
fnins-13-00002 January 22, 2019 Time: 19:46 # 1

ORIGINAL RESEARCH
published: 24 January 2019

doi: 10.3389/fnins.2019.00002

Edited by:
Rupert W. Overall,

German Center for Neurodegenerative
Diseases (DZNE), Germany

Reviewed by:
Björn Spittau,

Universitätsmedizin Rostock,
Germany

Khyobeni Mozhui,
University of Tennessee Health

Science Center (UTHSC),
United States

Michael Oldham,
University of California,

San Francisco, United States

*Correspondence:
Shradha Mukherjee

smukher2@gmail.com
Felix L. Struebing

felix.struebing@
med.uni-muenchen.de

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Neurogenomics,
a section of the journal

Frontiers in Neuroscience

Received: 31 August 2018
Accepted: 03 January 2019
Published: 24 January 2019

Citation:
Mukherjee S, Klaus C,

Pricop-Jeckstadt M, Miller JA and
Struebing FL (2019) A Microglial

Signature Directing Human Aging
and Neurodegeneration-Related Gene

Networks. Front. Neurosci. 13:2.
doi: 10.3389/fnins.2019.00002

A Microglial Signature Directing
Human Aging and
Neurodegeneration-Related Gene
Networks
Shradha Mukherjee1,2,3*†, Christine Klaus4†, Mihaela Pricop-Jeckstadt5, Jeremy A. Miller6

and Felix L. Struebing7,8,9*†

1 Health Informatics Advanced Science Masters Program, Arizona State University, Tempe, AZ, United States, 2 Department
of Neurology, University of California, Los Angeles, Los Angeles, CA, United States, 3 Department of Bioinformatics,
University of California, Los Angeles, Los Angeles, CA, United States, 4 Neural Regeneration Group, Institute
of Reconstructive Neurobiology, University of Bonn, Bonn, Germany, 5 Institute for Medical Informatics and Biometry, Faculty
of Medicine “Carl Gustav Carus”, TU Dresden, Dresden, Germany, 6 Allen Institute for Brain Science, Seattle, WA,
United States, 7 Department of Translational Brain Research, German Center for Neurodegenerative Diseases, Munich,
Germany, 8 Center for Neuropathology and Prion Research, Ludwig Maximilian University of Munich, Munich, Germany,
9 Department of Ophthalmology, Emory University, Atlanta, GA, United States

Aging is regarded as a major risk factor for neurodegenerative diseases. Thus, a better
understanding of the similarities between the aging process and neurodegenerative
diseases at the cellular and molecular level may reveal better understanding of
this detrimental relationship. In the present study, we mined publicly available gene
expression datasets from healthy individuals and patients affected by neurodegenerative
diseases (Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease) across
a broad age spectrum and compared those with mouse aging and mouse cell-
type specific gene expression profiles. We performed weighted gene co-expression
network analysis (WGCNA) and found a gene network strongly related with both
aging and neurodegenerative diseases. This network was significantly enriched with
a microglial signature as imputed from cell type-specific sequencing data. Since mouse
models are extensively used for the study of human diseases, we further compared
these human gene regulatory networks with age-specific mouse brain transcriptomes.
We discovered significantly preserved networks with both human aging and human
disease and identified 17 shared genes in the top-ranked immune/microglia module,
among which we found five human hub genes TYROBP, FCER1G, ITGB2, MYO1F,
PTPRC, and two mouse hub genes Trem2 and C1qa. Taken together, these results
support the hypothesis that microglia are key players involved in human aging and
neurodegenerative diseases, and suggest that mouse models should be appropriate
for studying these microglial changes in human.
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INTRODUCTION

Healthy aging is turning into a major societal challenge.
Worldwide, over 960 million people are 60 years or older and this
number is expected to double by the year 2050 (United Nations,
Department of Economic and Social Affairs, Population Division,
2017). Furthermore, the risk of developing neurodegenerative
disease increases with age (Niccoli and Partridge, 2012). The
United States medical health system is already spending over
$800 billion dollars for the therapy of disorders related to aging
(Gooch et al., 2017), of which approximately one third is used
for dementia-related diseases. While great advances have been
made in unraveling the underlying molecular processes of the
aging brain (Kirkwood, 2011; Mattson and Arumugam, 2018),
so far only symptomatic treatments have been established, while
curative treatments are still lacking.

Some neurodegenerative disorders are clearly of a heritable
nature, but unfortunately, most of them are more complex
and caused in a polygenic or even omnigenic manner (Boyle
et al., 2017). Although genome-wide association studies (GWAS)
have improved our understanding of common risk genes for
neurodegenerative diseases (Bertram and Tanzi, 2009; Ramanan
and Saykin, 2013; Pihlstrøm et al., 2017; Pottier et al.,
2018), a clearer understanding of how ‘healthy aging’ turns
into neurological impairments (‘poor aging’) is needed. The
expression of certain disease-associated genes is known to change
with time and there might be a critical transition state before the
onset of a neurodegenerative disease (Fjell et al., 2014), however,
it is not clear whether complete networks break down or whether
certain cell types drive healthy aging into poor aging (Kumar
et al., 2013; Carmona-Gutierrez et al., 2016; Plaza-Zabala et al.,
2017).

In the recent years, time-effective and low-cost high-
throughput sequencing made it possible to analyze whole
transcriptomes of humans and rodents even on a single-cell
level. Here, we use a systems biology approach to compare
publicly available gene expression datasets from healthy humans
and patients affected by complex neurodegenerative disorders
[Alzheimer’s disease (AD), Huntington’s disease (HD), and
Parkinson’s disease (PD)] across a broad spectrum of ages
to address the question how ‘healthy aging’ turns into ‘poor
aging.’ We obtain relevant transcriptional modules based on their
co-expression relationship and further demonstrate that some
modules are enriched in specific cell types such as microglia.

Since studying the human brain transcriptome is limited
to post-mortem tissue analyses, most knowledge about brain
aging comes from mouse or lower vertebrate models (Rosenthal
and Brown, 2007). However, the cognitive decline in these
models, which is the most accurate clinical hallmark for
aging and neurodegeneration, is less severe than what is
seen in humans. Thus, we further contrast our findings
of human aging to data from healthy aging mouse brains
and found similarly preserved networks and enrichments in
cell type signature genes. Our study highlights microglia
signatures in the center of common biological processes in
human aging and neurodegenerative disease, as well as mouse
aging.

MATERIALS AND METHODS

Data Availability
Our computational pipeline used in this publication is
open-sourced and available at: https://github.com/smukher2/
GithubFrontiersNeurosciDec2018.

Criteria for Selection and Data Sources
Gene expression profile (microarray and RNA-seq) datasets
available on Gene Expression Omnibus (GEO) were selected. For
analysis of aging and disease, datasets from studies with multiple
time points across age for control and neurodegenerative
disease brains were selected. Human AD, HD, and PD
disease studies that met these selection criteria, GSE33000
[microarray, prefrontal cortex, brain (Narayanan et al.,
2014)] and GSE43490 [microarray, substantia nigra, brain
(Corradini et al., 2014)] were analyzed. For cross species
comparison, mouse hippocampus RNA-seq datasets from
studies with multiple time points across age were selected:
GSE61915 (Stilling et al., 2014), GSE73503 (Aaronson and
Rosinski, 2015) and GSE83931 (Bundy et al., 2017). To
investigate cell type signatures associated with aging and
neurodegenerative diseases, an RNA-seq dataset taken from
mouse brain (GSE52564, Zhang et al., 2014) encompassing
microglia, astrocyte, neuron, oligodendrocyte precursors,
newly formed oligodendrocytes, mature oligodendrocytes and
endothelial cells was utilized.

Microarray Data Preparation and
Annotation
Two human aging and neurodegenerative disease microarray
datasets were downloaded from GEO using GEOquery
(Davis and Meltzer, 2007): GEO33000 (dual-color) and
GEO43490 (single-color). Gene expression matrices were
obtained from GEO, which consisted of normalized log10
(Cy5/Cy3) test/reference for GSE33000 (raw ‘CEL’ files not
available) and normalized log2 signal intensity for GSE43490.
Gene expression matrices were converted to linear space,
quantile normalized with Lumi 2.32.0 (Du et al., 2008), and
then log2+1-scaled. ProbeIDs were annotated using the
appropriate GPL file downloaded from GEO. The output
metadata and gene expression files were merged in the
same order. This resulted in a combined sample size of 637
human aging and human neurodegenerative disease data
points.

RNA-Seq Data Preparation and
Annotation
Raw fastq RNA-seq reads were obtained for mouse hippocampus
aging and mouse cerebral cortex cell types. GSE83931 and
GSE73503 were total RNA samples prepared for single-
end (NEBnext Ultra mRNA library preparation kit) and
paired-end sequencing (standard Illumina library preparation
protocols), respectively. GSE61915 and GSE52564 were polyA
samples prepared for single-end sequencing using the TruSeq
library preparation kit. Fastq files were processed on Cyverse’s
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Atmosphere cloud-computing platform led by Arizona State
University, Tempe, AZ, United States (Goff et al., 2011;
Merchant et al., 2016). Briefly, raw reads were obtained with
sratoolkit.2.9.1 (Leinonen et al., 2011) and quality was evaluated
with fastqc_v0.11.7 (Brown et al., 2017). We employed the
tophat 2.1.1 aligner (Trapnell et al., 2009) to map reads to the
mouse reference genome mm10 (GRCm38.92) from Ensembl
(Zerbino et al., 2018) with the annotation file from GENCODE
(GRCm38.92), using recommended/default tophat parameters
for paired-end and single-end reads (parameters: –b2 –very-
fast –no-coverage-search –no-novel-juncs), which generated bam
files from samples aligned at ∼90% or more. The mapped
bam files were sorted with samtools-0.1.19 (Li et al., 2009).
Sorted bam files were processed with HTSeq 0.10.0 (Anders
et al., 2015) to obtain counts of reads aligned to genes
(parameters: -r pos –t gene_name). The output metadata and
gene expression htseq-count files were merged, normalized to
the log2+1 scale using edgeR 3.22.5 (Robinson et al., 2009)
and filtered for a cpm library size of >1 count in ≥3 samples,
which resulted in a combined mouse aging sample size of 71.
Additionally, for GSE52564, the sorted bam files were processed
with cuffdiff2 from cufflinks_2.1.1-4 (Trapnell et al., 2012)
to obtain a list of differentially expressed genes or cell type
signature genes as defined by a fold change >20 in comparison
of the given cell type to all other cell types. Our list was
comparable to the previously published cell type signature gene
list obtained from this same GSE52564 dataset (Zhang et al.,
2014).

Adjusting for Surrogate Variables
Including Batch Effects
We used the Surrogate Variable analysis (SVA 3.28.0) R package
(Leek and Storey, 2007; Leek et al., 2012) for removal of
confounding effects from the combined human microarray
expression data and combined mouse RNA-seq expression
data (SVA model: ∼study or batch + gender + disease +
age; null model: ∼study or batch + gender). Because tissue
and study/batch were highly correlated, we only used one of
these confounding factors (study/batch) for SVA modeling to
avoid multicollinearity. For the estimation of variable effects by
SVA the “be” method was used. SVA itself does not give the
adjusted or normalized expression values and is therefore used
in combination with the linear regression model (LM) fitting
function from the Limma 3.36.5 R package (Ritchie et al., 2015).
This resulted in SVA+LM normalized expression for age and
neurodegenerative disease effects in human and mouse merged
data, which was then used as input for weighted gene co-
expression network analysis (WGCNA) separately for mouse and
human.

Data Used for WGCNA
Matching of unique microarray gene symbols between the human
SVA+LM normalized datasets (GSE33000 and GSE43490) left
7301 common genes that were run through the WGCNA
meta-analysis pipeline. For the mouse data, gene symbols
were first mapped to human gene symbols using biomaRt

[version 2.36.1, (Kasprzyk, 2011)], then arranged by expression
variability in descending order, and finally the same number
of genes as in human (7301) were used as input for
WGCNA.

Meta-Analysis of Gene Expression
Networks Using WGCNA
We conducted WGCNA meta-analysis (Miller et al., 2010)
and utilized other functions of the WGCNA (Langfelder
et al., 2008) R package (version 1.66) to compare co-
expressed gene networks between (1) human aging and human
neurodegenerative disease and (2) mouse aging. For both,
genes were hierarchically clustered and groups of co-expressed
genes (modules) were generated using the dynamic tree cutting
algorithm with the following major parameters: soft power = 12,
TOMType = “signed,” deepSplit = 2, pamStage = TRUE,
cutHeight = 0.99 and minClusterSize = 30-3∗deepSplit. Each
module was assigned a unique color label. Hub genes were
identified for each module using gene-module association KME
values. Statistical significance was determined by regressing
the traits onto the eigengene of the module, also called trait
analysis (Plaisier et al., 2009), which revealed modules that were
significantly associated with age (for mouse and human datasets)
and disease (for human datasets).

Identification of Cell Type Signatures in
Gene Modules
To identify cell type signatures enriched in the aging and
neurodegenerative disease preserved modules in mouse and
human, we utilized the inbuilt hypergeometric test function
“userListEnrichment” from the WGCNA 1.66 R package. We
found overlapping genes between WGCNA modules and the
set of cell type signature genes by pairwise comparison, and
determined the significance of the overlaps with p-values
adjusted with Bonferroni’s method for multiple testing. Cell
type signatures of microglial hub genes were confirmed using
the RNA-Seq Data Navigator tool, which is freely available
online as part of the Allen Cell Types Database (© 2015 Allen
Institute for Brain Science)1. This was done by inputting hub
genes in the “Gene Selection” box and building a “Group Plot”
using default parameters. Cluster names were modified from
the online tool to highlight broad cell types of origin, but
no modifications were made to the resulting gene expression
signatures. For mouse, cell types were grouped by “subclass” for
ease of visualization.

Cross-Species Comparison of Networks
We then assessed which modules, if any, were preserved between
the human and mouse networks using module preservation Z
statistics and p-values as described in the WGCNA package
documentation (Langfelder et al., 2011). Similarly, we used
this hypergeometric test described in the previous section to
identify modules in the human and mouse networks with
a significant number of overlapping genes. Together, these

1http://celltypes.brain-map.org/rnaseq
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strategies allowed us to identify mouse and human modules that
represent equivalent cell types of biological processes.

KEGG Pathway and Reactome Pathway
Analysis of Gene Expression Networks
The modules that were most preserved were annotated and
characterized with KEGG pathways and Reactome pathways with
the R package enrichR 1.0 (Jawaid, 2017). The top hits of the
package output ‘combined scores’ and adjusted p-values were
used to determine significance.

RESULTS

The present article comprises results from the Systems Genetics
of Neurodegeneration Summer School held in 2017 and
combines analyses from multiple published high-throughput
transcriptome datasets (Table 1) that were re-analyzed according
to the experimental diagram shown in Figure 1.

We first combined two large microarray expression datasets
for three neurodegenerative disorders: AD and HD with their
respective controls (Narayanan et al., 2014), and PD with its

TABLE 1 | Overview of the datasets used.

Dataset Tissue Design Platform GEO accession Reference ID # Reference

DLPFC (BA9) brain
tissues of AD patients,
HD patients, and
non-demented controls
samples

Postmortem prefrontal
cortex from Harvard Brain
tissue resource center

624 individual DLPFC
samples were profiled
against a common DLPFC
pool constructed from the
same set of samples

Agilent 44K array
(GPL4372)

GSE33000 GSM1423780 to
GSM1424403

Narayanan et al.,
2014

Transcriptomic profiles
of controls and
Parkinson’s disease
patients

Postmortem samples of
dorsal motor vagal nucleus,
locus coeruleus, and
substantia nigra from
controls and PD subjects
from Brain Bank of the
Brazilian Aging Brain Study
Group, BEHEEC-FMUSP
Note: In our present study,
we only used the substantia
nigra tissue data

Transcriptomic profiles of
controls and Parkinson’s
disease patients were
compared using SAM test
for LC or Wilcoxon
Mann–Whitney test for SN
and VA (p < 0.005 and
p < 0.01, respectively) in
order to identify differentially
expressed transcripts

Agilent-014850 Whole
Human Genome
Microarray 4x44K
G4112F (Probe Name
version)

GSE43490 GSM1294118 to
GSM1294130

Corradini et al.,
2014

Transcriptome
database of eight cell
types of mouse
cerebral cortex

Isolated and purified
neurons, astrocytes,
oligodendrocyte precursor
cells, newly formed
oligodendrocytes,
myelinating
oligodendrocytes,
microglia, endothelial cells,
and pericytes from mouse
cerebral cortex (different
mouse lines)

RNA isolated from purified
cell samples using a highly
sensitive algorithm to
detect alternative splicing in
each gene were used to
identify cell type enriched
genes

Illumina HiSeq 2000
(Mus musculus)
(GPL13112)

GSE52564 GSM1269903 to
GSM1269916

Zhang et al., 2014

Transcriptome data of
young and old mouse
hippocampus

Mouse hippocampus of 3,
24, and 29 months old
C57BL/6J mice

polyA-enriched RNA
extracted from mouse
hippocampus in three
different age groups [3M vs.
24M (n = 5–6, single-end
sequencing) and 3M vs.
29M (n = 3, paired-end
sequencing)]

Illumina HiSeq 2000
(Mus musculus)
(GPL13112)

GSE61915 SRR1593496 to
SRR1593512

Stilling et al., 2014

Transcriptome data of
knock-in mouse
models of Huntington’s
disease

Mouse hippocampus of 2,
6, and 10 months old
knock-in mice with CAG
lengths of 20, 80, 92, 111,
140, 175 along with
littermate control wild-type
animals Note: In our
present study, we only used
WT data

mRNA expression profile of
male and female (n = 4
each) mice of three different
age points and seven
different conditions (CAG
lengths = normal, 20, 80,
92, 111, 140, 175)

Illumina HiSeq 2000
(Mus musculus)
(GPL13112)

GSE73503 SRR2531532 to
SRR2531555

Aaronson and
Rosinski, 2015

Transcriptome data of
the developing mouse
hippocampus

Mouse hippocampus of 1,
2, and 4 months old B6
mice

Hippocampal mRNA from
1, 2, and 4 months old
male and female B6 mice
were analyzed by RNA
sequencing of five
biological replicates

Illumina HiSeq 2500
(Mus musculus)
(GPL17021)

GSE83931 SRR3734796 to
SRR3734825

Bundy et al., 2017
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FIGURE 1 | Experimental design and data pre-processing. Two microarray-based gene expression datasets of human patients including three neurodegenerative
diseases and age-matched controls were combined and analyzed. Simultaneously, three RNA-sequencing-based gene expression datasets from mouse
hippocampus were combined. The human and the mouse datasets were corrected for batch effects and gene networks were constructed with WGCNA.
Species-specific networks were checked for overlap with cell type-specific RNA-sequencing data. AD, Alzheimer’s disease; HD, Huntington’s disease; PD,
Parkinson’s disease; SN, substantia nigra.

FIGURE 2 | Removal of batch effects and gene network construction in human aging and neurodegeneration. (A) Age and gender distribution for the combined
human dataset. (B,C) The different microarray datasets showed a strong batch effect, which was corrected using SVA to remove confounders while retaining age
and disease as main discriminators (CON, healthy controls; ND, neurodegeneration). (D) WGCNA modules: Each row corresponds to one gene co-expression
network (labeled by color). Numbers in the table indicate the Pearson correlation coefficient r and the associated p-values in parentheses. Coloring of the table
encodes the correlation between each phenotype and each module eigengene (scale on the right).
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respective controls (Corradini et al., 2014) (Figure 1). These
gene expression data were either taken from human post-
mortem prefrontal cortex (AD + HD), or human post-mortem
substantia nigra (PD). We obtained one large dataset of n = 637
patients and controls with balanced gender distribution and
an age range of 18–106 years (Figure 2A). Since these data
were originally gathered in different laboratories and originated
from different brain areas, there was a strong batch effect
(Figure 2B). Furthermore, neurodegenerative disease is known
to be a strong confounder of aging, and vice-versa (Hung
et al., 2010). Thus, we leveraged Surrogate Variable Analysis
(Leek et al., 2012) and linear regression models to remove
confounders (batch/tissue and gender, see the section “Materials
and Methods,” Figure 1). Dimensionality reduction techniques
showed that age and neurodegeneration were still retained as
a primary components for further analysis, while there were
no visible batch effects (Figure 2C). To define and contrast
gene networks that were conserved between human aging and
neurodegenerative disease, a co-expression gene network was
then constructed that consisted of a normalized and combined
AD, HD, and PD samples coded as “neurodegeneration” and
respective controls. This approach increased power, but had the
disadvantage to mask any potential tissue-specific networks.

Hierarchical clustering of expression data using WGCNA
partitioned this large human data set into 12 modules
(Figure 2D). These modules, which are designated in different
colors, can be thought of as functionally different compartments
of the human brain transcriptome, forming groups of highly
interconnected transcripts that may shape a pathway that is
relevant to aging and/or neurodegenerative disease (Fuller et al.,
2007; Langfelder et al., 2008; Struebing et al., 2016, 2018).
No module had any relationship to the confounding variables
study, gender or tissue, validating our batch adjustment strategy
(Figure 2D). In order to gain more insight on the biological
function of these modules, we overlapped genes within each of
the previously found 12 co-expression modules with a signature
gene list that was specific for several cortical cell types. These
included neurons, astrocytes, oligodendrocyte precursor cells,
newly formed oligodendrocytes, myelinating oligodendrocytes,
microglia, endothelial cells and pericytes (Zhang et al., 2014).
We then tested each module-cell type association for significance
using a hypergeometric test. From all mutual comparisons,
only three reached significance after adjusting for multiple
comparisons (Supplementary Table S1): The human “black”
module was related to microglia (p = 8.00e-60), whereas
the human “blue” module was enriched in endothelial cells

FIGURE 3 | Removal of batch effects and gene network construction in mouse aging. (A,B) Dimensionality reduction of the three combined mouse RNA-seq
datasets suggested a strong batch effect that was successfully mitigated by the chosen batch correction method. (C) WGCNA modules: Each row corresponds to
one gene co-expression network (labeled by color). Numbers in the table indicate the Pearson correlation coefficient r and the associated p-values in parentheses.
Coloring of the table encodes the correlation to the phenotype. The mouse “yellow” module was highly related to aging and also showed a significant enrichment in
microglia. (D) Preservation analysis of mouse and human gene networks using human colors derived from Figure 2D. The human “black” module shows the
strongest preservation in mice.

Frontiers in Neuroscience | www.frontiersin.org 6 January 2019 | Volume 13 | Article 2

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00002 January 22, 2019 Time: 19:46 # 7

Mukherjee et al. Microglial Signatures in Aging and Disease

(p = 1.10e-7), and the human “turquoise” module was related to
neurons (p = 3.85e-05). Notably, the “black” microglia module
had a significant positive relationship to human aging (r2 = 0.26,
p = 1e-11), which only became stronger in neurodegeneration
(r2 = 0.47, p = 1e-35; Figure 2D). Thus, our analysis revealed
that gene networks related to aging and neurodegeneration
showed the strongest functional association with microglia, the
resident immune cells of the brain. Furthermore, the human
“blue” endothelial module was positively related to age (r2 = 0.5,
p = 3e-41), whereas the human “turquoise” neuron module
was negatively correlated with age (r2 = −0.33, p = 4e-17)
(Figure 2D). Both of these associations also became stronger
in neurodegeneration (human “blue” r2 = 0.6, p = 7e-63;
human “turquoise” r2 = −0.65, p = 3e-78), suggesting that
the transcriptome changes for aging and neurodegeneration are
similar, albeit exaggerated in the latter.

To further test how human aging could be compared to aging
in mice, we again constructed a gene co-expression network using
a merged data set from three public RNA-seq data sets taken from
healthy mouse hippocampi, covering an age range from 1 month
to 29 months of age (1, 2, 3, 6, 10, 24, and 29 months, total n = 71).
We ensured to only include data that was taken from the same
mouse strain (C57BL/6J).

After re-mapping of raw reads (Langfelder et al., 2011), batch
effects were successfully removed using the same strategy as
previously demonstrated (Figures 3A,B). WGCNA partitioned

the combined dataset into 18 modules, including some that
depended on mouse age (Figure 3C). Just as with the human data,
we also performed cell type-specific enrichment for the mouse
aging modules. Among a few significant enrichments, we again
found a strong overrepresentation of microglial genes, this time
in the mouse “yellow” module (p = 2.28e-37; Supplementary
Table S2). This module also had the strongest positive correlation
to mouse age (r2 = 0.63, p = 5e-9; Figure 3C). Other
associations included oligodendrocyte- or neuron- enriched
modules, however, their relations were not as prominent as
the microglia module (Supplementary Table S2). These results
indicate that age-related transcriptome changes involve microglia
in humans and mice alike.

To more directly compare these networks and potentially
identify common transcriptome drivers, we performed module
preservation analysis (Langfelder et al., 2011), which can assess
the degree to which the co-expression structure of genes in
human modules was conserved in mouse (Figure 3D). Previous
microarray studies have shown such an association between
human and chimpanzee brains (Oldham et al., 2006). The
preservation between species was determined by calculating
the Z-score, where a score between 5 and 10 is considered
to be a moderate, higher-than-expected preservation of the
module (Miller et al., 2010). Interestingly, we found the most
significant module preservation in the human “black” module,
which was enriched in microglial genes (p = 8e-60). This

FIGURE 4 | Gene expression classification and pathway analysis of human “black” and mouse “yellow” microglia-specific modules. Both species showed a similar
enrichment in pathways related to infection and the immune system.
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module also demonstrated a highly significant hypergeometric
enrichment (p = 8e-16; Supplementary Table S3) with the mouse
“yellow” module, which we previously showed was enriched with
microglia genes as well (p = 2.28e-37). Functional annotations
of the microglia-related human “black” and mouse “yellow”
modules showed similar enrichments in immune system-related
processes (Figure 4). Besides the Reactome identifiers “immune
system” (human p = 3.2e-27, mouse p = 9.33e-11) and “innate
immune system” (human p = 6.4e-11, mouse p = 4.7e-06),
several infectious disease pathways from the Kyoto Encyclopedia
of Genes and Genomes (KEGG) were identified. These results
suggest that the main actors driving the transcriptome changes
associated with aging in human and mice are immune system-
related genes expressed in microglia.

The human “black” module and the mouse “yellow” module
had 17 genes in common (Figure 5A and Supplementary
Table S3). All of these overlapping genes were also microglia
signature genes, out of which seven were among the top ten
hub genes in human or mouse (Tables 2, 3 and detailed:
Supplementary Tables S3, S4), meaning that they displayed
some of the most representative gene expression patterns
of the module as a whole and are likely good markers of
microglia or their associated processes. FCER1G (transmembrane
signaling receptor), ITGB2 (=CD18, subunit of complement
receptor 3), MYO1F (required in cytoskeleton remodeling and
migration) (Kalhammer and Bähler, 2000; Chen and Iijima,

2012; Maravillas-Montero and Santos-Argumedo, 2012), PTPRC
(=CD45 or B220, signaling molecule) and TYROBP (=DAP12,
activatory adaptor protein) were hub genes in the human “black”
module, while C1qa (subunit of complement component C1q)
and Trem2 (transmembrane signaling receptor) were hub genes
within the mouse “yellow” module (Figure 5A). By directly
interrogating their expression changes during the aging process,
we found significant associations of these hub genes with human
aging in the “black” module (Figure 5B and Tables 2, 3). All of
these genes were strongly enriched in microglia, as evidenced by
comparison with our cell type-specific gene list (Supplementary
Tables S1, S2). Cross-referencing them with RNA-seq data from
the Allen Cell Types Database (Figure 5C) further confirmed
the cellular identity of these modules. These results suggest that
even though gene networks enriched in microglial signatures
that potentially direct human and mouse aging show significant
overlap and are preserved, they are controlled by different
regulatory hubs in the two species.

In conclusion, our analysis identifies co-expressed networks
involved in human aging and neurodegeneration that
are well preserved in mouse aging and associated with
similar molecular pathways. A large part of this conserved
regulatory pathway is mediated by microglia. Ultimately,
our analyses suggest that the mouse is a valid model system
to study changes in microglia during human aging and
neurodegeneration.

FIGURE 5 | Microglia-specific hub genes in mouse and human and enrichment with the Allen Brain Cell Types Database. (A) The human “black” module and the
mouse “yellow” module shared 17 genes, out of which five were hub genes in human and two were hub genes in mouse. All 17 shared genes were microglia
signature genes as confirmed with the published cell type signature genes. (B) These hub genes correlated positively with age in both mouse and human, while
mean expression is higher in human neurodegeneration (ND) than in controls (CON). Each gray dot represents one sample and gene, whereas the blue (ND) and the
red (CON) dots indicate means and the colored lines represent a linear fit with a gray-shaded 95% confidence interval. (C) The hub genes were enriched in human
(left) and mouse (right) microglia. Gene symbols are given on the y-axis, while different cell types as defined in the Allen Cell Types Database are displayed on the
x-axis. Dot size and color correspond to the fraction of cells in a cluster expressing a given gene and the median gene expression, respectively. CPM, counts per
million; MTG, middle temporal gyrus; VISp, primary visual cortex; ALM, anterior lateral motor cortex; Inh, inhibitory neurons; Exc, excitatory neurons; oligodendro,
oligodendrocytes, LM, leptomeningeal; IT, intratelencephalic; PT, pyramidal tract; NP, near-projecting; CT, corticothalamic. Microglia are highlighted with a red box.
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TABLE 2 | Overview of top 10 hub genes in human “black” module.

Rank Gene CorrDisease PvalDisease CorrAge PvalAge CorrGene PvalGene

1 TBXAS1 0.399 1.03E-25 0.200 3.56E-07 0.882 6.87E-210

2 TYROBP 0.397 2.03E-25 0.085 0.032 0.872 5.07E-199

3 PTPRC 0.327 2.35E-17 0.244 4.41E-10 0.871 3.43E-198

4 ITGB2 0.395 3.01E-25 0.194 8.27E-07 0.859 1.76E-186

5 MYO1F 0.380 2.76E-23 0.102 0.010 0.846 9.05E-176

6 LST1 0.286 1.94E-13 0.157 7.10E-05 0.841 2.36E-171

7 CYBA 0.435 9.96E-31 0.282 4.43E-13 0.840 1.59E-170

8 SLC7A7 0.371 3.69E-22 0.133 0.001 0.837 4.71E-168

9 RNASET2 0.403 2.65E-26 0.189 1.63E-06 0.835 3.72E-167

10 FCER1G 0.456 5.16E-34 0.246 2.95E-10 0.829 2.60E-162

Rank, rank of hub gene (ordered descending by CorrGene); gene, gene symbol; CorrDisease, Pearson correlation of human “black” module eigengene with a numeric
vector indicating whether the sample comes from a control (0) or disease (1) donor; PvalDisease, P-value of correlation in CorrDisease; CorrAge, Pearson correlation of
human “black” module eigengene with donor age; PvalAve, P-values of correlation in CorrAge; CorrGene, Pearson correlation of human “black” module eigengene with
expression level of the gene in the “Gene” column; PvalGene, P-values of correlation in CorrGene. Genes labeled in bold are microglia signature genes that are shared by
the human “black” module and the mouse “yellow” module.

TABLE 3 | Overview of top 10 hub genes in mouse “yellow” module.

Rank Gene CorrAge PvalAge CorrGene PvalGene

1 C4B 0.652 7.39E-10 0.940 6.58E-34

2 C4A 0.652 7.39E-10 0.940 6.58E-34

3 CTSS 0.595 4.50E-08 0.900 1.41E-26

4 LGALS3BP 0.529 2.12E-06 0.874 2.46E-23

5 APOD 0.561 3.58E-07 0.874 2.54E-23

6 C1QC 0.521 3.18E-06 0.872 3.99E-23

7 TREM2 0.567 2.59E-07 0.857 1.37E-21

8 C1QB 0.554 5.54E-07 0.855 2.35E-21

9 MPEG1 0.568 2.33E-07 0.852 4.84E-21

10 C1QA 0.548 7.71E-07 0.849 8.53E-21

Rank, rank of hub gene (ordered descending by CorrGene); gene, gene symbol;
CorrAge, Pearson correlation of mouse “yellow” module eigengene with donor
age; PvalAve, P-values of correlation in CorrAge; CorrGene, Pearson correlation of
mouse “yellow” module eigengene with expression level of the gene in the “Gene”
column; PvalGene, P-values of correlation in CorrGene. Genes labeled in bold are
microglia signature genes that are shared by the human “black” module and the
mouse “yellow” module.

DISCUSSION

There is growing evidence suggesting that aging and
neurodegenerative diseases show common pathological gene
regulation patterns (Chakrabarti and Mohanakumar, 2016).
While different cell types are clearly affected differently from
one another, the degree to which each cell type is involved in
the dysregulation of genetic networks is not entirely understood.
Therefore, the overall goal of this study was to identify cell
type signature(s) of aging and neurodegenerative diseases by
comparing their gene regulatory networks. Through a systematic
WGCNA-based analysis, we identified microglia as a major
cell type directing gene networks related to aging and three
neurodegenerative diseases (AD, HD, and PD) in post-mortem
human brains. Moreover, we found that this role of microglia in
aging was conserved in mice.

Combining transcriptomic data from different sources and
different neurodegenerative diseases enabled us to investigate a
large dataset that covered different diseases and a representative
age range from 18 to 106 years. Nevertheless, using datasets
from different sources often introduces unwanted batch effects.
To overcome this hurdle, we leveraged a unique combination of
batch-correcting statistical methods (SVA and linear regression
models) to segregate the effects of age and neurodegeneration in
their respective molecular networks.

We first identified three gene co-expression networks that
were significantly correlated to aging and neurodegenerative
diseases. Each of these was enriched in genes specific for a
distinct cell type, namely neurons (human “turquoise” module),
endothelial cells (human “blue” module), and microglia (human
“black” module). The association with neurons is consistent
with the major feature of neuronal damage, while the relation
to endothelial cells could implicate neurovascular dysfunction,
which is also seen in aging and neurodegeneration (Kisler
et al., 2017). Although a contribution of glial cell types to these
conditions was expected, it was surprising to find the strongest
association with microglia, while there was only non-significant
overlap with astrocytes and no association with oligodendrocytes.
Functional annotations of the microglia-associated human and
mouse modules showed that it was strongly related to the
immune system. Taken together, these results suggest that
microglia are the major cell type common to aging and three
major neurodegenerative diseases (AD, HD, PD).

Cross-species comparison of gene co-expression networks can
provide additional information about network convergence and
divergence of networks, which can help to identify key members
of the network and species-specific differences (Hawrylycz et al.,
2012). As mouse models are widely used in the study of
human aging and diseases (Klopstock et al., 2011), we mined
mouse aging data to test the cross-species relevance of our
finding that microglia signature genes were strongly associated
with aging as well as neurodegeneration. In our results, the
mouse “yellow” module was significantly preserved between
mouse aging and human aging. Furthermore, this module also
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showed a significant enrichment in microglial genes, suggesting
that aging and neurodegenerative disease-associated gene co-
expression networks are conserved between mouse and human
and associated with microglia.

Comparing the human and mouse microglia-related modules
yielded 17 shared genes, of which seven were hub genes: FCER1G,
ITGB2, MYO1F, PTPRC, and TYROBP in human and C1qa
and Trem2 in mouse. Recent findings support the role of these
genes in aging or neurodegeneration: For example, C1qa as part
of the complement system mediates early synapse loss in AD,
while TYROBP expression is increased in AD and simultaneously
increases the expression of AD-related genes such as Cd33 in
an AD mouse model, consistent with its role being a hub
gene (Zhang et al., 2013; Herms and Dorostkar, 2016; Haure-
Mirande et al., 2018). Furthermore, TREM2 mutations are well
known to increase AD risk in humans, and increased Trem2
expression in microglia has been found to correlate with amyloid
deposition (Brendel et al., 2017). The intersection of hub genes
with the Allen Brain Cell Types Database showed that they
were indeed strongly expressed in microglia. Consistent with
their role as being major gene network drivers, their expression
pattern significantly correlated with aging (mouse and human)
and neurodegeneration (human). Even though hub genes were
present in both modules, they assumed this role in only one
of the species and not both. This could indicate a form of
network re-wiring (Halfon, 2017), suggesting that the aging- and
neurodegeneration-related networks are evolutionarily dynamic.
These results are also consistent with previous findings of
convergent and divergent pathways in human and mouse brain
transcriptomes using a similar approach (Miller et al., 2010).

Several caveats concerning this study such as residual batch
effects or tissue heterogeneity should be kept in mind. As is
the case for any study that is correlational in nature, inferences
that imply a causal relationship must be critically evaluated.
Ultimately, biological validation will be required in both mouse
and human organoid models of aging, AD, PD, and HD, to
ultimately prove their dysfunctional regulation in aging and
neurodegeneration.

CONCLUSION

In conclusion, we have provided a systems biology-based study
that supports two ideas: (i) that there is a common molecular
mechanism underlying aging, AD, HD, and PD that might
be related to microglia, and (ii) that these microglial gene
networks associated with neurodegeneration and aging are
conserved in human and mice. Specifically, we have identified
seven candidate microglia genes that should be the focus of
further investigations, for example in mouse models and human

organoid models. Understanding their transition during aging
and in neurodegenerative diseases might be of particular interest
for future diagnostics.
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