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When the human genome was sequenced, it came as a surprise that it contains

“only” 21,306 protein-coding genes. However, complexity and diversity are multiplied

by alternative splicing, non-protein-coding transcripts, or post-translational modifications

(PTMs) on proteome level. Here, we discuss how the multi-tasking potential of proteins

can substantially enhance the complexity of the proteome further, while at the same time

offering mechanisms for the fine-regulation of cell responses. Discoveries over the past

two decades have led to the identification of “surprising” and previously unrecognized

functionalities of long known cytokines, inflammatory mediators, and intracellular

proteins that have established novel molecular networks in physiology, inflammation,

and cardiovascular disease. In this mini-review, we focus on alarmins and atypical

chemokines such as high-mobility group box protein-1 (HMGB-1) and macrophage

migration-inhibitory factor (MIF)-type proteins that are prototypical examples of these

classes, featuring a remarkable multitasking potential that allows for an elaborate

fine-tuning of molecular networks in the extra- and intracellular space that may eventually

give rise to novel “task”-based precision medicine intervention strategies.

Keywords: alarmin, chemokine, cytokine, moonlighting, promiscuity, inflammation, cardiovascular disease, MIF

protein family

INTRODUCTION

The human genome project was concluded in the beginning of this millennium (1). It came as a
surprise that the genome only contains 21,306 protein-coding genes; this appeared to contradict the
remarkable complexity of higher organisms. However, it turned out that complexity and diversity
are substantially enhanced by other mechanisms such as alternative splicing, non-protein-coding
transcripts, or post-translational modifications (PTMs) on proteome level. For example, protein
translation and mRNA stability are regulated and fine-tuned by thousands of non-coding RNAs
including microRNAs, small interfering RNAs (siRNAs), and long non-coding RNAs (lncRNAs).
The complexity in the available battery of gene products in humans is further multiplied by
alternative promoter sites and transcript splicing. Moreover, the size of the proteome is much larger
than the predicted 21,306 proteins. It is amplified by a factor of >50-fold by a multitude of PTMs
that determine the activity, interaction specificity, and sub-cellular localization of many cellular
proteins (Table 1). Not all of these diversity-enhancing mechanisms operate at the same time and
on the same protein class, but they certainly lead to a significant expansion of the proteome.While it
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is well-known that some PTMs alter the interaction profile
of a protein and switch-on or switch-off certain protein-
protein or protein-substrate binding events, interactions that
are subject to PTM-modulated changes are typically confined
to binding partners of the same or similar functional class. A
prototypical example would be the regulation of the activity of the
enzyme phosphofructokinase-2 (PFK-2), which, following post-
translational phosphorylation, is converted from a kinase to a
phosphatase, consistent with the inversion of substrate specificity
from a mono-phosphorylated to a bis-phosphorylated sugar (i.e.,
the binding partner).

Research in the last two decades has led to the discovery
of numerous molecules that engage in unanticipated—second—
activities, thus suggesting a novel concept of “molecular
multitasking” or “molecular moonlighting.” The concept holds
that certain biomolecules may execute functions in previously
unexpected -different- locations, that they may utilize previously
unrecognized -different- substrates, or that they may engage
in previously unexpected -different- binding interactions, thus
previously unexpected functions that often are seemingly
unrelated to their established “main” function. The “molecular
multitasking” or “molecular moonlighting” concept thus goes
beyond the “one molecule, one function” paradigm. With
respect to proteins it goes beyond the “one molecule, one-
fold, one function” paradigm. The concept is appropriately
described by the “moonlighting” definition which refers to the
practice of holding a “second regular job” in addition to: one’s
main job” (https://www.collinsdictionary.com/de/worterbuch/
englisch/moonlighting).

Alarmins and certain cytokines and chemokines are
protagonistic examples of biomolecules executing “molecular
multitasking/moonlighting.” In fact, work in the past two
decades has led to the identification of surprising and
previously unrecognized functionalities of long known cytokines,
inflammatory mediators, and intracellular proteins, unraveling
novel molecular networks in physiology, inflammation, and
cardiovascular disease. To this end, alarmin research has
established the idea that homeostatic intracellular proteins can
have additional, non-homeostatic, extracellular functions that
signal danger, and promote inflammation. While the alarmin
category of molecules not only encompasses proteins, but
also small molecule metabolites such as ATP or nucleic acids
such as RNA, in this article, we will discuss only protein-type
alarmins and atypical chemokines/cytokines with an emphasis
on high-mobility group box-1 (HMGB-1) and macrophage
migration-inhibitory factor (MIF)-type proteins. We will
discuss their remarkable multitasking potential that enhances
the diversity of the proteome and allows for a fine-tuning of
molecular networks in the extra- and intracellular space in health
and disease.

ALARMINS AS PROFESSIONAL
“MULTITASKERS”

Alarmins are molecules released from a damaged or diseased cell
that upon release can stimulate a sterile immune or inflammatory

TABLE 1 | The diversity in the human proteome is enlarged by multitasking

proteins: atypical chemokines and MIF family proteins as role models.

Genes/mechanism Number/increase in

diversity

Comment

Protein-coding genes 21,306 *see recent publication

LncRNAs 18,484 Possibly up to 100,000

antisenseRNA 2,144

MiscRNAs 1,228

Splicing, alternative

promoters

Amplification factor

6–8 x

Post-translational

Modifications

Proteins including

PTMs

Amplification factor

>50 x

>1,000,000

Amplification/Diversification by “multitasking” of ACKs/MIF

proteins

MIF protein-coding

genes

2 **a third one predicted

Topology-mediated

diversity

Amplification factor 3 x Extracellular vs. cytosolic vs.

nuclear

Receptor-ligand

promiscuity

Amplification factor

3–4 x

CD74, CXCR2, CXCR4,

CXCR7

Receptor complexes *Amplification factor

3–5 x

CD74/CXCR2,

CD74/CXCR4,

CXCR4/CXCR7

Multiple intracellular

binding proteins

Amplification factor

>5 x

CSN5/JAB1, Trx, Prx,

mutSOD1, p53, BNPL1

Protein complex

formation

***Amplification factor

3 x

Homomeric/heteromeric as

well as

trimer-dimer-monomer

equilibria

MIF proteins including

PTMs

>5 MIF, MIF-2, SNO-MIF,

proxMIF, oxMIF,

glycoMIF****

Increase in MIF

“functional” diversity

depending on cell type,

tissue, disease stage,

expression stage etc.

Amplification factor

3 –100*** x

Collective increase (sum)

over all possible diversity

variants

*Pertea et al. (2). **the Uniprot databank lists a gene called DDTL that could be related

to MIF and MIF-2; ***estimated factor as the physiological relevance of MIF monomers

or homomeric vs. heteromeric oligomers is unclear; ****in addition to unmodified MIF

and MIF-2, according to some recent reports there are post-translationally modified

variants of MIF (SNO-MIF, oxMIF, proxMIF, and GlcNAcMIF), on which cysteine residues,

the N-terminal proline, or a C-terminal serine are modified. While possible functions of

these oxidized and O-N-acetyl-glycosylated MIF species have been suggested, the exact

mechanisms underlying such physiological and pathophysiological roles are currently

incompletely understood (3–8).

response (9–12). Examples are heat-shock proteins such as
HSP-70 or−90, intracellular cytokines such as interleukin-1
α (IL-1α) or IL-33, amino-acyl tRNA synthetase fragments
or the p43 auxiliary component of the tRNA multisynthetase
complex, chromatin proteins such HMGB1 or histones, whole
nucleosomes, phagocyte inflammatory proteins such as the
S100 proteins S100A8, S100A9, or S100A12, but also small
molecule metabolites such as ATP or uric acid crystals. Alarmins
are sometimes referred to as “endokines” to indicate that
“endo”genous intracellular molecules acquire cyto’kine’-like
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functions once release into the extracellular space. There is a
significant overlap between alarmins and the molecular class
of danger-associated molecular patterns (DAMPs) or danger
signals. The DAMP terminology was coined by symmetry
to the concept of pathogen-associated molecular patterns
(PAMPs), conserved pathogen-derived molecular motifs that are
recognized by host pattern recognition receptors (PRRs), such as
Toll-like receptors (TLRs) (the “stranger theory”). Accordingly,
endogenous “molecular patterns” that signal cell or tissue damage
and the need for the development of a sterile host inflammatory
response were coined as DAMPs (the “danger theory”) (13). In
fact, it has been suggested that alarmins and DAMPs are two
terms for the same class of molecules and concept. We will
preferentially use the term alarmin in this review article.

There are numerous excellent recent reviews on
alarmins/DAMPs (9, 10, 13–18). Briefly, alarmins have a
physiological, often homeostatic, role inside the cell, but take
on additional, novel, functions when they are exposed to the
extracellular environment. They signal “danger” to the host
and trigger a local inflammatory response, which in physiologic
healing leads over to tissue regeneration, but when dysregulated
can cause pathologic inflammation and related disorders.
Following tissue injury or cell stress, most alarmins are passively
released from dead cells, but the release of some alarmins can also
follow a controlled secretion program to signal early, sub-lethal
cell stress. For protein-type alarmins, this regulated secretory
process follows a so-called “unconventional” endoplasmic
reticulum (ER)/Golgi-independent pathway (19).

Here, we focus on the “multitasking” concept as it applies
to proteinaceous alarmins and their functional and molecular
connection to atypical chemokines (ACKs) (for latter, see next
chapter). This principle is best characterized by HMGB1, a
typical “multitasking” alarmin and the first identified member
of the HMGB family. HMGB1 is a ubiquitous nuclear DNA-
binding protein that is highly conserved, present in most
cell types, and that serves as nuclear/transcriptional cofactor
(20). In addition to its intracellular nuclear function, HMGB1
can be released into the extracellular milieu following cell
damage or via regulated secretion via an autophagolysosomal
pathway (21). Extracellular HMGB1 fulfills a second independent
function as an intercellular-acting cytokine and inflammatory
mediator (10, 14, 17, 22–29). In analogy to the “multitasking”/“
moonlighting” principle, transcriptional regulation by nuclear
HMGB1 represents the physiological “day-time job” (job 1)
inside the cell, while its “cytokine” activity outside the cell would
be the additional “night-time” or “moonlighting” job (job 2) that
HMGB1 takes on to signal cell stress or damage and initiate
a rapid local inflammatory response (10, 14, 17) (Figure 1).
Weighing the terms “multitasking” vs. “moonlighting,” the latter
appears preferable as the definition of “multitasking” asks for
the handling of multiple jobs at the same time. However,
the “day-time” and “night-time” jobs of HMGB1 (and other
“multitaskers”) are clearly separated in time and localization.
Transcriptional coregulation by HMGB1 is restricted to the
intracellular–nuclear-compartment and healthy homeostatic
cell conditions, whereas the inflammation-promoting cytokine
function of HMGB1 only occurs outside the cell. Inversely,

FIGURE 1 | Scheme summarizing the multitasking/moonlighting functions of

HMGB1. For details see manuscript text. HMGB1, high mobility group box-1;

HMGB1red, fully reduced HMGB1; HMGB1ox, partially or fully oxidized

HMGB1; TLR, Toll-like receptor; RAGE, receptor of advanced glycation

endproducts (AGEs); MD2, myeloid differentiation factor 2/lymphocyte antigen

96.

nuclear HMGB1 is invisible to the host immune and tissue
inflammatory system. The two HMGB1 “jobs” are thus distinctly
separated in space and phase (Figure 1).

HMGB1 contains three conserved cysteines. These residues
are redox-sensitive and their differential modification
modulates the bioactivity of HMGB1 in the extracellular
space via determining the binding specificity to three different
receptors due to the induction of specific three-dimensional
conformations. Disulfide formation between the C23 and C45
cysteines of HMGB1 and preservation of C106 in its reduced
thiol form (“disulfide HMGB1”) enables for binding and
signaling through the TLR4/MD-2 receptor axis. This activity
leads to the induction of inflammatory cytokines in macrophages
and may be termed the “cytokine task” of extracellular
HMGB1 (22, 23, 30–32) (Figure 1). In contrast, the all-thiol
conformer of HMGB1 may behave as a co-chemokine through
heterocomplex formation with the classical CXC chemokine
CXCL12. HMGB1/CXCL12 complexes bind to CXCR4 to
promote chemotactic cell migration of monocytes/macrophages
and T cells (33) (the “chemokine task”) (Figure 1). Alternatively,
all-thiol HMGB1 binds to receptor of advanced glycation
endproducts (RAGE) to trigger cell migration or autophagy
(the “autophagy task”; Figure 1). Interestingly, RAGE and TLR4
function as promiscuous multitaskers themselves, interacting
with other DAMPs such as the S100 proteins S100A12 (34)
and S100A8/A9, respectively (35), ligands such the Aβ amyloid
polypeptide and heat shock proteins (HSPs) or PAMPs.
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The post-translational redox modifications of HMGB1 with
the exception of the sulfonyl-modification are reversible,
enabling HMGB1 to switch from its “cytokine task” to its
“chemokine task” or vice versa. Terminally oxidized sulfonyl-
HMGB1 fully lacks inflammatory activity. Distribution of
HMGB1 between its “day-time job” (nucleus) and its “night-
time job” (extracellular milieu) is further regulated by acetylation
of lysine residues within its nuclear localization sequence
(Figure 1). Acetylation favors the cytosolic fraction over nuclear
HMGB1 and thus is a prerequisite to redirect HMGB1 into
the extracellular space (14, 17, 24, 36). A similar role for
alarmin hyper-acetylation has also been shown for the nuclear
Y-Box protein-1 (YB-1), which is secreted by non-conventional
pathways following acetylation (37).

The extracellular cytokine/chemokine-like activities of
HMGB1 thus represent true multitasking in the “second” job of
this alarmin/DAMP protein (Figure 1).

ATYPICAL CHEMOKINES AS
“MULTITASKERS”

At first glance, alarmins and chemokines, while both playing
important roles in host defense and inflammation, are
fundamentally different classes of mediators. As outlined
above, alarmins are bona fide intracellular effectors that upon
abundant rapid release alert the environment about cell
stress and danger. In apparent contrast, chemokines (and
cytokines in general) are bona fide extracellular mediators
that typically have no role within the cell. As discussed above,
the IL-1-type cytokines IL-33 and IL-37 that have intrinsic
nuclear activities are exceptions to this rule. While classical
chemokines of the homeostatic sub-class such as CXCL11 or
CXCL12 are stored intracellularly under resting conditions,
they do not appear to fulfill intracellular functions, except
for “awaiting” their secretion. Moreover, classical chemokines
of the inflammatory sub-class, with some exceptions, are
not intracellularly measurable at rest; their production is
tightly regulated. Transcription and translation are induced by
inflammatory or stress stimulation only, which is when levels rise
from essentially “zero” by several hundred- or thousand-fold.
Induction also is typically directly coupled with the secretion
of inflammatory chemokines into the extracellular space, where
they drive leukocyte migration and/or promote inflammation
through binding to their cognate chemokine receptors. When
secreted from inflammatory endothelium, chemokines such
as CXCL1 are deposited on the endothelial surface to form
an haptotactic gradient and function as arrest chemokines
(38, 39). However, beyond regulation at induction level, some
inflammatory chemokines are pre-stored following translation.
For example, CCL2 is stored under the endothelial surface as
intraendothelial chemokine to guide lymphocytes across an
inflamed endothelial barrier, circumventing the need for surface-
deposited chemokines or extraendothelial chemokine gradients
(40). Moreover, some chemokines are stored as proforms. This
applies to the platelet chemokines connective tissue-activating
protein III (CTAP-III/NAP-2/CXCL7) and platelet factor 4

(PF4/CXCL4), which are pre-stored in platelet granules (41).
Furthermore, CX3CL1 and CXCL16 are translocated to the
plasma membrane, where they are “stored” as transmembrane
proforms that are “activated” by proteolytic processing. In this
case, proteolysis represents an important regulated “induction”
step (42). Moreover, fine-tuning of several other chemokines has
been described at the post-translational level, e.g., by N-terminal
processing (43–45).

Alarmin receptors are as diverse structurally as alarmins
themselves, spanning classes such as scavenger receptors
and PRRs, ligand-gated channels, single-spanning helix-type
transmembrane proteins, or chemokine receptors as a sub-group
of G protein-coupled receptors (GPCRs) [for detailed overview
see 2, 7, 11, 39, 40]. In contrast, classical chemokines (CKs)
are 8–10 kD small proteins that are uniformly defined by an
N-terminal cysteine motif and a characteristic β-strand-rich
structural core, featuring the so-called chemokine-fold. Forty-
nine classical chemokines interact with 18 GPCR-type classical
chemokine receptors (CKRs) as well as five atypical chemokine
receptors (ACKRs). The chemokine network is characterized by
a high degree of promiscuity with numerous chemokines binding
to several receptors and certain receptors engagingmore than one
chemokine ligand. Classical chemokines are divided into CC-,
CXC-, CX3C-, and C-type sub-classes owing to the positioning of
one or two vicinal cysteines at the N-terminal. The receptors are
termed correspondingly (46–48). Chemokines form monomers
or dimers, but higher-order oligomers also are observed. The
receptors also exist as monomers and dimers, but the precise
stoichiometry of ligand and receptor oligomeric combinations
is not yet fully understood for most chemokine/receptor pairs
(49–52). Thus, proteinaceous alarmins and classical chemokines
exhibit fundamental structural and functional differences.

However, intriguing overlaps between these categories of
mediators have been identified. First and as outlined above,
alarmins, once released into the extracellular milieu, and
classical chemokines can directly interact to form heterodimers;
all-thiol HMGB1 binds to CXCL12 and HMGB1/CXCL12
dimers elicit CXCR4 signaling responses that are different
from those triggered by CXCL12 alone (33); CCL5/HNP1
heterocomplexes represent another example of a dimer
between a classical chemokine (in this case the CC chemokine
CCL5/RANTES) and a prototypical alarmin (in this case the
human neutrophilic peptide HNP1) (53). Secondly, the four
classical chemokine categories (i.e., the CC-, CXC-, CX3C-, and
C-type classes) have more recently been amended by a fifth
“functional” class of chemokines, called the chemokine-
like function (CLF) chemokines or innate chemokines,
or atypical chemokines (ACKs), which share significant
functional similarities with classical chemokines, i.e., exhibiting
chemotactic activity. Here, we use the term ACK in analogy to
ACKRs.

ACKs are a structurally diverse class of small 8–25 kD proteins
that lack the classifying N-terminal cysteine residues. Some ACKs
share gross architectural similarity with classical chemokines
such as extended β-pleated sheet structures with juxtaposing α-
helices, but do not contain a cognate chemokine-fold (9, 54–
56). Despite these structural differences to classical chemokines,
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ACKs/CLF chemokines bind to CKRs with high affinity and elicit
chemotactic cell migration.

A typical ACK would be a constitutively expressed cellular
protein with a bona fide intracellular function that can be released
or secreted upon cell injury or during inflammatory stimulation
to act as a chemokine-like mediator in the extracellular
milieu, pinpointing significant similarities with proteinaceous
alarmins.

The concept of ACK/CLF chemokines dates back to
the work of Wakasugi and Schimmel who discovered that
proteolytically cleaved fragments of tyrosine amino-acyl-tRNA
synthetase (TyrRS) are secreted into the extracellular milieu,
where they act as chemokines by binding to the classical
chemokine receptor CXCR1 on neutrophils and monocytes (57).
Subsequent work demonstrated similar activities for TrpRS,
HisRs, and AsnRS, as well as acting through CXCR1, CXCR3,
CCR5, and CCR3, respectively (11, 58–60). Moreover, the p43
auxiliary component of the tRNA multisynthetase complex
is identical to endothelial monocyte-activating polypeptide-
II (EMAP-II), an inflammatory cytokine with anti-angiogenic
properties (61). It was further demonstrated that EMAP-II is
identical or similar to the C-domain fragment of TyrRS but also
certain non-mammalian proteins (62). Together, this indicated
that intracellular housekeeping proteins such as amino-acyl-
tRNA synthetases (AaaRS) needed for the ribosomal protein
biosynthesis machinery have a “second job” in the extracellular
environment as cytokines/chemokines. In the following chapter,
we will also discuss the ribosomal protein RPS19, which after
release serves as a cytokine antagonist in the extracellular
space.

Defensins, in particular, β-defensins, are small cysteine-
rich cationic proteins abundantly produced by epithelial
and endothelial cells that act as pore-forming amphipathic
antimicrobial peptides, also have important “second job”
functions as chemokine-like factors. Human β-defensin-1
(HBD1), HBD3, and mouse β-defensin-14 (MBD14) bind to
and signal through CCR6 on T cells and dendritic cells, while
HBD2 and HBD3 as well as MBD4 and MBD14 additionally
interact with CCR2. Moreover, HBD3 acts as an alternative
ligand for CXCR4 (63–67). These studies also identified an
important structural determinant for the promiscuous usage
of classical CKRs by non-classical chemotactic mediators.
HBD1 and 2 express a positive charge cluster on their
surface that is very similar to that of the cognate CCR6
ligand CCL20/MIP-3α, representing a remarkable example of
structural mimicry (68). Additional examples of ACK/CLF-
type chemokines are thioredoxin (for which the CKR has
not yet been identified) (69), the cold shock protein YB-1,
which upon secretion not only interacts with Notch-3 but also
with CXCR2 (70), as well as cathelicidin-related antimicrobial
peptides such as LL-37/Cramp-1, which bind to CKR-like formyl-
peptide receptors, although it may be argued that cathelicidins
share more similarity with inflammatory neutrophilic cytokines
secreted by conventional pathways than with alarmins or
ACKs (18, 71–73). Similarly, serum amyloid A (SAA), a
prominent liver-derived pro-inflammatory acute phase protein
exhibits ACK-like properties owing to its signaling activity

through the chemoattractant receptor formyl-peptide receptor-
2 (FPR2), although part of its initially described chemotactic
activities were more recently redefined as “indirect” effects via
TLR2 (74).

In any case, all these ACK-type proteins have typical
“moonlighting” characteristics, featuring “night-time
(second) jobs” as chemokine-like mediators in inflammation,
autoimmunity, and host defense. Also, although they are
structurally diverse, some of them share mixed β-sheet/α-helix
structural elements that are reminiscent of the β-sheet/α-helix
architecture of classical CKs. Table 2 summarizes known ACK,
indicating their moonlighting functions and receptors vs.
intracellular job 1-interactors.

MIF FAMILY PROTEINS ARE ATYPICAL
CHEMOKINES AND DESIGNATED
“MULTITASKERS”

Work in the last decade has demonstrated that MIF family
proteins are prototypical ACKs that feature all characteristics and
multitasking properties of these proteins.

Macrophage migration-inhibitory factor (MIF) was identified
in 1966 as one of the first cytokines to be discovered (80).
Initially described as a T-cell-derived inhibitor of random
macrophage migration, MIF has been redefined as a pleiotropic
chemokine-like inflammatory cytokine that acts as an upstream
mediator of innate and adaptive immunity. This also suggested
that the eponymous migration-inhibitory activity measured
50 years ago, probably is some kind of “desensitization
effect” of a chemokine-type mediator. Owing to its potent
inflammatory activity profile, MIF has been found to be
a pivotal mediator of acute and chronic inflammatory
diseases such as septic shock, acute respiratory distress
syndrome, neuroinflammation, or rheumatoid arthritis.
Dysregulation of MIF also drives atherogenesis and other
cardiovascular conditions as well as tumorigenesis. Several
excellent review articles have summarized the role of MIF and
its homolog MIF-2/D-dopachrome tautomerase (D-DT) as
inflammatory cytokines and their significance in numerous
diseases (39, 81–92).

Here, we will mainly address MIF’s CLFs and its role as ACK
and alarmin-type mediator. MIF is an evolutionarily conserved
protein that is expressed in most species and kingdoms. Its
structure is unique and cannot be grouped into any of the
known cytokine classes, but despite an only 20–30% sequence
homology, MIF proteins show a remarkable architectural
similarity to a class of bacterial isomerases/tautomerase (83,
93). MIF also shares with these proteins a conserved catalytic
tautomerase pocket that contains an unusually acidic proline
residue, but the significance of this activity in mammals is
unclear (82, 83, 91). There is also a remote similarity between
the three-dimensional structure of CXC chemokines such as
CXCL8 and MIF (39, 93, 94). The architecture of the MIF
monomer resembles that of the CXCL8 dimer. MIF proteins are
semi-constitutively expressed in many cell types. Accordingly,
upregulation of MIF in inflammation and other stress conditions
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TABLE 2 | List of known atypical chemokines (ACKs), their “hijacked”*chemokine

receptors, other receptors, and intracellular interaction partners.

Atypical

chemokine (ACK)

Engaged

receptor(s)******

Intracellular binding

partner(s) (if any)

MIF CXCR2, CXCR4, CXCR7

CD74**

CSN5/JAB1, peroxiredoxin

(PRX), thioredoxin (TRX),

p53, AIF, mutSOD1, p115

MIF-2 CXCR4 (?)***

CD74**

Unknown

HMGB1/CXCL12 CXCR4 (via formation of

a heterodimer with

CXCL12)

TLR2/4, RAGE

Chromatin, DNA

Thioredoxin Unknown**** Various redox proteins with

active disulfides

β-Defensins

HBD1

HBD2

HBD3

MBD4

MBD14

CCR6

CCR2

CXCR4, CCR6, CCR2

CCR2

CCR6, CCR2

N/A

HNP-1/CCL5 CCR5 (via formation of a

heterodimer with CCL5)

N/A

Aminoacyl-tRNA synthetases (AaaRS)

TyrRS

EMAP-II/p43-C-

domain

TrpRS

HisRS

AsnRS

CXCR1

CXCR1

CXCR1, CXCR3

CCR5

CCR3

Various interactions with the

ribosomal protein/rRNA

machinery

LL37/Cramp-1 FPR2 N/A

Serum amyoid A

(SAA)

FPR2

TLR2

N/A

Viral chemokine mimics*****

HIV gp120

v-MIP

CXCR4, CCR5

CXCR4

N/A

*The utilization of chemokine receptors by mediators that do not formally belong to

the structural class of classical chemokines, is also referred to as “molecular hijacking,”

emphasizing the binding between an ACK and a classical chemokine receptor of the CC

or CXC subclasses. **CD74 is not a non-chemokine receptor and is often referred to

as the cognate MIF receptor. ***While experimental evidence is yet missing, it has been

speculated that MIF-2 may interact with CXCR4 but not CXCR2 due to the lack of a

pseudo-ELR motif. **** It has been suspected that thioredoxin elicits monocyte chemotaxis

via engaging a chemokine receptor, but this receptor has yet remained elusive (69).
*****There are numerous examples of “viral chemokine mimicry” mechanisms, involving

mimicry of host chemokine receptors or ligands, e.g., to facilitate viral entry into host

immune cells. Here, we only list HIVgp120 and viral MIP (vMIP) as prototypical examples;

others are summarized in recent reviews, e.g., (75–79). ******For other references see main

text.

is mostly regulated at the level of MIF release rather than
transcriptional induction, although remarkable exceptions such
as in neonatal cells have been noted (82, 95, 96). In fact,
following translation, MIF is localized in the cytosol and does
not enter the ER/Golgi pathway. In analogy, to the above-
discussed storage of some classical inflammatory chemokines,
it could be argued that cytosolic deposition of MIF following
its translation represents “cytosolic storage” awaiting secretory
signals. In fact, MIF secretion occurs by a non-conventional
pathway involving ABCA1 transporters, p115 and JAB1/CSN5,

but the mechanistic details are still unclear (95, 97, 98). Despite
the non-canonical nature of the MIF secretion process, release
of MIF into the extracellular space is tightly controlled by
inflammatory and immune stimulation and occurs in a regulated
fashion. In addition, it has been suggested that some tumor
cells as well as certain endothelial and epithelial cells release
low concentrations of MIF in a semi-constitutive -autocrine-
manner that would be independent of a specific and acute
trigger.

Once released into the interstitial space and/or circulation,
MIF functions to modulate the activity of numerous immune
and inflammatory cells. When secretion occurs from inflamed
endothelium, e.g., in atherogenesis, MIF is immobilized on the
endothelial surface to form an haptotactic gradient. Deposition is
similar to atherogenic arrest chemokines and involves interaction
of basic surface charges of MIF with negatively charged
proteoglycans (94). Circulating or immobilizedMIF then engages
one or more of its receptors, typically expressed on myeloid
cells or lymphocytes. This is the surface-expressed form of
CD74/invariant-chain, which also acts as an MHC class II
chaperone facilitating antigen loading to class II complexes in
the endoplasmic-reticulum (99), as well as the CKRs CXCR2 and
CXCR4, the cognate receptors for the ELR+ CXC chemokines
CXCL1, CXCL2, or CXCL8, and the ELR- CXC chemokine
CXCL12/SDF-1α, respectively (94). CD74 may be also expressed
in class II-negative cells, i.e., upon inflammatory stimulation, and
exhibits a major role as cytokine receptor for MIF and MIF-
2, driving proliferative responses (100, 101). CXCR2 is mainly
expressed on neutrophils and monocytes/macrophages, but can
also be upregulated on a number of other cell types under
inflammatory stimulation. CXCR4 is ubiquitously expressed,
but expression levels can be elevated in inflammation. High-
affinity binding of MIF to CXCR2 and CXCR4 represents non-
cognate interactions between an ACK and CKRs (Table 2) and
gives rise to leukocyte recruitment responses in inflammation
and atherogenesis (39, 86, 92, 94). Binding of MIF to CXCR2
drives atherogenic recruitment of monocytes and neutrophils
(94, 102, 103). MIF/CXCR4 binding supports the recruitment
of atherogenic T and B lymphocytes (94, 104, 105), but also
regulates the egress of metastatic tumor cells and progenitor
cell recruitment (39). All three receptors have important roles
in inflammation and cardiovascular disease. The surprising
AMP kinase-mediated cardioprotective effects of MIF and
MIF-2 in myocardial ischemia/reperfusion injury are mediated
by cardiac-expressed CD74 (106–108). The binding of MIF-
2 to CXCR2 and CXCR4 has not been addressed, while MIF
has also been suggested to interact with CXCR7-mediated
pathways (109).

The structural determinants underlying the promiscuous
binding of MIF to CXCR2 have been elucidated: MIF/CXCR2
binding is similar but not identical to that of the cognate
ligand CXCL8 and requires an N-like loop and a pseudo-ELR
motif (39, 103, 110, 111). This represents another intriguing
example of molecular mimicry that is reminiscent of how
the ACKs HBD1 and 2 mimic the receptor binding motif
that CCL20 utilizes to engage CCR6 (68). Recent data also
inform about the molecular determinants that govern the
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MIF/CXCR4 interaction. They show that the MIF/CXCR4
interface involves an extended N-like loop of MIF, an RLR
motif, and the N-terminal Pro-2 of MIF as well as sequences
from two extracellular loops of CXCR4 (112, 113). Overall, the
binding motifs controlling MIF/CXCR4 binding appear to be less
similar to those of the cognate binding pair CXCL12/CXCR4,
thus representing an example of “remote” molecular mimicry
(75, 114, 115).

In conjunction, these features of MIF proteins are reminiscent
of bona fide alarmins such as HMGB1 or IL-33, with independent
intra- and extracellular roles. In fact, while only speculated about
for a long time (116), the potential intracellular activities of MIF
proteins have been defined more recently. Intracellular activities
were identified both in the cytosolic and nuclear compartment.
Cytosolic MIF interacts with CSN5/JAB1 to regulate COP9
signalosome signaling, while inversely, CSN5 is involved in MIF
secretion (97, 117). MIF/CSN5 interactions are further linked
to apoptotic processes via p53 (97, 118–120). Depending on
the oxidative environment, cytosolic MIF also interacts with
redox-regulating proteins thioredoxin (Trx) and peroxiredoxin
(Prx), and this is mediated by MIF’s redox-active cysteine
residues (121). While the activity spectrum of MIF’s cytosolic
interactions is diverse, they may be collectively designated as
“cell-protective,” “homeostasis-promoting” activities (Figure 2).
This assignment was recently confirmed by an unexpected novel
cytosolic interaction partner of MIF. MIF binds to a mutant
form of superoxide dismutase (mutSOD1) and inhibits the
accumulation of misfolded SOD1, protecting from motoneuron
damage (122–124). It is currently unclear whether MIF exerts
this function also in non-neuronal cells. The recent discovery
of a nuclear function of MIF came as a big surprise. Neurons
under ischemic or excitotoxic stress accumulate cytosolic poly-
ADP ribose (PAR) trees following DNA damage. This leads to
mitochondrial release of apoptosis-inducing factor (AIF), which
binds to MIF and escorts it into the nuclear compartment.
Nuclear MIF further promotes DNA damage by direct nuclease
regulation, leading to cell death by parthanatos (125). While
this study has yet to be independently confirmed and while it
is unclear whether MIF-2 exhibits similar activities, it supports
the concept that MIF proteins can exert their functions in
three independent compartments: (i) in the extracellular space,
(ii) in the cytosol, and (iii) in the nucleus, representing a
intriguing example of “topological multitasking” (Figure 2).
With respect to the moonlighting concept, it also means that
the intracellular functions (cytosolic and nuclear) would be
the intracellular job of MIF (“job 1”), with cytosolic functions
designated as “job 1a” and the nuclear activity being “job 1b”.
The cytokine/chemokine functions of MIF in the extracellular
environment would be MIF’s second task (“job 2”) (Figure 2).
The activities ofMIFmay be further fine-tuned by (PTMs), which
have been suggested to modulate both intra- and extracellular
MIF in a context-dependent manner (Table 1). Interestingly,
the intra- and extracellular MIF pools appear to be further
linked through other ACK-type/multitasking proteins. MIF and
HMGB1 both engage CXCR4 and also are functionally related
in a reciprocal manner (33, 94, 126). Moreover, the ribosomal
protein RPS19 may be released into the extracellular space,

FIGURE 2 | Scheme summarizing the multitasking/moonlighting functions of

MIF proteins. For overview purposes, only MIF but not MIF-2/D-DT is

depicted. For details see manuscript text. MIF, macrophage

migration-inhibitory factor; CSN, COP9 signalosome; Trx, thioredoxin; Prx,

peroxiredoxin; SOD, superoxide dismutase; AIF, apoptosis-inducing factor.

where it binds to and attenuates MIF-mediated inflammatory
activities (127).

In conclusion, although the mechanisms regulating the
interplay between the different MIF tasks have not yet been
elucidated in detail, it is clear that multitasking by MIF over
three different topologies and involving several different binding
proteins is an impressive example of molecular multitasking,
illustrating the functional versatility of MIF proteins and atypical
chemokines in general. The ACK characteristics of MIF proteins
are also summarized in Table 2.

CLINICAL RELEVANCE OF ALARMINS
AND ATYPICAL CHEMOKINES: CAN THEIR
MOONLIGHTING PROFILES BE
TRANSLATIONALLY EXPLOITED?

The potential roles of HMGB1 and MIF-family proteins in
inflammatory, autoimmune and cardiovascular diseases have
been extensively studied and various therapeutic approaches
to interfere with their pathologic activities, i.e., antibodies
and small molecule inhibitors (SMD) have been explored.
This has been summarized in several recent review articles
(14, 91, 92, 128–140). Here, we will only briefly allude to
the translational opportunities that may arise from specifically
targeting the moonlighting characteristics of HMGB1 or MIF
proteins.

It seems overall advisable to try to specifically target the
extracellular activities of HMGB1 or MIF proteins, i.e., “job 2”
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and “job 3” (Figures 1, 2). These are the disease-promoting,
inflammatory activities of these alarmins/ACKs. HMGB1
enhances immune cell migration (and thus inflammatory
recruitment) via job 2 and triggers the release of inflammatory
cytokines and chemokines via job 3. MIF, with the exception of
its CD74/AMPK-mediated cardioprotective activity in the early
phase of cardiac ischemia, amplifies inflammation via various job
2-mediated pathways. These include e.g., cytokine/chemokine
upregulation, leukocyte recruitment, and macrophage survival.
In contrast, the job 1 activities of HMGB1 and MIF proteins
have been suggested to generally be physiologic, maintaining
cell homeostasis. Pharmacologic approaches to tackle HMGB1
or MIF should therefore generally preserve their intracellular
activities. Antibody-based approaches appear suitable in this
respect. Moreover, targeting the receptors appears prudent
at first sight, but specificity issues will have to be considered.
This is particularly true for MIF receptor-targeted strategies,
as the cardioprotective activities of the CD74 pathway and
the homeostatic role of CXCR4 should be preserved (92, 141)
(Figure 2). Although HMGB1/CXCR4 heterodimers have been
found to drive inflammatory leukocyte recruitment (33), this
also holds true for CXCR4 blockade strategies as a means to
interfere with job 2 HMGB1 pathways (Figure 1).

Additionally, small molecule inhibitors (SMD), directed at
the tautomerase site of MIF proteins, represent an interesting
strategy to interfere with the pro-inflammatory job 2 MIF
activities. However, considering the above-said, those anti-

MIF SMDs that are not membrane-penetrable—thus specifically
directed at extracellular -job 2- MIFs—overall appear preferable,
although exceptions may apply to applications in cancer and
stroke, in which intracellular MIF has been suggested to exert
detrimental effects as well (125, 131).

In conclusion, while the moonlighting characteristics of
alarmins and ACKs constitute complex mechanistic networks
that are subject to differential regulation in health and disease,
they principally offer intriguing translational opportunities with
“job”- and thus disease phase-specific targeting options. Multiple
clinical applications are in sight, but also require efforts to further
elucidate the multitasking circuits of these proteins.
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