>
<td>Shlatt, L.</td>
<td>1121-1122</td>
</tr>
<tr>
<td>Shradar, Ruth E.</td>
<td>1047</td>
</tr>
<tr>
<td>Shreeve, W. W.</td>
<td>252</td>
</tr>
<tr>
<td>Shroyer, Lois A.</td>
<td>382</td>
</tr>
</tbody>
</table>

DIABETES: VOLUME 21 (1972) PAGE NUMBERS BY ISSUE

<table>
<thead>
<tr>
<th>Month</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>1-64</td>
</tr>
<tr>
<td>February</td>
<td>65-128</td>
</tr>
<tr>
<td>March</td>
<td>129-192</td>
</tr>
<tr>
<td>April</td>
<td>193-256</td>
</tr>
<tr>
<td>May</td>
<td>257-320</td>
</tr>
<tr>
<td>Supplement 1</td>
<td>321-384</td>
</tr>
<tr>
<td>Supplement 2</td>
<td>385-714</td>
</tr>
<tr>
<td>June</td>
<td>715-778</td>
</tr>
<tr>
<td>July</td>
<td>779-842</td>
</tr>
<tr>
<td>August</td>
<td>843-922</td>
</tr>
<tr>
<td>September</td>
<td>923-986</td>
</tr>
<tr>
<td>October</td>
<td>987-1050</td>
</tr>
<tr>
<td>November</td>
<td>1051-1130</td>
</tr>
<tr>
<td>December</td>
<td>1131-1210</td>
</tr>
</tbody>
</table>
AUTHOR INDEX 1972

Turner, Paul, *771
Turner, R. C., *187-188
Tweel, Harry K., *188
Tyler, Jean M., *302
Tyrell, J. B., *188
Tyson, R. Robert, *322-323
Tzagournis, Manuel, *381-382
Tze, Wah Jun, *327
Ullygot, G., *1199
Underwood, Louis E., *776, *1122
Valverde, Isabel, 289-294
van Assche, F. A., *253-254
Vance, James E., 570-571, 581-583, *1047, *1122
Van Herie, Andre J., *325-326
Van Lan, Vo, *375
Van Marthens, Edith, *189
vanRiet, H. G., *1046
vanWayjen, R. G. A., *1046
VanWoert, Maureen, *1119
Van Wyk, Judson J., *1122
Vanderlaan, Eileen F., *913
Vandamani, Partab T., *325, *382
Vasil'eva, I. A., *55
Vecchio, Luigi Lo, 1168-1172
Vecchio, Luigi Lo, 1168-1172
Venezia, Carlo M., *330-331
Vermeulen, A., *914
Veros, A. J., 496-491
Vilar, O., 23-30
Villanueva, Maria L., 289-294, *837-838
Villee, Claude A., *185, *1199
Vinay, Patrick, *251
Vince, F. P., *119-120
Vining, Keats K., Jr., *382
Visk, W. J., *184
Vogler, Nancy J., *254, 881-905
Voight, Karl H., *913
Voigt, K. D., *1204
Voina, Sandra J., *776, *1122
Volk, Bruno W., *338-339
Volund, Aa., 805-813
Voyles, Nancy, *329
Wade, Angel, *329
Walsh, Georgia, *772
Wahlberg, F., *122-123
Wajcha, Bernard, *363
Walaas, E., *123
Walker, G., *379
Walker, Mary M., 987-998
Walter, Robert M., *333-334
Wannemacher, R. W., Jr., *316
Wapnir, Paul A., *181
Ward, J. D., 1173-1178
Ward, Walter F., *332
Wasserman, R. C., *314
Watts, David T., *383
Weber, B., *1205
Weidemann, Eckehart, *1046
Weiniges, K., *769
Weinstock, Murray, *376
West, Kelly M., *338
Wexler, B. C., *1123
Whayne, Thomas F., Jr., *188
Wight, R., *189
Wurtman, R. J., *909
Wilson, John E., *1205
Wilson, Penelope, *247
Winand, J., *119, *182
Winters, Robert W., *837
Wise, P. H., *1120
Wissler, R. W., *344
Wittens, Lee, *376-377
Wittman, James S., III, *188-189
Wold, John S., 71-79
Wolf, Richard C., *774, *912
Wolfe, Walter G., *1206
Wolf, J. E., *118
Wolf, M. Kirsch, *56
Wolff, Peter H., *254
Wollheim, C. B., *346
Woods, James S., *254
Woods, Stephen C., *1123
Wrenshall, G. A., *382-383
Wright, Peter H., *58, 605, 617-618
Wright, R., *189
Yakovac, William C., *189
Yamaguchi, N., *775
Yamaguchi, K., *250-251
Yanaihara, Chizuko, 476-484
Yanaihara, Noboru, 476-484
Yeung, C. Y., *1123
York, David A., *388, *1206
Young, J. D., *1118
Young, Margaret C., *120
Younger, Donna, 31-37
Yudilevich, David L., *180
Yunis, Eduardo, *80
Zahn, Helmut, 457, 468-475
Zaltu, Clyde, *772-775, *981
Zamenof, Stephen, *189
Zandomeneghi, R., *1206
Zatzman, Marvin L., *182-183
Zemans, Frances J., *1041, *1047
Zetterstrom, Rolf, *179-180
Zilboh Vincent A., *119
Ziegler, M., *185, *906, *914
Zingg, W., *254
Zimmerman, B., *1206
Zor, Uriel, *346-347
Zuckerman, Leon, 209-215, *1199
Zweig, S. M., *89
Zweng, H. Christian, *189
Opposite Kinetics of L-Leucine and L-Phenylalanine Induced Insulin Release Studied with the Perfused Rat Pancreas

R. LANDGRAF, M. LANDGRAF-LEURS, P. SCRIBA, and K. SCHWARZ (Introduced by E. F. PFEIFFER*), Munich, Germany

Little is known about the dynamics of insulin release provoked by amino acids. Therefore isolated pancreases were perfused with saline-dextran buffer, containing leucine or phenylalanine, without recycling. Samples were taken at short intervals and the amount of insulin was measured by an immunoassay. In the absence or presence of substimulatory levels of glucose, 10 and 20 mM leucine caused a biphasic pattern of insulin secretion, comparable to that of 20 mM glucose. When leucine was perfused together with 20 mM glucose no significant additive effect could be observed. However when glucose plus leucine were perfused after an initial stimulatory period with leucine alone, a typical biphasic response was again observed and the additive effect was more pronounced. In contrast, phenylalanine provoked no insulin release in the absence of glucose. In the presence of 2.5 mM glucose, a burst of insulin output occurred after removal of the phenylalanine from the perfusate. When phenylalanine (10 or 20 mM) was added during the second phase of the glucose-induced insulin release, it potentiated the glucose effect after an initial inhibition.

These data suggest the existence of more than one receptor for amino acids for the stimulation of insulin secretion, comparable to, but not necessarily identical with the carbohydrate receptors. Assuming that leucine and phenylalanine use the same transport system (D.L. Oxender, and H. N. Christensen, J. Biol. Chem. 238: 3686, 1963) our data indicate that the receptor sites for the stimulation of insulin secretion by amino acids may not be transport sites.